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We theoretically study the conditions under which an intrinsic spin Nernst effect–a transverse spin current
induced by an applied temperature gradient–can occur in a canted-antiferromagnet insulator, such as LaFeO3

and other materials of the same family. The spin Nernst effect may provide a microscopic mechanism for an
experimentally observed anomalous thermovoltage in LaFeO3/Pt heterostructures, where spin is transferred
across the insulator/metal interface when a temperature gradient is applied to LaFeO3 parallel to the interface
[W. Lin et al., Nat. Phys. 18, 800 (2022)]. We find that LaFeO3 exhibits an intrinsic spin Nernst effect when
inversion symmetry is broken on the axes parallel to both the applied temperature gradient and the direction of
spin transport, which can result in a spin injection across the insulator/metal interface. Our paper provides a
general derivation of a symmetry-breaking-induced spin Nernst effect, which may open a path to engineering a
finite spin Nernst effect in systems where it would otherwise not arise.
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I. INTRODUCTION

The study of spin transport phenomena is vital to the
growing field of spintronics [1,2], which seeks to use the
spin degree of freedom to transfer energy or information,
analogous to the use of electron charge in electronics. In
particular, spin caloritronics considers thermally driven spin
and heat flow in magnetic systems [3–5]. One area of growing
interest in this field is magnonics [6–8], in which the relevant
spin transport is mediated by magnons [9,10]—low-energy
magnetic fluctuations that manifest as excitations above a
magnetically ordered ground state. Magnons can exhibit topo-
logical transport effects such as a topological thermal Hall
effect [11–20], where spin currents are driven by thermal
gradients and deflected by Berry curvature effects [21]. How-
ever, due to the bosonic statistics of magnons, the thermal
responses of magnons are not quantized (due to the absence
of filled bands) as they are in the electronic analog where
the Fermi statistics allow for a notion of a filled band. The
study of magnon systems also has important technological
potential originating in the transport of magnons as well as
cavity magnonics [22].

In this paper, we theoretically explore spin transport in the
antiferromagnetic insulator LaFeO3 (LFO) [23–25], whose
crystal structure and magnetic order are shown in Fig. 2.
LFO has a perovskite structure [26] with space group Pbnm.
Below its transition temperature, it has noncollinear antifer-
romagnetic order, with small spin canting giving rise to weak
ferromagnetism along the c axis [27]. This weak ferromag-
netism arises due to spin-oribit coupling effects that underlie
anisotropy terms in the magnetic Hamiltonian [28,29]. In our
paper, we explore a microscopic mechanism that could ex-
plain an experimentally observed anomalous thermovoltage in

LFO/Pt heterostructures [30], where spin is transferred across
the insulator/metal interface when a temperature gradient is
applied to LFO parallel (and also perpendicular) to the in-
terface. This spin transport is consistent with a spin Nernst
effect (SNE) [31–38] in bulk LFO—however, under normal
conditions, LFO does not support a SNE. We show that un-
der sufficient lowering of the symmetries of LFO, namely, a
loss of inversion symmetry along the directions of both the
applied temperature gradient and the normal to the interface,
a nonzero SNE arises. We argue that one way in which this
lowered symmetry could manifest is through a weak magnetic
dimerization along each of these axes. Although our paper
is motivated by LaFeO3, our analysis is more general and
applicable to a broader class of antiferromagnetic materials
with small canting.

We begin our discussion in Sec. II by briefly summa-
rizing the observed transport phenomenon for which we
propose a model. In Sec. III, we elaborate on the minimal
model for LFO: We present its low-energy excitations in
the form of magnons using a Holstein-Primakoff expansion.
The magnon dispersion, Berry curvature, and spin Berry
curvature are presented. We focus on aspects of the model
that enforce a zero SNE. Next, in Sec. IV, we explore what
constraints must be relaxed to achieve a nonzero SNE. The
relevant symmetries prohibiting a finite SNE manifest most
obviously in the spin Berry curvature. We present a Hamilto-
nian term that breaks these symmetries, and in Appendix C we
show that this is the most general form of such a term. We then
analyze the new magnon band structure and spin Berry curva-
ture for the symmetry-broken model and present the tempera-
ture dependence of the (nonzero) SNE. Finally, in Sec. V, we
conclude our discussion and provide an outlook for further
work.
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FIG. 1. Schematic of the experimental setup of Lin et al. [30],
for which we discuss a microscopic mechanism. Pt is a heavy metal
capping layer for LaFeO3 (LFO). The red arrow indicates the direc-
tion of the temperature gradient ∇T and the blue arrow indicates the
direction of the spin current J .

II. EXPERIMENTAL TRANSPORT PHENOMENON

We begin with a brief discussion of the experimental setup
that motivates our theoretical study [30]. In the experiment, a
conductor with large spin-orbit coupling (Pt or W) was placed
on a sample of LFO, an antiferromagnetic insulator, to which
was applied a temperature gradient parallel to the interface
(as well as perpendicular, but the more standard perpendicu-
lar orientation is not our focus here). Various directions and
strengths of magnetic field were also applied, but the primary
result, regardless of the magnetic field configuration, was a
magnetothermovoltage observed in the conductor, ultimately
due to spin pumping across the interface, which was detected
as a voltage via the inverse spin Hall effect (hence the need
for large atomic number metallic elements) [39–41].

The geometry of the device is depicted in Fig. 1. Note that
a transverse spin current across the interface is not experimen-
tally observed when LFO is replaced with a ferromagnetic
insulator, unless a component of the temperature gradient is
directed perpendicular to the interface to induce a longitudinal
spin Seebeck effect [42].

We propose the spin Nernst effect (SNE) [33] as a can-
didate microscopic explanation for spin transport across the
interface in the parallel temperature gradient geometry shown
in Fig. 1. In the SNE, a transverse spin current with a given po-
larization is induced in the presence of a temperature gradient,
so Jµ

ν = αµ
νβ∇βT , where all the Greek indices take the values

x, y, or z. The SNE amounts to cases in which αµ
νβ != 0 for

ν != β. However, as we discuss in the next section, bulk LFO
does not on its own produce a nonzero SNE. Instead, it does
so when its symmetry is sufficiently lowered—namely, when
inversion symmetry is broken along the ν and β directions.
This is detailed in Sec. IV.

III. PROPERTIES OF BULK LaFeO3

LaFeO3 (Fig. 2) is a member of the rare-earth or-
thoferrites [23,24,43–46]. The Fe atoms have spin 5/2,
inviting an analysis of spin fluctuations in the language of

FIG. 2. Left: Ground-state configuration of LFO without an ap-
plied field, with DM coupling vectors depicted as arrows along the
bonds between the spins. The c axis is ferromagnetic (has a small net
moment), while the a and b axes are antiferromagnetic (have nearly
canceling moments). Right: LFO unit cell, with oxygen atoms in red,
iron in brown, and lanthanum in green.

magnon quasiparticles. The transition temperature of LFO
is 738 K [23], and is therefore a magnetically ordered in-
sulator at room temperature. We take as a starting point
a Hamiltonian with nearest-neighbor Dzyaloshinsky-Moriya
interactions (DMI) [28,29] mediated by the oxygen atoms
lying between neighboring Fe atoms. Contrary to the structure
of other perovskites, the Pbnm structure of LFO supports a
nonvanishing DMI, where only canted G-type AFM order is
allowed [30]. The existence of a DMI in LFO is responsible
for the small canting in the magnetic order, which ultimately
allows for nontrivial Berry curvature and spin Berry curvature
in the magnon bands, discussed in detail below.

The minimal magnetic Hamiltonian for LFO is given
by [23]

H = Jc

∑

along c

"SL
i · "SL

j + Jab

∑

ab plane

"SL
i · "SL

j

+J ′
∑

〈〈i, j〉〉

"SL
i · "SL

j +
∑

〈i, j〉

"Di j · "SL
i × "SL

j

+Ka

∑

i

(
SLx

i

)2 + Kc

∑

i

(
SLz

i

)2 +
∑

i

"h · "SL
i , (1)

where the L superscript indicates that the spins are written
in a global lab frame, with the a, b, and c axes corre-
sponding to the x, y, and z directions, respectively. The
Fe atoms have a S = 5/2 moment. Here Jc is the nearest-
neighbor magnetic exchange energy along the c axis, Jab the
nearest-neighbor magnetic exchange in the ab plane, J ′ the
second-nearest-neighbor exchange, "Di j the Dyzaloshinskii-
Moriya interaction between site i and j, Ka the Ising anistropy
in the ab plane along the x direction, Kc the Ising anistropy
along the c axis in the z direction, and "h is an externally
applied magnetic field present in the experiments, where field
directions were chosen both along the plane of the interface
and perpendicular to the interface [30]. Thus, in what follows
we present results for an applied field with both of these
components nonzero. The parameters in Eq. (1) have been
found via inelastic neutron scattering [23] and are collected
in Table I.
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TABLE I. List of LFO parameters appearing in Eq. (1). Magni-
tudes for DMI are given as Dab and Dc for the nearest-neighbor DM
couplings in the ab plane and along the c axis, respectively. In what
follows, we choose the applied magnetic field to be h = (0, 1, 1), as
described below.

LFO parameters (meV)

Jc 5.47
Jab 5.47
J ′ 0.24
Dab 0.130
Dc 0.158
Ka −0.0124
Kc −0.0037

"Di j = Di j (αi j,βi j, γi j )

‖α‖ ‖β‖ ‖γ ‖
Dab 0.554 0.553 0.623
Dc 0.191 0.982 0

We treat the low-energy bosonic degrees of freedom in
LFO using a Holstein-Primakoff (HP) transformation [9,47–
49] which represents the spins in terms of bosonic creation
operators a† and annihilation operators a,

Sz = S − a†a, (2)

S+ =
√

2S

√
1 − a†a

2S
a ≈

√
2Sa, (3)

S− =
√

2Sa†

√
1 − a†a

2S
≈

√
2Sa†, (4)

where the approximation is the lowest-order term in a Taylor
series in 1/S. The HP bosons are defined relative to a local
reference frame in which the z axis aligns with the z compo-
nent of the spin at that position in the classical ground state.
Sα and SLα are therefore related by

"SL
i = Ri "Si, (5)

where the rotation matrix Ri rotates a vector along the local
z axis at position i into the direction of the ground-state spin
at i.

To find the ground-state magnetic configuration, mini-
mization of the classical energy (spins treated as classical
variables) is performed via the assumption of a four-sublattice
unit cell due to the small canting introduced by the DMI.
Without an applied magnetic field, the classical texture is
given by

"SL
1 = S(− cos θ sin φ,− cos θ cos φ, sin θ ),

"SL
2 = S(cos θ sin φ, cos θ cos φ, sin θ ),

"SL
3 = S(− cos θ sin φ, cos θ cos φ, sin θ ),

"SL
4 = S(cos θ sin φ,− cos θ cos φ, sin θ ), (6)

with θ = 0.52◦ giving a small ferromagnetic canting along the
c axis and φ = 0.46◦ giving antiferromagnetic canting within
the ab plane [23].

A. Dispersion and band Berry curvature

Expanding around the classical spin configuration above
using a 1/S expansion, our Hamiltonian takes the form

H ≈ 1
2

∑

r,"δ

ψ†(r)H"δψ (r + "δ), (7)

where r labels the lattice site and "δ are the relevant nearest-
and next-nearest-neighbor separation vectors. ψ (r) is a
Nambu spinor, given by

ψ (r) =





a1(r)

a2(r)

a3(r)

a4(r)

a†
1(r)

a†
2(r)

a†
3(r)

a†
4(r)





. (8)

The noncollinearity of the classical spin configuration will in-
troduce pairing of Holstein-Primakoff magnons (i.e., number
non-conserving terms), and thus the Nambu representation
is necessary. Here, we have eliminated linear bosonic terms
by expanding around the energetic minimum, and we have
dropped constants as well as interaction terms of three bosonic
operators and higher, consistent with a Taylor expansion in
(1/S) of the HP transformation.

Performing a Fourier transform as detailed in Appendix A
results in the form

H =
∑

k

ψ†
kHkψk, (9)

where the k-space Nambu spinors are given by

ψk =





a1(k)

a2(k)

a3(k)

a4(k)

a†
1(−k)

a†
2(−k)

a†
3(−k)

a†
4(−k)





.

Thus, solving the Fourier-transformed problem amounts to
diagonalizing the matrix Hk . However, care must be taken
to ensure that the transformation Tk such that T †

k HkTk = )k
(with )k diagonal) also preserves the bosonic commutation
relations

[ψk,ψ
†
k ] =

(
I4 0
0 −I4

)
≡ η, (10)

so in the diagonal problem H =
∑

k )kγ
†
k γk the operators

γ †
k γk are number operators. It turns out that for this to be

the case, Tk must be a paraunitary transformation [9,50–52],
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FIG. 3. Top: Magnon dispersion E (0, ky, kz ) for LaFeO3 with
an applied field h = (0, 1, 1). All four particle bands are pictured,
with two nearly degenerate upper and two nearly degenerate lower
bands. Bottom: Magnon dispersion for LaFeO3 with applied field
h = (0, 1, 1) near (0, 0, π ). A small gap is present, allowing for
topological quantities to be computed for each band individually.

which means

TkηT †
k = η. (11)

Note that Eq. (11) implies that rather than diagonalize Hk
via similarity transformation in the usual way, the eigenvalue
problem we should solve to obtain the magnon dispersion is

ηHk
∣∣ψn

k

〉
= En

k

∣∣ψn
k

〉
. (12)

The kets |ψn
k 〉 that solve the eigenproblem are columns of

Tk , and from paraunitarity they inherit the normalization
condition:

〈
ψm

k

∣∣η
∣∣ψn

k

〉
= ηmn. (13)

We call solutions with norm 1 particle bands and those with
norm −1 hole bands. Equivalently, the bands with positive
eigenenergies (norm 1) are physical particle bands and the
bands with opposite signs are the hole partners. Using this
formalism, it is possible to obtain the magnon band structure
for LFO, plotted in Fig. 3. Bulk LFO features pairs of nearly
degenerate bands, as well as near fourfold degeneracies along
the Brillouin zone boundary; both of these features make
important contributions to the behavior of the SNE.

In addition to the band structure, we can define magnon
Berry curvature and Chern numbers. These are defined with
respect to the eigenstates in Eq. (12). We first define a Berry
connection for the band n as

An
µ = −iηnn

〈
ψn

k

∣∣η∂µ

∣∣ψn
k

〉
. (14)

The Berry curvature is then naturally expressed as [53]

-n
µν = ∂µAn

ν − ∂νAn
µ. (15)

Finally, the Berry curvature can be used to compute a Chern
number by integrating over the first Brillouin zone:

Cn = 1
2π

∫
d2k-n

xy. (16)

As evident from the formula, which involves a two-
dimensional momentum space integral, the Chern number
(as well as the spin Nernst response) is an inherently two-
dimensional concept. Therefore, to discuss it meaningfully,
we restrict ourselves to an appropriate two-dimensional prob-
lem. Ultimately, we will want to consider the flow of spin in
the z direction, with an in-plane temperature gradient which
we take to be directed along the y axis. This geometry nat-
urally invites us to consider a yz plane when computing
topological quantities. When computing the total Nernst re-
sponse, we sum over two-dimensional contributions from all
planes. That is, if αµ

νβ (kx ) is the contribution to the SNE
from the kx plane, then the total response will be given by
αµ

νβ =
∫

dkx αµ
νβ (kx ) [54].

Finally, we note that -n can be represented in the Thouless-
Kohmoto-Nightingale-Nijs (TKNN) [55] form derived from
linear response theory, analogous to the one we will present
for the spin Berry curvature,

-n
µν (k) =

∑

m !=n

ηnnηmm
2Im

〈
ψn

k

∣∣∂µHk
∣∣ψm

k

〉〈
ψn

k

∣∣∂νHk
∣∣ψm

k

〉

(Enk − Emk )2
,

(17)
where the sum is taken over both particle and hole bands.
The quantity -n

zy(kx = 0) for each particle band is plotted in
Fig. 4. We see that each band is topologically trivial (Cn = 0)
because when integrating over the BZ, each point of positive
curvature is canceled by another of negative curvature; this
is from the symmetries -n

zy(kx, ky, kz ) = −-n
zy(−kx,−ky, kz )

and -n
zy(kx, ky, kz ) = −-n

zy(kx, ky,−kz ), either of which alone
is enough to enforce Cn = 0.

Next, we look at the SNE itself. The spin-current continuity
equation is written as ∂ "S

∂t = −∇ · "jS + "τS [11,31,56,57]. In
an inversion-symmetric system, the torque term "τS does not
contribute to the SNE. The response tensor α is given by
[11,31]

Jγ
λ = α

γ
λβ∇βT = 2kB

V

∑

n

∑

k

-
nγ
λβc1[g(Enk )]∇βT, (18)

where g(E ) is the Bose occupation factor and c1(x) = (1 +
x) ln(x) − x ln(x). The sum

∑
n is over only particle bands

and the sum
∑

k is taken over all three dimensions. Here γ
is the polarization of the spin current, λ is the direction of the
spin current, and β is the direction of the temperature gradient
(each of which could be along x, y, or z). The quantity -

nγ
λβ is

the spin Berry curvature, a generalization of the band Berry
curvature -n

µν . Analogous to Eq. (17), it is given by [11,32],

-nα
βγ (k) =

∑

m !=n

ηnnηmm
2Im

〈
ψn

k

∣∣ jαβ
∣∣ψm

k

〉〈
ψn

k

∣∣∂γ Hk
∣∣ψm

k

〉

(Enk − Emk )2
, (19)

where jαβ is the spin current operator in the Bogoliubov-de
Gennes (BdG) representation (see Appendices A and B for
pedagogical discussion of BdG formalism). The spin current
operator is given by

jαβ = 1
4 (∂βHkη0α + 0αη∂βHk ), (20)

174436-4



GEOMETRIC ORIGIN OF THE INTRINSIC TRANSVERSE … PHYSICAL REVIEW B 109, 174436 (2024)

FIG. 4. Magnon Berry curvature -n
zy(0, ky, kz ) for LaFeO3 with

applied field h = (0, 1, 1), for n = 1, 2. The lower bands n = 3, 4
have mostly trivial Berry curvature, with hot spots only at corners,
shown in Appendix D.

with 0α = diag(Sα
1 , Sα

2 , Sα
3 , Sα

4 , Sα
1 , Sα

2 , Sα
3 , Sα

4 ) encoding the
magnon polarization, for Sα

i the classical spin configuration.
Figure 10 depicts the spin Berry curvature, -nx

zy (0, ky, kz ), for
each band. We find the symmetries

-nx
zy (kx, ky, kz ) = −-nx

zy (−kx,−ky, kz )

and

-nx
zy (kx, ky, kz ) = −-nx

zy (kx, ky,−kz ),

which taken together with the corresponding symmetries of
the bands En(ki ) = En(−ki ) (in other words, changing the sign
of any ki does not change the energy) lead to a vanishing SNE
within each band. Whereas the symmetries of the dispersion
did not matter in the cancellation of the Chern number, they
are important here because they enter through the Bose occu-
pation function g.

Now that we have discussed the relevant features of unper-
turbed bulk LFO, we turn next to an analysis of what sorts of
modifications to the model would create a nonzero SNE. A

weak dimerization will turn out to play an important role in
producing a finite intrinsic SNE.

We note that while we study the intrinsic, Berry-curvature-
based contribution to the SNE, there may also be an extrinsic
contribution [31,58]. Because it arises due to magnon scat-
tering, the extrinsic effect depends sensitively on the magnon
lifetime. The magnon lifetime depends on both k and temper-
ature, and a detailed calculation amounts to a study in its own
right. Rather than undertaking such a calculation, we make
two important notes before moving to a discussion of the in-
trinsic SNE. To do so, we compute the extrinsic response as in
Eq. (S.25a) of Ref. [31], using the same parameters as for the
intrinsic response. For a preliminary study, we computed the
response using kBT = 50 meV, which is comfortably below
the Curie temperature.

First, we find that (assuming a constant magnon lifetime)
the extrinsic effect does not arise in bulk LFO with sym-
metries intact. Second, the extrinsic effect does arise under
the same symmetry-breaking terms we will discuss below.
Based on our direct calculations of the extrinsic contribution,
for short magnon lifetimes (assuming mean-free paths on the
order of single unit cells as a lower limit) the extrinsic effect
can be up to the same order of magnitude and of the same sign
as the intrinsic effect. In the present paper, we focus on the
symmetry-breaking-induced intrinsic SNE, but we note that
there can be an additional extrinsic effect requiring detailed
estimation of the magnon lifetime [59].

IV. SYMMETRY BREAKING AND SPIN NERNST EFFECT

We begin by asking a general question: At the level of the
BdG Hamiltonian Hk , what symmetries would need to be low-
ered in order to produce a finite SNE? We have already begun
to discuss this above when we commented on the elimination
of both the Chern numbers and the SNE within each band as
well as between bands—the intraband cancellation occurs due
to k-space symmetries in the Berry curvature.

A. k-space symmetry

The intraband symmetry that leads to the vanishing of the
SNE manifests at the level of the BdG Hamiltonian as

H (kx, ky, kz ) = H (kx, ky,−kz ), (21)

H (kx, ky, kz ) = H (kx,−ky, kz ), (22)

where for clarity we have switched to notation where Hk =
H (kx, ky, kz ). We note at the outset that not only will breaking
these symmetries create a net SNE via Eq. (18) but it can also
create a source term contribution due to Hk != H−k. Below we
focus on the contribution from the current term rather than the
source term. The presence of a source term due to inversion-
symmetry breaking will lead to some dissipation; however,
all of our results will apply within the window of the spin
relaxation time [57].

We first consider the kz → −kz symmetry. For a term to
break this symmetry, it must appear in the Hamiltonian in the
form

[H1(kz )]i j = 1i j sin(kzli j ), (23)
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(or in some other odd function of kz) where we are so far
not restricting the elements of this term in particle-hole space
but are simply enforcing that the whole term is odd in kz.
Since any term with the property f (k) != f (−k) can be writ-
ten in terms of its Fourier components, terms of the form
Eq. (23) with various li j are sufficient to specify any inversion-
breaking term. We can therefore simply ask what sort of term
at the level of the spin Hamiltonian gives rise to a bosonic
term of the form Eq. (23).

If we restrict ourselves only to nearest-neighbor couplings
that break inversion symmetry, then it turns out that the
most general form of the symmetry-breaking term is (see

Appendix C)

H1 = 1
4

∑

j

2αβ
(
Sα

a jS
β
b j−1 − Sα

a jS
β
b j

)
, (24)

where we do not enforce a specific form for 2αβ , except that it
be real, which is required for H1 to be Hermitian. The sum on
j is taken along the axis on which the symmetry is to be bro-
ken. Rotating into the local frame such that 2̃αβ = 2γδRγα

a Rδβ
b

and performing the Holstein-Primakov transformation and
Fourier transformations, we find that

Hx,y
1 = 1

4

∑

d

∑

k

(−1)d [(2̃xx − 2̃yy − i2̃xy − i2̃yx )e−ik(d+xb)akb−k + (2̃xx + 2̃yy + i2̃xy − i2̃yx )e−ik(d+xb)akb†
k

− (2̃xx + 2̃yy − i2̃xy + i2̃yx )eik(d+xb)a†
kbk − (2̃xx − 2̃yy + i2̃xy + i2̃yx )eik(d+xb)a†

kb†
−k],

where Hx,y
1 denotes that we are only considering the (x, y)

elements of 2̃. Here
∑

d is over the nearest-neighbor displace-
ments d = 0,−1 and xb = 1/2 is the separation between a
and b sublattices. We see that when we carry out the d sum,
the factor (−1)d is what creates odd k dependence. This factor
comes, in particular, from the relative minus sign between
coupling of Sα

a j to Sβ
b j and Sβ

b j−1. Performing this sum, we
explicitly find

Hx,y
1 = −i

2

∑

k

sin(k/2)[(2̃xx − 2̃yy − i2̃xy − i2̃yx )akb−k

+ (2̃xx + 2̃yy + i2̃xy − i2̃yx )akb†
k

− (2̃xx + 2̃yy − i2̃xy + i2̃yx )a†
kbk

− (2̃xx − 2̃yy + i2̃xy + i2̃yx )a†
kb†

−k].

Note that in the presence of an inversion-breaking term, the
BdG Hamiltonian is not sensitive to the particular form of
2 but rather depends on the presence of opposite coupling
between forward and backward nearest neighbors.

We have so far found a general form for spin coupling
along some direction which introduces k-space inversion-
breaking terms along that direction in the BdG Hamiltonian. It
is useful to note a special feature of this term, which happens
to make its analysis simpler. In principle, when one adds H1

to the original Hamiltonian, one should minimize the classical
energy once again to find the new classical ground state. How-
ever, for the form we have proposed, if one restrict themselves
to the four-sublattice problem as we have for unperturbed
LFO, H1 turns out not to modify the classical energy, and
therefore does not modify the canting. This is because in the
classical limit H1 becomes, for a uniform spin configuration,

H1 = 1
4

∑

j

2̃αβ
(
Sα

a Sβ
b − Sα

a Sβ
b

)
= 0, (25)

for any arrangement where each sublattice is uniform from
site to site—for example, where there is not a spiral texture
along a sublattice.

To check that it is sensible to proceed with this uniform-
sublattice assumption, one can check that H1 does not
introduce linear boson operators when one performs the HP
expansion: If it were to introduce linear terms, this would
indicate that one were not expanding around an energy mini-
mum anymore. To see that linear terms are not introduced for
any choice of rotations, we let i = x, y and write out the only
terms that are able to contribute linear terms, which are those
involving Si

jS
z
l . The terms in H1 that could generate linear a

bosons are

∑

j

2̃iz(Si
a jS

z
b j−1 − Si

a jS
z
b j

)
=

∑

j

2̃izSi
a j

(
Sz

b j−1 − Sz
b j

)
. (26)

When one performs the HP transformation on Sz, the O(S)
terms that would normally contribute a linear term cancel one
another:

∑
j 2̃

izSi
a j (S − b†

j−1b j−1 − S + b†
jb j )

=
∑

j 2̃
izSi

a j (−b†
j−1b j−1 + b†

jb j ). (27)

The only contributions from these kinds of terms are boson
interactions, which we drop in the 1/S expansion. A similar
argument holds if we look for the corresponding terms that
would generate linear b bosonic terms. Therefore, we find
that

(1) H1 does not modify the classical ground state
configuration.

(2) The lowest-order bosonic terms H1 contributing to the
Hamiltonian are quadratic.

Therefore, we can safely proceed with adding terms of
the form H1 to the Hamiltonian, without needing to find
a new energetic minimum configuration. In fact, no z-spin
components contribute nonzero boson terms except at higher
than quadratic order. Therefore, the expression we wrote for
Hx,y

1 is already the full expression for H1 to quadratic order.
Expressing it in BdG-doubled form, we have
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Hc
1 = −i

4

∑

k

sin(k/2)[(2̃xx − 2̃yy − i2̃xy − i2̃yx )(b−kak − a−kbk ) + (2̃xx + 2̃yy + i2̃xy − i2̃yx )(b†
kak − a−kb†

−k )

− (2̃xx + 2̃yy − i2̃xy + i2̃yx )(a†
kbk − b−ka†

−k ) − (2̃xx − 2̃yy + i2̃xy + i2̃yx )(a†
kb†

−k − b†
ka†

−k )]. (28)

The c superscript denotes that this is valid for couplings along the c axis, because so far we have assumed that the coupled
spins are arranged along a line parallel to the axis along which the inversion symmetry is being broken. This is true of couplings
between S1 and S2 as well as between S3 and S4, which lie along the c axis and break kz inversion. However, couplings along the
b axis which break the ky symmetry are slightly more complicated due to the fact that nearest neighbors are not separated by just
ŷ/2 but instead by ±x̂+ŷ

2 . The result is that couplings in the ab plane take the form

Hab
1 = −i

2

∑

k

cos (kx/2) sin(ky/2)[(2̃xx − 2̃yy − i2̃xy − i2̃yx )(b−kak − a−kbk ) + (2̃xx + 2̃yy + i2̃xy − i2̃yx )(b†
kak − a−kb†

−k )

− (2̃xx + 2̃yy − i2̃xy + i2̃yx )(a†
kbk − b−ka†

−k ) − (2̃xx − 2̃yy + i2̃xy + i2̃yx )(a†
kb†

−k − b†
ka†

−k )]. (29)

Including the terms in Eqs. (28) and (29), the Hamiltonian
has the effect of creating a nonzero contribution to the SNE
from each individual band. However, for large enough pertur-
bations, there is not only a net contribution from each band,
but a total contribution when summed over bands, resulting in
a finite SNE. This is shown explicitly below.

B. Physical model for symmetry breaking

For concreteness, we consider a model with exchangelike
symmetry-breaking coupling of the form

H1 =
∑

j

1
(
Sα

a jS
α
b j−1 − Sα

a jS
α
b j

)
. (30)

We begin by noting that a possible origin of a term like
this can be considered by absorbing H1 into the relevant ex-
change term of a magnetic Hamiltonian, HJ = J

∑
j (S

α
a jS

α
b j +

Sα
a jS

α
b j−1). Collecting terms, we see that

HJ + H1 =
∑

j

(
(J + 1)Sα

a jS
α
b j−1 + (J − 1)Sα

a jS
α
b j

)
. (31)

Thus, the effect of the symmetry-breaking term H1 is to cre-
ate a difference 1 between the exchange coupling for atoms
within the same unit cell and those in different unit cells. This
would occur, for example, in the case of dimerization along
the axis of symmetry breaking.

In LFO, we require symmetry breaking along the y and
z axes. We therefore require the full inversion-breaking term
to be

H1 =
∑

r

[
1

(
Sα

1 ("r)Sα
2 ("r − êc) − Sα

1 ("r)Sα
2 ("r)

)

+ 1
(
Sα

4 ("r)Sα
3 ("r − êc) − Sα

4 ("r)Sα
3 ("r)

)

+ 1
(
Sα

1 ("r)Sα
4 ("r − êb) − Sα

1 ("r)Sα
4 ("r)

)

+ 1
(
Sα

1 ("r)Sα
4 ("r − êb − êa) − Sα

1 ("r)Sα
4 ("r − êa)

)

+ 1
(
Sα

2 ("r)Sα
3 ("r − êb) − Sα

2 ("r)Sα
3 ("r)

)

+ 1
(
Sα

2 ("r)Sα
3 ("r − êb − êa) − Sα

2 ("r)Sα
3 ("r − êa)

)]
.

(32)

Couplings along the c axis produce magnon terms of the form
Hc

1 [Eq. (28)], while couplings in the ab plane (which break

the ky inversion symmetry) produce terms of the form Hab
1

[Eq. (29)]. We can now ask about what changes occur to the
band structure, Berry curvature, and SNE when Eq. (32) is
added to the Hamiltonian.

For small perturbation strengths, we recover a nonzero
bandwise SNE; however, while the contributions from indi-
vidual bands are nonzero, as is expected because of the lower
symmetry of -x

zy, the effects from nearly degenerate bands
cancel one another, leading to a vanishing total SNE. For
example, at 1 = 0.01 meV and kBT = 100 meV, we find that
for the highest band |α1x

zy |/kBT = 0.033, where αx
zy =

∑
n αnx

zy
with the sum taken over particle bands, but αx

zy = 0.
However, when we increase the perturbation size we find

that large spin Berry curvature hot spots are created (see
Fig. 5), which are large enough to overcome the effect of
near-degenerate bands with opposite -nx

zy . When -nx
zy is small,

the fact that the two highest and two lowest bands are nearly
degenerate leads to cancellation of the SNE in Eq. (18); when
-nx

zy becomes large in some region, even a small gap leading
to a small difference in the Bose occupation factor is enough
to obtain a net effect. For example, we find that for 1/J = 0.1
the SNE increases to αx

zy/kBT = 2.5 × 10−4, which is compa-
rable in magnitude to similar studies in 2D and 3D materials
[54]. While a larger value for 1 leads to a larger SNE, more
work must be done to estimate the size of 1 under relevant
experimental conditions.

Figure 6 shows αx
zy(0, ky, kz ), the k-space contribution

to the spin Nernst coefficient such that αx
zy(kx = 0) =∫

d2k αx
zy(0, ky, kz ). Here we clearly see that the net effect is

due to an asymmetrical feature in αx
zy(0, ky, kz ) which is not

canceled by contributions elsewhere in the BZ. Furthermore,
such an asymmetrical feature exists for general kx contri-
butions αx

zy(kx ), and not only at αx
zy(0). Since our system

obeys H (kx ) != H (−kx ), these finite contributions across kx
values do not cancel one another, leading to a finite total SNE
αx

zy =
∫

dkx αx
zy(kx ).

The asymmetrical contribution to the SNE from the locus
of points in the third quadrant of the BZ shown in Fig. 6
arise from changes to the band structure induced by symme-
try breaking. Most importantly, a curve of near-degeneracy
between the highest two bands imparts the large spin Berry
curvature required to produce a SNE, and the asymmetrical
contribution of that spin Berry curvature arises due to the
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FIG. 5. Magnon spin Berry curvature -nx
zy (0, ky, kz ) for LaFeO3

with applied field h = (0, 1, 1), for n = 1, 2, which make the domi-
nant contributions to the spin Berry curvature. Plots for all bands are
found in Appendix D.

symmetry breaking. This is shown in the upper panel in Fig. 7.
By comparison of Fig. 6 with Fig. 7, one can see the origin of
the locus of points with largest spin Berry curvature comes
from the regions with the smallest gap. The symmetry of this
locus of points is lowered when symmetry is broken.

Finally, we present the temperature dependence of the SNE
in the presence of symmetry breaking in Fig. 8. Because the
major contributions to the SNE come from the higher-energy
bands, we see that higher temperatures lead to a greater SNE
due to larger occupation of these bands. It is also important to
note that for LFO, TN kB ≈ 80 meV, so this symmetry breaking
should lead to an observable SNE even below the critical
point.

V. CONCLUSION

In this paper, we have shown that while
unstrained/undimerized LFO does not support a SNE
that would explain the results of Lin et al. [30], under a

FIG. 6. The total k-space contribution to the SNE. When the
spin Berry curvature becomes large through symmetry breaking, an
asymmetrical hot spot in contribution arises, which is enough for a
finite net SNE.

particular lowering of the bulk symmetry the SNE can become
nonzero. This can occur through physical mechanisms such
as dimerization along the y and z axes. This effect could
explain the anomalous spin transport between LFO and Pt/W
observed by Lin et al. [30].

We note that our paper also serves a more general purpose
for the analysis of transport phenomena in magnetic systems.
We have introduced a framework for relaxing cancellation
effects at the level of generalized Berry curvature which usu-
ally result in the vanishing of nontrivial currents. In our case,
this cancellation was due to inversion symmetries in the spin
Berry curvature. We systematically analyzed the necessary
and sufficient conditions for lowering such a symmetry of a
BdG Hamiltonian—the result Eq. (24) is general.

Our paper paves the way for further research into spin
transport in LaFeO3. A particularly important question that
remains is to identify under what conditions dimerization
would be achieved in LaFeO3, so the SNE would manifest
via the particular mechanism we discussed above. Possible
mechanisms generally include Peierls dimerization through
spin-phonon coupling [60] and magnetic frustration, such as
occurs in the well-known Majumdar-Gosh model [61]. Pos-
sible material realizations of dimerized magnetic states are
KCuCl3 and TlCuCl3 [62] and SrCu2(BO3)2 [63].

In our paper, we have neglected effects that could arise due
to the interface with Pt; see, for example, Ref. [64]. Lattice
relaxation effects due to the interface as well as couplings
between spins in LFO and itinerant electrons in Pt could play
important roles in the symmetry breaking we have discussed.
Strain may be yet another way that Eq. (24) might be real-
ized, thus breaking inversion symmetry at the level of bosons
similarly to the effect of strain in Weyl semimetals [65].

Another question is whether interesting phenomena might
arise in the context of other forms of Eq. (24) and, in particu-
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FIG. 7. Energy gap between two highest bands. Top: The dif-
ference between the energies of the top two bands after symmetry
breaking. Bottom: The same quantity computed before symmetry
breaking.

FIG. 8. SNE as a function of temperature, for 1/J = 0.1.

lar, whether any such Hamiltonian might arise by accounting
for magnon-phonon coupling in bulk LaFeO3 and related ma-
terials. Of course, when discussing interfacial spin transport,
the dynamics at the interface can play an important role in
addition to the bulk properties we have focused on in this
paper. Further research might characterize, for example, the
magnon dynamics at the interface, which would provide a
more complete story regarding the observed magnetothermo-
voltage in LaFeO3/Pt.

Having derived a mechanism by which a finite SNE may
arise in systems where it is disallowed by symmetry, our paper
also opens the possibility of engineering transport effects in
magnetic systems. For example, this might be accomplished
by inducing dimerization as we describe above.
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APPENDIX A: BOGOLIUBOV-DE GENNES FOURIER
TRANSFORM AND PARAUNITARY TRANSFORMATIONS

Expanding around the classical spin configuration above,
our Hamiltonian takes the form

H ≈
∑

"r,"δ

ψ†("r)H"δψ ("r + "δ), (A1)

where "r labels the lattice site and "δ are the relevant nearest-
and next-nearest-neighbor separation vectors. Here, ψ ("r) is a
Nambu spinor, given by

ψ ("r) =





a1("r)

a2("r)

a3("r)

a4("r)

a†
1("r)

a†
2("r)

a†
3("r)

a†
4("r)





. (A2)

We have eliminated linear bosonic terms by expanding around
the energetic minimum, and we have dropped constants as
well as interaction terms of three bosonic operators an higher,
consistent with a Taylor expansion in (1/S) of the Holstein-
Primakov transformation.

If we let "xi be the separation between sublattices 1 and i,
then we can define a Fourier transformation:

ai("r) = 1√
N

∑

"k

ei"k·("r+"xi )a("k). (A3)

Performing this Fourier transform results in the form

H =
∑

k

ψ†
k Hkψk, (A4)
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where the k-space Nambu spinors are given by

ψk =





a1("k)

a2("k)

a3("k)

a4("k)

a†
1(−"k)

a†
2(−"k)

a†
3(−"k)

a†
4(−"k)





.

The minus sign in the creation operators is inherited from the
definition of the Fourier transform at the level of the bosonic
operators,

ψ ("r) = 1√
N

∑

k

ei"k·"r





a1("k)

ei"k·"x2 a2("k)

ei"k·"x3 a3("k)

ei"k·"x4 a4("k)

a†
1(−"k)

ei"k·"x2 a†
2(−"k)

ei"k·"x3 a†
3(−"k)

ei"k·"x4 a†
4(−"k)





= 1√
N

∑

k

ei"k·"rUkψk,

(A5)
where Uk collects the sublattice separation phases, so

Uk =





1 0 0 0 0 0 0 0

0 ei"k·"x2 0 0 0 0 0 0

0 0 ei"k·"x3 0 0 0 0 0

0 0 0 ei"k·"x4 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 ei"k·"x2 0 0

0 0 0 0 0 0 ei"k·"x3 0

0 0 0 0 0 0 0 ei"k·"x4





.

(A6)
This formalism also allows us to relate the position- and
momentum-space Hamiltonian matrices H"δ and Hk . By apply-
ing Eq. (A5) directly to Eq. (A1), we find that

Hk =
∑

δ

U †
k H"δUk . (A7)

Thus, solving the Fourier transformed problem amounts
to diagonalizing the matrix Hk . However, care must be taken
to ensure that the transformation Tk such that T †

k HkTk = )k
(with )k diagonal) also preserves the bosonic commutation
relations

[ψk,ψ
†
k ] =

(
I4 0

0 −I4

)

≡ η, (A8)

so in the diagonal problem H =
∑

k )kγ
†
k γk , the operators

γ †
k γk are number operators. It turns out that for this to be the

case, Tk must be a paraunitary transformation [9,50,51], which
means

TkηT †
k = η. (A9)

Equation (A9) implies that rather than diagonalize Hk via sim-
ilarity transformation in the usual way, the eigenvalue problem
we should solve to obtain the magnon dispersion is

σ3Hk
∣∣ψn

k

〉
= En

k

∣∣ψn
k

〉
. (A10)

The kets |ψn
k 〉 that solve the eigenproblem are columns of

Tk , and from paraunitarity they inherit the normalization
condition

〈
ψm

k

∣∣η
∣∣ψn

k

〉
= ηmn. (A11)

We call solutions with norm 1 particle bands and those with
norm −1 hole bands. Equivalently, the bands with positive
eigenenergies (norm 1) are physical particle bands and the
bands with opposite sign are the hole partners.

APPENDIX B: THE PARAUNITARY EIGENVALUE
PROBLEM IN BDG FORMALISM

Consider the general BdG Hamiltonian

H =
∑

k

ψ†
k Hkψk, (B1)

where ψ†
k = (a†

k1, ..., a†
kN , a−k1, ..., a−kN ). The operators a

can be bosonic or fermionic. We can package the commutation
relations in terms of elements of ψ in each case.

For fermions, we have

{ψki,ψ
†
k j} = Ii j, (B2)

while for bosons we find

[ψki,ψ
†
k j] = ηi j, (B3)

where η is diagonal with +1 for the upper N elements and −1
for the lower.

We seek a form

H =
∑

k

ψ̃†
k H̃kψ̃k,

in which H̃k is diagonal. However, the structure of (B1),
specifically with the presence of terms that don’t conserve
particle number, means that when we diagonalize Hk in the
usual way, creation and annihilation operators can mix in such
a way that the objects we would interpret as quasiparticles
don’t obey the original fermionic or bosonic commutation re-
lations. Put another way, we don’t know whether we will still
be able to interpret the diagonalizing basis ψ̃ as creation and
annihilation operators. There is at least no guarantee they’ll
be the usual second quantized operators, in which case the
diagonal form will not be useful.

So, we seek a transformation that not only gives a diagonal
H̃k but that also preserves (B2) in the fermionic case and (B3)
in the bosonic case. Defining this transformation so

T −1
k ψk = ψ̃k, (B4)
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FIG. 9. Magnon Berry curvature -n
zy(0, ky, kz ) for LFO with applied field h = (0, 1, 1) for all bands.

so the Hamiltonian can be rewritten as

H =
∑

k

ψ†
k (T †

k )−1T †
k HkTkT −1

k ψk =
∑

k

ψ̃†
k T †

k HkTk, (B5)

we can look for T such that the desired commutation relations
are preserved and for which T †

k HkTk = H̃k is diagonal.
It turns out that the commutation condition places different

constraints on T . For fermions, the condition is actually that T
is unitary. This means that in that case we can just diagonalize
as usual. To see this, we can just look at what happens when
we enforce

{ψ̃ki, ψ̃
†
k j} = Ii j

for the transformed basis. Starting from (B2), we can
rewrite the relation in index notation using the following steps
(where the k dependence has been suppressed for clarity):

ψiψ
†
j + ψ†

j ψi = Ii j,

Timψ̃mψ̃†
n T †

n j + ψ̃†
n T †

n jTimψ̃m = Ii j,

T −1
ri Timψ̃mψ̃†

n T †
n j (T

†)−1
j p + ψ̃†

n T †
n j (T

†)−1
j p T −1

ri Timψ̃m

= T −1
ri Ii j (T †)−1

j p ,

ψ̃rψ̃
†
p + ψ̃†

pψ̃r = T −1
ri (T †)−1

ip . (B6)

If we enforce the anticommutation relation for the ψ̃ basis,
this is the condition that

T †
k Tk = I.

That is, for fermions, Tk is unitary. Therefore, H̃k is truly
just the diagonalized form of Hk .

For bosons, the same steps give

ψiψ
†
j − ψ†

j ψi = ηi j,

Timψ̃mψ̃†
n T †

n j − ψ̃†
n T †

n jTimψ̃m = ηi j,

T −1
ri Timψ̃mψ̃†

n T †
n j (T

†)−1
j p − ψ̃†

n T †
n j (T

†)−1
j p T −1

ri Timψ̃m

= T −1
ri ηi j (T †)−1

j p ,

ψ̃rψ̃
†
p − ψ̃†

pψ̃r = T −1
ri ηi j (T †)−1

j p . (B7)
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FIG. 10. Magnon spin Berry curvature -nx
zy (0, ky, kz ) for LFO with applied field h = (0, 1, 1).

Enforcing (B3) now gives

ηr p = T −1
ri ηi j (T †)−1

j p (B8)

or just

η = T −1
k η(T †

k )−1. (B9)

This is the origin of the paraunitary condition η = TkηT †
k .

This condition on Tk is required so H̃k (in this case, not
the diagonalized form of Hk) is diagonal, while the trans-
formed operators still make physical sense as corresponding
to bosons.

We’ve seen that for the bosonic BdG system we can’t just
diagonalize as usual but instead need to employ a paraunitary
transformation. The eigenvalue problem is correspondingly
modified, so

T †
k HkTk =

[
Ek 0

0 E−k

]

, (B10)

where for N > 1, the Ek are themselves diagonal matrices.
Note that ηT †

k η = T −1
k . This allows us to rewrite (B10) as

ηT †
k ηηHkTk = T −1

k ηHkTk =
[

Ek 0

0 −E−k

]

. (B11)

This tells us that the relevant similarity transformation is of
the non-Hermitian matrix ηHk . The corresponding eigenvalue
problem is obtained by multiplying both sides of (B11) on the
left by Tk to give

ηHkTk = Tk

[
Ek 0

0 −E−k

]

. (B12)

We can read this as comprising 2N eigenvalue problems,
where the columns of Tk are the eigenvectors of ηHk . This
is why we find definitions of topological magnon quantities
that involve projections of Tk—the paraunitary matrix en-
codes the eigenstates of the physical problem, i.e., the true
quasiparticles.

APPENDIX C: GENERALITY OF SYMMETRY-BREAKING
TERM

Here we derive the most general form of a symmetry-
breaking term that will produce a BdG Hamiltonian with
terms like Eq. (23). We can look for nearest-neighbor cou-
plings, as these will be the strongest; these couple bosons
from neighboring sublattices. Writing the operator content
explicitly, and first focusing on pairing terms with we denote
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FIG. 11. The contribution to the SNE from each band for kBT = 10. This is a low enough temperature that band 2 contributes more heavily
than band 1, creating a negative SNE.

with subscript B, we can therefore ask about terms such as

HB
1 = 1B

2

∑

k

[sin(kl )b−kak − sin(kl )a−kbk] + H.c., (C1)

where we restrict to one dimension for now for simplicity,
since the argument will run the same for both kz and ky. Here
1B is an arbitrary, complex constant. The minus signs re-
sult from insisting that the ansatz be particle-hole symmetric.
Transforming the first term to direct-lattice bosons gives

∑

k

sin(kl )b−kak = 1
2i

∑

j

(a jb j−xb−l − a jb j−xb+l ),

where xb is the direct-lattice separation between the a and b
sublattices. From this, we see an immediate restriction on the
possible values of l , stemming from the fact that the index
of the b bosons must be a lattice vector; l + xb and l − xb
must therefore also be lattice vectors. Here xb is half the length
of a unit cell along the direction of interest, and furthermore
we wish to restrict to nearest-neighbor couplings. Therefore,
the only consistent choices are l = ±xb. The choice of sign is

equivalent to a choice of sign of the overall term, so without
loss of generality we can consider the choice l = xb.

Transforming to spin operators via an inverse Holstein-
Primakov transformation, we find that the inversion-breaking
term must have the form

HB
1 = 1B

R

2i

∑

j

[S̃+
a j S̃

+
b j−1 − S̃+

a j S̃
+
b j − S̃−

a j S̃
−
b j−1 + S̃−

a j S̃
−
b j]

+ 1B
I

2

∑

j

[S̃+
a j S̃

+
b j−1 − S̃+

a j S̃
+
b j + S̃−

a j S̃
−
b j−1 − S̃−

a j S̃
−
b j]

= 1B
R

∑

j

[
S̃y

a j S̃
x
b j−1 − S̃y

a j S̃
x
b j + S̃x

a j S̃
y
b j−1 − S̃x

a j S̃
y
b j

]

+ 1B
I

∑

j

[
S̃x

a j S̃
x
b j−1 − S̃x

a j S̃
x
b j − S̃y

a j S̃
y
b j−1 + S̃y

a j S̃
y
b j

]
,

(C2)

where S̃α is a spin operator written in the locally rotated
frame. Here we have defined the real numbers 1B

R and 1B
I in

1B = 1B
R + i1B

I .
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A similar analysis can be done for nonpairing terms,
such as

HA
1 = 1A

2

∑

k

[sin(kl )a†
kbk − sin(kl )b−ka†

−k] + H.c.

In this case, we find the same restriction on l , resulting in
possible inversion-breaking terms of the form

HA
1 = 1A

R

∑

j

[
S̃x

a j S̃
y
b j−1 − S̃y

a j S̃
x
b j−1 − S̃x

a j S̃
y
b j + S̃y

a j S̃
x
b j

]

+ 1A
I

∑

j

[
S̃x

a j S̃
x
b j−1 + S̃y

a j S̃
y
b j−1 − S̃x

a j S̃
x
b j − S̃y

a j S̃
y
b j

]
.

(C3)

Thus, the form of inversion-breaking terms is quite re-
stricted to some linear combination H1 = HA

1 + HB
1. Let-

ting 2xx = 1A
I + 1B

I , 2yy = 1A
I − 1B

I , 2xy = 1A
R + 1B

R, and
2yx = −1A

I + 1B
I , we can write the term H1 as

H1 =
∑

j

2αβ
(
Sα

a jS
β
b j−1 − Sα

a jS
β
b j

)
, (C4)

thus proving that Eq. (24) is the most general term that breaks
inversion symmetry along the direction indexed by j. No-
tably, we find that any choice of couplings 2αβ will produce
symmetry breaking; the key component is the minus sign
between the terms inside and outside the unit cell. As shown
in the main text, couplings involving z components do not
contribute to the lowest-order Holstein-Primakov expansion
and are therefore neglected.

APPENDIX D: ADDITIONAL PLOTS

Here we present additional plots to supplement the dis-
cussion in the main text. Figure 9 displays the band Berry
curvature -n

zy(0, ky, kz ) and Fig. 10 displays the spin Berry
curvature -nx

zy (0, ky, kz ).
In the main text, we considered the net contribution αx

zy(kx )
from all bands. We can also look at the contributions from
individual (particle) bands, such that αx

zy =
∑

n αnx
zy . Here we

find that the asymmetrical feature in Fig. 6 is contributed by
the two higher bands, suggesting that, to see the effect, the
temperature must be high enough to allow occupation of these
bands. This is depicted in Fig. 11.
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