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Toward Dynamism
in Distributed Lingua Franca Programs

Chadlia Jerad

Abstract—Distributed systems often require dynamic capa-
bilities to ensure adaptability, efficiency, and fault-tolerance.
In applications where determinism and timing are crucial, a
clear and well-defined approach to deterministic dynamism is
much needed, but inherently difficult to define. This work gives
dynamism deterministic semantics, thus enabling precise and re-
peatable behavior. To this end, we select the Lingua Franca (LF)
coordination language that is based on the reactor model, and
introduce dynamism to the distributed LF programs, referred to
as federations. This paper outlines the challenges associated with
incorporating transient federates, which are capable of joining
and leaving the federation at arbitrary times, and proposes
solutions to the identified problems. A realistic example of
an online auction system is used to illustrate the approach.
Furthermore, the potential applications of this mechanism are
discussed, along with the challenges that need to be addressed.

Index Terms—Reactor Model, Distributed Systems, Determin-
ism, Dynamism.

I. INTRODUCTION

HE actor model has been widely adopted for building

distributed systems, thanks to its inherent parallelism and
message-driven nature that emphasizes its potential for large-
scale distributed systems [1]. This comes, however, at the
cost of nondeterminism, which often leads to inconsistency.
Moreover, the subtleties in defining time across physically
distributed communicating processes allow only for partially
logically ordered clocks [2]. The recently proposed reactor
model by Lohstroh et al. [3] offers a promising alternative that
enables deterministic concurrency with time as a first class citi-
zen [4]. Lingua Franca (LF) [5], a coordination language based
on the reactor model, facilitates deterministic concurrency and
leverages parallelism transparently. Furthermore, Menard et al.
show that the runtime performance of LF programs, in terms
of execution time, surpasses that of popular actor frameworks
such as Akka and CAF [6].

Motivation: Distributed LF programs, known as federations,
currently operate as single monolithic applications spread
across machines [7]. When a federation starts, all federates
that will ever join must do so at the beginning; otherwise,
the federation will not start. Additionally, the current design
assumes that if any federate leaves, the entire federation must
shut down. While this design suits certain applications, many
others require more flexibility. Other applications have to
tolerate potentially unbounded network delay, possible link
failures, and component failures, while others intrinsically
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serve a number of components that can vary over time.
Therefore, support for a certain level of dynamism is needed.

Determinism in Dynamic Systems: It may seem contradic-
tory to talk about determinism for dynamic distributed systems
where components can join and leave at unexpected times.
Our key contribution is to give this dynamism deterministic
semantics, thereby enabling precise and repeatable behavior.
To justify this claim, first note that determinism is a property
of a model, not a physical realization [8]. The model, in this
case, assigns a logical time to the events of joining or leaving
a federation, and then our implementation ensures that all par-
ticipants see these events in logical time order w.r.t. any other
logically-timed events. Moreover, we show how these assigned
logical times can be derived from imperfectly synchronized
physical clocks without compromising determinism, so that
the logical times assigned to these events represent reasonable
measures of the physical times of those events. Among other
benefits, this enables regression testing, where a test system
controls the logical time at which components join and leave
a federation, and exactly one known-good-behavior emerges.

Paper Outline: After introducing Lingua Franca through the
motivational example of an online auction system in Sec. II,
we identify and formulate the requirements governing the
semantics of the federated execution in LF in Sec. III. We
derive the key challenges along with the adopted solutions
for supporting the dynamic behavior of transient federates
(Sec. IV). We discuss the particular case of timers alignment
in Sec. V. We finally discuss the potential applications of the
introduced mechanism in Sec. VL.

II. LF THROUGH A MOTIVATIONAL EXAMPLE

This section introduces Lingua Franca through a practical
example involving a distributed online auction system (OAS).
To make it simple, we assume that all bids are binding and
consider only one item to be auctioned in an execution.
Furthermore, we define the silence time as the time duration
the auctioneer waits before making a decision. This duration
is reset each time a bidder either joins the auction or places
a bid. In order to illustrate the deterministic and repeatable
distributed execution, we push the design to the limits. In this
test case, all bidders place new bids at the last possible mo-
ment, resulting in numerous simultaneous bids. We consider
any bid made at the precise moment when the silence time
expires to be valid, thereby triggering further bidding activity.

Fig. 1 shows a graphical description of an LF program
with one Auctioneer component and any number of Bidder
components. This is a federation, as indicated by the cloud
icon next to the name on top, meaning that the components
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execute as separate processes, possibly on separate machines.
Our test case defines five reactor instances: bid (an array of
size four), and auc, that send each other tagged messages
(events) via named ports. Reactors define state variables that
manipulate encapsulated data and actions that are used for
scheduling events in the future. Timers are one special case of
actions that schedule events periodically or one-time. Events
are ordered on a logical timeline, and each is assigned a tag.
Tags are pairs of a time value and a microstep index, thus
enabling the use of superdense time.

In the example, bid[i], ¢ € {0,1,2,3} are instances
of Bidder, which represent users that place bids and send
them to the auctioneer. Instances of Bidder define three
reactions (depicted by dark gray chevrons) that contain
code that is written in one of the supported target languages,
C, C++, Python, Rust or TypeScript. In case of OAS, we use
C. Reactions, when triggered by inputs, execute atomically and
may produce outputs or schedule actions. In the diagram, the
dashed lines show triggers and effects of reactions. Bidder
uses a logical action to trigger a bid, indicated by the triangle
labeled ‘L’. Reaction #1 in Bidder is triggered on startup
and notifies the auctioneer that it joined. It also triggers the
logical action with zero delay, which triggers reaction #2
one microstep later. Reaction #2 decides whether to place a
bid (at random), and if so, sends it through outBid port
and then reschedules itself with a delay equal to the silence
time. Reaction #3 updates the internal state variables with
incoming information from the auctioneer about the latest bids
or situation. Reaction numbering within each reactor in the
diagram reflects the deterministic ordering of their execution,
which, in case of events or messages with identical tags, will
follow the lexical order of the reaction definitions in the source
code. Consequently, when placing a bid at tag t, the bidder
will not see the decision at ¢ before placing their bid. The
bidder cannot be sure they are making a winning bid because
other bidders could simultaneously make a bid.

Reactor Auctioneer, manages the auction process.
Auctioneer defines three reactions. The startup reaction
#1 sets the minimum bid (at random). Reaction #2 reacts to
received bids. If this is a joining bidder, identified by a bidding
amount of 0, then it will be notified with the current status of
the auction. Reaction #2 observes all bids received at a tag.
If a bid is higher than previous bids, it notifies all bidders
and schedules the logical action to observe the silence time.
Reaction #3, when triggered, proceeds with a decision.

Three rules govern the intended behavior. If bidding starts
and no bidder places bids before the silence timeout, then
the item is withdrawn and bidding stops. If bids have been
placed, and the silence time passes without a new big, bidding
is concluded and the latest maximum is the winner. Otherwise,
bidding continues. The decision has lower priority than re-
ceived bids with the same tag. So corner cases of simultaneity
are dealt with cleanly, fairly, and repeatably.

In this example, consistency and time are important. Con-
sequently, a centralized coordination scheme favoring consis-
tency over availability [9] is used. Logical time and reaction
precedence relations give an unambiguous ordering to the bids
from the bidders, as well as to the decision making. Given the
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Fig. 1. Online Auction System Example.

distributed nature of the system, network failures may occur.
It is also possible to have a bidder that decides to leave the
auction before it is concluded. Hence, Bidder instances need
to be transient, in the sense that they may join, leave, and
re-join at runtime, without causing the system to stop and
while preserving determinism. The auction data must remain
consistent in that all observers must agree on the highest bid
at any logical time.

III. REQUIREMENTS

This section introduces the requirements governing the
execution of distributed LF programs, which are essential to
discuss how dynamism can be supported while preserving
determinism (c.f. Sec. IV).

The first requirement Req. #1 establishes the relationship
between logical time and physical time. Let > be the set of
events in the execution of an LF program. Let ¢, 7, 7, and 7,
be the functions that, for an event e € X, respectively return
the physical time, the tag g = (eq, e,,), the logical time ey,
and the microstep e,, at which the event occurred. By default,
the runtime system does its best to keep logical time close to,
but lagging behind, physical time. Consequently, logical time
is chasing physical time. Formally, Ve € 3, 7;(e) < ¢(e).

Federated execution goes through three phases: startup,
execution, and shutdown. The Run Time Infrastructure (RTI)
manages the startup and shutdown of the federation. In cen-
tralized coordination, all exchanged messages pass through
the RTI. In decentralized execution, however, messages are
exchanged directly between federates. This work focuses on
centralized coordination, deferring the support of transients
in decentralized coordination for future research. During the
startup phase, when a federate registers with the RTI, it
performs clock synchronization and then sends its current
physical time. Once the RTI has heard from all expected
federates, it selects the maximum of these times, adds an
offset, and broadcasts the result. This determines the logical
start time s of the federation. Federates will wait until their
physical clock matches s to transition to the execution phase.
As a result, if the offset is sufficiently high, federates will start
executing at approximately the same physical time, which is
close to the starting logical time. It is possible though that the
network delay exceeds the offset. In either case, the logic of
the program is unaffected. The shutdown phase is similarly
coordinated. Consequently, Req. #2 specifies that the RTI and
the federates have synchronized clocks with bounded error.
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In centralized coordination, the RTI regulates the advance-
ment of the logical time for each federate. It serves as the
guardian of LF semantics and the time arbiter. Before a
federate processes reactions at a given tag, it must first obtain
RTI approval. When a federate f completes executing a tag, it
notifies the RTI with a Logical Tag Completed (LTC) signal.
To request permission to process a tag, the federate sends a
Next Event Tag (NET) signal to the RTI. These signals prompt
the RTI to execute a decision algorithm to derive and issue
Tag Advance Grant (TAG) or Provisional Tag Advance Grant
(PTAG) signals to f and its downstream federates. If f has no
upstream federates, the RTI will always grant time advance,
and f will not wait for the RTI response.

In distributed settings, relationships involving time are chal-
lenging, making it difficult to know a state across all system
components. For this, the requirements governing exchanged
messages will be expressed per observer. When the RTI is the
observer, at any time instant ¢, Req. #3 specifies that the TAG
of a federate is higher or equal than the TAG of its downstream
federates. Formally, Vf' € Downstream(f),TAG(f") <
TAG(f). Req. #4, on the other hand, specifies that the RTI
knows about the most recent TAG of f before f itself. When
a federate f is the observer, however, at any time instant ¢,
Req. #5 specifies that f knows about its most recent LTC,
NET, and current tag before the RTI knows.

IV. SUPPORTING TRANSIENT FEDERATES

In our extension, federates fall into two types: persistent
and transient. Persistent federates must be present for the
federation to start and must last until its shutdown. In other
words, their execution lifetime is equal to the federation’s
execution lifetime. Transient federates, however, can join and
leave multiple times during the federation’s execution lifetime.
They are not required to be present for the federation to
start. In the OAS example, auc is persistent and bid[i],
i €{0,1,2,3} are transient.

In LF, the connection between federates is statically spec-
ified, and consequently, a federate that is executing may be
connected to a transient federate that is absent. But what does
it mean for a transient federate to be absent? This means that
if a federate sends messages to an absent transient federate,
they are dropped by the RTI. To the sending federate, it
appears simply that the receiving federate ignores the message.
Similarly, an absent federate never sends messages to its
downstream federates during the logical time intervals in
which it is absent. These time intervals are well defined by
the logical time at which the federate left (or the constant
NEVER_TAG if it has not joined yet) and its effective joining
tag (see the paragraph following the next one). Once these
time intervals are determined, determinism is preserved.

A number of challenges arise in defining the absent and
present intervals. We wish to avoid scenarios where the joining
of a transient federate results in inconsistent outcomes. For
instance, the transient federate sends a tagged message that
one executing federate receives, another misses entirely, and
a third receives only after advancing to a later tag. The goal
is that a transient federate is semantically equivalent to an

1 target C TimersTransient

2 federated reactor { tr : TrFed

3 pers = new PersFed() @.D
4 @Qtransient pers : PersFed (0, 2500 msec)
5 tr = new TrFed() @ out in
----- E »—»—-E f )
6 pers.out -> tr.in
(0, 5 sec)
7}

(a) b)

Fig. 2. Example Illustrating Timers in Transient Federates.

ordinary LF reactor that happens to ignore inputs in certain
tag intervals and not send messages in those same tag intervals.

When a transient federate f wants to join a federation that
is running, it should join using the same protocol as for non-
transient federates. The RTI will need to choose an effective
start tag g at which f will start executing. It will have to
ensure that no downstream federate has advanced to g or
greater (see Req. #3). Downstream federates cannot advance to
a particular tag until the RTI sends them a TAG (tag advance
grant) or PTAG (provisional TAG) signal, so the RTI can
choose the larger of the joining tag (¢4,0), and all (P)TAG
signals it has sent to downstream federates. If the maximum
tag is equal to any of the (P)TAG signals, one microstep is
added to determine an effective start tag g for f.

Moreover, the RTI will have to ensure that no upstream
federate has sent a message with tag g or greater in order to
grant f the effective start tag g. With centralized coordination,
all messages flow through the RTI, so the RTI can choose the
maximum tag of messages from upstream federates and add
one microstep. The effective start tag g will have to be at least
this big. This solution guarantees that Req. #4 holds.

Another challenge is that the RTI currently will send
(P)TAG signals to downstream federates with no concern for
physical time. A downstream federate may have sent a NET
signal with a tag ¢’ that is far in the future compared to
physical time, and, if it is safe, the RTI may immediately
grant advancement to ¢’. If there has been such a grant far in
the future, then f will be granted an effective start tag that is
also far in the future. This will delay f joining the federation.

Our proposal is that for any federate that has an absent
upstream transient federate, the RTI delays the granting of any
(P)TAG with tag ¢’ until physical time at the RTI has surpassed
g’ (see Req. #1 and Req. #2). This will minimize the delay of
f joining the federation at the expense of a modest increase
in lag experienced by downstream federates. This increase in
lag is an unavoidable consequence of the CAL theorem [9].
Hence, the RTI maintains a queue of (P)TAG signals to be
sent when physical time advances sufficiently. If and when
a federate joins, any pending (P)TAG signals waiting to be
sent will be canceled and reconsidered when a NET signal is
received from the joining transient.

V. TIMERS ALIGNMENT IN TRANSIENT FEDERATES

Recall from Sec. II that timers in LF are logical actions that
schedule events periodically or one-time. The first execution
of the timer reaction occurs after a predefined offset. How
should timers in a joining transient federate align with timers
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in other federates? Should the offset be executed based of the
effective start tag g, or should they start as if they had been
running since the federation started at s?

Let’s consider the simple example listed graphically and
partially in text in Fig. 2. The example defines a federation
consisting of two reactors: pers and tr. pers is persistent
and defines a reaction triggered by a timer every 5000ms,
producing an output at each execution. In contrast, tr is
transient, with reaction #1 triggered every 2500ms and reaction
#2 triggered whenever an input is received at the input port in.
If t r executes as a persistent federate, the execution pattern in
logical time will resemble the one shown in Fig. 3-(a), where
the red bar signals the discrete jump in logical time. Note that
the execution of the reaction of pers and reaction #1 of tr
will be logically simultaneous. Suppose now that tr reactor
starts with the rest of the federation, but drops out at elapsed
logical time 8500ms and then rejoins at elapsed logical time
11500ms, how should the timer reactions align?

There are two choices. Option 1, illustrated in Fig. 3-(b), is
to align the timers as if they have been running since the global
start time s. Option 2, illustrated in Fig. 3-(c), is to start timers
in a transient federate at the effective start time. Option 2 is
the adopted one for two reasons. The first is that reactions to
the ‘startup’ event will coincide with the first reactions to any
timer with a zero offset, as they do for non-transient federates.
Moreover, option 1 can be manually built by the application
designer using logical actions.

VI. LIMITATIONS, ENHANCEMENTS, AND FURTHER
POTENTIAL APPLICATIONS

Hot Swapping: In prototyping transient federates, we re-
alized that they enable a simple hot swap mechanism as a
small embellishment that follows almost immediately from
having solved the problems above. This mechanism is identical
to having a federate join late, with the exception that it
replaces an existing federate rather than filling an empty slot.
In general, this mechanism is an enabler for runtime bug
fixes and even feature augmentation. Similar to the transients
federates joining at arbitrarily times, these possibilities raise
security concerns. Therefore, accepting a transient federate
in general, or a hot swap in particular, requires carefully
considered security mechanisms. Our implementation works
with the pre-existing HMAC authentication available in LF.

Fault Tolerance and State Persistence: Transient federates
enable fault tolerance by allowing system recovery after fail-
ure, ensuring continued correct operation. Currently, a man-
ually implemented use case has been developed to showcase

state persistence across executions. For a complete solution,
the LF runtime will need to be augmented with serialization
and automatic launch after failure detection.

Transients vs. Mutations: Although the reactor model de-
fines mutations, which are reactions that modify the program
structure at runtime, LF does not yet implement them. Our
proposal is more modest in that it preserves the (statically
analyzable) structure of the distributed program throughout its
lifetime and only allows defined nodes to come and go.

Regression Testing: The model of dynamic federations that
we provide is deterministic in the sense that once the RTI
assigns a tag to a joining event, the reaction of the rest of
the system is unique and well defined. However, to perform
regression testing, we need to control the tag that the RTI
assigns. By default, the RTI uses its local physical clock to
assign a logical time. We propose that, for the purposes of
regression testing, the RTI is augmented to support federates
of type “transient test” that will declare during system startup
their times of joining, and the RTI will respect this.

VII. CONCLUSION AND FUTURE WORK

This paper presents deterministic semantics for the dynamic
execution of distributed programs, enabling precise and re-
peatable behavior. This is achieved through the Lingua Franca
coordination language and its deterministic, time-sensitive
reactor model. The model assigns logical times to events of
joining or leaving a federation, ensuring that all participants
observe these events in logical time order. The given online
auction example stresses the semantics by explicitly testing
difficult cases of simultaneous events. Our implemented ap-
proach promises enhancements, including hot swapping, fault
tolerance, and regression testing. In addition, scalability, an
important issue, will be explored in future work.
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