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Modern cyber-physical systems often make use of heterogeneous systems-on-chip with reconfigurable logic
to provide adequate computing power and flexible I/O. However, modeling, verifying, and implementing
the computations spanning CPUs and reconfigurable logic are still challenging. The hardware and software
components are often designed by different teams and at different levels of abstraction, making it hard
to reason about the resulting computation. We propose to lift both hardware and software design to the
same level of abstraction by using the Lingua Franca coordination language. Lingua Franca is based on a
sparse synchronous model that allows modeling concurrency and timing while keeping a sequential model
for the actual computation. We define hardware reactors as a subset of the reactor model of computation
underlying Lingua Franca. We also present and evaluate reactor-chisel, a hardware runtime implementing the
semantics of hardware reactors, and an extension to the Lingua Franca compiler enabling reactor-oriented
hardware–software codesign.
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1 Introduction
With the release of the Zynq-7000 in 2011 by Xilinx and Altera’s Cyclone V in 2012, a new field of
computing was established. These so-called System-on-Chip Field Programmable Gate Arrays
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(SoC FPGAs) integrate multiple general-purpose and real-time CPUs, various peripherals, and
reconfigurable logic (i.e., an FPGA) on the same silicon die. Installing small CPU cores in the FPGA
logic, so-called soft cores, was already common. However, with the SoC FPGAs, the developers
can access full-featured application processors capable of running various OS. The flexibility and
performance offered by these platforms make them suitable for being at the heart of sensor fusion
systems found in embedded systems in Internet of Things, medicine, robotics, and space. Xilinx
and Altera went on to be acquired by AMD and Intel, respectively, continuing the legacy of the
SoC FPGA.

However, these platforms pose serious challenges concerning how the computations spanning
CPUs and FPGA should be modeled, verified, and implemented. At the core of this challenge are
the fundamental differences in computational substrate offered by the CPUs and the FPGA. The
CPUs offer an interface to the programmer (or compilers) called the Instruction Set Architecture
(ISA), which consists of a set of registers and instructions and a deterministic model describing how
the state of the machine evolves when executing any sequence of instructions. The most common
programming languages used to specify the behavior of these CPUs, like C, C++, and Python, are
built on a sequential and imperative model [19]. This is convenient because the ISA is a sequential
model, making the compilation process more straightforward.

The FPGA, on the other hand, offers an interface based on synchronous digital logic. The compu-
tation is expressed in terms of a set of memory elements whose state changes are synchronized by
a clock signal. Although the most common languages for modeling synchronous logic, like Verilog
and VHDL, are based on discrete-event models, the usage of the languages to synthesize hardware
(HW) is synchronous [9]. This synchronous usage is also reflected by a newer HW language, Chisel
[6], which even hides the clock from the developer.

A circuit description based on synchronous digital logic is not the lowest level abstraction for
the FPGA. Such a description will pass through elaboration, synthesis, and place and route to
generate a routed netlist before finally a bitstream is created. The bitstream contains the complete
configuration of all the logic cells, switch boxes, and memories. However, the bitstream format is
typically proprietary and the netlist description is rarely written by programmers directly.

There are three core differences between the algorithmic approach offered by the CPU and the
synchronous approach offered by the FPGA:

(1) In the sequential model, there is a notion of order but not of time [29]. There is no portable
way of specifying, e.g., in C or Python, that a certain instruction should be executed at an ex-
act time in the future. Time is merely a side effect of a particular implementation. This is also
matched by fundamental non-determinism in the timing of the CPUs themselves [22]. This makes
ordinary CPUs and the sequential model a poor fit for solving timing critical problems like sen-
sor synchronization [21]. In the synchronous model, on the other hand, all computation occurs
(conceptually) at an exact timestamp drawn from an external clock. If this external clock is pe-
riodic and the synchronous hypothesis [10] is valid, this timestamp can be given a physical
interpretation.

(2) The sequential model also lacks a notion of concurrency. For example, in C, there is no way
to specify that two different functions should be executed concurrently. One has to execute before
the other. The standard way of introducing concurrency is through threads; however, these have
been shown to be an unsatisfactory abstraction for concurrency [28]. In the synchronous model,
all computations triggered by the same global clock tick are concurrent, except when they have
explicit dependencies.

(3) Finally, there is a fundamental difference in how the physical computing device is modeled.
Jantsch makes the distinction between hierarchy and abstraction in models of computation [20].
Hierarchy is defined as the process of hiding information by partitioning a system into smaller parts.
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Conversely, abstraction is defined as representing a system in a new way, using new primitives.
Sequential imperative programming languages can thus be seen as hierarchical models over the
ISA since they do not fundamentally change the way computation is represented. However, the
gap from a bitstream to a synchronous program is an abstraction. In this article, we will introduce
a Model of Computation (MoC) for SoC FPGAs based on abstraction.

A heterogeneous system composed of sequential algorithms on the CPU and an accelerator in
the form of synchronous digital logic on the FPGA is hard to model and thus to reason about and
verify. In practice, most designers make informal use of models of computation to simplify this.
They might, for instance, implement a sequential interface to the FPGA, where the software (SW)
signals the accelerator to start by writing to a “start” register and polls a “finished” register until
the accelerator is done. In this case, we can reason about the accelerator as if it were a C function. If
concurrency between SW and HW is desired, the accelerator interface could draw inspiration from
the process networks. Either using asynchronous inputs and outputs, similar to a Kahn Process
Network (KPN) [25], or rendezvous-based inputs and outputs, consistent with communicating
sequential processes [18].

We propose, instead, a formal approach where there is a well-defined MoC underlying the
language used to specify the computation spanning HW and SW. This merging of model and
implementation leads to systems that are “correct-by-construction.” We believe that such an MoC
should have the following properties:

(a) Deterministic semantics.
(b) Ability to model concurrency at arbitrary granularity.
(c) Ability to model time.
(d) Event-driven with the ability to handle asynchronous inputs.

This article introduces HW reactors, a subset of the reactor MoC [37]. Reactor semantics is
defined as the sequence of time-tagged events flowing between concurrent components called
reactors. For a well-formed network of reactors, there is a unique legal sequence of such events
(a). Reactors are concurrent objects, and the event-triggered reactions, encapsulating computation,
have arbitrary granularity (b). The reactor model introduces time as a first-class citizen (c) and
allows for limited non-determinism by incorporating asynchronous events (d).

We present reactor-chisel, a HW runtime for implementing reactor networks spanning both
the CPUs and the reconfigurable logic of an SoC FPGA. We extend the open-source Lingua Franca
(LF) language [35] with both a Chisel and a Codesign target. This enables reactor-oriented codesign
of HW and SW. We evaluate the implementation in terms of resource utilization, maximum clock
frequency, latency, and throughput on a set of simple test programs as well as a more realistic
image processing example. The results are promising and highlight areas that need improvements
and future research.

2 Background
2.1 MoCs
An MoC is a mathematical abstraction of a computing device [19]. The purpose of an abstraction is
to hide information and provide a more convenient or economical way of specifying the intended
behavior. There are multiple meta-models of MoCs, i.e., different ways of explaining what they
are, i.e., their semantics, and how different MoCs can be compared. In the tagged signal [32] and
Rugby [20] meta-models, MoCs are described in terms of how they can model concurrency and
time. MoCs can also be explained in terms of dataflow and control flow [13]. The dataflow specifies
how data are produced, communicated, and consumed, while the control flow deals with when, if,
and how different elements process data.
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MoCs can prove very useful in designing complex systems as they can allow for mechanized
reasoning about the possible behaviors of the resulting system without analyzing the implementa-
tion details. MoCs are essential for verification, where typically, a system specification is written
in some specification language with a well-defined underlying MoC. This kind of methodology
suffers from what is known as “round-trip engineering” [44]. There are now at least two artifacts
representing the system, the specification, and the implementation, and keeping these artifacts
synchronized becomes a challenge. Another approach followed in this work is to create design
languages based on well-defined MoCs. This elegantly avoids the round-trip problem because the
specification and the implementation are the same program.

2.2 Synchronous Dataflow (SDF)
SDF belongs to the family of dataflow models of computation [14, 31]. Concurrent functional units
called actors are connected by FIFO channels. The unit of communication in dataflow models is the
token which is read from and written to the channels by the actors. Actors perform computation in
atomic quanta called firings, where a number of tokens are consumed from the input channels and
produced to the output channels. Since the firing is atomic, it is not enabled until all the tokens to be
consumed are present at the input channels. SDF is a static dataflow model where the consumption
and production rates are fixed and cannot change at runtime, for instance, based on the data
carried by the tokens. An SDF graph can be represented as a set of balance equations, one for each
channel. A non-zero solution to the balance equations is called a repetition vector and denotes a
set of actor firings such that all actors fire and the SDF graph returns to its initial state. An SDF
graph is consistent [30] if such a repetition vector exists. A consistent SDF graph can be executed
indefinitely with bounded memory. The simplest form of SDF is the homogeneous SDF, where each
actor consumes a single token from each input channel and produces a single token to each output
channel. SDF graphs are deterministic in the sense that the order in which a set of actor firings is
performed does not affect the final state of the graph.

SDF models are suitable for HW–SW codesign as they map easily both to SW and HW. SDF
models are often used to model and implement signal-processing applications where the data rates
are static and predictable. However, modern cyber-physical systems are often reactive, meaning
they include dynamic, unpredictable, and asynchronous inputs. This is hard to model using SDF.

2.3 LF and the Reactor MoC
For such reactive systems, discrete-event MoCs like the reactor model [38] might be more appro-
priate. Reactors were formalized as part of Marten Lohstroh’s PhD thesis [34]. LF [35] is a polyglot
coordination language based on reactor semantics [36]. To informally introduce the reactor model,
we will use the simple example LF program represented textually and graphically in Figure 1.

The program in Figure 1 consists of three reactors related by connections and containment.
At the top of the containment hierarchy is the main reactor, which in this example contains
two reactor instances, one Source reactor and one Sink reactor. Such contained reactors are
referred to as child reactors, and the containing reactor as the parent reactor. A reactor is a stateful
concurrent component represented as a rectangle with rounded corners in the diagrams. A reactor
communicates with other reactors through typed ports; in our example, the Source reactor has
an output port out, which is connected to an input port in at Sink. The fundamental unit of
computation is the reaction. These are represented as dark grey chevrons and can be thought of
as event handlers. An event is the unit of communication in the reactor model. It consists of a
value and a timestamp, referred to as tags in the reactor model. Like in the synchronous model, a
reaction invocation is logically instantaneous. Events originate from triggers, which include fixed
period timers, represented in the diagrams as clocks, input ports, represented as small triangles on
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Fig. 1. An example LF program using the C target.

the borders of the reactor, and actions, represented as white triangles. Logical actions are denoted
with an L and allow reactions to schedule future events at well-defined timestamps in the future.
Physical actions, denoted with a P, allow asynchronous contexts, like an interrupt service routine,
to schedule events into the system. Reactions may also produce events to output ports or schedule
future events via logical actions. The actual computation taking place in a reaction is specified in
the reaction body, which is expressed in a target language between two brackets {=... =}.

In SDF, actors are only fired when sufficient tokens are on the input channels. In the reactor model,
reactions are only triggered when all observable events with the same tag have been produced.
Reactions inside the same reactor can share state variables and are executed in a predefined order
should they be triggered at the same tag. The reactor model is deterministic, assuming that the
reaction bodies are deterministic.

The reactor model uses a superdense model of time and includes two timelines. The logical
timeline can be compared to the simulated timeline of a VHDL circuit. The reactor model delivers
deterministic computations relative to this logical timeline. However, the programs also exist on a
real, physical timeline. There are four points of interaction between the physical and the logical
timeline. (1) At startup, physical and logical time is synchronized. (2) Logical time can never exceed
physical time. (3) Physical actions are scheduled relative to the current physical time, unlike logical
actions, which are scheduled relative to the current logical time. (4) A deadline can be associated
with a reaction. A deadline specifies the maximum difference between logical and physical time,
i.e., the lag, allowed at the invocation of the reaction. The user must also specify a deadline miss
handler. The ability to model the composition of static and dynamic dataflow (through timers and
logical actions) with asynchronous events (physical actions) and real-time constraints (deadlines)
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makes reactors an ideal model for cyber-physical systems. Bringing the key aspects of timing and
concurrency into the semantics of the program also enables reusability and modularity of designs.

The reactor model also lends itself well to distributed execution. Distributed programs can
coordinated centrally, with a scheme based on high-level architecture or decentralized with a
scheme based on Ptides [7]. In recent work, LF has been extended with support for modal behaviors
[42]. It also has support for running on bare-metal microcontrollers and can function as a real
time operating system [23]. LF has been shown to provide high performance, comparable to other
actor-oriented frameworks while introducing determinism [39].

3 Related Work
There have been multiple proposals for lifting HW and SW design to the same level of abstraction.
In this section, we review a selection of notable related works.

3.1 Open Computing Language (OpenCL)
OpenCL [40] by the Khronos Group is a vendor-neutral framework for writing programs that
execute on heterogeneous platforms, such as SoC FPGAs. It provides a uniform programming
model for CPUs, GPUs, and FPGAs based on the C programming language. In the context of SoC
FPGAs, OpenCL provides a convenient abstraction for HW–SW codesign, because both HW and
SW are expressed in the same programming model; this makes it easier to experiment with the
partitioning between HW and SW. The OpenCL compiler generates the boilerplate HW and SW
facilitating the communication. However, the programming model is very general and requires
explicit synchronization of data across the various memories used by different OpenCL kernels.
This allows for non-deterministic programs. OpenCL is aHigh-Level Synthesis (HLS) framework.
HLS automatically generates HW descriptions from high-level programming languages, such as C,
OpenCL, or MATLAB. While HLS can reduce design time and increase productivity, design at the
register-transfer level offers better fine-grained control and more optimization opportunities for
the generated HW design. Unlike reactor-chisel, HLS is based on sequential languages and cannot
specify timing and concurrency [15].

3.2 SYCL
SYCL [1] is a more recent, higher-level programming model built on top of OpenCL. While OpenCL
is based on C and requires that each kernel be written in a separate file, SYCL uses C++ and allows
a single-source model. SYCL also abstracts away much of the low-level device management and
memory handling required in OpenCL. However, it inherits OpenCL’s limitations with respect to
determinism, timing, and concurrency.

3.3 Compaan/Laura
In Compaan/Laura [43], a computation is modeled in a MATLAB framework built on the KPNs MoC.
A KPN consists of a network of processes connected by FIFO channels. The Compaan compiler
will partition the KPN into a SW part and a HW part and the Laura compiler generates a VHDL
description of the HW processes and a runtime implementing the control flow. The SW processes
are implemented in C++. KPNs are closely related to the dataflowmodels that the HW reactor model
is based on. However, reactors are more expressive than KPNs. A reactor can have encapsulated
data-dependent production of output events. Through the runtime infrastructure, downstream
reactors will be stalled until output events are produced, or guaranteed not to occur. Using KPNs,
the data-dependent production logic must also be replicated in the downstream reactors so they
can know whether the upstream will produce outputs or not.
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3.4 ReconOS
ReconOS [4] extends the POSIX programming model into the FPGA domain. It makes it possible
to design HW threads executing in the FPGA logic communicating with SW threads or other
HW threads using inter-process communication primitives like FIFOs and pipes. This significantly
lowers the barrier of entry for programmers wanting to develop applications on SoC FPGAs. The
key difference between reactor-chisel and ReconOS is the underlying MoC. ReconOS is based on
shared-memory concurrency which is a fundamentally non-deterministic MoC. Reactor-chisel
is based on timed and deterministic message-passing instead.

3.5 ReconROS
ReconROS [33] is another framework addressing the desire for a unified way of designing HW
and SW for robotics applications. This is achieved by integrating Robot OS 2 (ROS2) into their
existing ReconOS project. ROS2 is a middleware for robotics applications centered around a publish-
subscribe protocol. While an improvement over shared memory concurrency, publish-subscribe is
also fundamentally non-deterministic [8].

3.6 ForSyDe
ForSyDe was proposed in the Ph.D. thesis of Ingo Sander in 2003 [41]. Its core idea is to raise the
abstraction level of SW design based on several models of computations. The designer specifies
the intended behavior of their system as a hierarchical network of processes communication with
tagged signals. Each process is a function mapping process inputs to process outputs. A core
tenant in ForSyDe is the so-called separation of concerns, where the concerns are computation and
communication. The computation is expressed as functions and the communication is defined by
an MoC. The ForSyDe library supports multiple MoCs like the synchronous MoC, KPN, and SDF.
Our approach focuses on a single MoC and takes a different approach to the idea of a “separation
of concerns.” With LF, we use different language for expressing the concerns of communication
and coordination, from the language used for expressing the computation.

3.7 Vitis Unified SW Platform
Vitis is a unified SW platform for HW–SW codesign on AMD/Xilinx devices [2]. Vitis bundles a
series of tools that previously were distributed individually like Vivado, Vivado HLS, SDSoC, and
Petalinux tools. Vitis provides a SW-centric workflow where HW designs can be compiled and
linked with the Vitis v++ compiler. Vitis supports both HDL and HLS for describing the FPGA
designs and C and C++ for the SW components. Vitis also supports OpenCL. The communication
and synchronization between HW and SW are abstracted by the Xilinx Runtime Library which
provides a HW-independent API to the accelerators. Compared to LF and HW reactors, Vitis can
be viewed as an ad hoc approach. It offers multiple paradigms for HW–SW interaction but leaves it
up to the developer to combine them in a predictable way.

3.8 Architecture Analysis and Design Language (AADL)
AADL is a modeling language for safety-critical embedded systems. AADL differs from the other
frameworks discussed because it models both the computation and the execution platform. AADL
also lets you specify nonfunctional requirements like execution time or memory footprint. An
AADL model is a hierarchy of components that has both a textual and graphical representation.
A component models either a SW or an execution platform entity. The SW components are data,
threads, thread groups, subprograms, and processes. The execution platform components are
memory, buses, processors, devices, virtual processors, and virtual buses. Inheritance enables
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multiple implementations of the same component. Components may be organized into packages,
which enables reusability. AADL is not built on a single concurrent MoC but allows the designer to
implement a mixture of a shared variable MoC and a dataflow process network MoC. There are
multiple tools, such as OSATE and RAMSES [12], which provide refinements and SW synthesis
from AADL models. Kaolin is a development process and tool for mapping computation expressed
in AADL onto FPGAs [11]. As with ForSyDe, AADL offers a more heterogeneous approach, while
we focus on delivering the semantics of a single deterministic MoC.

3.9 SystemC
SystemC [3] is a system modeling language based on C++. It supports modeling both HW and SW
and their interaction at multiple levels of abstraction. Like LF and the reactor model, SystemC is also
based on a discrete-event model. However, SystemC is mainly targeted at HW–SW co-simulation,
not actual implementation.

3.10 Bluespec Codesign Language (BCL)
The BCL was developed as part of Myron King’s Ph.D. thesis [26]. It is a language based on the
guarded atomic actions model, which can be compiled into both HW and SW. A BCL program
consists of explicitly declared state variables and a set of guarded atomic actions on these state
variables. Compilation of such programs into an efficient finite state machine is performed using the
Bluespec compiler [5]. BCL introduces the ability to generate efficient C++ modules implementing
the computation specified with guarded atomic actions. Moreover, a program can be arbitrarily
partitioned between HW and SW, and the compiler will generate logic for communication and
synchronization. A key difference between BCL and the reactor-chisel is that guarded atomic
actions are a non-deterministic MoC. Atomic actions enabled simultaneously can be applied in any
order. This is argued to be an advantage because it gives the compiler more freedom. Additionally,
while BCL introduces a new language for expressing computation, LF only introduces a new syntax
for coordination. The actual computation is expressed in a language already familiar to the user.

3.11 LEAP
LEAP is an FPGA runtime, aimed at making FPGA development easier and more familiar for SW
developers [16]. Much like an OS, LEAP provides basic device abstractions, input/output, and
memory management services, hiding the complex details of the underlying FPGA HW from the
designer. LEAP consists of a set of Bluespec System Verilog libraries and a compilation toolchain.
Our work differs from LEAP in two regards. First, LEAP is targeted at standalone FPGA designs and
not HW/SW-codesign. Second, LEAP is based on the latency-insensitive paradigm which admits
nondeterminism.

4 Reactor-Oriented HW–SW Codesign
In this section, we dive right into a set of programs exemplifying the capabilities of the proposed
Chisel-target of LF. The underlying MoC is introduced later, in Section 5, and the details of the
implementation of reactor-chisel in Section 6.

4.1 Blinky
The Hello World of embedded systems is the Blinky program. Figure 2 shows a Blinky program,
written in the Chisel-target of LF. The Blinky reactor has an output port called led with datatype
Bool(). It is marked “external,” meaning that it is just routed directly to the top level of the
design. A timer named t with a 500-millisecond period is defined as well as a state variable count.
The reactor contains a single reaction triggered by t. The reaction functionality is defined by
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Fig. 2. A simple Blinky example using the Chisel-target.

a reaction body between the curly brackets {=... =}. The reaction body is a sequential circuit
written in Chisel, which by default is enabled for a single clock cycle but might execute for an
arbitrary number of clock cycles. A simple API is provided for reading values from the input
ports, lf_get(inputPort), reading from state variables, lf_read(stateVar), writing to state
variables, lf_write(stateVar, value), and setting output port values, lf_set(outputPort,
value). There are also API functions for reading the current logical time, lf_time_logical(),
and the current physical time, lf_time_physical().

This program will be compiled into a Chisel design where a top-level pin is toggled every
500 logical milliseconds. The timers in LF are logical, which means that they specify the order
and simultaneity of events, not a precise physical time at which the events should occur. Since
reactions with data dependencies execute in a deterministic order, and reactions might execute
for an arbitrary number of cycles, the exact physical time that a reaction will be enabled is not
necessarily deterministic. This subtle distinction between the logical timeline, as specified in LF
syntax, and the physical timeline which is dependent on both the HW platform and the sequential
circuits embedded in the reactions have implications for the appropriate level for granularity
computations should be modeled with reactors.

4.2 Vector Addition
Due to HW runtime overhead, we should not expect circuits modeled at clock cycle level granu-
larity, e.g., with reactions triggered each clock cycle, to be realizable in physical time. Reactor-
chisel is more suitable for coarse-grained computations, where, for instance, an entire accel-
erator is embedded in a single reactor. Such a reactor, executing on the FPGA, can also be
composed with reactors written in other targets without changing the semantics. This makes
it ideal for targeting SoC FGPAs. For this purpose, we have added a “Codesign-target” to LF
which allows mixing SW reactors written in C++ with HW reactors written
in Chisel.

Listing 1 shows such a program spanning both the CPUs and the FPGA of an SoC FPGA. It is
the classical VectorAdd example where the vector addition of two long vectors is off-loaded to the
FPGA. The reactor called SW is to be run on the CPUs and will, every 10 milliseconds, output two
2,048-element arrays to the Accel reactor, which is to be run on the FPGA. The Accel reactor has
a single reaction triggered when there are tokens on both inputs. It reads out all elements from
each port, sums them, and writes them to the output port. By setting the reactionDone wire, the
reaction body can execute for an arbitrary number of cycles.
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Listing 1: A LF Programming Using the Codesign Target That Allows Mixing C++ and Chisel

1 target Codesign

2 reactor Software {

3 output op1: uint32_t [2048]

4 output op2: uint32_t [2048]

5 input res: uint32_t [2048]

6 timer t(0, 10 msec)
7
8 reaction(t) -> op1 , op2 {=

9 // Cpp program writing two 2048 word arrays to each output port

10 =}

11 reaction(res) {=

12 // Cpp program using the result

13 =}

14 }

15 reactor Accel {

16 @array(length =2048)

17 input op1 :{= UInt (32.W)=}

18 @array(length =2048)

19 input op2 :{= UInt (32.W)=}

20 @array(length =2048)

21 output res :{= UInt (32.W)=}

22 reaction(op1 , op2) -> res {=

23 val readPort1 = lf_get_array(op1 , 0.U, 2048.U)

24 val readPort2 = lf_get_array(op2 , 0.U, 2048.U)

25 val writePort = lf_set_array(res , 0.U, 2048.U)

26 val cnt = RegInit (0.U(32.W))

27 val fire = writePort.ready && readPort1.valid && readPort2.valid

28 when(fire) {

29 writePort.valid := true.B

30 readPort1.ready := true.B

31 readPort2.ready := true.B

32 writePort.bits.data := readPort1.bits.data + readPort2.bits.data

33 cnt := cnt + 1.U

34 }

35 reactionDone := cnt === 2048.U // Builtin signal

36 =}

37 }

38 main reactor {

39 sw = new Software ()

40 @fpga

41 accel = new Accel ()

42 sw.op1 , sw.op2 , accel.res -> accel.op1 , accel.op2 , sw.res

43 }

This program shows how easy it is to offload computation from the CPU to the FPGA. The
@array attribute on Lines 15, 17, and 18 informs the compiler that there is an array of tokens being
communicated. Connections between such ports are buffered in BRAM if it is between HW reactors
and off-chip DRAM if it is between a SW reactor and aHW reactor. Reactor-chisel includesDirect
Memory Access (DMA) modules that efficiently handle the interleaving of memory requests and
responses for multiple ports. The Codesign target aims to abstract away all the communication and
synchronization details between the CPU and the FPGA and leave the developer only with the task
of implementing the actual computation going on in the event-triggered reactions.
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Fig. 3. A sensor fusion application spanning FPGA and CPU.

4.3 Multi-Sensor Fusion
The Accel HW accelerator in the VectorAdd program was purely reactive and had no locally
originating tokens. While the Codesign target allows efficient modeling and implementation of
such simple codesigns, it is also much more expressive.

Imagine acquiring, preprocessing, and fusing messages from multiple sensors. Figure 3 shows
an LF diagram of a program fusing three sensors. A proximity sensor delivers sensor readings
asynchronously through an interrupt service routine to the SW, a camera is triggered and processed
at 100 Hz from the FPGA as well as a wheel encoder sensor which also triggers asynchronously
and is connected to the FPGA. Asynchronous events are modeled in LF through the use of physical
actions.

This LF program has a semantic that is quite hard to achieve by using ad hoc programming in
C++ and VHDL. This program dictates that the Fusion reactor will always see sensor messages
in their timestamp order. This is a crucial property for many sensor fusion systems. Out-of-order
handling of sensor messages can, in the case of sensors measuring continuous quantities, e.g., an
accelerometer or tracking of the position of features in an image, lead to serious estimation errors
[17]. For sensors measuring discontinuous quantities, like a wheel encoder that indicates whether
the vehicle is moving forward or backward and a proximity sensor telling whether an object is close
to the vehicle or not, out-of-order handling of messages can lead to the system passing through
inconsistent states [7].

Using reactor-chisel, control logic is synthesized to the FPGA and the CPU such that they
share a common notion of time through the exchange of timestamps. An event arising in the
WheelEncoderwill stall the SW, preventing it from handling any other events with a later timestamp
until the WheelEncoder event has propagated through the system and has been fully handled. This
coordination is bidirectional, and the FPGA cannot handle events until dependent events in the SW
reactors are handled. This coordination mechanism will be further elaborated in Section 6.9.

To the authors’ knowledge, this kind of tight bi-directional coordination between computation
in SW and HW is novel and unlocks a new way of doing HW–SW codesign.

5 HW Reactors MoC
In the same way that VHDL and Verilog define synthesizable subsets, we propose a synthesizable
subset of Lohstroh’s original reactor model [37]. This subset lends itself well to a dataflow-like
implementation. In this section, we will give an informal description of this subset. When there
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might be ambiguity, we will refer to the components of the HW reactor model as HW reactors and
HW reactions; if there is no ambiguity, we will refer to them as reactors and reactions.

HW reactors are similar to ordinary reactors. They encapsulate timers, physical actions, state
variables, ports, and event-triggered HW reactions, as well as contained HW reactors. The ports
of HW reactors can be connected through connections yielding a directed graph of HW reactors
which constitutes a program.

The fundamental unit of communication in the HW reactor model is a timestamped token.
Although similar to the events of the reactor model, we refer to them as tokens since this is the
terminology used in dataflow models and the HW reactor subset is arguably closer to dataflow
than discrete-event.

HW reactions are the fundamental components in our model, and they resemble actors in
homogenous SDF. In the reactor model, reactions are triggered by events from any trigger; on
the other hand, HW reactions are triggered by the presence of a single token on all triggers and
sources. In the reactor model, a reaction firing may produce an event to any output port marked as
an effect. In the HW reactor model, it produces a token to all output ports. This requires us to add
the notion of an absent token. If a HW reaction does not produce a token to a certain output port,
then the runtime produces an absent token there.

Input ports “fork” tokens to all dependent HW reactions. In the same way, output ports “join”
tokens from all HW reactions that have the port as an anti-dependency. Connections buffer tokens
between ports.

There are four ultimate sources of tokens: timers, built-in triggers like startup and shutdown,
physical actions, and ports at the top-level HW reactor, which is connected to external reactors,
e.g., running in SW. Every time one of the sources generates a token, all other sources must also
generate a token, possibly an absent token.This means that each token source will output a sequence
of tokens with identical tags. For timers, this sequence can be computed as a static schedule of
a repeated hyperperiod. For physical actions and inputs from external reactors, the absence or
presence of tokens must be checked at each step in the hyperperiod. Tokens from physical actions
and external reactors might also arrive at tags that are not present in the static schedule, in which
case all the timers will fire with an absent token. Physical actions are restricted to only scheduling
tokens without any additional offset. Physical actions can thus be queued in an FIFO queue, which
is cheaper in HW than a sorted priority queue.

There is a subtle distinction between the logical timeline, defined by the tags of the tokens
flowing between HW reactors, and the physical timeline, defined by the clock signal driving the
FPGA. The tags of the tokens can also be understood as reaction indices. They denote the order in
which the reactions should be executed. A runtime should try to minimize the difference between
the logical and the physical timeline; however, the semantics of the program are defined relative to
the logical timeline, not the physical.

Lohstroh’s original reactor model also includes logical actions, which are not included in the HW
reactor model. Logical actions are very expressive and hard to capture in static dataflow. Suppose a
reaction declares a logical action as an effect. In that case, the reaction may schedule an arbitrary
number of future events with timestamps only limited by a possible minimum spacing parameter.
This means that any LF program with a logical action might need an unbounded event queue.
Logical actions can be thought of as equivalent to the after statement in VHDL which is not part
of the synthesizable subset for the very same reason.

To summarize, our underlying model is close to homogenous SDF. A computation is thought of
as a graph of reactions fired when there are tokens at all inputs. The computation is driven forward
by the token sources generating sequences of tokens and absent tokens. At every tag where a token
is present, all reactions in the program will be fired, possibly with absent tokens.
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6 Reactor-Chisel
In the following section, we will explain how such a model can be implemented efficiently on an
SoC FPGA. We introduce reactor-chisel which is a HW runtime, meant for executing on the
FPGA, implementing the semantics of the HW reactors model and enabling the correct execution
of the programs presented in Section 4. We refer to reactor-chisel as a “runtime” because in
function it resembles a runtime underlying languages, such as Java, Python, and Golang. However,
due to the fundamental difference between FPGAs and CPUs, the implementation is fundamentally
different. Reactor-chisel is organized as “glue logic” wrapping user-written modules. This glue
logic is mainly concerned with abstracting away the communication between different modules.
To ensure the deterministic composition of modules, a centralized scheduler module is also part of
the runtime which distributes tokens to the user-written modules. The tokens act as a virtual clock
signal, enabling them in a pre-defined order. Through Control and Status Registers (CSRs), the
scheduler module also coordinates with a SW runtime ensuring well-defined ordering of execution
of SW and HW modules.

We will use the example program in Listing 2 represented with a diagram in Figure 4 as a running
example. This program contains most of the LF primitives currently supported by reactor-chisel.
When passing such a program to the LF Compiler (lfc), a HW design using reactor-chisel as a
library will be generated. In the following, we will introduce the different parts of this generated
design.

6.1 Tokens
Tokens are the fundamental unit of communication in a HW reactor program. All connections,
dependencies, and anti-dependencies, indicated by solid and dashed lines in Figure 4, will be
compiled to interfaces that exchange tokens.

Figure 5 shows the class hierarchy of tokens in reactor-chisel. All tokens include a tag (i.e.,
a timestamp representing the logical time of the token) and a bit indicating whether this is an
absent token or not. The default in reactor-chisel is to use a 32-bit signed integer in nanosecond
resolution to represent time, this will not cause any issues unless the generated schedule has a
hyperperiod that spans more than 2 seconds (more on hyperperiods later). The tag will be optimized
away unless the user-writtenmodules are explicitly reading the tag. In Figure 5, there are three types
of tokens. Pure tokens carry no values and are used for triggers from timers, physical actions with
no type, and precedence ports between the reactions. Single tokens are used for tokens carrying a
single value of arbitrary Chisel type. Single tokens should only be used with narrow data types
since they will be compiled into interfaces with bit widths sufficient to carry the entire data type.
For bigger data types, such as an image frame, array tokens are more appropriate. Array tokens
encapsulate arrays of values that are buffered in RAMs between reactors. This introduces additional
read latency which depends on the type of RAM (either BRAM or DRAM).

6.2 Token Interfaces
Tokens are communicated between reactions contained in various reactors. Figure 6 shows the four
channels used for reading and writing tokens and the four different interfaces we compose out of
these channels. A channel is a uni-directed group of signals and an interface is a group of such chan-
nels. All channels, and thus also interfaces, are parameterized by the token type. TokenReadMaster
and TokenReadSlave are the interfaces used to read, i.e., receive, tokens. They are identical except
for the direction of the channels. A TokenReadReq channel is used to communicate a read request
from the master to the slave. If the token is an ArrayToken, the request includes an address and a
read size. In the case of a PureToken or a SingleToken, this channel is unused. A TokenReadResp
channel is used by the slave to respond to requests. In the case of SingleTokens and PureTokens,
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Listing 2: An Example Program to Illustrate the Different LF Primitives Supported By Reactor-
Chisel

1 target Chisel

2
3 reactor Source {

4 timer t(0, 1 usec)
5 output outSingle: {=UInt (8.W)=}

6 @array(length =8)

7 output outArray: {=UInt (8.W)=}

8 @external

9 input inExt: {=UInt (1.W)=}

10 state cnt: {=UInt (8.W)=}

11 reaction(t) -> outSingle {=

12 // User -written Chisel code here

13 =}

14 reaction(startup) inExt -> outArray {=

15 // User -written Chisel code here

16 =}

17 }

18 reactor Sink {

19 @array(length =8)

20 input inArray: {=UInt (8.W)=}

21 input inSingle: {=UInt (8.W)=}

22 @external

23 output extOut: {=UInt (1.W)=}

24 output out : {=UInt (32.W)=}

25 physical action phy: {=UInt (8.W)=}

26 reaction(inArray) {=

27 // User -written Chisel code here

28 =}

29 reaction(phy , inArray) -> out {=

30 // User -written Chisel code here

31 =}

32 reaction(shutdown) -> extOut {=

33 // User -written Chisel code here

34 =}

35 contained = new Contained ()

36 inArray -> contained.inArray

37 }

38 reactor Contained {

39 @array(length =8)

40 input inArray: {=UInt (8.W)=}

41 reaction(inArray) {=

42 // User -written Chisel code here

43 =}

44 }

45 main reactor {

46 src = new Source ()

47 sink = new Sink()

48 src.outSingle , src.outArray -> sink.inSingle , sink.inArray

49 }

the slave will present any available token on the TokenReadResp channel, without the need for a
prior request. TokenWriteMaster and TokenWriteSlave are the interfaces used to write, i.e., send,
tokens. A TokenWriteReq channel is used by the master to request sending a token. It includes an
address and a write size for ArrayTokens, whereas SingleToken and PureToken do not use this
channel. A TokenWriteDat channel is used for transmitting the actual data within the token. All
channels handshake with ready/valid signals. In addition to the channels, there is also a fire signal.
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Fig. 4. The auto-generated diagram of the program in Listing 2.

Fig. 5. The Chisel class hierarchy of tokens.

Fig. 6. The four channels used to read and write tokens. We refer to TokenReadMaster, TokenReadSlave,
TokenWriteMaster, and TokenWriteSlave as interfaces which we display with rounded rectangles.

It is used by the TokenReadMaster to signal that the firing of any connected component, typically
a reaction, has been completed and that the tokens have been consumed. The fire signal is also used
by the TokenWriteMaster to signal that the writer has finished writing the tokens.

6.3 Reaction
Reactions are the fundamental unit of computation. In the HW reactor model, a computation is
thought of as a directed graph of reactions. The programmer’s task is mainly that of designing the
computations encapsulated by each reaction. These computations are also referred to as reaction-
bodies and are expressed in a target language between the {=...=} brackets in the LF programs,
e.g., at Line 12 in Listing 2. Reactor-chisel currently only supports reaction bodies written in
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Fig. 7. The Chisel module implementing Reaction 2 in the Sink reactor of Figure 4.

Chisel, but any HW design language that compiles to Verilog, including various HLS languages,
could be supported.

In reactor-chisel, a Reaction is a parameterized HW module which, among other things,
encapsulates the user-written reaction body. A Reaction has a TokenReadMaster interfaces to
each of its dependencies and a TokenWriteMaster for each anti-dependency. Possible dependencies
are triggers (like timers, physical actions, and startup/shutdown), input ports of the parent reactor
as well and precedence ports from other reactions within the same reactor with higher precedence.
The possible anti-dependencies are the output ports of the parent reactor and precedence ports
to reactions with lower precedence. The core feature of a Reaction is a finite state machine that
controls when the user-written reaction body shall be enabled.

Figure 7 shows Reaction 2 from the Sink reactor in Figure 4. Notice that this reaction has three
dependencies, each connected through a TokenReadMaster interface. It is the port called inArray,
a physical action as well as a precedence port from Reaction 1. The Reaction body, indicated in
the figure, is a user-written Chisel module and is copied directly from the LF program. Everything
else is part of the runtime and code-generated. In Listing 2, all reaction bodies are empty. A state
machine controls the execution. Whenever there are tokens present on all the input channels, and
all the output channels are ready to accept tokens, the reaction will enter a state where the reaction
body is enabled. It will execute until a special signal, called reactionDone, which defaults to “true”
but can be overwritten from the reaction body, is asserted, at which point we will move to the
“done” state. In the “done” state, all output channels that have not received any token receive an
absent token.

6.4 Ports
Ports are modules that enable reactions to communicate tokens. In reactor-chisel, each port
is implemented by a set of TokenReadMaster or TokenWriteMaster interfaces, depending on
whether it is an input or output port. An InputPort allows multiple reactions to read through a
single TokenReadMaster, conversley, an OutputPort does the same for outputs. Contained reactors
can also have their input ports connected to an input port of the parent, as is the case with the
Contained reactor in Figure 4. This contained reactor will also be connected to the InputPort.
The InputPort works like an arbiter allowing multiple reactions within the same reactor sharing
a single TokenReadMaster interface. Reactions at different levels of the containment hierarchy
will get parallel TokenReadMaster interfaces. Figure 8(a) shows a generic InputPort module
connecting # reactions from the same reactor and " contained reactors to the input port of the
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Fig. 8. InputPorts and OutputPorts are arbiters connecting reactions and contained reactors to the input and
output ports of the parent reactor.

parent reactor. This results in " + 1 parallel “read channels” through the input port. The number of
read channels associated with an input port can only be decided by traversing down the containment
hierarchy and finding all reactions connected to the input port in question. Figure 8(b) shows a
generic OutputPort module. It multiplexes the TokenWriteMaster interfaces from reactions and
connections. There is never more than a single “write channel.” This is due to the reactor semantics
that do not allow reactions at different levels of the containment hierarchy to connect to the same
output port.

6.5 Connections
In reactor-chisel, a Connection is a memory, typically situated between an output port of
one reactor and the input port of another. A Connection will expose a single TokenWriteSlave,
typically connected to an output port, and several TokenReadSlave matching the number of read
channels of the connected input port. Figure 9 shows a Connection connecting to two reactors
with a generic memory for storing tokens. Connections are parameterized by the type of token
it carries. SingleTokens are stored in flip-flops, while ArrayTokens uses BRAMs. A Connection
can only have a single writer, but multiple readers. This is mirrored by the fact that input ports
of reactors might have multiple read channels, while output ports only can have a single write
channel. In Figure 9, two duplicate memories are written to by an output port, while being read
from, independently, by two input ports, a simple state machine transitions on the fire signals on
the TokenWriteSlave and TokenReadSlaves.

6.6 State Variables
In LF, state variables are persistent data associated with a reactor. They retain their value between
reaction invocations, and they can be read and written from all reactions in the reactor. This is
unlike any sequential elements instantiated in the reaction bodies, which will be reset between
each reaction invocation. In reactor-chisel, state variables are implemented as memories with
read and write ports connected to all the reactions within the same reactor. Due to the mutual
exclusion between these reactions, all of these ports can be multiplexed onto a single read and a
single write port connected to the actual memory. In our current implementation, state variables
are stored in flip-flops.
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Fig. 9. A Connection is written to by the output port of a reactor and read from by the input port of another
reactor. RM and WM are shorthand for TokenReadMaster and TokenWriteMaster.

Fig. 10. The code-generated implementation of Sink from Figure 4.

6.7 Reactor
As mentioned, it is the reactions that are the fundamental unit of computation and where the main
control logic is synthesized. Reactors are best thought of as containers that allow for multiple
reactions sharing access to the same state variables. Figure 10 shows the generated Sink reactor
from Figure 4. It contains three reaction modules each connected through an TokenReadMaster,
to a set of InputPorts and Connection modules. Note that the direction of the arrow indicates
the master-slave relationship, not the flow of tokens. For example, the arrow from the reactor
Contained to the input port inArray indicates that Contained has a TokenReadMaster interface
which is connected to a TokenReadSlave interface at inArray. The tokens flow in the opposite
direction. All reactions are connected with read and write ports to the state variable count. The
precedence relationship, shown with dashed orange lines in Figure 4, is implemented through the
Connection modules separating the reactions. Notice also the Connection from Reaction 3 and
Reaction 1. This ensures that Reaction 1 does not start processing its next token until Reaction
3 is done with the first. This connection is initialized with a single pure token.
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Fig. 11. The TriggerGenerator module in reactor-chisel.

A reaction will fire when there are tokens available on all of its TokenReadMaster interfaces.
When it fires, the user-written Chisel design will execute until it is done. Any write port not used
by the user-written design will have an absent token written to it. This will include the generated
precedence connections. In this way, the reactions within the same reactor are executed strictly
in order.

The InputPort modules are connected to one of three IO bundles (shown in rounded rectangles
at the border of the module). ReactorIO contains all the actual LF input and output ports, e.g.,
inArray and inSingle. PhysicalIO contains the physical actions, in this case, the phy dependency.
Finally TriggerIO contains all timers and built-in triggers like startup and shutdown. There is also
an ExternalIO which contains ports annotated with external. The ExternalIO bundle allows
reactions to directly read and write to wires routed to the top level of the design.

6.8 Triggers
The tokens that enable reactions and are communicated via ports and connections, ultimately
originate from triggers which are all managed by a central module called TriggerGenerator shown
in Figure 11. This module exposes a timerTriggers interface and a phyTriggers interface. Both
are vectors of TokenWriteMaster interfaces, containing one interface per timer and physical action
in the program. The startup and shutdown triggers are also emitted through the timerTriggers
interface. TriggerGenerator also accepts scheduling of physical actions through its phySchedule
interface which is a vector of TokenWriteSlave interfaces, one per physical action. The purpose of
the TriggerGenerator is to output sequences of tokens on the timerTriggers and phyTriqggers
interfaces that correspond to the timers in the LF program and the asynchronous scheduling of
physical actions. This is achieved through the two “queues” in TokenQueue, one for physical actions
(PhysicalTokenQueue), and one for timers and built-in triggers (LocalTokenQueue). Both expose
an output signal called the Next Event Tag (NET) which is the tag of their next token, as well as a
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Fig. 12. The top level of a standalone LF program executing in HW.

trigger vector indicating which triggers are present at this tag. The token queue with the lower NET
is forwarded to the outputs of the TokenQueue module. The Scheduler module contains the firing
logic. It accepts an NET from the TokenQueue, an external Tag Advance Grant (TAG), and the
current time from the MainClock. In the case of standalone FPGA designs based on the Chisel-target,
the TAG is hardwired to a value greater than any tag (a forever tag). When the Scheduler decides
to fire, the trigger vector from the TokenQueue is forwarded to the timerTriggers and phyTriggers
interfaces and the TokenQueue can move to the next step in schedule.

The PhysicalTokenQueue is an FIFO queue implemented using the Queue primitive from the
Chisel3 standard library. The LocalTokenQueue is technically not a queue, but rather two fixed
schedules assembled at compile time. A hyperperiod is computed based on the period and offsets
of the timers in the program. The schedules last a single hyperperiod, containing a trigger vector
for each step. The initial schedule contains the trigger vectors to be outputted on the very first
run through the hyperperiod. Due to the possibility of timers with no period, this round might
be different than the rest, encoded in the periodic schedule. There can also be a trigger vector
associated with the termination of the program if there are any reactions triggered by the built-in
shutdown trigger.

The semantics of a set of interconnected HW reactors are defined with respect to the tags of the
tokens communicated between them. This is ultimately made possible by the TriggerGenerator
module which synchronizes the creation of tokens.

Figure 12 brings everything together for “standalone” programs, i.e., programs that run exclusively
in HW. It shows how the TriggerGenerator is connected through a TriggerQueue to the main
reactor. The trigger queue is simply a queue for the tokens and gives some flexibility in the face of
bursty behavior. The TokenWriteSlave interfaces associated with phySchedules is routed to the
very top level of the design together with any port marked as external.

6.9 HW–SW Codesign
So far, we have only discussed how reactor-chisel enables designing FPGA accelerators with
reactor semantics. However, one of the key benefits of reactor-chisel is that it enables determin-
istic coordination with external reactors, e.g., running on the CPUs of an SoC FPGA. We leverage
the open-source project fpga-tidbits [24] for creating the platform-independent communication
channels between HW and SW using either CSRs or shared memory.

Consider again the VectorAdd program in Listing 1.This program consists of two SW reactors, SW
and main, and one HW reactor, Accel. Dataflowing on the connections between HW reactors and
SW reactors are either sent through memory-mapped CSRs synthesized to the FPGA or through
shared memory. Ports carrying single tokens will use CSRs while ports carrying array tokens
use the shared memory. For instance, in the VectorAdd program in Listing 1, all the ports carry
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Fig. 13. Coordination signals between HW reactors and SW reactors.

Fig. 14. The top-level FPGA module generated when using the Codesign-target.

array tokens. Reactor-chisel includes DMA modules which lets the reactions access the tokens
in off-chip DRAM as if they were ordinary array tokens buffered in on-chip BRAM. If there are
multiple array connections from SW to HW, reactor-chisel will multiplex the memory requests
to off-chip DRAM onto a single physical memory interface.

The execution of reactors in SW and HW must be synchronized to correctly deliver reactor
semantics. We employ a subset of the coordination scheme used in distributedLF programs [8].
Three signals are needed between the HW reactors on the FPGA and the SW reactors on the CPU
as seen in Figure 13. (1) The NET signal informs the CPU of the tag of the next token on the token
queue in the FPGA. (2) The Logical Tag Complete (LTC) signal informs the CPU of the tag of the
latest completed token in the FPGA. (3) The TAG is sent from the CPU to the FPGA and grants the
FPGA permission to advance its time until a specific tag.

This coordination interface is implemented through a set of CSRs. The TriggerGenerator
introduced in Section 6.8 handles the control logic from the FPGA side. It does not release the next
token until it has received a TAG from the SW that is greater than its NET. Moreover, as a token
is released, the tag is queued such that it can be dequeued and written to the LTC status register
when it has fully propagated through the HW reactions.

Figure 14 shows the generated top-level design on the FPGA when using the Codesign-target of
LF. The CSRs are read and written to, by the SW reactors, through an AXI4Lite slave interface. Array
connections are facilitated through shared memory, accessed through an AXI4 master interface.
External inputs and outputs can be connected to other designs on the FPGA, or directly to IO pins.
Finally, scheduling of physical actions can be done from external FPGA designs which in turn can
be connected to IO pins.

On the SW side, we synthesize a special reactor in charge of communicating and synchronizing
with the HW reactors. Figure 15 shows the synthesized reactor for the VectorAdd program in
Listing 1. The reactor called _FpgaWrapper is generated based on the reactor Accel from Listing 1.
Notice that it duplicates all of its ports. There are three reactions. Reaction 1 handles the startup
(the startup trigger is represented by a white circle), this involves programming the bitstream of
Accel onto the FPGA and initializing the shared memory regions used for HW–SW communication.
Reaction 2 is triggered by the input port and contains most of the logic. It forwards data from the
SW reactor by writing it to shared memory and passing the address to the Accel reactor through a
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Fig. 15. Diagram of synthesized SW reactor for Listing 1, handling communication and synchronization with
the HW reactors.

Fig. 16. Compiling LF designs for SoC FPGA with the Chisel-target and the Codesign-target.

CSR. Data coming from the Accel reactor, through the res port, is copied from the FPGA memory
region and outputted over the duplicate res port. This reaction is also triggered by a logical action
which is scheduled whenever there are tokens originating from the HW reactors. Finally, Reaction
3 is triggered by shutdown (represented by a white diamond). Here we do cleanup and free any
allocated memory. This synthesized reactor relies on fpga-tidbits for communicating with the FPGA
or doing co-simulation of HW and SW.

6.10 Compilation
To generate these circuits, we extend the lfc with two new target languages. The Chisel-target
supports generating code for HW reactors written in Chisel. The Codesign-target enables the
compilation of LF programs consisting of both SW reactors written in C++ and HW reactors written
in Chisel.

Figure 16 shows the steps involved in compiling LF programs for SoC FPGAs. white rectangles are
the initial input and final outputs, grey rectangles are intermediate artifacts, dark grey rectangles are
compilers and tools, and the large white rectangle encircles all the steps performed automatically
when invoking lfc. First, we look at compiling standalone circuits shown in Figure 16(a). We
begin in the top left corner with the program Hello.lf passed to lfc. This step transforms an
input LF program into a Chisel program (Hello.scala). This generated Chisel program is then
compiled, together with the reactor-chisel runtime, by the Chisel compiler, which eventually
emits a Verilog description (Hello.v). This Verilog description can either pass through verilator,
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Fig. 17. A simple HW/SW image processing application.

generating a C++ emulation of the circuit (Hello.cpp) before a C++ compiler like g++ can generate
an executable (Hello.exe). This is the default behavior of our toolchain. A single click turns the
LF program into an executable emulation of the circuit. When the user eventually wants to target
real HW, the generated Verilog must be passed through a proprietary tool like Vivado, which will
result in a bitstream (Hello.bit) that can be programmed onto an FPGA.

The compilation steps for the Codesign-target are more complicated and shown in Figure 16(b).
We start in the top left corner with Hello.lf, but this time, it uses the Codesign-target and includes
SW and HW reactors. When lfc is passed such a program, it will generate two new projects. The
HW reactors will be extracted to a new project organized in _FpgaTop.lf; this uses the normal
Chisel-target and is passed through lfc again through a process similar to the one in Figure 16(a).
However, it outputs a static library (fpgaLib.a), not an executable. The SW reactors are put in a
separate project with the reactor synthesized for HW-SW communication, shown in Figure 15. This
is organized in _SwTop.lf which uses the LF C++ target. This file is passed through lfc again and
finally linked with fpgaLib.a to produce the final executable. If we are targeting emulation, then
the final executable includes the verilator emulation of the circuit. If we are targeting a real FPGA,
the final executable only includes the drivers for interacting with the FPGA.

We make use of fpga-tidbits to enable this seamless transition between emulation in verilator
and deployment on real HW.

7 Evaluation
We evaluate reactor-chisel on a set of test programs in terms of resource utilization, latency,
and throughput. We synthesize our designs using Vivado 2021.2 targeting the xc7z020clg484-1 part,
with a 5-nanosecond clock period. All benchmarks and test programs are available online together
with documentation at Github.1

7.1 Image Processing Example
We begin with a more qualitative evaluation of a real-time image processing example shown in
Figure 17. It consists of two top-level reactors. CameraDriver executes in SW and is triggered
every 10 milliseconds. It fetches a new image from the camera, in our implementation, it just
reads an image from the filesystem, and writes it to an output port connected to the FPGA reactor
which executes on the FPGA. The FPGA reactor contains another reactor called Filter which
performs the image processing algorithm. There are also two other reactions which are used for
instrumentation. For simplicity, we chose a grayscale filter as the image processing workload.

1https://github.com/erlingrj/reactor-chisel-benchmarks
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Table 1. Comparing a Handwritten Image-Processing
Accelerator with a Reactor-Chisel-Based Implementation

Handwritten Reactor-chisel

LUTs 835 1,087
Flip-flops 1,018 1,285
Fmax (MHz) 221 216
Latency (clock cycles) 576,024 614,423
HW loc 130 77
SW loc 87 49

LUTs, lookup tables.

The filter is implemented by doing a weighted sum of the three input channels [27], split into
two stages.

A “handwritten” implementation of the same application was also done using C++ and Chisel.
The C++ program must manually set up the shared memory area and write the image into a buffer
allocated there, before passing the address and size to the CSR and drive a start register high.
The accelerator waits on the start signal before using a DMA to fetch the image from shared
memory. The image is streamed through the filter, one pixel at a time, and the resulting grayscale
pixel is written back through the same DMA. The handwritten implementation is also based on
fpga-tidbits [24] for generating CSRs, DMAs and SW drivers. Arguably, this is a fair comparison
since reactor-chisel itself is based on fpga-tidbits. Thus both versions will experience similar
overheads from the implementation of DMAs and CSRs which is outside the scope of this work.
The same grayscale filter module is used in both examples. Only the coordination fabric is different.

A quantitative comparison is done in Table 1. Clearly, reactor-chisel introduces an overhead
in terms of resource utilization, critical path, and runtime execution. However, we do believe that
it is an acceptable tradeoff for reduced complexity of the overall project. We see a significant
decrease in the number of lines of code in both HW and SW components. The key advantage of
LF and reactor-chisel is that it brings the entire computation, spanning CPUs and FPGA into a
single program based on a single MOP. This enables the developer to precisely specify, at a high
level of abstraction, the intended behavior across CPU and FPGA. Moreover, being a declarative
language, LF enables, auto-synthesis of diagrams like the one in Figure 17. This is tremendously
helpful in understanding the semantics of the computation. Moreover, the timed semantics and the
static topology of the reactors open the door for interesting compiler optimizations. For instance,
in Figure 17, we can easily infer, at compile time, that the two connections will carry an image
frame every 10 millisecond. If there are more connections, the compiler could figure out which to
multiplex onto the same AXI ports and which to give dedicated ports by identifying at which tags
the different connections might carry tokens. Such compiler optimizations are left for future work.

7.2 Resource Utilization
Table 2 shows the resource utilization for a set of programs using the Chisel-target, aimed for
standalone execution on the FPGA, i.e., no synchronization with CPU or off-chip DRAM. The test
programs include minimal reaction bodies that only do enough to avoid being optimized away. We
are thus trying to measure solely the overhead by the runtime. The names of the tests are meant to
illustrate what they are measuring. For instance, ReactionN measures the overhead of # reactions.

The Reactions1 test represents the smallest program we can envision. It thus gives an idea of
the baseline overhead introduced by the runtime. Going from one to two reactions in the same
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Table 2. Resource Utilization for Standalone Circuits Using the
Chisel-Target

Test LUTs Flip-flops BRAMs (Kb) Fmax (MHz)

ArrayConnection 139 136 72 334.90
Hierarchy 65 117 0 323.73
PhysicalAction 139 171 0 224.92
PhysicalAction2 153 193 0 251.32
PhysicalAction10 210 215 0 239.92
Reactions1 62 119 0 319.18
Reactions2 79 128 0 309.21
Reactions3 91 134 0 328.84
Reactions10 165 180 0 303.49
Timers1 62 119 0 319.18
Timers2 127 140 0 315.96
Timers3 146 178 0 319.80
Timers10 375 304 0 286.86

reactor costs about 20 lookup tables (LUTs) and 10 flip-flops. The resource cost is not linear and a
further increase from 2 to 10 reactions only incurs a 12 LUT and 7 flip-flop cost, on average. The
addition of more reactions does not have a substantial effect on the critical path.

Increasing the number of timers in a program is slightly more expensive. On average, adding a
timer to the design costs 31 LUTs and 20 flip-flops. It is more expensive to go from a single timer to
a two timers due to optimizations performed for single-timer designs.

The PhysicalAction test shows the cost of introducing physical actions. As described in Section
6.8, physical actions are scheduled onto a separate token queue, whose head is compared against
the head of the ordinary token queue. Adding a single physical action adds 77 LUTs and 52 flip-flops,
compared to a program with a single timer. Adding more physical actions is cheaper.

In the Hierarchy, we introduce an empty wrapper reactor around the program from Reactions1.
There is virtually no additional cost showing that the hierarchy introduced by reactors is a
zero-cost abstraction.

Finally, in ArrayConnection, we have a test program consisting of a source and a sink reactor
that communicates array tokens. Each array token is 32-bit wide with a length of 2,048 elements.
While a normal connection carry tokens consisting of a single element which is buffered in flip-flops,
an array connection carries an array of elements which are then buffered in BRAMs. Refer to Section
6.5 for a more complete description. In the ArrayConnection test program, we have two reactors
communicating over a 2,048-element, 32-bit wide array connection. As expected, the results shows
a usage of 64 Kb BRAMs.

Table 3 shows the resource utilization of programs using the Codesign-target. This means that
the resulting designs include DMA modules, CSRs, AXI Lite slave for giving access to the CSRs,
AXI Master ports to main memory.

In SingleConnection1 and Singleconnection2, we have a single SW reactor executing on
the CPU and a single HW reactor executing on the FPGA and one and two normal connections
between them, respectively. We can consider SingleConnection1 the “baseline” overhead for the
Codesign-target with the order of 300 LUTs and 500 flip-flops. This is mainly consumed by the
CSRs, which account for 86% of the LUTs and 69% of the flip-flops. Adding another single token
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Table 3. Resource Utilization for HW–SW Designs Using the
Codesign-Target

Test LUTs Flip-flops BRAMs (Kb) Fmax (MHz)

ArrayConnections1 497 661 0 240.85
ArrayConnections2 814 891 0 239.52
SingleConnection1 308 520 0 253.94
SingleConnection2 320 596 0 257.80
WithLocalEvents 421 576 0 234.58
WithoutLocalEvents 308 520 0 253.94

connection from SW to HW adds, 12 LUTs and 76 flip-flops. Again, this is almost exclusively spent
on CSRs.

In WithLocalEvents and WithoutLocalEvents, we look at the cost of going from a purely
reactive HW reactor which receives all its tokens from SW to a HW reactor that also generates
tokens through a timer. This costs an additional 113 LUTs and 56 flip-flops. This is mainly used in
the read/write logic of the CSRs and the TriggerGenerator.

ArrayConnections1 and ArrayConnections2 show the overhead of array connections between
HW reactors and SW reactors. Array connections between two HW reactors are implemented in
on-chip BRAMs, while array connections between SW and HW connections are implemented in
off-chip DRAM. This is evident from the results in Table 3 showing zero BRAM usage for these
connections.

Relative to a single token connection, an array connection costs 189 LUTs and 141 flip-flops.
Going from a single array connection to two array connections adds 317 LUTs and 230 flip-flops.
For every array connection between HW and SW, a DMA module is created. If there are more than
two, then a multi-channel memory system is created which allows multiple read requests and read
responses to be multiplexed onto a single memory port. All of these components are part of the
FPGA-tidbits project.

In general, the communication across HW and SW adds some overhead, both in terms of
resources and maximum clock frequency. This would also be the case for ad hoc designs using, e.g.,
AMD/Xilinx IP blocks for CSRs, AXI Lite slave, AXI4 Master, and DMAs. We leave it for future
works to investigate how the underlying framework, i.e., FPGA-tidbits, can be improved to reduce
resource utilization.

7.3 Latency
Table 4 shows the results of the latency benchmarks whichmeasure the reaction invocation latencies
for various program topologies. It is measured by comparing the logical and physical time, i.e., the
lag, at the time the reaction is triggered. These benchmarks use the Chisel-target, meaning that we
are measuring latencies on the FPGA fabric.

TimerLatency1 shows that the invocation latency for a single reaction triggered by a timer is
zero clock cycles. We achieve this by releasing tokens from the token queue a few clock cycles too
early to account for the pipeline stages. This is a static optimization. Reactions triggered deeper in
the containment hierarchy will have more pipeline stages between them and the TriggerGenerator
and will thus experience different invocation latencies. This highlights the subtle difference between
the logical and physical time points at which these reactions are invoked.
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Table 4. Reaction Invocation Latency for Programs Using
the Chisel-Target

Test Latency (clock cycles)

ArrayConnectionLatency1 5
ArrayConnectionLatency2 260
ArrayConnectionLatency3 515
MutexLatency 4
TenStagePipeline 27
TimerLatency1 0

Table 5. Token Throughput for Programs Using the
Chisel-Target

Test Throughput (clock cycles per event)

DeepPipe 7
ShallowPipe 7
TenParallelPipes 7

MutexLatency shows that a second reaction in the reactor, triggered by the same timer, will
experience an additional four clock cycles latency due to mutual exclusion. The first reaction
executes in a single cycle and there are three additional cycles of overhead.

ArrayConnectionLatency1 shows that it takes five cycles between an upstream reaction writing
a single value to an array connection and a downstream reaction is triggered and has fetched the
value. In ArrayConnectionLatency2, the upstream reaction writes 256 words to the array connec-
tion, here the downstream is triggered after 260 clock cycles. Finally, in ArrayConnectionLatency3,
the upstream reaction writes 256 words and the downstream reads out all 256 words. Here the
latency is 515 clock cycles. This highlights the semantics of array connections. The upstream must
complete all of its writes before the downstream can start reading. Thus, the reading does not start
until 256 cycles have passed. We are working on a FIFO token that can get around this issue.

Lastly, in TenStagePipeline, we have a pipeline of 10 reactors, each containing a single reaction
executing in a single clock cycle. We measure the time needed to traverse from the first to the last
stage to 27 clock cycles. This is four cycles per hop, consistent with the result in MutexLatency.

7.4 Throughput
Our throughput benchmarks measure the number of clock cycles spent per single token for various
designs in the Chisel-target (Table 5). We do this by generating tokens at the highest frequency, i.e., a
timer with a single clock cycle period, and measuring how many clock cycles are needed to process
a fixed amount of tokens. The processing consists of pipelines of reactors, and each reactor contains
a single reaction executed in a single cycle. In DeepPipe, ShallowPipe, and TenParallelPipes, we
show that in such a pipeline design, we can handle a new token every seven clock cycles. This delay
is mainly caused by two factors. First, the state machine that controls the execution of a reaction
wastes one cycle before enabling the reaction and another after. If a reaction body executes one
clock cycle, then the total execution will be three clock cycles. The second contributing factor is that
a reaction is not enabled until its immediate downstream has completed execution. This is to protect
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the memory in the connections from concurrent access from upstream and downstream. Both of
these overheads are addressable through further optimizations. We could allow the upstream to
start execution but block it if it tries writing to its output port. We are also working on the concept
of a FIFO token that resembles array tokens. However, FIFO tokens are buffered in the connections
using FIFOs instead of RAM. This would enable the downstream reaction to be triggered when the
first write occurs, rather than the completion of the upstream. Such optimizations are left for future
work.

8 Conclusion
We have presented the HW reactor model, a subset of the reactor MoC and a convenient abstraction
level for doing HW–SW codesign for cyber-physical systems. We have also presented reactor-
chisel, a Chisel implementation of a HW runtime delivering the semantics of the HW reactor
model. We have also extended the polyglot coordination language LF with a Chisel-target and a
Codesign-target, enabling HW–SW to codesign on the reactor level. We have shown several example
programs illustrating the ease of which HW–SW codesign is performed in the Codesign-target
of LF. We evaluated our methodology on a set of benchmarks showing relatively low resource
utilization and promising latency and throughput numbers. The work is open-source and available
on Github.2
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