
Behavior Trees with Dataflow:
Coordinating Reactive Tasks in Lingua Franca

Alexander Schulz-Rosengarten
Akash Ahmad
Malte Clement

Reinhard von Hanxleden
{als,stu222517,mac,rvh}
@informatik.uni-kiel.de

Kiel University
Kiel, Germany

Benjamin Asch
Marten Lohstroh
Edward A. Lee

{benjamintasch,marten,eal}
@berkeley.edu
UC Berkeley
Berkeley, USA

Gustavo Quiros
Ankit Shukla

{gustavo.quiros,ankit.shukla}
@siemens.com

Siemens Technology
USA

ABSTRACT
Behavior Trees (BTs) provide a lean set of control flow elements
that are easily composable in a modular tree structure. They are
well established for modeling the high-level behavior of non-player
characters in computer games and recently gained popularity in
other areas such as industrial automation.

While BTs nicely express control, data handling aspects so far
must be provided separately, e. g. in the form of blackboards. This
may hamper reusability and can be a source of nondeterminism.

We here propose a dataflow extension to BTs that explicitly mod-
els data relations and communication. We realize and validate that
approach in the recently introduced polyglot coordination language
Lingua Franca (LF).

CCS CONCEPTS
• Software and its engineering→Model-driven software en-
gineering; Abstraction, modeling and modularity; Visual languages;
Orchestration languages.

KEYWORDS
Behavior trees, reactive systems, coordination languages

ACM Reference Format:
Alexander Schulz-Rosengarten, Akash Ahmad, Malte Clement, Reinhard
von Hanxleden, Benjamin Asch, Marten Lohstroh, Edward A. Lee, Gustavo
Quiros, and Ankit Shukla. 2024. Behavior Trees with Dataflow: Coordinating
Reactive Tasks in Lingua Franca. In 2024 IEEE/ACM 46th International Con-
ference on Software Engineering: Companion Proceedings (ICSE-Companion
’24), April 14–20, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3639478.3643093

1 INTRODUCTION
BTs originated in the gaming industry, where they are used to pro-
gram non-player characters [1]. They express complex behavior

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0502-1/24/04
https://doi.org/10.1145/3639478.3643093

→

? Walk

Door open? Open door

Figure 1: BT illustrating se-
quence, fallback, conditional,
and task nodes.

with highly reactive and mod-
ular software components co-
ordinating agents in groups.
Their simplicity and modular-
ity has made them increasingly
popular in real-world applica-
tions as well, such as industrial
automation, where BTs control
machines and robots in au-
tomated factories. BTs use a
model-based approach with a
simple and intuitive tree struc-
ture and a lean set of control flow elements.

Fig. 1 illustrates a simple example behavior modeled as an BT. If
the door is closed, it should be opened before walking through. The
root node is a sequence node (→) that executes its children sequen-
tially as long as they return success. If there is no further child
to execute, the sequence node returns success. If a child returns
running or failure, the sequence stops there and immediately
returns running or failure. The first child of the sequence is a
fallback node (?), which is symmetric by sequentially executing
child nodes iff the previous node returns failure. Its first child is
a condition node (ellipsis) that checks if the door is already open.
If closed, it will report a failure, which issues the execution of
the task node Open door. After the fallback reports success, either
due to the condition or the task succeeding, the sequence will start
the Walk task. There is also a parallel node in BTs that executes
children concurrently, which is not illustrated in this example.

1.1 Motivation
While the simplicity of BTs is attractive, its minimalist notation
leaves the aspect of handling data unaddressed. This aspect, how-
ever, is crucial when using BTs for implementing behaviors that
need to adapt based on data. In cyber-physical systems, such as
robots or of vehicles, data may originate from sensors that inform
the software about the state of its environment. A common solution
is to use a blackboard [3] that introduces a global set of variables
to a BT. However, in combination with a parallel composition in
a BT, unconstrained access to shared variables can easily lead to
race conditions and non-deterministic behavior. This hampers re-
producibility, robustness, and debugging, and may be fatal when
designing safety-critical software.

304

2024 IEEE/ACM 46th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3639478.3643093&domain=pdf&date_stamp=2024-05-23


ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal Schulz-Rosengarten et al.

AGV

HumanDetector
result

AGVDetector
result

AGVBehavior

→

?

?

?

?

Finish job

Has job?

Move to waiting position

No human or AGV nearby?

Stop

Finished loading?

→

Finished unloading?

→

Move to loading destination

Request loading

Move to unloading destination

Request unloading

newJob

finishedTransfer

humanDetected

agvDetected

start

finishedJob

requestTransfer

success

failure

(0, 250 msec)

newJob

finishedTransfer

requestTransfer

finishedJob

Figure 2: A reactor for controlling an Automated Guided Vehicle (AGV) including an BT for specifying its behavior.

2 APPROACH
To address the handling of data, we propose to adopt a dataflow
notation. This notation represents a system as blocks with streams
of data flowing between them, as illustrated by actor models or the
SCADE tool. Dataflow, unlike blackboards, explicitly models data in-
terfaces and communication, thus supporting modularity. Dataflow
nodes, or actors, have explicit inputs and outputs, which define the
way instances of these nodes need to be interconnected with their
surrounding context. BTs provide a modular design, and instanti-
ating a node or entire BT as a child seems rather straightforward,
which facilitates reusability. However, if such a node or BT relies
on access to a blackboard and shares data with other nodes, this
constitutes a rather brittle interface. There is typically no indication
which variables are considered inputs, outputs, or only local, and
how to address multiple instantiations and their memory. We pro-
pose to treat communication as a first-class citizen, as modeling it
explicitly facilitates formal analyses and program comprehension.

We use Lingua Franca (LF) [2] as general setting, since we con-
sider LF and its open-source infrastructure a good match to address
the aforementioned problems. LF is rooted in reactors, a reactive,
event-based, timed-sensitive, and concurrent model of computa-
tion with deterministic semantics. LF is a polyglot coordination
language in which reactors encapsulate reactive tasks specified in
verbatim code. Reactors provide a high-level coordination layer to
orchestrate the execution of complex software systems, similar to
BTs coordinating the execution of nodes. This coordination layer
follows a dataflow notation, interconnecting reactor instances. The
LF framework also provides advanced modeling capabilities and
tooling for automatically generating customized graphics from a
textual file, e. g., Fig. 2 has been synthesized this way.

3 BEHAVIOR TREES IN LINGUA FRANCA
The basic idea of BTs in LF is that a BT should be a new kind of reactor,
whose inner behavior is coordinated by a BT structure instead of
a classical reactor composition. A BT reactor should be admissible
wherever a normal reactor can be used in an LF program.

This integration is illustrated by the diagram in Fig. 2. It shows a
reactor that controls an Automated Guided Vehicle (AGV), which we

present in full detail in [4]. The reactor composes a timing element
(the clock node), a reaction (the gray wedge) that processes events,
and other reactors, such as HumanDetector that handles sensor
data processing. At the same time, our concept allows reactors
specified using the BT notation, as in AGVBehavior. Our approach
also includes a visualization and transformation that maps the BT
structure directly into LF and thus introduces the well-formed and
data-oriented LF semantics into the BT notation [4].

4 CONCLUSION
Our proposal on augmenting BTswith dataflow is, to our knowledge,
the first attempt to do so systematically at the level of a coordina-
tion language. The aim is to combine the best of two worlds that,
so far, have seen little interaction through the involved research
communities or in actual practice. We argue that these concepts can
be of mutual benefit. Compared to ordinary BTs, our approach im-
proves modularity and ensures determinism by replacing rather un-
structured blackboards with a clean dataflow notation. Conversely,
dataflow formalisms can harness the intuitive, compact BT machin-
ery that by now is proven in practice in a large and still growing
community of users in game development, robotics control, indus-
trial automation, etc.

With LF as the basis for a concrete realization of our proposal, we
leverage its deterministic semantics for concurrent, distributed real-
time systems. Moreover, LF’s polyglot nature makes our proposal
compatible with a wide range of target languages.

REFERENCES
[1] Michele Colledanchise and Petter Ögren. 2018. Behavior Trees in Robotics and AI:

An Introduction. CRC Press. https://doi.org/10.1201/9780429489105
[2] Marten Lohstroh, Christian Menard, Soroush Bateni, and Edward A. Lee. 2021.

Toward a Lingua Franca for Deterministic Concurrent Systems. ACM Transactions
on Embedded Computing Systems (TECS) 20, 4 (May 2021), Article 36. https:
//doi.org/10.1145/3448128

[3] Alejandro Marzinotto, Michele Colledanchise, Christian Smith, and Peter Ögren.
2014. Towards a unified framework for robot control. In 2014 IEEE International
Conference on Robotics and Automation (ICRA). 5420–5427. https://doi.org/10.
1109/ICRA.2014.6907656

[4] Alexander Schulz-Rosengarten, Akash Ahmad, Malte Clement, Reinhard von
Hanxleden, Benjamin Asch, Marten Lohstroh, Edward A. Lee, Gustavo Quiros
Araya, and Ankit Shukla. 2024. Behavior Trees with Dataflow: Coordinating
Reactive Tasks in Lingua Franca. https://doi.org/10.48550/ARXIV.2401.09185

305


