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Layered Scheduling:
Toward Better Real-Time Lingua Franca
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Abstract—Lingua Franca is a programming paradigm that
eases the development of distributed cyber-physical systems and
ensures determinism. These systems are subject to stringent
timing constraints, generally expressed as task deadlines, and
meeting them requires real-time scheduling.

This work presents a layered scheduling strategy for Lingua
Franca for enhanced real-time performance that builds upon
any priority-based operating system thread scheduler. The ap-
plication designers need to specify only the application-specific
deadlines, and the Lingua Franca runtime automatically converts
them into appropriate priority values for the OS scheduler to
obtain earliest deadline first scheduling.

Index Terms—Lingua Franca, Real-Time Scheduling, Hierar-
chical Scheduling, EDF, Priority

I. INTRODUCTION

CYBER-PHYSICAL systems have grown in complexity
over the years. On multi-core platforms and networked

distributed systems, the exchange of messages and their tim-
ing massively affects the behavior of these systems, and a
careful analysis of the temporal properties is more and more
problematic.

Determinism and timing synchronization in the communi-
cation offered by new programming paradigms considerably
help with the analysis of these systems. One example is Lingua
Franca (LF) [1], a coordination language that simplifies the
design and development of distributed applications. LF is
based on reactive components called reactors that encode the
logic of the application in any of several popular programming
languages, including C/C++, Python, and Rust. Reactors com-
municate with each other, and LF automatically generates the
code for the communication and coordination, thus helping
dominate the complexity of modern cyber-physical systems.
Reactors react to events that are ordered according to the
abstraction of logical time, which enables determinism and
synchronization even in distributed settings.

Cyber-physical systems often include periodic or sporadic
tasks that read data from the environment, elaborate it, and
perform an actuation back on the environment. Because of
this interaction with the external world, timing matters. They
can be expressed as deadlines, to guarantee that the actuation
takes place within a specified amount of time that makes it
effective. Missing deadlines might lead to catastrophic effects.
Therefore, when designing cyber-physical systems using Lin-
gua Franca, real-time scheduling becomes necessary.

One of the most popular real-time scheduling policies is
earliest deadline first (EDF) [2], that privileges tasks having
closer absolute deadline to the current time. When running
in its multithreaded mode, LF does not have its own thread

scheduler; it relies on the underlying OS and its scheduling
policies to execute worker threads that execute reactions with
ordering constraints that preserve LF semantics.

This paper proposes a layered real-time scheduling strategy
that leverages the application-level deadlines specified by the
designers. In detail, this layered scheduling approach:

• allows LF to configure and control the underlying OS
thread scheduler;

• if the OS platform supports priority-based thread schedul-
ing [2], enables EDF scheduling in LF; and

• hides the OS thread scheduling configuration (e.g., pri-
ority values) from the user, who needs to specify only
the timing requirements of the application, i.e., periods
and deadlines. The LF runtime will then automatically
convert deadlines into appropriate priority values.

II. SCHEDULING REACTIONS IN LINGUA FRANCA

A Lingua Franca [1] application is made of reactors con-
nected together with ports and connections. Reactors are deter-
ministic actors whose behavior is specified through reactions.
Reactions are triggered by discrete events fired at specific time
instants. The LF semantics builds upon the abstraction of log-
ical time to give an order to the events. In the current version
0.8.0 of the LF runtime, reactions triggered at a given logical
time t need to complete their execution before the runtime can
process the events at a larger logical time. This synchronization
barrier makes it easier to achieve deterministic behavior, in
the sense that the results of a computation depend only on
the data and the time stamps, not on accidents of scheduling.
Deadlines can be assigned to reactions and represent timing
requirements of the specific application. In the LF context, a
deadline defines a physical time, relative to the logical time
of the triggering event, by which the corresponding reaction
must start executing once triggered.

In the LF scheduler that we build from, reactions that are
triggered at a given logical time t are inserted into a reaction
queue, waiting to be executed by worker threads. Worker
threads execute one reaction at a time. They are spawned
at initialization. The number of worker threads by default is
the smaller of the number of cores of the platform and the
maximum number of reactions that can execute in parallel.

The dispatch of reactions to worker threads is delegated to
the LF scheduler and can follow one of two policies:

• first-in, first-out (FIFO): the reactions are served in the
same order they are inserted in the reaction queue; or

• earliest deadline first (EDF): the reactions in the queue are
served by ascending absolute deadline, i.e., the reactions
with closer absolute deadline are served first.
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Fig. 1. Example of Lingua Franca real-time application.

The dispatch policies become relevant when the number of
triggered reactions in the reaction queue is greater than the
number of available worker threads.

When the reactions triggered at a given logical time have
a large execution time, the synchronization barrier might
delay the execution of the reactions at a later logical time,
because the runtime can advance the time and execute the
latter only when all the former complete their execution. LF
supports federates and (experimentally) scheduling enclaves.
These are groups of reactors that can advance their logical time
more independently of each other. Federates run in separate
processes, while enclaves run within the same process. The
synchronization barrier is used only with reactors within the
same enclave or federate. The LF runtime treats each enclave
or federate as a scheduling domain with its own reaction
queue, LF scheduler, and set of worker threads. Enclaves and
federates communicate with each other, and the runtime pro-
vides synchronization mechanisms between them that preserve
deterministic semantics. In this paper, we use enclaves rather
than federates, but our methods apply to both.

A. Problem Statement
Lingua Franca does not have its own thread scheduler. It

relies on the OS scheduler of the platform it runs on to
schedule the worker threads serving the reactions. Therefore,
once the LF scheduler has dispatched the reactions in the
reaction queue to the worker threads, LF has no control over
when the worker threads execute those reactions.

Fig. 1 shows a simple test application with two reactors with
periodic real-time tasks. Reactions R1 and R2 are triggered
every 50ms and drive actuators with deadlines. The two
periodic processes start at slightly different times (11ms and
10ms after start time, respectively). Actuator A1 has a deadline
of 25ms, while A2 has a deadline of 50ms. Suppose that R1
takes 23ms to execute, while R2 executes for 10ms. In this
case, LF cannot meet the deadlines with the synchronization
barrier, and even using enclaves, may not meet the deadlines
without the layered scheduling proposed here.

In LF, a deadline constrains the start time of a reaction.
Reaction A1, for example, must begin executing no more
than 25ms after a timer event that triggers R1. Hence, R1 has
an implied completion deadline of 25ms, assuming negligible
communication and scheduling overhead.
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Fig. 2. The layered scheduling approach.

With the assumed execution times, in principle, it is feasible
to meet the deadlines with a single processor core. The first
invocation of R2 begins 10ms after the program starts. The
first invocation of R1 is enabled (released) 11ms after the start
of execution. If R2 is not preempted, however, it will finish
execution at 20ms, at which time R1 will begin executing. R1
will complete execution at 43ms, which is past the deadline
(11ms plus 25ms, or 36ms). If, on the other hand, R2 is
preempted at 11ms, then both deadlines will be met.

In LF, the synchronization barrier prevents R1 from starting
its execution at logical time 11ms until R2 has completed
execution at logical time 10ms. To correct this, we wrap these
two tasks in separate enclaves. Since there is no commu-
nication between the tasks, they can execute with separate
worker threads and advance their logical time independently.
Even then, however, without controlling the OS-level thread
scheduler, there is no assurance that the deadlines will be met.

When executing the application of Fig. 1 on Linux, restrict-
ing it to run on only one core and selecting the LF EDF
dispatch policy, Actuator A1 signals deadline violations.

Because the application contains two enclaves, each enclave
has its own LF scheduler and set of worker threads. Therefore,
the two reactions are mapped to two different worker threads.
Then, the OS thread scheduler schedules them without any
notion of timing constraints. The default Linux scheduler
(before kernel version 6.6 [3]) is the completely fair scheduler
(CFS) [4], which is not a real-time scheduler. LF has no
control on the scheduling of the worker threads; even though
the LF dispatch policy is set to EDF, the OS schedules with
CFS, causing deadline violations. Real-time scheduling then
requires LF be aware of the underlying OS thread scheduler.

III. DESIGN OF THE LAYERED SCHEDULER

Because Lingua Franca does not have its own thread sched-
uler and relies on that of the OS, the scheduling of real-
time applications requires the LF runtime to interact with and
control the OS thread scheduler.

The approach we follow is to develop an intermediate layer
of scheduling in the LF runtime, as shown in Fig. 2, bridging
between the LF scheduler and the OS thread scheduler. Having
this intermediate layer enables the separation of concerns
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between the application-specific requirements and the OS
management: the application designer is required to define
only the timing requirements, i.e., reaction deadlines, while the
LF runtime takes care of translating these requirements into
an appropriate configuration of the OS thread scheduler. The
burden of the OS scheduler settings, e.g., scheduling policy
and thread priorities, is transferred to the intermediate layer
of scheduling, which operates to meet the application-level
timing requirements.

A. Layered scheduling on Linux

Lingua Franca real-time scheduling requires the threads be
scheduled by the OS with a real-time policy. The real-time
reaction scheduling policy in LF scheduler is EDF, meaning
that when two or more reactions are triggered simultaneously
and only one worker thread is available, the reaction with the
earliest deadline will be dispatched to the worker. Without
controlling the scheduling of the worker threads themselves,
however, this policy does not achieve global EDF.

Not all general-purpose OSes and RTOSes provide an im-
plementation of an EDF scheduler. Linux, from kernel version
3.14, supports SCHED_DEADLINE [5], which is a scheduling
class implementing both EDF and a constant bandwidth server
(CBS) algorithm [6]. However, this class requires a careful
setting of the scheduling parameters for the CBS rules, and an
estimate of the worst-case execution time of the tasks, known
to be a challenging problem [7].

Given the absence of a suitable EDF reference implemen-
tation, we opted to configure the OS thread scheduler with a
priority-based policy, which is the simplest and most popular
policy for real-time applications. Priority-based schedulers
are available in many commercial OSes [8], [9], in addition
to Linux, enabling great portability of our approach. The
intermediate scheduling layer assigns a priority value to the
worker threads to realize a global EDF scheduler.

The scheduler described here was developed for Linux-
based OSes using the SCHED_FIFO scheduling class. Linux
threads under this policy are assigned a positive integer priority
value in the range [1, 99], where higher priority values mean
greater urgency to be executed. On a hardware platform
composed of m cores, this scheduler guarantees that at any
time instant t, the m highest-priority threads among those
ready for execution are running on the cores. To this end,
the scheduler uses preemption to reclaim a core and assign it
to a higher-priority task, if necessary.

The intermediate EDF scheduler, using the application-
level deadlines defined by the designer, dynamically tunes the
priority of the worker threads, which are then scheduled by the
OS in such a way that the LF reactions are executed according
to EDF. The priority assignment is therefore automatic and
completely transparent to the user. Using our layered schedul-
ing, the LF program in Fig. 1 meets all deadlines.

B. Priority assignment

The pseudo-code of Alg. 1 shows how each worker thread
interacts with the layered scheduler to obtain a new reaction
and set the priority value accordingly. At line 3, the worker

Algorithm 1 Thread body code for new reaction and priority
1: function WORKERTHREADBODY
2: ...
3: reac← GETNEXTREACTION() ▷ LF scheduler
4: MUTEX LOCK()
5: prio← GETEDFPRIORITY(reac) ▷ Intermediate scheduler
6: PTHREAD SET PRIORITY(prio)
7: MUTEX UNLOCK()
8: ...

calls the LF scheduler API to be assigned a new reaction to
execute. At line 5, the intermediate scheduler is invoked to
obtain a new priority value that is set at line 6. The new
priority depends on the (possibly implied) deadline of the
reaction assigned by the LF scheduler. These function calls
are executed inside a critical section protected by a mutex
because the scheduling decisions are global.

When the LF scheduler assigns a new reaction to a worker
thread, the intermediate scheduler determines a priority value
that the worker will have when it executes that reaction. This
value depends on: (i) the deadline of the reaction the worker
thread is about to execute; (ii) the deadline of the reactions
currently running on the other worker threads.

To do so, the scheduler keeps track of the currently running
worker threads in a global data structure containing the dead-
line of the reaction each is currently executing and the thread
priority value. The data structure is sorted by descending
absolute deadline. When a worker thread picks a new reaction,
the intermediate scheduler creates a new element and inserts
it to keep the data structure sorted. Then, it determines a new
priority value depending on the position of the element in
the data structure: the value shall be between the priority of
the element on the left and that of the element on the right.
Because priorities are integer numbers, if the left and right
elements have consecutive priority values, the intermediate
scheduler shifts the priority of some worker threads to make
room for the new priority. The shift preserves the relative
order of priorities. As soon as the worker thread completes the
execution of its reaction, the corresponding element is removed
from the data structure.

C. Mutex protocol

As shown in Alg. 1, the invocation of the intermediate
scheduler and the setting of the priority are protected by
a critical section, because the data structure containing the
scheduling information is global across all worker threads.
Line 6 might set a lower priority value than what the thread
had when it called the scheduler. Therefore, it might be
preempted by a higher-priority thread while still owning the
mutex of the critical section. If this latter thread tries to acquire
the same mutex, it cannot enter the critical section. A medium-
priority thread can then preempt it, causing indirect blocking
time. This problem is known as priority inversion [10].

Adopting a priority inheritance protocol [11] for the opera-
tions on the mutex addresses this issue. When a thread lowers
its priority at line 6 and a higher-priority thread preempts
it and tries to lock the same mutex, the preempted thread
temporarily inherits the higher-priority thread’s priority to get
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back to execution until it exits the critical section. Immediately
after releasing the lock, the lower-priority thread restores its
nominal priority, and the higher-priority thread runs and enters
the critical section. Medium-priority threads cannot preempt.

The pthread implementation of the mutexes on Linux
supports priority inheritance with the use of the initialization
flag PTHREAD_PRIO_INHERIT.

IV. RELATED WORK

Hierarchical scheduling has been a trending research topic
in the real-time systems domain. Deng et al. [12] laid the basis
for scheduling real-time applications along with non-real-time
ones in open systems, enabling schedulability analysis for
the real-time part. The proposed architecture is a two-layer
scheduler: the underlying OS assigns a reservation to every
application that is handled by a server, and the servers are
scheduled with EDF. The real-time applications have their
local fixed-priority scheduler. An extension to the above was
proposed by Deng and Liu [13] to support aperiodic and
sporadic tasks along with periodic ones, and a later work [14]
uses a fixed-priority scheduler for the underlying OS.

Having scheduling reservations implies the definition of the
server parameters, which might be a challenging problem.
Lipari and Bini [15] define a methodology to derive the
parameters of each reservation to guarantee schedulability of
real-time tasks in a hierarchical scheduling setting with fixed-
priority local scheduling.

Further improvements to the analysis of hierarchical
scheduling were made. Lorente et al. [16] develop a schedu-
lability analysis technique for components interacting through
RPC calls. Lipari and Bini [17] define a framework to simplify
the design of hierarchically scheduled open systems with
the formalization of the timing requirements of the single
applications as interfaces. The interfaces were then used for
the schedulability analysis of the system.

Hierarchical scheduling fits well with mixed-criticality sys-
tems, where critical hard real-time tasks coexist with soft real-
time ones, e.g., for infotainment. Schneider et al. [18] deal
with deadline-critical and Quality-of-Control-critical tasks and
design a two-layer scheduling scheme that assigns a priority
value to tasks to guarantee their specific requirements.

Lipari et al. [19] and Inam et al. [20] propose the design
of two frameworks for hierarchical scheduling for the real-
time OSes SHaRK and FreeRTOS. Abeni et al. [21] design a
hierarchical scheduler for virtual machines on a Linux host.
The virtual machines are handled with the kvm hypervisor and
scheduled by the host with the SCHED_DEADLINE policy
to assign them a reservation. Each virtual machine uses a
partitioned fixed-priority local scheduler.

Our work differs from prior hierarchical scheduling tech-
niques because the higher level of the hierarchy is defined by
the programming model of Lingua Franca, which is explicit
about timing requirements, and the lower level only needs to
provide a service to control the priority of worker threads.

V. CONCLUSION

We have introduced a promising layered scheduling strategy
to obtain real-time scheduling of Lingua Franca programs,

leveraging the underlying Linux thread scheduler. In the future,
this approach may be ported to embedded boards with RTOSes
that support priority-based scheduling and a priority inheri-
tance protocol for resource management. Also, an extensive
evaluation of the layered scheduling is planned to assess the
overhead generated by the priority assignment algorithm.

REFERENCES

[1] M. Lohstroh, C. Menard et al., “Toward a lingua franca for deterministic
concurrent systems,” ACM Trans. Embed. Comput. Syst., vol. 20, no. 4,
may 2021. [Online]. Available: https://doi.org/10.1145/3448128

[2] C. L. Liu and J. W. Layland, “Scheduling algorithms for
multiprogramming in a hard-real-time environment,” J. ACM,
vol. 20, no. 1, p. 46–61, jan 1973. [Online]. Available:
https://doi.org/10.1145/321738.321743

[3] J. Corbet. (2023) An EEVDF CPU scheduler for Linux. [Online].
Available: https://lwn.net/Articles/925371/

[4] C. S. Pabla, “Completely fair scheduler,” Linux J., vol. 2009, no. 184,
aug 2009.

[5] D. Faggioli, F. Checconi et al., “An EDF scheduling class for the Linux
kernel,” in 11th Real-Time Linux Workshop (RTLWS), 2009.

[6] L. Abeni and G. Buttazzo, “Integrating multimedia applications in
hard real-time systems,” in Proceedings 19th IEEE Real-Time Systems
Symposium, 1998, pp. 4–13.

[7] R. Wilhelm, J. Engblom et al., “The worst-case execution-time
problem—overview of methods and survey of tools,” ACM Trans.
Embed. Comput. Syst., vol. 7, no. 3, may 2008. [Online]. Available:
https://doi.org/10.1145/1347375.1347389

[8] Amazon Web Services, Inc. FreeRTOS - Market leading RTOS (Real
Time Operating System) for embedded systems with Internet of Things
extensions. [Online]. Available: https://www.freertos.org/

[9] Zephyr Project. Zephyr Project – A proven RTOS ecosystem, by
developers, for developers. [Online]. Available: https://zephyrproject.
org/

[10] B. W. Lampson and D. D. Redell, “Experience with processes and
monitors in mesa,” Commun. ACM, vol. 23, no. 2, p. 105–117, feb
1980. [Online]. Available: https://doi.org/10.1145/358818.358824

[11] L. Sha, R. Rajkumar, and J. Lehoczky, “Priority inheritance protocols:
an approach to real-time synchronization,” IEEE Transactions on Com-
puters, vol. 39, no. 9, pp. 1175–1185, 1990.

[12] Z. Deng, J.-S. Liu, and J. Sun, “A scheme for scheduling hard real-
time applications in open system environment,” in Proceedings Ninth
Euromicro Workshop on Real Time Systems, 1997, pp. 191–199.

[13] Z. Deng and J.-S. Liu, “Scheduling real-time applications in an open
environment,” in Proceedings Real-Time Systems Symposium, 1997, pp.
308–319.

[14] T.-W. Kuo and C.-H. Li, “A fixed-priority-driven open environment for
real-time applications,” in Proceedings 20th IEEE Real-Time Systems
Symposium, 1999, pp. 256–267.

[15] G. Lipari and E. Bini, “A methodology for designing hierarchical
scheduling systems,” J. Embedded Comput., vol. 1, no. 2, p. 257–269,
apr 2005.

[16] J. Lorente, G. Lipari, and E. Bini, “A hierarchical scheduling model
for component-based real-time systems,” in Proceedings 20th IEEE
International Parallel & Distributed Processing Symposium, 2006, pp.
8 pp.–.

[17] G. Lipari and E. Bini, “A framework for hierarchical scheduling on
multiprocessors: From application requirements to run-time allocation,”
in 2010 31st IEEE Real-Time Systems Symposium, 2010, pp. 249–258.

[18] R. Schneider, D. Goswami et al., “Multi-layered scheduling of mixed-
criticality cyber-physical systems,” Journal of Systems Architecture,
vol. 59, no. 10, Part D, pp. 1215–1230, 2013.

[19] G. Lipari, P. Gai et al., “A hierarchical framework for component-based
real-time systems,” Electronic Notes in Theoretical Computer Science,
vol. 116, pp. 253–266, 2005, proceedings of the International Workshop
on Test and Analysis of Component Based Systems (TACoS 2004).
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