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Abstract—Neural Language Models of Code, or Neural Code Models (NCMs), are rapidly progressing from research prototypes to
commercial developer tools. As such, understanding the capabilities and limitations of such models is becoming critical. However, the
abilities of these models are typically measured using automated metrics that often only reveal a portion of their real-world
performance. While, in general, the performance of NCMs appears promising, currently much is unknown about how such models
arrive at decisions. To this end, this paper introduces docode, a post hoc interpretability method specific to NCMs that is capable of
explaining model predictions. docode is based upon causal inference to enable programming language-oriented explanations. While the
theoretical underpinnings of docode are extensible to exploring different model properties, we provide a concrete instantiation that aims
to mitigate the impact of spurious correlations by grounding explanations of model behavior in properties of programming languages.
To demonstrate the practical benefit of docode, we illustrate the insights that our framework can provide by performing a case study on
two popular deep learning architectures and ten NCMs. The results of this case study illustrate that our studied NCMs are sensitive to
changes in code syntax. All our NCMs, except for the BERT-like model, statistically learn to predict tokens related to blocks of code
(e.g., brackets, parenthesis, semicolon) with less confounding bias as compared to other programming language constructs. These
insights demonstrate the potential of docode as a useful method to detect and facilitate the elimination of confounding bias in NCMs.

Index Terms—Causality, Interpretability, Neural Code Models.

✦

1 INTRODUCTION

THE combination of large amounts of freely available
code-related data, which can be mined from open

source repositories, and ever-more sophisticated deep learn-
ing architectures for code, which we refer to as Neural Code
Models (NCMs), have fueled the development of software
engineering (SE) tools with increasing effectiveness. NCMs
have (seemingly) illustrated promising performance across
a range of different SE tasks [1], [2], [3], [4], [5], [6], [7]. In
particular, code generation has been an important area of SE
research for decades, enabling tools for downstream tasks
such as code completion [8], program repair [9], and test
case generation [1]. In addition, industry interest in lever-
aging Large Language Models (LLMs), a scalable version
of NCMs, has also grown as evidenced by tools such as
Microsoft’s IntelliCode [10], Tabnine [11], OpenAI’s Codex
[12], and GitHub’s Copilot [13]. Given the prior popularity
of code completion engines within IDEs [14] and investment
in commercial tools, NCMs for code generation will almost
certainly be used to help build production software systems
in the near future if they are not being used already.

Recently, there has been increased interest in evaluating
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NCMs for code generation. A recent study from Chen et al.
[15] illustrates that certain issues, such as alignment failures
and biases, do exist for large-scale NCMs. Most of the con-
clusions from Chen et al.’s study were uncovered through
manual analysis, e.g., through sourcing counterexamples,
making it difficult to rigorously quantify or to systematically
apply such an analysis to research prototypes [16]. Given
the rising profile and role that NCMs for code generation
play in SE and the current limitations of adopted evaluation
techniques, it is clear that new methods are needed to provide
deeper insight into NCMs’ prediction performance.

Much of the quality assessment work on NCMs has pri-
marily concentrated on accuracy-based metrics (e.g., Accu-
racy, BLEU, METEOR, ROUGE) as opposed to multi-metric
evaluations (e.g., robustness, fairness, bias, efficiency). More-
over, skepticism within the NLP research community is
growing regarding the efficacy of current accuracy-based
metrics, as these metrics tend to overestimate model perfor-
mance [17], [18], [19]. Even benchmarks that span multiple
tasks and metrics have been shown to lack robustness,
leading to incorrect assumptions of model comparisons [20].
Notable work has called for a more systematic approach that
aims to understand a given model’s behavior according to
its linguistic capabilities [17], while others have suggested
the need for holistic evaluations of Language Models [21].

In addition to limitations with current methods of model
quality assessment, some of the most popular NCMs have
been adapted from the field of Natural Language Processing
(NLP), and thus may inherit the various limitations often
associated with such models — including biases, memoriza-
tion, and issues with data inefficiency, to name a few [22].
However, perhaps the most problematic aspect of current

ar
X

iv
:2

30
2.

03
78

8v
5 

 [c
s.S

E]
  2

8 
M

ar
 2

02
4



ACCEPTED TO APPEAR IN IEEE JOURNAL OF TRANSACTIONS ON SOFTWARE ENGINEERING 2

neural language models is the fact that they are incapable
of explaining their reasoning [23], [24], [25], [26]. NCMs
and, in general, deep learning architectures seemingly trade
effectiveness for transparency, as the same complexity that
allows for impressive learning and generalization leads
models to operate in a black-box fashion. That is, we are
uncertain how neural models — including NCMs— arrive
at decisions; a phenomenon described as incompleteness in
problem formalization [27]. Such incompleteness manifests
as an inability to explain models’ predictions in human-
understandable terms. If neural models fail at justifying
their outputs, Can we trust these models? Will these models
work in deployment? How brittle are neural models in practical
software engineering settings? Researchers and practitioners
require neural models to be robust not only at making
predictions but also in the interpretability of those predic-
tions [26]. Despite the increasing popularity and apparent
effectiveness of code generation tools based on NCMs, there
is still much that is unknown about their behavior.

A Motivating Example for Interpretability. Consider
the scenario in which we observe that a given NCM is
underperforming when predicting code from code inputs
that are buggy. That is, we observe a negative correlation
between buggy code in the prompt and accuracy after an
initial exploratory analysis on this NCM. However, a simple
observation of a correlation between buggy code and accuracy
is insufficient evidence to explain the NCMs prediction
performance in this scenario, as different properties of the
buggy input code could be the cause of the observation.
To assert that input code being buggy is an explanation or
interpretation for having a worsened accuracy, we must first
establish a causal relationship between these two random
variables.

Statistical dependencies are induced by an underlying
causal process (i.e., Reichenbach’s common cause principle
[28]). In consequence, the correlation between buggy code
and accuracy has three possible causal explanations1 de-
picted as causal graphs in Fig. 1: (a) accuracy is caused by
buggy code, (b) buggy code is caused by accuracy, and (c) the
reason for a correlation is a third variable. This variable,
known as a confounder, causally influences buggy code and
accuracy. Based on our domain knowledge, we may posit that
option (c) is most likely to represent our causal assumptions,
as many factors such as the number of tokens or subwords can
affect both variables of interest.

If a causal connection indeed exists between buggy code
and accuracy, we can claim that the setting buggy code is an
interpretation for code predictions. However, in the above
example, we would essentially be guessing, and as such
the question remains: how can we quantify the causal effect of
buggy code on NCM’s accuracy after controlling for the influence
of hidden confounders? Unfortunately, when attempting to
understand the prediction performance of NCMs, no causal
interpretability formalism is available to articulate or even
answer the previous questions.

In this paper, we cast this problem of achieving a more
complete understanding of Neural Code Models as a Causal
Interpretability task and posit that we can leverage the theory

1. Pearl poses an additional causal explanation based on conditional
independence in colliders used for the “back-door criterion” [29].

of causation as a mechanism to explain NCMs prediction
performance. This mechanism includes a formalism to ar-
ticulate and answer causal queries. We hypothesize that this
mechanism can serve as a useful verification tool to fulfill
desiderata that we might want of NCMs. These desiderata,
which are originally suggested in NLP literature, comprise
notions such as facilitating debugging, detecting biases,
providing recourse, and eventually, increasing the reliability
and trust of NCMs [27], [30], [31]. As such, this paper
introduces docode, a novel global post hoc interpretability
method specifically designed for understanding the effec-
tiveness of NCMs using causal queries. Furthermore, docode
intends to establish a robust and adaptable methodology
for interpreting predictions of NCMs in contrast to simply
measuring the accuracy of these same NCMs.

(a)

(c)

(b)

Buggy Acc.

Acc.Buggy

Confounder

Acc.Buggy

Fig. 1: Common
Cause Principle in
NCMs [28]

docode asks causal questions as to
why prediction performance is af-
fected by software engineering-based
interventions. These interventions are
generally data or model properties
(e.g., Bugginess of Code, Number of
Inline Comments, Number of Model
Layers) that a domain expert might
think are affecting a given NCM. More
specifically, docode consists of four ma-
jor conceptual steps, (1) modeling a
structural causal graph, (2) identifying
causal estimand, (3) estimating causal
effects, and (4) validating the causal
process by refuting the obtained ef-
fect estimate and vetting the graph
creation. Through the introduction of
this interpretability method, we aim to
help SE researchers and practitioners
by allowing them to understand the potential limitations
of a given model, work towards improving models and
datasets based on these limitations, and ultimately make
more informed decisions about how to build automated
developer tools given a more holistic understanding of what
NCMs are predicting and why the predictions are being
made.

To showcase the types of insights that docode can un-
cover, we perform a comprehensive study on seven prac-
tical interpretability scenarios (see Sec. 9) on different varia-
tions of popular deep learning architectures for the task of
code generation, namely RNNs [32] and Transformers [33]
trained on the CodeSearchNet dataset [34]. We instantiated
our study (see Fig. 9) using configuration criteria such as
type of architecture (e.g., RNN, GPT, BERT), evaluation
dataset (e.g., codexglue, codesearchnet, galeras), interven-
tion modality (e.g., binary, linear), hyperparameter interven-
tions (e.g., layers, units), data interventions (e.g., bug fixing,
inline comments, semantic preserving), potential outcomes
(e.g., cross-entropy, next token predictions, Jaccard), causal
inference metric (e.g., Pearson, Jensen Shannon, Average
Treatment Effect (ATE)), refutation testing (e.g., placebo,
unobserved common cause, random common cause), and
syntactic clustering. This syntactic clustering comprises
ten keyword-based code categories derived from Java and
eleven grammar-based categories derived from Python (see
Fig. 11).
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Our case study design resulted in several notable find-
ings illustrating the usefulness of our interpretability tech-
nique. Our most relevant findings are as follows:

• The presence or absence of buggy code does not ap-
pear to causally influence (or explain) the prediction
performance of our NCMs even under measured high
correlation;

• The presence of Type II Clones in training data im-
pacts (or causally explains) the effectiveness of NCMs
in terms of cross-entropy. Our observed correlations
and measured causal effects suggest an influence of
interventions related to the insertion or removal of Type
II clones in training data for different programmatic
constructs, including: identifiers, literals, types, white
spaces, layout, and comments;

• We observed strong correlations between the number of
layers and model performance in terms of Next Token
Prediction (NTP), which might suggest a causal inter-
pretation of code predictions. However, docode revealed
that the reported Average Treatment Effects were close
to zero for such phenomena – demonstrating the pres-
ence of confounding bias suggesting multiple effects are
at play;

• Finally, the intervention of masking random tokens
has more impact on code predictions than mask-
ing grammar-based categories. This suggests that our
BERT-like models do not entirely capture the structural
information of programming languages.

Our contributions. Previous findings suggest the need
for integrating causal interpretability in post-hoc analysis
of neural language models. We hope to provide researchers
with an approach for integrating causal analysis into their
research. To that end, in addition to our case study showing
the power such an analysis can provide, we have addition-
ally created a checklist that summarizes the steps required
to apply Causal Interpretability to Neural Code Models
(see Fig. 15). In summary, this paper makes the following
contributions:

1. A formal four-step pipeline for interpreting NCMs that
enables causal analyses of different settings for language
model use; 2. A comprehensive study on seven practical
scenarios rooted in software engineering practice in which
docode is applied to popular deep learning models for code
generation; 3. A set of findings for these models that help to
explain their behavior in different settings challenges some
current notions of code generation models; 4. A checklist
to help researchers apply Causal Interpretability to Neural
Code Models; 5. And a replication package [35] to both
encourage the use of our technique in future work on
developing and evaluating code generation models and for
replicating our experiments.

2 BACKGROUND & RELATED WORK

Interpretable Machine Learning is a research field aimed at
understanding how opaque models give rise to predictions.
This process is centered around human understanding. Al-
though the research community has not achieved a consen-
sus on a precise definition of interpretability, researchers
usually refer to this field either as “Interpretable Machine
Learning” or “Explainable AI” [24], [25]. The main goal of

the field is to create methods that explain models’ reasoning
and then verify whether such reasoning is sound [27]. These
interpretability methods can be classified into different cri-
teria depending on the researcher’s concentration. The most
common criteria are post hoc vs. intrinsic, model-specific vs.
model-agnostic, global vs. local explanation scope, feature
importance vs. rule-based unit of explanation, and causal
levels [25], [36]. We depict in Fig. 2 a summary of the most
relevant methods published thus far. Fig. 2 also positions
our method docode within the scope of Causal Interpretability,
which is based on the concept of Ladder of Causation by
Pearl introduced in Sec. 3 [37].

Causal Interpretability is a post hoc global approach by
which Neural Code Models (NCMs) are interpreted
or explained from a causal assumption encoded in a
Structural Causal Model (SCM). By using the formalism
of Pearl’s Ladder of Causation, researchers can estimate
a quantifiable causal effect of proposed interventions.
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Fig. 2: A classification of key methods in interpretability
including Causal Interpretability.

Applications of NCMs in SE: NCMs in SE have a
rich history, stemming from the seminal work by Hindle
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et al. who proposed the concept of the naturalness of soft-
ware using n-gram models [38]. Then, with the rise of
Deep Learning, researchers began exploring the possibility
of adapting NLMs to code, as initially demonstrated by
White et al. [2]. Since then, NCMs have been used for a
number of SE tasks such as code completion [3], [15], [39],
[40], [41], [42], [43], [44] and translation [4], [9], [45], [46],
[47], [48], [49]. Researchers have also investigated various
representations of NCMs for code [50] as well as graph-
based representations based on ASTs [51] and program
dependency graphs [52]. It has also been shown that using
a NCM for code representation and then fine-tuning for
specific SE tasks can achieve state-of-the-art performance
across tasks [53], [54], [55].
Interpretability of NCMs: A growing body of research has
investigated the potential of evaluating and understanding
LMs using various techniques, which can be classified into
two basic groups: (i) intrinsic techniques such as probing for
specific linguistic characteristics [56] and examining neuron
activations [57]; and (ii) post hoc techniques such as bench-
marks [15], [34], [58], [59], [60], attention-based analysis
[61], [62], and intervention analyses [17], [63], [64], [65].
Karpathy et al. were among the first to interpret NLMs
for code using general Next Token Predictions [66] as an
interpretability method as well as investigating individual
neurons. Our work extends Karpathy et al.’s interpretability
analysis using causal inference and a more statistically rigor-
ous methodology that grounds its evaluation in SE-specific
features and settings.

Complementary to our work, the work by Polyjuice
paper [67] aims to automatically generate perturbations to
language, to see how a given model performs in different
scenarios. Our work is differentiated by the fact that we
both define a mapping of source code tokens to categories
and define a methodology for linking causal relationships
of model changes to these various categories. As such, our
work functions alongside techniques such as Polyjuice, pro-
viding deeper insights into why model performance varies
across different perturbations. Our work is also comple-
mentary to the work by Cito et al., [68] on Counterfactual
explanations for models of source code. This work takes a
significant step toward defining perturbations of code for
counterfactual explanations of generative models. Our tech-
nique in conjunction with Cito et al.’s approach can provide
deeper explanations as to why a given NCM’s performance
changed for a given perturbation.

Our method is different from the work on adversarial
robustness via one key point, similar to the work of Cito et
al. Our different testbeds are not intentionally designed to fool
a model. On the contrary, our different testbeds represent
completely natural distributions of code tokens collected
at scale. As such, our research has a completely different
aim as compared to the work on adversarial robustness.
Other related works from Explainable Artificial Intelligence
(XAI) have focused on the usage of causal theory applied to
generate post hoc explanations about the logical structure
of a neural network [69] or explore the causal relationships
between the explanation and the prediction [70]. Both causal
XAI methods differ from our work since we employ the
notion of Pearl’s Ladder of Causation directly on the inputs
and outputs of NCMs.

3 WHY DO WE NEED CAUSAL INTERPRETABILITY
FOR DEEP LEARNING MODELS APPLIED TO SOFT-
WARE ENGINEERING?
Our research leverages Pearl’s theory of Causal Inference
and grounds it in interpreting Neural Code Models (NCMs).
Given the wealth of metrics and benchmarks that exist for
NCMs it is natural to ask why should we study causation in
Deep Learning for Software Engineering? Causation has two
main goals in science (i) discovering causal variables and
(ii) assessing counterfactual interventions [37]. The field
of Deep Learning for Software Engineering (DL4SE) can take
advantage of the latter when dealing with uncertainty and
confounding bias of NCMs. Estimating counterfactual inter-
ventions is a powerful tool to generate explanations of the
model’s performance. Our method, docode, can be applied to
a wide range of SE models for detecting and eliminating
confounding bias. We do not intend to pose docode as a
tool to enhance prediction performance but as an adaptable
approach to analyze why NCMs obtain their predictions.
However, quantifying the effects of interventions requires
establishing a causal structure underlying the target data.

Randomized controlled experiments were the general
choice to explore causality before Pearl’s definitions of
graphical models. Nonetheless, it is not practical to force
developers to perform interventions (such as removing com-
ments from a training corpus) or even train hundreds of
NCMs to test various treatments. Instead the do− operator
and causal graphs (i.e., Structural Causal Models) are better
tools for performing causal estimations from observational
data. Reconstructing such graphical representations is chal-
lenging since it not only requires formalizing causation in
the field of SE (i.e., defining potential outcomes, common
causes, and treatments) but also tracing and connecting
software data to causal models (see the pipeline in Sec. 4). In
addition, formulating interventions is not an easy process.
We must hypothesize feasible transformations or interven-
tions that can occur in code to simulate real-world settings
for NCMs, a concept that we synthesize as The Causal
Interpretability Hypothesis (see Sec. 3.3). To that end, we
have proposed a pipeline to help aid in adapting the process
of causal inference to the interpretation of Neural Code
Models (NCMs). This pipeline has been inspired by Pearl’s
notion of the Ladder of Causation, introduced below, and the
doWhy library [71].

3.1 Pearl’s Ladder of Causation
According to Pearl & Mackenzie [37], Causal Inference
(CI) seeks answers to questions of association (what is?),
counterfactual interventions (what if?), and pure counter-
factuals (why?). The authors introduce the concept of Ladder
of Causation to match distinct levels of cognitive ability with
concrete actions: seeing (level one), doing (level two), and
imagining (level three). Our proposed analysis is primarily
concerned with levels one & two. Particularly, our method
docode is an extension of the intervention level.

Causal Association. In level one causation, p(Y |T ) is
estimated by using typical correlation methods (e.g., Pear-
son, Spearman, or Covariance) in addition to functional
associations such as y = g(t), which can be predicted
with regressions or ML methods. For binary treatments
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Fig. 3: Ladder of Causation: docode is an extension of the
intervention level.

similar to the ones we used in T[data] (e.g., Buggy/Fixed and
Commented/Uncommented), we opt to employ Pearson
correlations ρY T and Jensen-Shannon distance as associa-
tion estimand for level one causation.

Causal Intervention. If we want to go beyond “what is”
type questions, we must move past simple correlations and
associations. This requires the do − operator found in level
two, causation p(y|do(t)). It is relevant to identify cases of
spurious correlations (i.e., Confounding Bias) or cases where
p(Y |T ) ̸= p(Y |do(T )). Typically, association is not causation
due to the influence of a common cause or confounding
variable Z . Such a variable is the one that is being controlled
for or adjusted employing the concept of adjustment formula
in Eq. 1. Nonetheless, we can still compute the correlation
ρY Z to assess the variables affecting potential outcomes.

An Example of Confounding Bias. Consider an in-
tervention that simulates the software engineering task of
ProgramRepair where a treatment T is predicting tokens
following either Buggy/Fixed code, Y is the cross-entropy
of each method of a dataset of both buggy and fixed code
(which we introduce in detail later in the paper), and Z
is the Number of Subwords for each method. Using docode
we find there exists a spurious correlation after estimating
the association distribution p(Y |T ) ≈ 0.67 with Jensen-
Shannon Distance (see Def. 6) and intervention distribution
p(Y |do(T )) ≈ −2E − 4 with Average Treatment Effect (ATE)
(see Def. 5). One possible explanation is that the common
cause Z (the number of subwords) confounds the rela-
tionship between the treatment and the outcome. Fig. 4
depicts the influence of Z on the potential outcome Y for
BuggyCode (p(Y |Z, T = Buggy) ≈ 0.87) and FixedCode
(p(Y |Z, T = Fixed) ≈ 0.86). Blue and orange points in the
plot are code snippets from the dataset. These points are
equally distributed, which suggests that the ProgramRepair
intervention has a negligible impact on model effectiveness
as measured by cross-entropy.

3.2 Software Engineering-Based Interventions
In order to enable our analysis based upon Pearl’s Ladder of
Causation, we need to design interventions, or changes in the
input data distribution that represent a meaningful concept
(i.e., commented vs. uncommented code), to attribute cause
from the changes in the model’s performance in predicting
code tokens in different settings. That is, if we observe that a
model is less effective at predicting operators after changing
“test” data sequences to which the model is applied, we
may be able to confirm that the change caused this drop
in effectiveness if we properly control for confounders. We
design docode’s interventions based on the fact that NCMs
are often not applied to the same types of code corpora upon

Fig. 4: Spurious Correlation between the Number of Subwords
common cause and Cross-Entropy values (p(Y |Z) ≈ 0.87)
for the ProgramRepair intervention generated from GPT-
26,12.

which they are trained. For instance, if a model trained on
a well-commented dataset is applied to predict segments
of poorly commented code, this could potentially impact
performance. As such we define parallel code corpora which
contain programming language-specific changes across the
datasets, and specifically introduce four different initial
interventions depicted on the right side of Fig. 3.

We define SE-based Interventions to better understand
model performance across different settings. We formu-
late these settings as parallel code corpora with differ-
ing specified semantic properties. For instance, a testbed
aimed at simulating a debugging environment may consist
of two parallel corpora: the buggy code, and the (corre-
sponding) fixed code. Therefore, these datasets describe
some high-level SE properties, which we employ in docode’s
causal analysis. We define four types of SE application
settings, adapted from both our prior work and community
datasets: (i) buggy/non-buggy [72], (ii) commented/non-
commented [60], (iii) type II, and (iv) type III clone pairs’
differences [73], and Abstract Syntax Trees node masking
[74]. docode is extensible, meaning that researchers can define
their own code corpora interventions. In addition, we have
also defined Model Hyper-parameter Interventions to extend
the causal analysis beyond data or code corpora perturba-
tions (see Sec. 9).

3.3 The Causal Interpretability Hypothesis

The following hypothesis aims to answer the question of
why causal interpretability is necessary for the field of Deep
Learning for Software Engineering (DL4SE). We claim that
the prediction generated by any NCM can be causally ex-
plained by employing the notion of the Ladder of Causation.
Our proposed method docode uses the process of causal
inference to enable practitioners to answer their particular
causal queries.
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Hypothesis: docode is a causal interpretability method
that aims to make DL4SE systems (i.e., Neural Code
Models) and their decision-making process understand-
able for researchers and practitioners.

4 AN OVERVIEW OF THE docode APPROACH

docode comprises a set of statistical and causal inference
methods to generate (and evaluate) post hoc interpretations
of NCMs. In the simplest of terms, our proposed inter-
pretability approach asks Why does a NCM make a given code
prediction? – and provides a framework for answering this
broad question by 1 modeling the inference problem to en-
code causal assumptions, which rely on domain knowledge of
NCMs and observable software data, in a graph representation;
2 identifying the causal estimand based on the previous

graph representation; 3 estimating the causal effect based
on probabilistic and machine learning methods that operate
on observable software data; and 4 validating the causal
process by, firstly, refuting obtained estimate using different
sensitivity and robustness techniques (e.g., placebo, random
common cause, data subsets validation); and secondly, vet-
ting the creation of the graph using correlational analyses on
SCMs’ variables. Fig. 5 depicts the four steps that consoli-
date our post hoc interpretability approach (i.e., after models
have been trained). We provide a high-level explanation of
how each step of docode pipeline functions (modeling: Sec. 5,
identifying: Sec. 6, estimating: Sec. 7, and validating: Sec. 8)
before describing the case study design in detail in Sec. 9.

In addition to the previous pipeline and to help bridge
the gap between a given NCMs low-level code predic-
tion and human-understandable categories, we propose a
syntax clustering criterion that aims to group well-known
categories of programming languages from individual code
tokens. This criterion is not explicitly defined in the pipeline
but it is required for posterior evaluations. Syntax clustering
is introduced in Sec. 9 and validated in Sec. 11.3.

While our syntax clustering provides the building blocks
for explaining global model behavior when applied to pre-
dict different types of software data, it may be difficult
to determine whether any correlations in performance are
causal, i.e., definitely resulting from the intervention, or
spurious, i.e., potentially caused by confounding factors. To
enable an analysis of whether a change in model perfor-
mance is truly causal or not, allowing for the generation of
accurate explanations, we propose an analysis based on causal
inference which we describe below.

Preliminaries. Software Data, Domain Knowledge, and Ex-
ploratory Causal Analysis are indispensable elements before
starting the docode pipeline. We refer to Software Data as any
artifact generated by a software engineering-based process
(e.g., source code, requirements, documentation). Because
we concentrated on Neural Code Models, our target data
is human-generated code for causal interpretability. Domain
knowledge enables software researchers to discern whether
the causal assumptions about data are plausible on sci-
entific grounds. This ability to qualitatively encode causal
assumptions in a graphical model is known as Transparency,
depicting the process in which researchers recognize cause-
and-effect relationships in a domain [75]. Although Soft-
ware Data and Domain Knowledge are sufficient elements to

create a graphical form of perceived causal assumptions,
we scrutinized the graph creation process using statistical
tools. These tools aim at detecting correlational evidence
among SCMs’ variables to support the qualitative graph
encoding. We present the methodology and results of these
correlations in Exploratory Causal Analyses (see Sec. 11).

Step One: Modeling Causal Inference Problem. A
variable T is a cause of Y if the variable Y depends on T to
determine its value. However, there are also variables U that
represent unmodeled factors [28]. This causal relationship
can be precisely formulated via a causal model that uses
directed acyclic graphs (DAGs) to describe direct parent-
child relationships, instead of probabilistic dependencies,
among random variables such as T and Y . It also allows
us to introduce a graphical definition of causation [28], [76].
Therefore, Structural Causal Models (SCMs) are graphical
models responsible for enabling us to quantitatively esti-
mate the results of an action or intervention simulated in
the graph. In other words, SCMs provide a framework for
counterfactual reasoning.

Step Two: Identifying Causal Estimand. In this step,
docode formulates a causal estimand, (i.e., mathematical
expression) subject to the previously defined Structural
Causal Model (SCM). docode employs graph-based crite-
ria and the adjustment formula for identifying an expected
causal effect. These graph-based criteria determine which
set of confounders Z in the SCM should be conditioned
on when seeking the causal relationship between T and Y .
The doWhy library is used to explore the identification of
different causal estimands with criteria such as back-door
criterion, front-door criterion, instrumental variables, and
mediation analysis [71].

Step Three: Estimating Causal Effects. After obtaining
an expression using any identification criteria, our method
uses a suitable or proper estimation method to compute the
causal effect. The estimation method depends on the nature
of the SCM’s variables (e.g., binary, discreet, continuous).
The library doWhy supports methods based on estimating
the treatment assignment, the outcome model, the instru-
mental variable equation, and machine learning estimators
[71]. Our study concentrates on estimating propensity scores
for binary treatments and linear regression for continuous
treatments.

Step Four: Validating Causal Process. An important
step in causal analysis is validating our causal process.
This validation comprises two parts: refuting effect estimate
and vetting the causal graph. To perform the first part, we
employ refutation methods that calculate the robustness of the
causal estimate by making the assumptions falsifiable. These
methods test the robustness of our assumptions through
various types of perturbations on the graph or software data
to see the impact on our Average Treatment Effect (ATE)
estimation. There are multiple refutation methods, but in
this paper, we focus on four: adding a random common
cause or covariate R1, adding an unobserved common cause
or covariate R2, replacing the treatment with a random
variable or placebo R3, and removing a random subset of
the data R4. Depending on the method, the resulting value
should either be the same as the original ATE (i.e., invariant
transformation) or close to zero (i.e., nullifying transformation).
To perform the second part, we inspect the causal graph
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Fig. 5: Overview of the docode Approach: Each numeral represents a step in the process of generating causal interpretations.
First, a Structural Causal Model (SCM) that frames the explanation hypothesis is formulated. Second, docode executes graph
surgery on the SCM to isolate a targeted estimand of the causal effect. Third, the causal effect is assessed based on the
targeted estimand. Finally, the estimated effect and the SCM are scrutinized through refutation techniques and exploratory
analysis to confirm their validity.

at two different times: 1) graph creation, which indicates
supporting the rationale behind the construction of the
graph using correlational analyses on SCMs’ variables, and
2) graph correctness, which applies the concept of Testability
after executing an identification method [37].

Enabling Causal Interpretability for NCMs. Consider
the scenario in which we want to understand how a given
model operates between buggy and fixed code. To do
this docode constructs a SCM composed of an intervention
variable T = Buggy and potential outcome Y = Acc
(representing a measure of model effectiveness or perfor-
mance in terms of our defined code categories). In addition,
we identify confounding factors Z for interventions and
potential outcomes. Next, we want to perform the interven-
tion wherein the model is applied to fixed code instead of
buggy code. docode then constructs a parallel graph for this
intervention. Using notions from causal inference theory
(i.e., modeling, identifying, estimating, refuting), docode is
then able to determine how the intervention affected model
performance in terms of code categories, and whether the
change in performance is a true causal effect, or spurious,
resulting from effects of covariates.

While the above scenario illustrates the intuition of
our causal analysis, it is important to define how causal
effects, and ultimately interpretations, will be generated.
First, we need methods by which we can measure model
performance. To do this we use Cross-Entropy loss, or the
difference in distribution of the model’s prediction and the
ground truth for given token sequences, and average Next
Token Predictions, or probabilities assigned by models to
individual tokens, across token sequences as these measures
are relevant values produced at inference time that reflect
the prediction effectiveness. By relating these values to SE-
based interventions T , we can gain an understanding of
how well a studied model is generating code under these

treatments. To calculate causal effects for binary treatments
similar to the ones we used in T[data] (e.g., Buggy/Fixed and
Commented/Uncommented), we first calculate association
correlations (Def. 6) and then causal effects (Def. 5).

If we want to estimate the extent buggy/non-buggy
SE-based interventions affect the accuracy of a NCM, we
need before to identify the effect of the treatment using the
adjustment formula of causal inference (see Def. 4). After
the causal effect is calculated, we aim to generate causal
explanations from our analysis via structured templates
that relate the code token category to the intervention: e.g.,
[code token category] performed worse by [change in
performance], due to a change in model application from
[intervention] to [intervention], with a causal analysis
Average Treatment Effect of [ATE value].

5 STEP ONE: MODELING CAUSAL PROBLEM

In the first pipeline step, assumptions about relationships
among data are defined in a Structural Causal Model (SCM)
similar to Fig. 6. This SCM is later modified to compute the
interventional distribution p(Y |do(T )) in step two. Causal
assumptions must be made explicit in the graph, which
entails defining the interventions T (i.e., binary: buggy/non-
buggy, discrete: layer modifications, continuous: syntac-
tic differences), potential outcomes Y (i.e., Cross-Entropy
or NTPs performance), and the confounders (or common
causes) Z . For all SCMs proposed in this study, we assumed
that confounders are SE quality metrics since they have the
potential to influence models’ code predictions, i.e., a NCM
may be influenced by more or less for loops, as well as
influence interventions, i.e., more code is correlated with
more bugs [77].

Before interpreting the prediction performance of a given
Neural Code Model (NCM) using causal explanations, we
introduce the formalism of a NCM as defined below.
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Definition 1. Neural Code Model (NCM): A NCM is a prob-
ability distribution P (wt|w1, w2, . . . , wt−1) in which the
output wt at time step t, given the input sequence
(w1, w2, .., wt−1), is inferred through the conditional
probability P (wt|ht) [2], [40]. The hidden state ht en-
capsulates the properties of the preceding context. The
training corpora of NCMs primarily contain source code.
Consequently, input sequences are split into subwords of
code (i.e., tokens w from a vocabulary V). Furthermore,
NCMs are typically pre-trained for code generation, and
fine-tuned to perform specific SE downstream tasks such
as code summarization, test case generation, and bug
fixing.

The following example showcases a practical scenario
in which code predictions can be causally explained by SE-
based interventions on program repair.

Example 1. Consider a Bayesian network created to explain
code predictions of a given NCM, depicted as an arrow
that links buggy input code to the model’s accuracy
Buggy → Acc. Accuracy is a measure of agreement
between current vs. expected predictions. We can use
accuracy as a measure that contains and represents infor-
mation about code predictions. The variables Buggy and
Acc are dependent. These variables embody a program re-
pair intervention. Therefore, if we want to define the joint
distribution p(Buggy,Acc) to represent the network, we
must specify by Bayes’ rule using the prior p(Buggy)
and the conditional probability p(Acc|Buggy). However,
this joint distribution can be computed in the opposite
direction Acc → Buggy using the same Bayes’ rule for
a prior p(Acc) and conditional p(Buggy|Acc). The fact
that the joint distribution can be represented with both
networks is non-intuitive since we know from experi-
ence that the model performance cannot give rise to a
bug in the original input. In other words, the relationship
between these variables is asymmetric or causal. Hence,
we expect that buggy snippets affect the prediction per-
formance of NCMs, not the other way around.

A first attempt to address the relationship in Ex. 1 would
be computing a correlation coefficient ρTY ≈ p(Y |T ) =
p(Acc|Buggy), where T is a binary intervention that repre-
sents the debugging process and Y is a potential outcome that
corresponds to the prediction performance of the model.
This coefficient, however, is still symmetric: if T is correlated
with Y , then Y is equally correlated with T . Causal networks
allow us to model causal asymmetries where directionality
goes beyond probabilistic dependence. These causal models
represent the mechanism by which data were generated [29].
Instead of testing whether Buggy and Acc are conditionally
dependent, causation asks which variable responds to the
other one: Buggy to Acc or Acc to Buggy? [29]. Therefore,
we can formally introduce a definition of causation:

Definition 2. Causation. A variable T is a cause of Y if
the variable Y depends on T to determine its value.
Formally, the value of Y was assigned based on what
is known about T . In other words, the value of Y is
determined by a structural equation Y = fy(T, Uy) and
the arrow T → Y . The U variables in these equations
represent unmodeled variables that are exogenous to the

causal network but disturb the functional relationship
between the outcome and its treatment [28].

Similarly, we can define a structural function for the
treatment T = ft(Ut) that depends only on U disturbances
assuming that no common causes exists between potential
outcomes and interventions. A common cause (or con-
founder) is a random variable Z that causally influences two
variables that are initially perceived as statically dependent
(T ⊥̸⊥ Y ). However, this dependency can be explained by the
underlying influence of Z on the effects, making the effects
conditionally independent (T ⊥⊥ Y |Z). Therefore, there
exist more complex causal relationships between treatments
and outcomes that we can model with structural equa-
tions that correspond to a Structural Causal Model (SCM).
We introduce a definition for Structural Causal Models as
graphical models that capture causal assumptions:
Definition 3. Structural Causal Models. These directed

acyclic graphs (DAGs) describe direct parent-child rela-
tionships, instead of probabilistic dependencies, among
random variables Xi. The value xi of each variable Xi

is defined by the structural equations xi = fi(PAi, Ui)
where PAi = Xj : Xj → Xi denotes the set of parents
or direct causes of Xi. This model allows us to introduce
a graphical definition of causation [28], [76].

(a) Observational Distribution

T Y

Z

Uz

UyUt

T=FixedCode Y

Z

Uz

UyFixedCode

(b) Interventional Distribution

Fig. 6: (a) Structural Causal Model representing cause-effect
relationships of program repair in NCMs. (b) The SCM after
intervening the treatment with Fixed Code.

In summary, this step consists of setting down assumptions
about the causal relationships of software data employed to
interpret NCMs. SCMs help us to describe relevant features
of software data and how these features interact with each
other. In the following subsection, we define each compo-
nent of the Structural Causal Models (i.e., interventions,
potential outcomes, and common causes or confounders).

5.1 SE-Based Counterfactual Interventions
NCMs are notorious for behaving differently across distinct
datasets [78]. For example, if a model trained on a well-
commented dataset is applied to predict segments of poorly
commented code, this mismatch could potentially impact
its performance. As such, we assert that observing model
performance across datasets with different characteristics
can aid in understandability and interpretability. Hence,
we defined SE-Based Counterfactual Interventions T to better
understand model performance across different settings. We
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formulate these interventions based on domain knowledge
from observable testbeds (i.e., datasets) organized in sample
pairs treatment T = 0 (i.e., BuggyCode) and control T = 1
(i.e., FixedCode). Note that we define testbeds according to
different applications often described in SE research. The
general process comprises of identification of some specific
intervention (i.e., program repair) and 2) construction or
collection of the necessary data via mining repositories or
other means that contain these observed interventions. More
complex interventions will likely be more challenging to
prepare.

In docode, counterfactual interventions produce explana-
tions motivated by both semantic perturbations T[data] to
our SE Application Settings (e.g., Program Repair “Buggy/-
Fixed Code”, (Un)commented Code, Syntactic Differences)
and model hyper-parameter variations T[hyp] on NCMs (e.g.,
layers, units, or heads). Although hyperparameter varia-
tions are NOT data perturbations based on SE settings, we
include them to extend the analysis of possible causes of
models’ predictions beyond data interventions.

5.2 Potential Outcomes / Code Predictions

Cross-Entropy (Fig. 7- 3 ), Next Token Prediction (Fig. 7- 2 ),
and Distant Metrics (i.e., Jaccard, Levenshtein, and Sorence-
Dicen) are relevant values produced at inference time that
reflect the effectiveness of a model at predicting code. By
relating these values to counterfactual interventions T (i.e.,
program repair), we can gain an understanding of how
well a studied NCM is generating code under these SE-based
interventions.

Cross-Entropy. We refer to Cross-Entropy loss as a mea-
sure of a model’s coarse-grained performance Yg : w →
−
∑

t∈|w| P (wt|dt) logQ(wt|w<t) as these losses capture the
overall performance of a NCM over an entire sequence
of tokens w. Due to the discrete nature of the data, the
expression P (wt|wt−1:1) can be estimated using a classi-
fier. The classifier, in our particular case, is a NCM [79].
Hence, rather than using n-grams or Markov Models to
approximate P (wt|wt−1:1) [44], it is convenient to use a
latent model P (wt|wt−1:1) ≈ P (wt|dt), where dt is known
as a hidden state that embeds the sequence information
from past observations up to the time step t. Depending
on how the sequence is processed, the hidden state dt can
be computed using either an autoregressive network (i.e.,
such as a Transformer (GPT ) [33]) or a Recurrent Neural
Network (RNN ).

Next Token Prediction (NTP). Conversely, NTP values
signal fine-grained performance Yl : w<t → P (wt|wt−1:1)
within token-level contexts. NTPs capture local predictions
for individual tokens that are affected by complex interac-
tions in NCMs and are equivalent to the estimated predicted
value (or softmax probability) σ(k)t for each token. Bear in
mind that the size of the vector σ(k)t is the vocabulary |V|,
in which k represents the non-normalized log probabilities
for each output token t. NTPs capture the value of the
expected token wt instead of the maximum value estimated
in the vector σ(k)t.

Distance Predictions. Similarity distance scores play a
crucial role in assessing the model’s distance performance,
defined by the expression Yd : s′ → ∇(s, s′). Function ∇

represents the similarity coefficient used for the pairwise
comparison of two finite sample sets, s and s′. For instance,
if set A denotes Node Types in the AST (Abstract Syntax
Tree) of a ground-truth code sample, and set B represents
Node Types in the AST of a predicted code sample, we can
quantify their similarity using metrics such as the Jaccard
Index, Levenshtein distance, and Sorensen-Dice coefficient.
The resulting similarity scores, which range from 0 to 1,
effectively measure the degree of similarity between the sets,
with 0 indicating no similarity and 1 meaning that the sets
are identical.

... <end><start>

0.002 0.007 0.03 0.2 0.5 0.9

Cross-
Entropy

Next Token 

Prediction

1.01 2.02 3.33 5.22 1.02 2.02
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~0.700 ~0.090 ~0.085

blocks datatypes

...

...

static (public intvoid main

Fig. 7: Potential Outcomes are Code Prediction of NCMs:
Cross-Entropy (Yg), Next Token Predictions (Yl), or Dis-
tance metrics (Yd).

5.3 Common Causes or SE-based Confounders
In past work, several factors such as code duplication [80]
have been illustrated to affect model predictions. As such,
we derive a list of potential SE-based confounders that
could influence a model’s prediction of our clustered syntax
categories beyond our interventions defined in the previous
section. Our initial set of confounders (also called common
causes) include McCabe’s complexity, LoC (Lines of code),
number of:

• returns
• loops
• comparisons
• try/catches
• parenthesized
expressions

• string literals
• variables

• max nested blocks
• anonymous classes
• inner classes
• lambda expressions
• unique words
• log statements
• modifiers

Practitioners and researchers can extend the search of
potential SE-based confounders based on their domain
knowledge, empirical analysis on NCMs, or observations
of NCMs’ behavior in production.

6 STEP TWO: IDENTIFYING CAUSAL ESTIMAND

In the second pipeline step, once the SCM (similar to Fig. 6)
is constructed, docode must validate under which conditions
the structure of the created graph is sufficient for estimating
a causal effect from software data. Graph-based identifi-
cation criteria are test mechanisms or tools employed in
Causal Inference to determine whether a causal effect can
be estimated for any two variables T and Y . docode supports
graph-based criteria such as back-door criterion, front-door
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criterion, instrumental variables, and mediation. The appli-
cation of these criteria depends on the configuration and
shape of the SCM. To formulate a correct estimand, docode
requires both an adjustment formula (see Eq. 2) and a graph-
based criterion.

While we discuss identification criteria such as front-
door and mediation as potential options for graph-based
identification criteria, for our case study -in particular- we
use the combination of the back-door criterion, instrumental
variables, and the adjustment formula, as these cover sufficient
interpretability scenarios for a causal graph with the stan-
dard shape. The standard shape of proposed SCMs includes
data-based T[data] and parameter-based T[hyp] interventions,
SE-based confounders Z ∈ SEmetrics, potential outcomes
Yl, Yg, Yd, and (if applicable) instruments I .

The back-door criterion identifies sets of confounders
that should be adjusted/controlled for when we estimate
causal effects from software data, while the instrumental
criterion comprises variables with a direct effect only on
the treatments. The mathematical details of how back-door
or any other identification criteria operate are out of the
scope of this paper. Detailed information about graph-based
criteria can be found in academic manuals [28], [29], [76].
Nonetheless, the adjustment formula for computing causal
effects by simulating interventions (i.e., do-calculus [37]) is
discussed in this section.

Structural Causal Models (SCMs) are stable mechanisms
that remain invariant to local changes unlike probabili-
ties computed by Bayesian networks [29]. This character-
istic helps us to estimate quantitatively the results of an
intervention in the graph without actually performing it
in controlled settings (i.e., randomized experiments). The
mathematical tool employed to perform these interventions
is the do(·) − operator [76]. For instance, if we want to
estimate how fixed code affects the performance of a NCM,
we need to compute the action p(Acc|do(Buggy = False))
(Eq. 1a). These actions are interventional distributions since
we set the value of Buggy to False. Note that this inter-
ventional distribution is not the same as the distribution
p(Acc|Buggy = False) (Eq. 1b). This latter distribution
is observational as we are conditioning the performance on
the value of the Buggy variable. Intervening on a variable
in a SCM means fixing its value and, therefore, changing
the value of other variables of the network as a result.
Conversely, conditioning on a variable means narrowing the
cases that the outcome takes once we assign a value to the
intervention.

Example 2. Consider Fig. 6 a generalization of the buggy
influence on a deep model’s performance. The first
graph is a SCM composed of an intervention variable
T = Buggy and potential outcome Y = Acc. In addi-
tion, we identified some common causes Z = SEMetrics

for interventions and potential outcomes. These common
causes (or confounders) can be mapped to Software
Engineering quality metrics (e.g., Lines of Code, McCabe
Complexity, Size of Methods). We want to perform the
intervention do(Buggy = False), which is the same
as do(T = FixedCode). The second graph depicts this
program’s repair intervention.

Note that fixing the value of T makes the SCM change by

eliminating the effect or influence arrow of the confounder
Z to the intervention. The disturbance Ut is also eliminated.
This elimination process of input arrows to fixed variables
is formally known as graph surgery. Both do(·) − operator
and graph surgery allow us to untangle causal relationships
from mere correlations [76]. The law of total probabilities
and invariance principle are required to compute the obser-
vational and interventional distributions [28]:

p(Y |do(t = FixedCode)) =
∑

z∈metrics

p(Y |t, z)p(z) (1a)

p(Y |t = FixedCode) =
∑

z∈metrics

p(Y |t, z)p(z|t) (1b)

Note that Eq. 1a differs from Eq. 1b: the prior p(z)
in contrast to p(z|t), which is precisely the link that is
eliminated in the SCM. Eq. 1a is formally known as the
adjustment formula. This formula is one of the building
blocks in causal inference since it helps us to adjust common
causes or control for confounders to allow the estimation of
causal/treatment effects [29], [76].
Definition 4. Treatment Effects. Given a Structural Causal

Model where a set of variables PA denotes the parents
of T , the treatment effect of T on the potential outcome
Y is given by

p(Y = y|do(T = t)) = (2a)
Σzp(Y = y|T = t, PA = z)p(PA = z) = (2b)

Σzp(T = t, Y = y, PA = z)/p(T = t|PA = z) (2c)

In our initial causal statement, we generally accept that
buggy code causes a NCM to predict poorly. Although the
causal statement is true, it is not guaranteed that “every
buggy snippet” is certain to make a model predict poorly.
Therefore, causal relationships are uncertain. This uncer-
tainty is captured by employing conditional probabilities
described in Eq. 2b. Note Eq. 2b is a generalization of the ad-
justment formula Eq. 1a. We connect observational data with
our interventional distribution to compute treatment effects.
A standard way of connecting data with the interventional
distribution is by employing a summation described in
Eq. 2c. Note Eq. 2c is obtained with the application of
Bayes’ rule and algebraic manipulation once we multiply
and divide Eq. 2b by the term p(T = t|PA = z). This term is
a conditional probability known as the propensity score. This
propensity score and the joint probability of all the nodes
are distributions that can be obtained directly from data [29].
We explain this connection for code generation in Sec. 7.

7 STEP THREE: ESTIMATING CAUSAL EFFECTS

In the third pipeline step, docode estimates the causal effect
using statistical and ML methods based on the adjustment
formula from the previous step. docode computes Propensity
Score Matching for binary SE interventions (i.e., Buggy/-
Fixed) and Linear Regressions for SE discrete interventions
(e.g., layers, units, or heads). We refer interested readers
to the doWhy documentation for full estimation methods
details [71]. For completeness, we will solely show how to
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estimate a causal effect assuming a binary intervention as an
example. We can start by explaining the notion of Average
Treatment Effect (ATE). ATE is simply the average score of
all treatment effects (see Def. 4) computed for a population.
In our case, an individual of the population is just a code
snippet x.
Definition 5. Average Treatment Effect (ATE) Defining

the first intervention as do(T = 1) and the second by
do(T = 0), the Average Treatment Effect is the popu-
lation average of the difference of causal effects of each
code snippet x.

ATE = Ex∼p(x)[Y = y|x, do(T = t)] =
(3a)

Ex∼p(x)[E[Y |x, do(T = 1)]− E[Y |x, do(T = 0)]] =
(3b)

Ex∼p(x)[E[Y 1|x, T = 1]− E[Y 0|x, T = 0]] =
(3c)

The previous Eq. 3 shows the formal definition of an
ATE. We can derive the final expression by applying the
law of total expectations and the ignorability assumption
Y ⊥⊥ Z|T , where the potential outcomes Y are independent
of intervention assignments conditioned on covariates Z
[76]. That is, the effects of the hidden confounders Z and
missing data are ignored. In Eq. 3, the term E[Y 1|x, T = 1]
represents the expected value of a potential outcome under
an observable intervention (i.e., FixedCode). Similarly, the
term E[Y 0|x, T = 0] represents an expected value of a
potential outcome under an observable intervention (i.e.,
BuggyCode). Both terms are quantities that can be estimated
from data. Covariate adjustment (in Eq. 1a), propensity score
(in Eq. 2c), and linear regression are some of the estimation
methods that we employ to approximate ATEs. Their usage
depends upon the type of the intervention variable (i.e., bi-
nary, discrete, or continuous) and causal graph assumptions.

8 STEP FOUR: VALIDATING CAUSAL PROCESS

Assumptions encoded in causal graphs are justified by
observations of a data generating process. Therefore, testing
for the quality of the causal graph fitting the data would be
the main validity issue in the fourth pipeline step. We ask
the question How can we assess the validity of the underlying
causal process? To answer the question, firstly, we must
assess whether the estimated causal effect from step three
is not significantly altered after assumption violations (i.e.,
refutation methods). Secondly, we must conduct exploratory
causal analyses to scrutinize how strong the correlations are
among SCMs’ variables. These exploratory analyses are a
byproduct of graph validity to provide more evidence that
supports causal assumptions on the top of the testability with
refutations and identification criteria.

8.1 Refuting Effect Estimate
The obtained causal effect can be validated using refuta-
tion methods that calculate the robustness and sensitivity
of the estimate. Refutation methods came from the idea
that hypotheses respecting a data generating process can be
tested with conditions in which the hypotheses would be

false. Structural Causal Models (SCMs) encode assumptions
or hypotheses regarding a data generating process. Conse-
quently, SCMs are falsifiable by modifying the model or the
data to disprove initial assumptions.

In essence, the refutation methods apply random per-
turbations to the original Structural Causal Model (SCM) to
test for the robustness of the estimated causal effect (ATE).
Refutation methods inform researchers and analysts about
the validity of the graph by applying invariant or nullifying
transformations. Invariant transformations modify the data
so that the estimated value should not change; otherwise,
the causal model would fail the test. For instance, a refu-
tation method tests a causal graph for confounders when
this method affects, adds, or perturbs common causes. As
such, if the obtained refutation value for common causes is
not robust (i.e., different from the original ATE), it suggests
that we should update our initial assumptions about con-
founders encoded in the graph. On the other hand, nullifying
transformations modify the data so that the estimated effect
should be zero; otherwise, the causal model would fail the
test too.

Although researchers can design their tailored methods
to test distinct parts of the causal graph (e.g., treatments,
confounders, hidden causes, datasets), we chose four base-
line methods for our study:

Adding a random common cause or covariate R1.
We evaluate if the estimation method changes its estimate
after introducing an independent random variable as a
confounder from the dataset. This refutation involves com-
puting new causal estimates by simulating a common cause
with randomly generated data and reporting the average
value. A stable causal effect should remain unaffected by
this change, maintaining its original estimate p(Y |do(T )) =
p(Y |do(T ), H). Fig. 8 depicts the modification.

Z

T

Y

Random Common Cause

H

Fig. 8: SCM
transformation by
adding a random
common cause.

Adding an unobserved common
cause or covariate R2. A new dataset
is artificially created for a correlated
common cause between treatment T
and outcome Y . Next, the effect of
the unobserved common cause is re-
computed. Considering that the back-
door criterion assumes that all com-
mon causes are observed, the new esti-
mate should not be altered drastically
after violating the criterion assump-
tion.

Replacing the treatment with a
random variable or placebo R3. We
evaluate to what extent the estimated
causal effect changes if we replace the true treatment vari-
able T with an independent random variable of the same na-
ture (i.e., placebo). Specifically, we simulate datasets where
the treatment is the placebo, hence the computed causal
effects should have a distribution close to zero. By using
this refutation method, we seek to test the reliability of the
estimator.

Removing a random subset of the data R4. We evaluate
if the estimation method changes its estimate significantly
after replacing the given dataset with a randomly selected
subset. Through multiple simulations, we calculate the
causal estimate using subsets of the original data and report
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the mean value. The initial causal estimate should remain
unaffected by this modification.

In summary, for high robustness, we anticipate that R1,
R2, and R4 will closely approximate the estimated ATE
(Eq. 3). Conversely, the placebo R3 is expected to be zero.

8.2 Vetting Causal Graph

Beyond falsifying the structure and data of the causal graph
with the refutation methods, we can also vet the validity of
the graph at two different times:

Graph Creation Validity. Before or after the causal struc-
ture is modeled from domain knowledge, we can conduct ex-
ploratory data analyses to alleviate the absence of statistical
information about the variables under study. While not ex-
plicitly required from Causal Inference theory, we measure
the correlation between the confounders and the treatments
in one analysis Z⃝ → T⃝. Then, we measure the correlation
between the confounders and the outcomes in a separate
analysis Z⃝ → Y⃝. The purpose of these correlations is to
support domain knowledge observations quantitatively.

Graph Correctness Validity. The correctness of the
graph is related to the concept of testability [37] in which we
test whether a Structural Causal Graph (SCM) could have
generated a dataset. Identification criteria such as back-door
or front-door are standard ways of evaluating the fitness
of a model. In fact, the back-door criterion uses a graphi-
cal mechanism known as d-separation, which facilitates the
demonstration that causal models have testable implications
in the data they generate [75].

9 CASE STUDY DESIGN

In this section, we aim to illustrate how docode is applied to
enable causal interpretations based on different interpretability
scenarios. Fig. 9 depicts an overview of seven scenarios (or
cases from A to G) and six essential criteria that comprise the
case study. Each scenario can be unfolded into the following
criteria: (i) the goal of docode (i.e., generating interpretations
or validating an interpretability technique), (ii) the setup
(i.e., the deep learning architecture under analysis and the
evaluation dataset or testbed) (iii) the definition of the
Structural Causal Model (SCM) from domain knowledge
(i.e., intervention modality, hyperparameter interventions,
data interventions, and potential outcomes), (iv) a syntax
clustering strategy for grouping potential outcomes based
on token predictions, (v) the usage of causal inference
measure whether the value is an association (e.g., Pearson,
Jensen Shannon) or an intervention (e.g., ATE, CATE), and
(vi) the refutation testing method employed to validate the
robustness of the interpretations (e.g., placebo, unobserved
common cause).

Note that practitioners and researchers should not nec-
essarily have to stick to our seven cases, the configuration
criteria can be extended to assess unexplored interpretabil-
ity scenarios. Various permutations of the criteria outlined in
Fig. 9 can be formulated depending on the research goal of
the causal analysis. The subsections below detail the criteria
that we propose for this study.

9.1 docode Goal
The goal of docode is to enable NCMs’ interpretations of
code predictions by estimating the causal effects of specific
SE-based interventions. On top of that, docode also facili-
tates causal inference for validating interpretability methods.
Users of docode should define their goals in alignment with
this premise as these goals determine how the SCM is for-
mulated. For example, docode can be employed to interpret
the effects of code smells on code predictions produced by
given NCM, the SE-based intervention would be a binary
treatment of samples with and without smells. On the other
hand, we decided not to introduce a scenario in which
docode validates an interpretability method as it is out of the
scope of this study. However, we offer sufficient guidance
on assembling the criteria for this purpose in this section.

9.2 Setup
Applying docode requires selecting both the deep learning
architecture (i.e., NCM from Def. 1) and the evaluation
dataset or testbed for our interpretability scenario.

About Deep Learning Architectures. Because causal in-
terpretability is agnostic to NCM, docode supports (but is not
limited to) architectures such as RNN, GPT, GRU, and BERT.
Recurrent Neural Networks (RRNs) update the hidden state
ht using the current input and the previous hidden state,
thus ht = f(ht−1, wt). RNNs can take the form of a Gated
Recurrent Unit (GRU) [81], which uses reset rt = σ(Wr ·
[ht−1, wt]), and update ut = σ(Wu · [ht−1, wt]) gates to con-
trol how it combines the previous hidden state ht−1 with a
new candidate state h′

t = tanh(Wh · [rt⊙ht−1, wt]) to obtain
the updated hidden state ht = (1− ut)⊙ ht−1 + ut ⊙ h′

t.
Furthermore, GPT and BERT are deep architectures

known as Transformers [33]. In transformer models, the
hidden state ht in each time step is updated through a
multi-head self-attention mechanism and a feed-forward
network. In simpler terms, ht = Attention(Qt,Kt, Vt) =
softmax(QiK

T
i /

√
dk)Vi, where Qi,Ki, and Vi represent the

queries, keys, and values for the time step t, and dk is the
dimension of the key vectors. Transformers adopt the form
of Encoder-based (e.g., BERT) or Decoder-based (e.g., GPT).

We employed RNNs and Transformers for all our scenar-
ios as RNNs are widely used in SE [82], while Transformers
have gained popularity in the SE/NLP domain for their
high performance [4]. In Fig. 9), we opted to train the NCMs
for cases [A−F ] to gain more control over the training data.
This was particularly important given our need to manip-
ulate the tokenizer, allowing us to assign special tokens to
specific code categories (i.e., syntax clustering). However,
docode is not confined to specialized models trained by the
user as demonstrated in the G case, in which we used an in-
the-wild BERT model. Therefore, docode operates effectively
on already pre-trained NCMs as long as there exists a
way to group fine-grained predictions (i.e., BPE tokens)
to human-understandable categories (e.g., AST/Grammar-
based or keyword-based).

Table 1 provides a detailed overview of the training
configurations for each scenario. In [A−F ] cases, the NCMs
were trained using the Java portion of the CodeSearchNet
dataset [34], which consists of a diverse array of methods
(mts) from GitHub [83]. We partitioned CodeSearchNet into
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Fig. 9: Configuration criteria for enabling causal interpretability. Seven scenarios are proposed for this case study. However,
new interpretability cases can be formulated using a different permutation or extending the criteria.

training, validation, and test sets. For model development,
we employed Tensorflow and Pytorch [84], [85], along
with Huggingface’s Transformers library [86]. To mitigate
overfitting, training was terminated if cross-entropy did
not improve by at least 1e-2 over 5 epochs. Inputs were
standardized with a start of sentence token and adjusted to
a length of 300. This process was executed on an Ubuntu
20.04 system with an AMD EPYC 7532 32-Core CPU, an
A100 NVIDIA GPU with 40GB VRAM, and 1TB RAM. For
the G case, we used a pre-trained BERT model: codebert-
base-mlm [54], trained specifically for a Masking Language
Model (MLM) objective and also using the CodeSearchNet
dataset.

TABLE 1: NCMs training specifications for Recurrent Neural
Networks (i.e., Vanilla RNN, GRU), and Transformers (i.e.,
GPT-2, BERT)

NCMs Training
RNNs Transformers Hyper. Val.
NCM lyr,unt NCM lyr,hds dropout RNN [87] 0.5
RNN1,1024 GPT-26,12 dropout TF 0.l
GRU1,1024 GPT-212,12 optimizer [88] adam
GRU2,1024 GPT-224,12 learning rate 1e-3
GRU3,1024 BERT12,12 beta1,beta2 0.9
GRU1,512 epsilon 1e-7
GRU1,2048 epochs 64

batch RNN,TG 512,128

About Evaluation Datasets. To build the data interven-
tion testbeds for our interpretability scenarios, we obtained

Java samples from CodeXGLUE [89] and Python samples
from Galeras [74]. In [A − F ] cases, parallel corpora were
used to examine the impacts of buggy code (BuggyTB:
64,722 methods or mts), code documentation (CommentsTB:
6,664 mts), and syntactic alterations in semantically similar
snippets, specifically focusing on type II (BigClone2TB: 666
mts) and type III (BigClone3TB: 8,097 mts) clones from Big-
CloneTB. For the G case, we conducted binary interventions
by masking tokens corresponding to each AST element in
the Galeras samples (8,299 mts), covering all node types
in the Python grammar as defined by tree-sitter [90]. In
the control group, a comparable number of tokens were
randomly masked in each sample.

About Code Tokenization. For all scenarios, Byte
Pair Encoding (BPE) tokenization [91] was applied to the
testbeds before processing them with the NCMs. Known for
its efficacy in training NCMs on code, BPE significantly miti-
gates the out-of-vocabulary problem [87]. For [A−F ] cases, we
developed a BPE tokenizer trained on 10% of our training
data and with a vocabulary size of 10K. Conversely, for the
G case, we employed the pretrained BPE tokenizer from
the BERT-selected model. Nonetheless, the BPE tokenization
process sometimes resulted in sub-tokens that either com-
bined multiple reserved keywords or split keywords across
different tokens. This splitting issue presented a significant
challenge for our interpretability analysis as our method re-
lies on accurately grouping token predictions into semantic
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categories, a criterion that we named syntax clustering. To
address this, we developed clustering functions to ensure
the tokens are correctly aligned with our defined categories,
which will be discussed in Sec. 9.4.

9.3 Structural Causal Model Definition
docode users must design the Structural Causal Model (SCM)
based on their domain knowledge and available data.
This criterion involves choosing the intervention modal-
ity, specifying the type of the intervention, and comput-
ing the potential outcome. The SE-based interventions,
contingent upon the objectives of docode, primarily fall
into two categories: Data Interventions T[data] and Hyper-
parameter Interventions T[hyp]. Data interventions occur
within the testbed, whereas Hyper-parameter interventions
involve model training parameters (e.g., Learning rate, Batch
Size, Number of Epochs, Number of Hidden Layers/Units,
dropout rate), which are not embedded in the data per se.
Moreover, potential outcomes cover a variety of measures
such as Next Token Prediction (NTP), Cross Entropy Loss,
BLEU, CODEBLEU, and distance similarity scores including
Jaccard, Levenshtein, and Sorensen-Dice. We aimed to esti-
mate the causal effect of T[data] and T[hyp] interventions on
different potential outcomes. Fig. 10 describes seven SCMs,
the expected potential outcomes with their corresponding
treatments TA−G, and examples of interventions per sce-
nario. Additionally, Table 2 depicts the interventions and
datasets used for each scenario.

TABLE 2: Overview of SE-based Interventions Experiments.

Counterfactual Interventions

Type Interv. Case Id Intervention Associated Dataset PL

T[data]

TA A ProgramRepair BuggyTB [72] Java
TB B UnCommenting CommentsTB [34] Java
TC C SyntacticDifferences BigClone2TB [73] Java
TD D SyntacticDifferences BigClone3TB [73] Java
TG G ASTNodeTypes Galeras [74] Python

T[hyp]
TE E NumberLayers CodeSearchNet [34] Java
TF F NumberUnits CodeSearchNet [34] Java

For A and B cases, we examined the impact of buggy
code and inline comments on NCM’s predictions. The A
case assessed how the presence of bugs influences the cross-
entropy and NTP. Similarly, the B case explored the effect
of including inline comments on the model’s performance.

For C and D cases, we assessed how NCMs respond to
minor and major syntactic variations in semantically equiv-
alent code snippets, focusing on the effects of semantic-
preserving changes on code generation. Due to the ab-
sence of a natural split in clone types in the BigCloneTB
dataset, a typical control and treatment approach for causal
analysis was impractical. The selection between function1

and function2 methods, as categorized by BigCloneTB, is
arbitrary. Instead, we concentrated on how syntactic dif-
ferences in methods performing identical functions impact
our models. Hence, we used the differences between these
function sets as our primary confounders and intervention.
Specifically, we employed the Levenshtein Distance – a
metric quantifying the necessary edit operations (insert,
modify, remove) to transform one sequence into another –
to simulate a ’refactoring’ treatment. This approach approx-
imated the number of edits needed to convert one method

into another and allowed us to bypass the need for a natural
split between function1 and function2. It is worth noting
that the associated graphs include the instrumental variable
countSubWords. We found evidence of a subtle correlation
between treatments and countSubWords in Table 11.

For E and F cases, as indicated in Table 2, our case
study involved exploring two distinct deep learning archi-
tectures. We particularly examined how variations in hyper-
parameters such as layers and units within each architecture
influence the prediction performance.

For the G case, our goal was to generate interpretations
for the prediction of AST node types using BERT. To achieve
this, we essentially constructed the dataset by implementing
two treatments: masking tokens corresponding to AST Node
types (Treatment 1) and randomly masking an equivalent
number of tokens (Treatment 2). We then calculated the
normalized similarity distances (i.e., Jaccard, Levenshtein,
and Sorensen-Dice) between the AST of the predicted code
and the ground truth samples, which served as the potential
outcomes in the SCM.

9.4 Syntax Clustering of Code Predictions
Consider the situation where a developer inserts a ‘(’

character after the ‘main’ keyword in a function decla-
ration in Java ( 1 -Fig. 7). Inherently, a developer mentally
rationalizes several things such as the concept of a function
declaration and expected Java syntax. If a NCM can make a
similar prediction, it suggests to us that it has statistically
learned some understanding of the concept of a function
declaration and corresponding syntax. Therefore, we assert
that by associating human-interpretable categories (e.g., Pro-
gramming Languages Keywords or AST nodes) to model
predictions and then analyzing the statistical properties of
those predictions, we can begin to learn how well a given
NCM reflects human knowledge.

A major conjecture in interpretability research is that
NCMs are more understandable when they reflect human
knowledge [92]. One way of determining whether a model
reflects human knowledge is testing it to see whether or not
it operates (or predicts) similar to how a human would operate.
docode accomplishes this by grouping code token predictions
of NCMs to human interpretable categories.

To help bridge the gap between a given NCMs token-
level representation of code and human-understandable cat-
egories, docode aggregates individual tokens to well-known
syntactic categories from programming languages. Source
code tokens can be clustered to any number of syntactic
elements, and particularly for docode, we focus on aggregat-
ing tokens to different syntactic categories, which do not
require manual labeling. This syntax clustering mitigates
the cost involved with large-scale data labeling and still
provides explanations rooted in categories with which most
programmers and researchers are likely familiar.

The syntax clustering comprises high-level properties of
code using a clustering function defined by ϕH : w⃗ → h⃗, in
which the vector w⃗ corresponds to tokens from a vocabulary
V . Thus, each token in a sequence w is assigned to a specific
syntax-understandable category h. Note that docode allows
the definitions of any potential clustering function, users
are not forced to use our clustering category system H.
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The proposed categories in our system H are classified
into keyword-based or grammar-based. Below, we pose a
separate clustering function for Java and another one for
Python.

9.4.1 Keyword-Based Aggregation

In programming languages, different types of tokens re-
tain different semantic meanings. For instance ‘=’ and
‘<’ are common [operators]. Therefore, tokens can be

grouped into semantically meaningful keyword-based cate-
gories H. We can establish a clustering function ϕH : w⃗ → h⃗,
in which a token w in a snippet s is clustered to a corre-
sponding keyword category h. We propose an initial set
of nine categories for Java. Figure 11 illustrates the cate-
gories and associated keyword tokens. For each category,
we group keywords by functionality that were collected
from the official Oracle Documentation and Manuals [93].
These keywords remain consistent across Java versions from
Java 7 onwards. In addition, we present an error analysis in
Sec. 11.3 to explore the validity of this clustering function.

9.4.2 AST/Grammar-Based Aggregation

Every expression in a programming language is determined
by production rules defined in its Context-Free Grammar
defined by the expression H = (α, λ, ω, β), in which α
denotes the finite set of non-terminal nodes, λ the finite
set of terminal nodes, ω the finite set of production rules,
and β the start node. The set of production rules ω for any
type of statement (e.g., conditional, assignation, operator)
is expressed in terms of the terminal and non-terminal
nodes (α, λ). In programming languages, terminal and non-
terminal nodes retain different semantic meanings. Follow-
ing this, we can establish a clustering function ϕH : w⃗ → h⃗,
where each token w in a snippet s is aggregated and
assigned to a corresponding node h. We extracted a total of

196 node types (i.e., terminal and non-terminal), from tree-
sitter Python’s grammar [94]. This set of categories was then
used to group tokens from code snippets. Figure 11 offers a
visual example of this clustering.

9.5 Causal Inference Measures

Below, we explain association and intervention metrics that
we estimate to validate the reliability of an interpretation.
Association metrics serve as baselines that we need to con-
firm for confounding after computing intervention metrics,
which represent actual causal effects.

Association Metrics. For [A − F ] cases, we employed
two methods to empirically estimate the association distri-
butions p(Yg|T ) and p(Yl|T ). These two methods are the
classic Pearson correlation and the Jensen-Shannon distance.
For the latter, imagine we wish to understand the corre-
lation between syntactic changes, i.e., variable renaming,
alterations in white space, etc. and a NCMs performance.
One way we can study this is through computing the as-
sociation of Cross-Entropy values Y under two treatments,
the first T = 0, would be an unaltered code snippet and the
second T = 1 would be its Type III clone. Computing this
association can be done using the Jensen Shannon distance
p(Y |T ) ≈ JS(Y 0, Y 1) as defined in Def. 6 for four models.
Fig. 12 shows the distributions of Y 0 and Y 1 with their
distances after applying bootstrapping as an example.

Definition 6. Jensen-Shannon Distance (JS). The Jensen-
Shannon divergence (JSD) overcomes the asymmetric
computation of the KL divergence and provides a mea-
sure of the difference between distributions Eq. 4. The
JS distance is the square of the JS divergence p(Y |T ) ≈
JS(Y T=0, Y T=1) = JSD(Y 0, Y 1)2. JS is proportional to
the influence of T on Y , which measure the separation of
the distributions Y 0, Y 1. The notation Y T=0 refers to the
potential outcomes observed under the treatment T = 0.
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Intervention Metrics. Conversely, the interventional dis-
tributions p(Yg|do(T )), p(Yl|do(T )), and p(Yd|do(T )) are
estimated in terms of the Average Treatment Effect (ATE),

as previously introduced in Eq .3. docode can potentially es-
timate other types of causal effect metrics such as Conditional
Average Treatment Effect (CATE).

9.6 Causal Validity
About Refutation Testing. After docode estimates causal
effects, these effects are validated for robustness. Ergo,
docode incorporates various refutation methods to evaluate
the sensitivity of the causal estimations as we defined in
Sec. 8. We employ the following refutations: introducing a
random common cause (i.e., independent common causes
added randomly should not impact the causal estimates),
applying placebo treatments (i.e., causal effect should go
zero if the true treatment is replaced by an independent
random variable), considering unobserved common causes
(i.e., causal estimates should not be too sensitive when
we add an independent common cause correlated with
the treatment and outcome), and performing data subset
validations (i.e., the causal effect should not change when
the dataset is replaced by a random subset).

About Vetting Causal Graph. We conducted exploratory
analyses in Sec. 11 that provide statistical evidence of the
causal assumptions encoded in the graph. These analyses
comprise measuring for correlations among the graph’s
variables. In addition, the testability of each proposed causal
graph occurs in the identification step (Sec. 6). The iden-
tification step consists of finding an estimand for each
proposed graph using the d-separation criteria. These criteria
help us to verify the fitness of the causal models in the
datasets they generate. We can reject or accept the causal
graph depending on the conditional independence tested
from the data. All proposed SCMs in Fig. 10 were accepted.
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9.7 Research Questions
Inspired by the notion of Pearl’s Ladder of Causation [29],
[95], we framed two research questions to explore docode’s
potential in enabling causal interpretability for NCMs. RQ1
computes the feasibility of some SE-based Interventions and
RQ2 performs a sensitivity analysis to validate the robust-
ness of previously computed causal effects.

RQ1: Causal Inference: To what extent do SE interventions
affect code prediction?

RQ2: Causal Validity: How robust is the underlying causal
graph under assumed SE interventions and code confounders?

10 RESULTS

This section presents the results for both research questions
per interpretability scenario introduced in Sec. 9.

To answer RQ1, we begin by examining the correlations
between potential outcomes and the interventions defined
for each scenario. These correlations provide an early in-
dication of how much the interventions might impact the
outcomes. Table 3 offers an overview of the correlation
coefficients observed between the Cross-Entropy (i.e., Yg

5.2) and our proposed interventions. Additionally, Table 4
details the Pearson correlations results for NTP values (i.e.,
Yl 5.2) for our SyntacticDifferences interventions, calculated
with all the models we used in our experiments excluding
BERT12,12 (used in scenario G).

Next, docode generates causal explanations of code pre-
dictions for each scenario. Tables 5 and 6 display the
computed causal effects for cross-entropy (Yg). Similarly,
Tables 7 and 8 report both the causal inference metrics
and correlation coefficients for each token category within
Yl. Table 9 presents both the correlation and causal effects
computed for explaining the distance predictions (i.e., Yd

5.2) in scenario G.
We answer RQ2 by validating our causal effect estimates

employing the four standard refutation methods outlined in
Section Sec. 8.

10.1 Interpretability Scenario A: BuggyCode
To what extent does ProgramRepair affect the predictions
of NCMs? For the A case, focusing on the ProgramRepair
intervention, both RNN1,1024 and GPT-26,12 models exhibit
considerably high JS distances of 0.73 and 0.67, indicating a
strong correlation between this intervention and the cross-
entropy: P (Yg|TA). Additionally, we observed a similar pat-
tern in NTP outcomes for Yl[blocks] with the GRU1,1024

model, which had the highest correlation at 0.626 for Pro-
gramRepair.

However, when we controlled for SE covariates, the cor-
relations initially observed turned out to be misleading for
causation. Across the three models (RNN1,1024, GRU1,1024,
and GPT-26,12), the ATEs were very small, both in cross-
entropy p(Yg|do(TA)) with values of −3E−4, −2.33E−05,
and −2E− 4, and in NTP outcomes p(Yl[blocks]|do(TA))
with a value of −5.25E−4. Having null effects after observ-
ing high correlations confirms the presence of confounding
bias for this case. Therefore, the prediction performance
is being affected by other confounders different from the
actual buggy code intervention.

How robust are the causal effect estimations? To verify
the sensitivity of the ATEs for Yg , we computed four robust-
ness tests: R1, R2, R3, and R4. The results for R1, R2, and
R4 aligned closely with the ATEs we found for the three
models. Furthermore, the results for R3 were nearly zero.
This indicates that the estimated causal effects were robust.
Similarly, R1 values for Yl results were close to the obtained
ATEs.

BuggyCode Finding FA: The presence or absence of
buggy code does not appear to causally influence (or
explain) the prediction performance of our NCMs even
under measured high correlation.

10.2 Interpretability Scenario B: Code Documentation

To what extent does UnCommenting (or inline com-
ments) intervention affect the predictions of NCMs?
In the UnCommenting interventions, there were no strong
correlations in cross-entropy P (Yg|TB) for the RNN1,1024,
GRU1,1024, and GPT-26,12 models, with values of 0.18,
0.22, and 0.25 respectively. However, the NTP out-
comes showed significant associations in specific cate-
gories: for GRU1,1024, a strong correlation in [datatype]
(P (Yl[datatype]|TB) = 0.749), and for GPT-26,12, notable
correlations in [operators] (P (Yl[operators]|TB) =
0.998), [conditionals] (P (Yl[conditionals]|TB) =
0.821), and [tests] (P (Yl[tests]|TB) = 0.724).

Once we adjusted for covariates, the ATEs in both
p(Yg|do(TB)) and p(Yl|do(TB)) were close to zero, showing
a trend towards no causal effects. This suggests that actions
like removing comments from code have little to no causal
impact on cross-entropy or NTP values.

How robust are the causal effect estimations?The
obtained results across refutation tests indicated unstable
causal effects. Specifically, the outcomes for R1, R2, and
R4 did not align closely with the ATEs. This discrepancy
could stem from several factors: 1) a lack of sufficient data
samples, 2) inaccuracies in our causal diagram assumptions
(e.g., confounders, instrumental variables, and effect modi-
fiers), and/or 3) the treatment is inadequate.

Code Documentation Finding FB : Despite observing
strong correlations between the removal of comments
and NTP, we cannot causally interpret code predictions
from inline comments since measured ATEs are not
robust after refutations. This suggests that other hidden
confounders are influencing the estimation of this causal
effect.

10.3 Interpretability Scenario C: Clones Type II

To what extent does SyntacticDifferences intervention
(Clones Type II) affect the predictions of NCMs? In
the SyntacticDifferences intervention for Type II clones, we
observed a positive correlation between Levenshtein “edit”
distance and the difference of cross-entropy values (i.e.,
p(∆Yg|TC)) across RNN1,1024, GRU1,1024, and GPT-26,12.
The correlation coefficients were 0.45, 0.6, and 0.452 for each
model respectively, as detailed in Table 6.
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TABLE 3: Jensen-Shannon Dist., and Pearson Corr. values obtained between Cross-Entropy Yg and Treatments in scenarios
A,B,C,D and F (bold:strong corr.)

SyntacticDifferences
ProgramRepair - TA UnCommenting - TB BigClone2TB - TC BigClone3TB - TD NumberLayers - TF

NCM JS Dist. JS Dist. Pearson Pearson Pearson
RNN1,1024 0.730JS 0.180JS 0.45PR −0.056PR -
GRU1,1024 0.230JS 0.220JS 0.598PR 0.14PR −0.093PR

GPT-26,12 0.670JS 0.250JS 0.452PR −0.14PR −0.485PR

TABLE 4: Average Pearson Corr. of SyntacticDifferences inter-
ventions using all RNNs, GRUs, and GPTs.

SyntacticDifferences
Category Clones Type II - TC Clones Type III - TD

[blocks] 0.12 ± 0.039 0.214 ± 0.107
[exceptions] 0.097 ± 0.068 0.036 ± 0.102
[top] 0.388 ± 0.241 0.037 ± 0.023
[tests] 1.0 ± 0.0 nan ± nan
[declarations] 0.192 ± 0.128 0.161 ± 0.135
[conditionals] 0.078 ± 0.103 0.077 ± 0.144
[loops] 0.183 ± 0.163 0.019 ± 0.094
[operators] 0.316 ± 0.202 0.072 ± 0.05
[datatypes] 0.016 ± 0.083 -0.009 ± 0.064
[extra] 0.163 ± 0.065 0.159 ± 0.14

Conversely, we found weak correlations in NTP scores
across all NCMs (excluding BERT12,12) in the nine categories
analyzed. For instance, Yl was correlated with [oop] tokens
and [operators] with p(Yl[oop]|TC) = 0.388 ± 0.241
and p(Yl[operators]|TC) = 0.316 ± 0.202, as detailed in
Table 4. The high standard deviation observed across the
NCMs in these categories indicates a wide variance in what
the models statistically learned.

The computed causal effects on ∆Yg , using backdoor
criterion, showed an exceptionally high influence of clones
Type II on the cross-entropy, with values of 0.63, 0.87, and
0.56 for RNN1,1024, GRU1,1024, and GPT-26,12. On the other
hand, when we used I[countSubWords] as an instrumental
variable for estimand identification, the observed causal
effects were substantially lower (see 6).

Since most of the ATEs for Yl could not be computed,
using backdoor criterion or the instrumental variable, we
omitted showcasing these results in Table 8. Formulating
continuous interventions was hindered by the non-linear
distribution of the data points. This can be explained due
to the nature of Clone Types II, which oftentimes, maintains
the same functionality while introducing minimal alter-
ations in the structure of the source code. This led to a lower
variability in the computed Levenshtein distances.

How robust are the causal effect estimations? For test-
ing the robustness of the ATEs, we could not compute the
refutation methods Placebo and Remove Subset due to limited
data. However, the other two methods, Random Comm. Cause
and Unobserved Comm. Cause, showed stability, reinforcing
our confidence in the ATEs for global results.

Clones Type II Finding FC : The presence of Clones
Type II impacts (or causally explains) the cross-entropy
on RNN1,1024, GRU1,1024, and GPT-26,12, as obtained
correlations and causal effects suggest an influence of
some interventions in identifiers, literals, types, white
spaces, layout, and comments.

10.4 Interpretability Scenario D: Clones Type III

To what extent does SyntacticDifferences intervention
(Clones Type III) affect the predictions of NCMs?
By contrast, our analysis showed a different pattern for
Type III clones. We detected no strong correlations be-
tween the Levenshtein “edit” distance and the cross-
entropy (i.e., p(∆Yg|TD)) in any of our NCMs. This is
evident from the marginal correlation values for the three
models—RNN1,1024, GRU1,1024, and GPT-26,12: −0.056,
0.14, and −0.14, respectively. Additionally, we found even
lower correlation values in NTP scores (i.e., P (Yl|TD)) across
all NCMs (excluding BERT12,12), as detailed in Table 4. The
highest coefficient is observed for [extraTokens] tokens,
with a value of p(Yl[extraTokens]|TC) = 0.159± 0.14.

In our models, the causal effect on cross-entropy using
the back-door criterion was generally small but showed
interesting variations. For the GPT-26,12 model, this effect
was negative, with p(Yg|do(TD)) ≈ −0.274, whereas, for the
GRU1,1024 model, it was positive at p(Yg|do(TD)) ≈ 0.11.
We observe a tendency to null causal effects when using
I[countsubWords] as instrumental variable to identity the
causal estimand.

Additionally, the causal effect on NTP outcomes
for [blocks] was negligible p(Yl[blocks]|do(TD)) =
2.80E − 05. Unfortunately, most of the ATEs could not be
computed for each keyword category since it was unfea-
sible to fit a linear model due to the shape of the data
(i.e., grouped predictions by syntax categories have similar
values).

How robust are the causal effect estimations? Similar
to the findings with clone type II, testing the robustness
of the ATEs presented challenges. Due to limited data, we
were unable to apply R3 and R4. However, the use of the
other two methods, R1 and R2, demonstrated stability in
our results.

Clones Type III Finding FD : The presence of Clones
Type III does not consistently impact (or causally ex-
plain) the cross-entropy and NTP, as revealed by nega-
tive and positive ATEs obtained across the NCMs under
analysis.

10.5 Interpretability Scenario E: Layers

To what extent does NumberLayers intervention affect
the predictions of NCMs? We observed that Number-
Layers interventions are negatively correlated with cross-
entropy. This trend is evident in the values of p(Yg|TE)
for GRU1,1024 and GPT-26,12 models: −0.093 and −0.485
respectively. This suggests that as the number of lay-
ers increases, the cross-entropy tends to decrease. Con-
versely, we found strong correlations for NTP outcomes
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TABLE 5: Causal Interventions p(Yg|do(T )) of Cross-Entropy across models and datasets.
(background:best effect)

ProgramRepair - TA UnCommenting - TB NumberLayers - TE

NCM RNN1,1024 GRU1,1024 GPT-26,12 RNN1,1024 GRU1,1024 GPT-26,12 GRU1,1024 GPT-26,12
Causal Eff. ATE -0.0003 -2.33E-05 -0.0002 0.0023 2.90E-05 0.0026 -0.0058 -0.0124
Random Comm. Cause -0.0003 -2.45E-05 -0.0002 0.0011 -0.0004 0.0015 -0.0058 -0.0124
Unobserved Comm. Cause -0.0003 1.54E-05 -0.0001 0.0002 -0.0001 0.0007 -0.0050 -0.0108
Placebo 0.0001 1.44E-05 0.0001 0.0006 -1.33E-05 0.0006 -0.0001 -2.77E-05
Remove Subset -0.0003 -3.68E-05 -0.0002 0.0012 -0.0003 0.0016 -0.0058 -0.0124

TABLE 6: Causal Interventions p(Yg|do(T )) of Cross-Entropy across Clone datasets.
(background:best effect)

SyntacticDifferences
Backdoor Criterion Instrumental Variable I[countSubWords]

BigClone2TB - TC BigClone3TB - TD BigClone2TB - TC BigClone3TB - TD

NCM RNN1,1024 GRU1,1024 GPT-26,12 RNN1,1024 GRU1,1024 GPT-26,12 RNN1,1024 GRU1,1024 GPT-26,12 RNN1,1024 GRU1,1024 GPT-26,12

Causal Eff. ATE 0.6288 0.8713 0.5635 -0.1042 0.1085 -0.2739 0.00076 0.0018 0.0017 -0.18 0.72 -0.25
Random Comm. Cause 0.6297 0.8720 0.5651 -0.1043 0.1084 -0.2741 0.00076 0.0018 0.0017 -0.18 0.72 -0.25
Unobserved Comm. Cause 0.2950 0.4257 0.2737 -0.0800 0.0830 -0.2168 0.00077 0.0018 0.0018 -0.18 0.72 -0.26

TABLE 7: NTP Association Results p(Yl|T ) are Jensen-Shannon Dist. Causal Effects are ATEs p(Yl|do(T ))
(bold:strong corr., background:best effect)

ProgramRepair - TA UnCommenting - TB

NCM GRU1,1024 GPT-26,12 GRU1,1024 GPT-26,12

Categories Association
JS Dist.

Causal Eff.
ATE R1 Association

JS Dist.
Causal Eff.

ATE R1 Association
JS Dist.

Causal Eff.
ATE R1 Association

JS Dist.
Causal Eff.

ATE R1

[blocks] 0.374 -0.0005 -0.00052 0.794 -0.0001 -0.000115 0.867 0.0003 0.000488 0.948 -0.0006 -0.000352
[exceptions] 0.893 -1.00E-06 1.00E-06 0.349 -1.20E-05 -1.10E-05 0.835 -4.80E-05 -4.80E-05 0.909 -1.20E-05 -4.20E-05
[oop] 0.952 2.00E-05 1.20E-05 0.942 -1.30E-05 -9.00E-06 0.930 -7.00E-06 -4.70E-05 0.910 -4.90E-05 -2.60E-05
[tests] 0.419 9.00E-06 8.00E-06 0.003 1.00E-05 9.00E-06 0.405 1.90E-05 4.00E-05 0.276 -1.70E-05 2.00E-06
[declarations] 0.929 4.00E-06 4.00E-06 0.946 1.00E-06 1.00E-06 0.939 -2.10E-05 -0.000145 0.852 4.60E-05 6.00E-05
[conditionals] 0.655 -3.90E-05 -3.90E-05 0.824 -8.00E-06 -1.00E-05 0.889 8.00E-06 7.40E-05 0.179 -0.000596 -0.000603
[loops] 0.870 -2.00E-06 -3.00E-06 0.677 2.10E-05 1.90E-05 0.973 -1.70E-05 1.50E-05 0.915 1.80E-05 3.00E-06
[operators] 0.877 -6.00E-06 -5.00E-06 0.961 1.50E-05 1.10E-05 0.722 0.0002 0.000345 0.002 0.0079 0.008991
[datatypes] 0.747 -1.00E-05 -1.00E-05 0.832 9.00E-06 1.00E-05 0.251 0.0003 0.000328 0.568 0.0002 0.000111
[extra] 0.831 2.60E-05 2.00E-05 0.879 5.70E-05 6.00E-05 0.632 0.0014 0.001016 0.474 0.0024 0.002004

TABLE 8: NTP Association Results p(Yl|T ) are Pearson Corr. Causal Effects are ATEs p(Yl|do(T )). We use − to indicate
undetermined causal effects due to an unfeasible linear model.(bold:strong corr., background:best effect)

SyntacticDifferences - TD NumberLayers - TE

NCM GRU1,1024 GPT-26,12 GRU1,1024 GPT-26,12

Categories Association
Pearson

Causal Eff.
ATE R1 Association

Pearson
Causal Eff.

ATE R1 Association
Pearson

Causal Eff.
ATE R1 Association

Pearson
Causal Eff.

ATE R1

[blocks] 0.026 -1.50E-05 -1.50E-05 0.186 -2.80E-05 -2.80E-05 -0.102 -0.010559 -0.010559 0.725 0.018004 0.018004
[exceptions] 0.017 - - 0.002 - - -0.070 - - 0.349 - -
[oop] 0.049 - - 0.012 - - 0.019 - - 0.255 - -
[tests] - - - - - - -0.130 - - 0.174 - -
[declarations] 0.375 - - 0.034 - - -0.257 - - 0.405 - -
[conditionals] 0.274 - - -0.087 - - -0.009 - - 0.682 - -
[loops] 0.024 - - 0.111 - - 0.042 - - 0.275 - -
[operators] 0.099 - - 0.062 - - -0.032 - - 0.389 - -
[datatypes] 0.037 - - -0.069 - - 0.002 - - 0.275 - -
[extra] 0.192 -3.00E-05 -3.00E-05 -0.017 5.40E-05 5.40E-05 0.092 0.014588 0.014588 0.606 0.014525 0.014525

across keyword-based categories (p(Yl|TE)): the categories
[blocks], [conditionals], and [extraTokens] showed
notably high correlations, with values of 0.725, 0.682, and
0.606 respectively.

Nonetheless, we detected confounding bias in al-
most all categories of our intervention analysis for
NTP outcomes. This was indicated by the extremely
low ATEs, such as p(Y[blocks]|do(TE)) = 0.018 and
p(Yl[extraTokens]|do(TE)) = 0.0145. A plausible expla-
nation for this phenomenon can be traced to SE metric
confounders. For instance, the size of the methods appears
to have a significant influence on both cross entropy and
NTP results across the NCMs.

How robust are the causal effect estimations? To verify
the sensitivity of the ATEs for Yg , we estimated R1, R2,
R3, and R4. The results for R1, R2, and R4 aligned closely
with the ATEs we found for GRU1,1024 and GPT-26,12. Fur-
thermore, R3 results were nearly zero. Thus, the estimated
causal effects were robust. Similarly, R1 values for Yl results
were close to the obtained ATEs, reinforcing the robustness
of our findings.

Layers Finding FE : Although it is observed strong
correlations between the number of layers and NTP,
which might suggest a causal interpretation of code
predictions, the reported ATEs close to zero demonstrate
the presence of confounding bias.

10.6 Interpretability Scenario F : Units

To what extent does NumberUnits intervention affect the
predictions of NCMs?

In a similar vein, NumberUnits interventions tend to be
negatively correlated with the cross-entropy. The number of
units showed a negative effect with the GRU1,1024 model,
with p(Yg|TF ) ≈ −0.084.

Likewise, we found negative values for P (Yl|TF ), sug-
gesting that increasing the number of units negatively im-
pacts the NTP outcomes across all keyword-based cate-
gories. However, these values were relatively low, mak-
ing it challenging to draw definitive conclusions. For
example, the highest negative correlation observed was
P (Yl[exceptions]|TF ) ≈ −0.253 for NTP.
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TABLE 9: Masking AST Node Types. Distance Association Results p(Yd|TG) are Pearson Corr and Causal Effects are ATEs
p(Yd|do(TG)). (bold:strong corr., background:best effect)

ASTNodeTypes - TG

Distance metric Yd <jaccard> <levenshtein> <sorensen-dice>

Categories Association
assoPR

Causal Eff.
ATE R4 Association

assoPR
Causal Eff.

ATE R4 Association
assoPR

Causal Eff.
ATE R4

[boolean operator] -0.3294 -0.1508 0.0052 -0.2845 -0.1363 0.0147 -0.2809 -0.0947 0.0009
[comparison operator] -0.2648 -0.0272 -0.0066 -0.2071 -0.0183 -0.0031 -0.2228 -0.0154 -0.0019
[for in clause] -0.4232 -0.0532 -0.0004 -0.3724 -0.0449 0.0013 -0.3568 -0.0291 0.0002
[for statement] -0.4006 -0.1011 0.0341 -0.2525 -0.0411 -0.0124 -0.3949 -0.0832 -0.0037
[identifier] 0.0024 -0.0752 0.0230 -0.0375 -0.0734 -0.0017 0.0243 -0.0387 0.0068
[if clause] -0.3904 -0.0407 0.0002 -0.3666 -0.0365 5.9143 -0.3395 -0.0220 0.0011
[if statement] -0.3667 -0.1211 -0.0328 -0.2409 -0.0933 -0.0130 -0.3624 -0.0954 -0.0131
[parameters] -0.3287 -0.0481 0.0071 -0.3230 -0.0457 -0.0104 -0.2951 -0.0294 0.0032
[return statement] -0.2450 -0.1211 0.0062 -0.2250 -0.1127 -0.0158 -0.2261 -0.0756 -0.0083
[string] -0.3651 -0.1683 -0.0041 -0.2961 -0.1450 0.0274 -0.3199 -0.1161 0.0036
[while statement] -0.2677 -0.0964 -0.0197 -0.1383 -0.0091 -0.0027 -0.2979 0.0113 0.9199

Negative correlations observed for the cross-entropy
were consistent with the corresponding negative ATEs es-
timated. However, the negative correlation observed for
[blocks] was not in fact causal: P (Yl[blocks]|do(TF )) ≈
-5E-06. Similarly, for the other categories, the ATEs were so
minimal that they can be considered as causal null effects.

We omit the results of NumberUnits intervention from
Tables 5, 6, 7 and 8, since the causal effect estimates for
Yg using RNN1,1024 and GPT-26,12, as well as most Yl

categories, were either null or could not be determined due
to the shape of the data (see online Appendix in [35]).

How robust are the causal effect estimations? Just as
with NumberLayers, we conducted robustness tests R1, R2,
R3, and R4 for Yg . The outcomes of R1, R2, and R4 closely
matched the ATEs we observed in the GRU1,1024 model.
Furthermore, the R3 values were nearly zero, reinforcing
the robustness of the estimated causal effects. Similarly,
the R1 values for Yl are also closely aligned with the
corresponding ATEs, further confirming the robustness of
the results.

Units Finding FF : Intervening the number of units
tends to be negatively correlated with the cross-entropy;
in fact, measured causal effects on NTP are null sug-
gesting that this intervention does not explain code
predictions.

10.7 Interpretability Scenario G: Masking AST Nodes

To what extent does ASTNodeTypes intervention affect the
predictions of NCMs? We computed the distance outcomes
Yd for some AST node types, as detailed in Sec. 9.4.2.
However, in Table 9, we specifically focus on a subset of both
terminal and non-terminal nodes. This subset was chosen
for its familiarity with developers and includes elements
such as conditional statements, identifiers, and repetition
statements. The intervention demonstrated strong negative
correlations between AST node types and the distance out-
comes Yd, consistent across all distance metrics. For exam-
ple, P (Yd<jaccard>|TG[for_in_clause]) = −0.4232,
P (Yd<levenshtein>|TG[for_in_clause]) = −0.3724,
and P (Yd<sorensen-dice>|TG[for_in_clause]) =
−0.3568.

The correlation results are further supported by the
estimated ATEs P (Yd|do(TG[node])), demonstrating no
confounding bias. Although the causal effects are lower
than the estimated correlations, they reveal the presence of
negative causation.

How robust are the causal effect estimations? We
calculated R1, and we obtained the same values for ATEs
indicating that the causal effects are robust. Furthermore,
we also calculated R4, and the values were close to zero.

Masking AST Nodes Finding FG: The intervention of
masking random tokens has more impact on code pre-
dictions than masking grammar-based categories. This
suggests that BERT12,12 does not entirely capture the
nodes’ information of Abstract Syntax Trees (ASTs).

11 EXPLORATORY CAUSAL ANALYSES

This section introduces supplementary analyses to validate
the assumptions made during the formulation of the SCMs
in our interpretability scenarios, thereby facilitating the
causal discovery of our graphs. We exhaustively explored the
datasets of interventions to support the encoding process
from domain knowledge. We assess the validity of the
causal graph encoding by exploring correlations among SE
confounders (see Sec. 5.3), potential outcomes, and inter-
ventions. In other words, by finding statistical dependencies
among models’ variables, we provide sufficient evidence for
creating SCMs.

It is worth clarifying that we employ the term covariates
to refer to a general set of Software Engineering metrics that
describe code. Conversely, the term confounders refers to a
proven subset of covariates that influence treatments and
outcomes. Therefore, some covariates might or might not be
confounders. Because this exploration is usually conducted
before confounder identification, preliminary correlational
analyses are performed with a rudimentary list of SE co-
variates.

Moreover, we introduce a descriptive error analysis of
the syntax clustering categories in Sec. 9.4. Specifically, we
measured the average prediction by keyword-based aggre-
gations for each Neural Code Model baseline. The error
analysis aims to explore the feasibility of the proposed
clustering function, which is fundamental for defining in-
terpretable outputs across the docode pipeline.

11.1 Statistical dependencies between confounders
and potential outcomes Z⃝ → Y⃝
The accuracy of NCMs is significantly influenced by the
context window size as these architectures rely heavily
on contextual information to predict the next token [96].
Motivated by the previous premise, we found a strong
correlation between the number of words Z[countSubwords]
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TABLE 10: Most correlated covariates influencing cross-entropy results (i.e., Yg) and NTP scores (i.e., Yl) across NCMs and
datasets (bold:strong corr.)

Cross Entropy Loss Next Token Prediction

Dataset Model
Correlation with

[z count subwords]
Max correlation excluding

[z count subwords]
Max Correlation with
[z count subwords]

Max correlation excluding
[z count subwords]

ρ Covariate [Z] ρ Potential Outcome [Yl] ρ Potential Outcome [Yl], Covariate [Z] ρ
BuggyTB RNN1,1024 0.87 Z[loc] 0.25 Y[loops] 0.1 Y[blocks], Z[loc] -0.417
BuggyTB GRU1,1024 0.36 Z[parenthesizedExpsQty] -0.47 Y[blocks] -0.072 Y[blocks], Z[parenthesizedExpsQty] 0.682
BuggyTB GPT-26,12 0.88 Z[loc] 0.27 Y[tests] 0.065 Y[blocks], Z[parenthesizedExpsQty] 0.476
CommentsTB RNN1,1024 0.41 Z[uniqueWordsQty] 0.54 Y[tests] 0.197 Y[tests], Z[uniqueWordsQty] 0.3
CommentsTB GRU1,1024 0.15 Z[maxNestedBlocksQty] 0.35 Y[operators] 0.082 Y[blocks], Z[parenthesizedExpsQty] 0.152
CommentsTB GPT-26,12 0.39 Z[uniqueWordsQty] 0.52 Y[extraTokens] 0.059 Y[declarations], ZstaticMethodsQty -0.245

and the Cross-Entropy (ρ = 0.87) for the RNN1,1024 using
the BuggyTB dataset. A similar trend was observed using
GPT-26,12 with a correlation value of ρ = 0.88. For other
architectures with different configurations (see Table 10),
the correlation still exists below 0.5, indicating that while
there is some evidence of dependencies, the impact of other
potential covariates could be stronger. For instance, in the
case of the CommentsTB dataset, when using both RNN1,1024

and GPT-26,12, the most significant covariate impacting per-
formance was the number of unique words Z[uniqueWordsQty],
with correlation coefficients of ρ = 0.54 and ρ = 0.52,
respectively.

More broadly, Table 10 showcases the Pearson corre-
lation values (ρ) after exploring the dependencies among
proposed covariates (see Sec. 5.3), the BuggyTB and Com-
mentsTB. These testbeds were used for the ProgramRepair
intervention in scenario A and the SyntacticDifferences inter-
vention in scenario B.

Similarly, we computed correlation coefficients between
our keyword-based categories and potential covariates. Ta-
ble 10 reveals that the NTP scores grouped by categories
are not significantly correlated with Z[countSubwords], as evi-
denced by the low maximum coefficient values. Conversely,
Z[paranthesizedExpsQty] seems to be appreciably correlated
with the prediction of [blocks] in the BuggyTB dataset using
GRU1,1024 (ρ = 0.682), and GPT-26,12 (ρ = 0.476). These
findings seem to correspond with the grammar rules of Java
since the parenthesized expressions are often used within
blocks of code.

Finding Z⃝ → Y⃝ : The statistical dependency between
covariates and outcomes varies across different NCMs.
The Cross-Entropy is highly correlated to the number
of subwords for the BuggyTB dataset. In contrast, the
CommentsTB dataset exhibits lower correlation values.
Additionally, NTP scores for blocks tokens show a
strong dependency on the number of parenthesized
expressions for both binary treatments.

11.2 Statistical dependencies between confounders
and interventions Z⃝ → T⃝
In this analysis, we delve into statistical dependencies be-
tween covariates Z and interventions. Specifically, Program-
Repair, UnCommenting, and SyntacticDifferences (Clones Type
II and III) interventions. We assess and compare the distribu-
tions of covariates Z across the treatment and control groups
within each dataset using the Jensen-Shannon distance.
Measured divergence and distance values do not exhibit
substantial evidence of a significant separation between

the number of tokens (Z[countSubwords]) in the control and
treatment distributions. Furthermore, all covariate distribu-
tions follow a similar tendency of lower distances between
treatment and control groups (see Table 11).

TABLE 11: Differences between Z[countSubwords] Treatment
and Control groups across multiple datasets using Jensen-
Shannon divergences and distances.

Control vs Treatment
Dataset ∆JS Divergence ∆JS distance
CommentsTB 0.005 0.07
BuggyTB 0.004 0.06
BigClone2TB 0.004 0.06
BigClone3TB 0.002 0.04

Findings Z⃝ → T⃝: A subtle separation between control
and treatment distributions exists when segregating by
any SE covariate Z.

11.3 Code Syntax Clustering Error Analysis

We conducted an exploratory analysis to evaluate and
describe the behavior of NCMs predictions grouped by
keyword-based categories. These categories are detailed in
Fig. 11. Specifically, we computed the normalized NTP
values of tokens for each sample in the dataset BuggyTB,
used in the ProgramRepair intervention for scenario A. Sub-
sequently, we clustered token-predicted probabilities for
each of the categories. The exploration aims to unveil
the average prediction error for a set of outcomes Yl for
three NCMs: GPT-26,12, RNN1,1024, and GRU1,1024. An error
is any keyword-based category whose average predicted
probability is lower than 0.5.

This exploration reveals that each keyword-based cat-
egory follows a similar error tendency regardless of the
NCM type as illustrated in Fig. 13. For example, the [blocks]
category in GPT-26,12 exhibited the highest median value
at 0.09 followed by [extraTokens] and [tests] with a value
of 0.06 and 0.01 respectively. Conversely, [operators] has
the lowest median value, and the interquartile range (iqr)
for [extraTokens] is narrower than [blocks]. Similar distri-
butions are observed in RNN1,1024 and GRU1,1024, where
[blocks], [tests] and [extraTokens] are among the categories
with better prediction values. Moreover, a peculiar behavior
is visible in the [OOP ] category for GRU1,1024, where the
NTP scores are slightly higher, as indicated by the third
quartile approaching 0.05. However, for half of the data
points, the values remain close to the median, which is
nearly zero, as highlighted by the second quartile.
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Fig. 13: Descriptive Error Analysis. Keyword-Based Categories probabilities (Normalized Yl - NTP) for GPT-26,12 RNN1,1024

and GRU1,1024 on the BuggyTB dataset. Higher values indicate less erroneous predictions.

More broadly, the highest normalized NTP value ob-
served among the categories falls below 0.5, which suggests
an absence of empirical evidence that supports a signif-
icant statistical understanding related to these categories.
Nonetheless, our error analysis entails a statistical technique
demonstrating the feasibility of measuring code predictions
by syntax categories.

We also investigated the distribution of tokens by cat-
egory within each Java dataset associated with T[data] in-
terventions: BuggyTB, CommentsTB, BigClone2TB, and Big-
Clone3TB. Our findings, depicted in Fig. 14, reveal that
tokens categorized under [blocks] are the most frequent
across four datasets. On the other hand, tokens associated
with [tests] are consistently the least frequent.

Error Analysis Finding: GPT-26,12, RNN1,1024 and
GRU1,1024 produce erroneous Yl predictions (i.e., nor-
malized NTP < 0.5) for all the syntax categories in the
BuggyTB dataset.

12 DISCUSSION

The ultimate goal of interpretability in Deep Learning for
Software Engineering is to generate explanations of NCMs’
predictions. We achieved this goal by formulating causal
interpretations of such predictions, quantified through per-
formance values (e.g., Cross-Entropy, Next Token Predic-
tion, or Distance Metrics). We demonstrate that regardless
of conventional evaluations of NCMs (e.g., BLEU, Accu-
racy, Perplexity), producing causal interpretations is vital
for model understanding. For example, even if a model
demonstrates a deficient BLEU score when its outputs are
evaluated against the ground truth for a downstream task,
we can still generate causal explanations of those outputs
by defining an appropriate SCM.

Our interpretability method, docode, generates causal
explanations (or interpretations) based on the idea of es-
timating the effect of interventions. These interventions take
place on the data inputs or parameters that configure NCMs.
Furthermore, estimating their causal effects is grounded in
Pearl’s theory of causation [29], [37], [76].

Below, we pose three aspects of the discussion: 1) some
general insights from the case study, 2) a brief explanation
of the guidelines to use docode in practice, and 3) a list of

challenges and opportunities practitioners might face when
adapting docode for their analyses.

12.1 Insights From The Case Study

In docode, we examine model semantics by categorizing code
tokens into different conceptual categories and examining
both raw model performance according to these groups,
and the causal relationships of these categories across treat-
ments. Syntax can be measured by how often the model pre-
dicts a given token that is syntactically correct. While we did
not directly report syntactic correctness, in our observations,
our studied models rarely made syntactic errors. However,
the local prediction performance of tokens across different
semantic categories tends to vary quite a bit. This is partially
explained by the prevalence of different token categories in
the training set, but further work on model architectures
that improve the performance of underperforming token
groups could help to advance research on NCMs.

For each NCM, a strong correlation across testbeds for
a given code token category means that we observe the
prediction performance to have changed significantly across
the SE-based treatments (e.g., commented/uncommented
code). This change could correspond to prediction perfor-
mance for these token categories increasing or decreasing.
However, because our approach uses a causal graph (i.e.,
Structural Causal Model), we can determine the amount
of causal effect between the correlated variables based on
covariates, and determine whether or not they are spurious
correlations, due to confounding bias Fig. 4, or true causal
relationships caused by the change in treatment. Based on
our experiments, NCMs seem to have a stronger statistical
understanding of syntax and a more limited understanding
of semantics, according to our definition of semantics. How-
ever, once we started exploring Masking Language Models
such as BERT-like code models, we found the opposite: AST
node tokens are not better predicted than a random and,
therefore, unstructured set of tokens.

As the results suggest, our NCMs under study learn
to predict tokens related to code blocks (e.g., brackets,
parentheses, semicolons) more effectively than most other
code token types (e.g., loops, conditionals, datatypes), we
found that our NCMs are sensitive to seemingly subtle changes
in code syntax, reinforcing previous studies concluding the
same [65], and our models are only marginally impacted by
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Fig. 14: Frequency analysis of keyword-based categories by NCM.

the presence of comments and bugs, which challenges find-
ings from previous work [97]. Consequently, practitioners
can identify which categories of code tokens were important
in the model’s decision-making process. In other words,
docode supports the identification of which 1) tokens, 2) lay-
ers, or 3) hyperparameters are impacting code predictions,
which we describe below:

Tokens. In Sec. 9.4, we propose a syntax clustering func-
tion for grouping the NCMs’ code predictions into more
understandable syntax categories (i.e., keyword-based and
AST/Grammar-based). Although the syntax clustering for-
malism was originally omitted from the docode pipeline, we
realized during the experimentation phase that a clustering
strategy is vital as practitioners must make sense of gener-
ated subwords or fine-grained levels of code.

Our syntax clustering formalism stems from the need to
make fine-grained code predictions more understandable to
practitioners. As such, our approach enables determining
which token categories a model can learn (or not) across
different application settings (e.g., SE-based interventions).
For example, given the normalized NTP values computed
for scenario A, as depicted in Fig. 13, one could conclude
that block-category tokens are more effectively predicted by
GPT-26,12, RNN1,1024 and GRU1,1024. Yet such NCMs typ-
ically struggled to predict operator-category tokens. More
importantly, we can observe causal relationships related to
the importance of code tokens in decision-making changes
across treatments (i.e., data interventions or model parame-
ters alterations).

Layers. Our method supports interventions on the num-
ber of layers for a given architecture. Therefore, docode can
identify if the layers, as a hyperparameter, influence the
performance. Nonetheless, identifying specific layers to in-
fluence the performance would require going beyond the
causal interpretability scope and exploring the inner mech-
anisms of the neural network [30].

Hyperparemeters. docode supports the identification of
hyperparameters that influence neural network perfor-
mance by extending SE-based intervention definitions at the
model level (see Sec. 5.1). Our case study supports two types
of parameters: NumberOfLayers and NumberOfUnits.

About causal graph validity. In our exploratory analy-
ses, we conducted experiments accounting for other types
of variables in the SCM beyond treatments, outcomes, and

confounders. For example, we collected information on
software-based effect modifiers (i.e., variables affecting only
outputs) and instrumental variables (i.e., variables affect-
ing only treatments). Particularly, for semantic preserving
treatments, we made subword counting an instrumental vari-
able instead of a confounder. We found that these graph
configurations were not robust under refutation methods.
However, further research is required to construct proper
tools to identify instrumental variables and modifiers.

About Causal Transportability. Although we concen-
trated on datasets and keyword-based categories for Java
(i.e., scenarios A − F ) in our exploratory analyses, the
assumptions we made to build the SCMs still hold for sce-
nario G. This transportability of assumptions across similar
domains have been researched in Causal Inference [98]. As
such, the causal information learned from our experiments
can be reused in analogous settings if there is homogene-
ity in the effect modifiers. Transportability allows us to
maintain our assumptions across scenarios, as long as the
underlying structure of the causal graph remains consistent,
keeping the same type of treatments, potential outcomes,
and confounding variables.

12.2 docode in practice
While it may appear that NCMs have begun to achieve
promising performance, it is insufficient to only generate
code predictions (i.e., the what of NCMs’ decision). This
current status quo, at best, provides an incomplete picture
of the limitations and caveats of NCMs for code. Given
the potential impact and consequence of these models and
their resulting applications, there is a clear need to strive
for a more complete understanding of how they function in
practice. As such, we must push to understand how NCMs
arrive at their predictions (i.e., the why of NCMs’ decision)
as shown in our proposed Structural Causal Models for
each scenario. With the design and results of interpretability
scenarios, we demonstrate that docode comprises a causal
explanation method that aims to make Deep Learning for
Software Engineering NCMs, and their decision-making
process, understandable to practitioners.

To that end, we have created a checklist that summarizes
the general process researchers can use to apply causal
interpretability to Neural Code Models 15. For instance,
one of the practical applications of docode is facilitating the
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debugging process of NCMs. By debugging a NCM we
refer to the tasks of reducing the amount of confounding
bias between SE-interventions and code predictions. Our
proposed guidelines below help to design a pipeline in
which docode facilitates the detection of this bias for a given
setting.

As shown in Fig. 15, the proposed checklist comprises
five guidelines, which correspond to both the approach
pipeline (see Sec. 4) and the definition of a syntax clustering
function (see Sec. 9.4). In the first guideline, a researcher
determines what would be understandable to the target
audience and constructs a syntax clustering function. This
clustering function translates the model’s fine-grained code
predictions to the target audience. Once this clustering is
built, the researcher can move on to the second guideline
that resolves around defining a Structural Causal Model
(SCM). It is important to have this step after defining the
clustering function so the interventions, outcomes, and con-
founders can be properly modeled. With the SCM at hand,
in the third guideline, the researcher can now collect the
data holding the observable SE-based interventions (e.g.,
buggy vs. fixed code), used to estimate the causal effect
of the treatment. Then, in the fourth guideline, existing
popular libraries (e.g., doWhy) can be used to estimate the
causal effect. Lastly, in the fifth guideline, the researcher
must check the original assumptions (i.e., the confounders
and SCM) using refutation methods. With this checklist,
we hope to ease the complexity around causal analysis for
researchers.

12.3 Challenges & Future Work

In this section, we list some challenges CHs that prac-
titioners might face when adapting our method to their
interpretability analyses.

CH1: Proposing a new syntax clustering criterion.
Our proposed categories, designed to group fine-grained
code predictions into more understandable categories, are
based entirely on definitions and guidelines extracted from
Programming Languages (i.e., Java and Python). This might
represent a limitation if a practitioner requires a more in-
depth analysis of the syntax interactions. docode introduces a
clustering formalism that can be extended and reformulated
to specific interpretability needs. Different clustering func-
tions give rise to different challenges. For instance, one BPE
token may simultaneously belong to multiple categories
and span across different AST nodes. Future research needs
to address the following questions: How do practitioners
deal with this overlapping? Do they enforce a singular
classification for the BPE token, in a similar way to our
keyword-based clustering? or do they allow for some sta-
tistically controlled overlaps as we did in AST/Grammar-
based clustering?

CH2: Collecting data for formulating SE-based inter-
ventions. docode was not implemented to perform causal
discovery, unveiling the causes of code predictions directly
from observations. In fact, docode is restricted to estimate
causal inference measures (e.g., correlations, ATEs, CATEs)
based on hypotheses and assumptions, from domain knowl-
edge, embedded in Structural Causal Models. Therefore,
users of docode must define and formulate specific SE-based

interventions depending on the available data, and also
provide the possible confounding factors that can alter the
effect on code predictions. Future work can be oriented to
facilitate the definition of the Structural Causal Model into
a more automatic approach. Such an automatic approach
should include recent techniques on causal discovery.

CH3: Integrating docode in Deep Learning for Software
Engineering life-cycle. To use docode in practical settings,
we must propose strategies for integrating interpretability
approaches into Software Engineering pipelines that incor-
porate Deep Learning models. This will not only improve
the reliability of the system but also facilitate the monitoring
of critical information.

CH4: Creating the Structural Causal Model. The qual-
ity of the causal explanations generated by docode heavily
relies on the structure of the causal graph. Consequently,
employing docode in practical scenarios would require statis-
tical evidence supporting each SCM’s component. Although
we provide evidence supporting these components for the
proposed scenarios, it may not hold for every new setting.
For instance, the confounders and code syntax clustering
introduced in our study might differ for functional pro-
gramming languages. Building a sound SCM would entail
automatically identifying potential confounders and formu-
lating assumptions from a rigorous causal discovery process
not covered in our pipeline.

In summary, our interpretability method docode is based
on the idea of outlining causal queries, given a SCM de-
fined from the domain knowledge. These causal queries are
obtained by estimating an interventional distribution, where
the potential outcome is generally a prediction performance
value of the Neural Code Model under study. Furthermore,
the interventions are a set of software-based properties that
help us construct explanations about the generative model.
docode has been implemented in an open-source library,
which is available in our repository [35].

13 CONCLUSION
We presented docode, an interpretability method for under-
standing NCMs for code. docode combines rigorous statis-
tical instruments and causal inference theory to give rise
to contextualized SE explanations of NCMs using Structural
Causal Models (SCMs). SCMs provide a more robust and in-
terpretable framework for modeling complex systems such
as Neural Code Models in software engineering. SCMs can
help to better understand the underlying mechanisms and
causal relationships between different variables, which can
improve the accuracy and generalizability of deep learning
models. In addition, SCMs can provide a more transparent
and explainable approach to Deep Learning for Software
Engineering, allowing for a better understanding of the
decision-making process of the model and facilitating more
effective detection of confounding bias and error analysis.
Additionally, we also carried out a case study evaluation
using docode on popular NCMs, namely, RNNs, GRUs,
and Transformers, to interpret code predictions. docode ex-
poses erroneous syntax-based categories (e.g., conditionals,
or loops) by examining Average Treatment Effects and refu-
tation methods. We hope our research opens the field for
posterior empirical analysis in interpretability to empower
researchers with statistical and causal inference methods.
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Applying Causal Interpretability for Neural Code Models
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Luckily there are popular libraries such as doWhy and PyMC that
have APIs for helping with defining SCMs, identifying/estimating
causal effects, and computing refutation methods. Typically,
Propensity Score Matching is employed for binary treatments and
Linear Regressions for numerical treatments. 

What are the Syntax-based Categories that will be useful to the target audience to understand?
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Determine a syntax clustering function that links categories with Neural Code Model predictions.
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How do you interpret the "Average Treatment Effect" (ATE)
estimated? Bear in mind that the causal effect values will be in the
same units as your potential outcomes. Similarly to correlation,
ATEs can be estimated positively or negatively.

For computing the causal effect on potential outcomes, you
must collect observable data that represent the SE-based
intervention (treatment) you wish to compute. Neural
code testbeds can be binary (fixed vs. buggy code) or
numerical (number of layers).

What is the causal effect you wish to measure and the
assumed directionality of causality? Additionally, ensure the
causal effect you wish to measure can be identified.
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Determine and measure all potential confounders that might
influence both your treatment and potential outcome.

This is one of the most labor-intensive tasks as ensuring the
populations (testbeds) representing the different interventions
are statistically significant. While controlling for confounders
via the SCM helps remove confounding bias explanations, not
having representative populations can still invalidate results.

How do we assess that the estimated ATEs are statistically robust?
How good are the assumptions made in your Structural Causal
Model? Evaluating causal effects consists of computing refutation
methods (i.e., adding an unobserved covariate, placebo, and
removing a random subset).

5

When selecting which refutation you will run, make sure they work
with the types of data that represents your causal variables (e.g.,
nominal, categorical, or binary). The interpretation of the refutation
varies depending on the method. For instance, certain method
values should be close to zero or close to the estimated causal
effect.C
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A Checklist

What are the causal variables of your SCM? Define SE
counterfactual interventions (or treatments), Potential
Outcomes, and Common Causes (or covariates). Use
exploratory causal analyses to support qualitative encoding
based on domain knowledge. 

ATEs are estimated from colleted observable data or testbeds.

Fig. 15: Five Guidelines for Applying Causal Interpretability to Neural Code Models.
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