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ABSTRACT: The CACHE challenges are a series of prospective benchmarking exercises to evaluate progress in the field of
computational hit-finding. Here we report the results of the inaugural CACHE challenge in which 23 computational teams each
selected up to 100 commercially available compounds that they predicted would bind to the WDR domain of the Parkinson’s disease
target LRRK2, a domain with no known ligand and only an apo structure in the PDB. The lack of known binding data and
presumably low druggability of the target is a challenge to computational hit finding methods. Of the 1955 molecules predicted by
participants in Round 1 of the challenge, 73 were found to bind to LRRK2 in an SPR assay with a KD lower than 150 μM. These 73
continued...
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molecules were advanced to the Round 2 hit expansion phase, where computational teams each selected up to 50 analogs. Binding
was observed in two orthogonal assays for seven chemically diverse series, with affinities ranging from 18 to 140 μM. The seven
successful computational workflows varied in their screening strategies and techniques. Three used molecular dynamics to produce a
conformational ensemble of the targeted site, three included a fragment docking step, three implemented a generative design strategy
and five used one or more deep learning steps. CACHE #1 reflects a highly exploratory phase in computational drug design where
participants adopted strikingly diverging screening strategies. Machine learning-accelerated methods achieved similar results to brute
force (e.g., exhaustive) docking. First-in-class, experimentally confirmed compounds were rare and weakly potent, indicating that
recent advances are not sufficient to effectively address challenging targets.

■ INTRODUCTION
The Critical Assessment of Computational Hit-finding Experi-
ments (CACHE) Challenges are a triannual series of
prospective benchmarking exercises. In the first round of each
challenge, computational chemistry experts are invited to select
up to 100 compounds from commercial libraries that they
predict bind to a predefined target. Compounds are purchased
and binding to the target protein is tested experimentally.
Compounds of interest are then advanced to Round 2, a hit
expansion round where participants select up to 50 follow-up
molecules for experimental testing. Based on both rounds, an
independent committee composed of industry experts assesses
the validity of the biophysical activity data of each series, the
drug-likeness of the validated hits, and their suitability as starting
points for hit-to-lead optimization. Both the structures and
bioactivity data serve to identify the best-performing computa-
tional methods, after which all data are publicly released on
https://cache-challenge.org/. The goal of CACHE is to provide
an objective and transparent forum where a diverse array of
virtual screening workflows are compared against the same
protein target and evaluated using the same experimental assays
and platform.1 Unlike other benchmarking challenges such as
CSAR, D3R, SAMPL or CELPP, CACHE challenges are
prospective in that predictions are made before experimental
data are generated.2−5

The first CACHE challenge focused on leucine-rich repeat
kinase 2 (LRRK2), the most mutated protein in familial
Parkinson’s disease (PD). Mutations in the kinase domain of
LRRK2 can increase its activity, leading to pathogenic hallmarks
associated with PD.6−8While LRRK2 kinase activity has been an
active area of drug discovery, the first-generation LRRK2 kinase
inhibitors have not shown the expected therapeutic benefit. This
may be due to LRRK2’s scaffolding function9 or the distinct
conformational states stabilized by Type I and Type II
inhibitors.10

An alternative and overlooked strategy to inhibit pathogenic
LRRK2 is to pharmacologically target its WD40 repeat (WDR)
domain (LRRK2-WDR), which is juxtaposed to the kinase
domain11 but has no clear function or known interactor (Figure
1). WDR domains are typically protein interaction hubs, a
number of which have been linked to disease and have been
identified as druggable targets.12,13 Despite their canonical
donut-like structure, residues lining the central cavity of WDR
domains are not conserved, leading to high ligand selectivity. In
the case of LRRK2, the WDR domain may be important for
recruiting binding partners or for binding with tubulin.
The WDR domain is also relevant to PD pathogenesis. A

disease-linkedmutation in this domain located at the interface of
the LRRK2-WDR dimer enhances LRRK2 kinase activity and
antagonizes dimerization.11 Identifying compounds that bind to
the LRRK2-WDR domain presents a potentially novel approach
to targeting this protein, though no ligand was reported to date.

In this challenge, participants were tasked with using the apo
structure of LRRK2-WDR (PDB code 6DLO)11 to predict
compounds that could occupy the central cavity of the donut-
shaped domain (Figure 1).
We provide here an overview of the first CACHE challenge,

where 23 research teams from ten countries collectively
predicted 1955 compounds targeting LRRK2-WDR. After a
hit identification round (Round 1) followed by hit expansion
(Round 2), seven chemical series predicted by seven participants
produced convincing binding data in two orthogonal assays.
These compounds are the first reported that target LRRK2-
WDR and represent valuable chemical starting points for hit-to-
lead optimization. Computational workflows were diverse and
often included a step driven by deep learning. Hit rates were low
and most compounds bound with an affinity above 50 μM,
reflecting the challenges of structure-based virtual screening
when only an apo form of the targeted binding pocket and no
ligand is available.

■ RESULTS
Computational Workflows Were Diverse. Participating

teams submitted applications and were selected based on a
double-blind peer review process. Each team was asked to rate
five applications, after which an independent Applications
Review Committee (Table S1) undertook a final evaluation to
verify the integrity of the peer review process. The 25 top-
scoring teams from the double-blind peer review process were
invited to participate (a cap dictated by experimental costs). Of
those 25, 23 completed the challenge. Participants remained
anonymous until the final release of the data at the end of the
challenge, at which point they had the option to be
deanonymized.

Figure 1.CACHE Challenge #1: Predicting ligands binding the central
cavity of the LRRK2-WDR domain. Left: The kinase and WDR
domains of LRRK2 are highlighted in the context of a LRRK2
monomer (PDB: 7LHT). Right: Electrostatic potential map of the
LRRK2-WDR domain (blue, electropositive; red, electronegative).
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CACHE #1 participants deployed a highly diverse set of
computational tools and workflows, reflecting different hit
selection strategies. The workflows are summarized in Figure 2
and described in detail at https://cache-challenge.org/
challenges/predict-hits-for-the-wdr-domain-of-lrrk2/
computational-methods. The following two examples demon-
strate the significant divergence between two high-performing
methods. In one instance, Shuangjia Zheng at Shanghai Jiao
Tong University (workflow WF1187) used a multiscale and
multitask neural network pretrained on ChEMBL and
PubChem data as a one-step virtual screening workflow to
produce the final compound selection, refined with physico-
chemical drug-likeness filters.14 In contrast, Pavel Polishchuk at
Palacky University (WF1210) adopted a screening cascade
composed of seven distinct steps, where he first used molecular
dynamics (MD) to generate a conformational ensemble of the
binding pocket to which fragments were docked, grown and fine-
tuned by a genetic algorithm for denovo ligand design; a
consensus docking step refined with Molecular Mechanics
generalized Born Surface Area (MM-GBSA) simulations was
used to select themost promising ligands, commercial analogs of
which (found by a fingerprint similarity search) were subjected
to consensus docking followed by MM-GBSA to produce the
final selection.
Between these two extremes, which both ranked in the top 10

after experimental testing, screening cascades varied significantly
in the number and type of techniques deployed (Figure 2).
Physics-based docking was used in 19 workflows; 12
incorporated at least one deep learning screening step, including
deep learning docking in eight. Fragment-based approaches
were adopted in five, four usedMD to generate a conformational

ensemble of the binding site, and four included consensus
docking.

Selected Compounds Were Drug-like and Chemically
Diverse. The 23 teams were given two months to conduct their
virtual screens, after which they submitted a file of up to 100
compounds (or slightly more to account for failed synthesis)
predicted to bind the central pocket of LRRK2-WDR and
available from the Enamine REAL database (36 billion
molecules at the time). Compounds had to satisfy three
conditions: MW < 550 Da, cLogP < 5 and no reactive group.
Participants were also encouraged to use badapple (https://
datascience.unm.edu/badapple/)15 to filter promiscuous com-
pounds, though doing so was not mandatory. Almost all
compounds (1875) were procured from Enamine, with a
synthesis success rate of 93%. Another 80 were procured from
MCULE. For most participants, combined procurements from
these sources lead to a total of 80 to 100 compounds per team,
with a few exceptions, including participant 1183 who selected
only 37 compounds and participant 1188 for whom the success
rate of chemical synthesis was higher than expected (113
compounds). The distribution of physicochemical descriptors of
the 1955 compounds selected by the 23 participants reflected
overall drug-like molecules (Figure 3, Table S2).
The compounds were chemically diverse, with 1629 out of

1955 having a Tanimoto distance greater than 0.3 with any
compound selected by another participant (using 1536-bit
fingerprints implemented in ICM, Molsoft LLC) (Figure 3c,d).
The hit rate (% of compounds advancing to Round 2) was not
higher for pairs of similar compounds (Tanimoto distance <0.3)
than for the full set of 1955 molecules (3.6% and 3.7%
respectively). Chemical diversity was also observed within
selections from each participant, though some participants did

Figure 2. Computational cascades deployed in CACHE #1. Arrows denote cascading steps. “|” denotes alternative methods tested in parallel. Each
workflow had a maximum credit of 100 compounds in Round 1, regardless of the number of methods tested.
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select multiple chemically related compounds (dark squares
along the diagonal in Figure 3c).
Experimental Testing of Round 1 Compounds. Binding

of the 1955 Round 1 compounds to LRRK2-WDR was tested
independently at 50 μM and 100 μM in a surface plasmon

resonance (SPR) assay (Figure 4a, Table S3). 440 compounds
with a R/Rmax binding ratio (measured versus expected response
unit (RU)) above 50% (i.e., significant binding) and below
200% (i.e., limited signs of nonspecific binding) in at least one of
the two runs were evaluated in dose−response experiments. In

Figure 3. Drug-likeness and chemical diversity of selected compounds. (a) Number of compounds procured for each participant in the hit
identification phase (Round 1) and number advancing to hit expansion (Round 2). (b) Molecular weight, calculated LogP, number of hydrogen bond
acceptors/donors and rotatable bonds, and polar surface area distributions of the 1955 compounds. (c) Pairwise Tanimoto distance matrix of all pairs
of compounds. (d) Tanimoto distance distribution of the 326 closest compound pairs (pairs of compounds selected by the same participant are not
included).
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total, 73 compounds selected by 18 participants had a
measurable dissociation constant (KD) value better than 150
μM and greater than 30% binding (R/Rmax) (Table S4). To
assess whether the binding signal was on target, SPR was used to
evaluate binding to an unrelated target, the first PWWP domain
of the protein methyltransferase NSD2 (NSD2-PWWP1).
Seventeen compounds bound NSD2-PWWP1 with KD values
ranging from 2 to 177 μM.
Some of the 73 compounds showed signs of aggregation or

poor solubility as measured by dynamic light scattering (DLS).16

None of the tested compounds showed clear signs of binding in
differential scanning fluorimetry (DSF) or isothermal titration
calorimetry (ITC) assays and only two compounds
(CACHE_1195_6, SPR KD 117 μM and CACHE_1210_69,
KD 117 μM) out of 11 tested using a 19F-NMR assay bound to
LRRK2-WDR (Figure 4b).
The only successful cocrystallization or crystal soaking

attempt was with compound CACHE_1193_26 (SPR KD 46
μM). The binding pose captured experimentally was not at the
central cavity where the compound was docked, but at the
interface of two LRRK2-WDRmonomers (Figure 4c, Table S5).
To test the hypothesis that the binding mode captured in the
crystal structure might be induced by crystallization, we
generated and purified a mutant form of the LRRK2 WDR
domain in which the glycine residue lining the observed pocket
was replaced with arginine (LRRK2-WDR G2385R), a space
filling residue that is also found in PD patients.11 Using SPR, we
observed that the compound bound equally well to the two
forms, strongly suggesting that the binding pocket observed in
the crystal structure is distinct from the one exploited in
solution.

Some of the 73 SPR hits showed suboptimal behavior in
solution, including 37 compounds with signs of poor solubility
by DLS, some of which also produced a binding signal against
the antitarget NSD2-PWWP1, and almost none were confirmed
with an orthogonal biophysical assay. In spite of these red flags,
we decided to advance all 73 compounds of interest to the hit
expansion stage to avoid false negatives, which we discuss later.

Selection and Experimental Testing of Round 2
Compounds. While the focus of Round 1 was to avoid false
negatives, Round 2 was focused on avoiding false positives.
Here, participants who had predicted one of the 73 compounds
advanced from Round 1 selected up to 50 commercially
available analogs of those compounds for Round 2. The aim of
Round 2 was to generate structure activity relationship (SAR) to
build confidence that binding signals were not artifacts from the
assay or driven by other irrelevant factors (e.g., aggregation).
A total of 714 compounds were selected by participants for

experimental testing in Round 2, representing 23 to 49
compounds per participant and up to 43 analogs per parent
molecule (Table 1, Table S6). Because participants with more
than one confirmed hit in Round 1 tended to submit analogs of
their strongest hit, and due to the lack of commercial availability
of some analogs, only analogs of 42 of the total 73 Round 1 hits
were tested in Round 2. As in Round 1, SPR was the primary
assay. Sixty-one compounds had a measurable KD value (8.5%
hit-rate) with acceptable SPR parameters (maximum binding
signal (Rmax) > 30% of the expected signal, T(KD) > 1 andChi2 <
10% Rmax), 31 of which had a KD < 150 μM (Table S3). 19F-
NMR and DSF assays were used to orthogonally confirm SPR
hits.

Figure 4. Experimental evaluation of CACHE #1 Round 1 compounds. (a) Binding to LRRK2 measured by SPR was used to advance compounds to
Round 2. (b) Experimental data beyond SPR was provided to better inform participants, including solubility and aggregation measured by DLS,
binding by SPR to an unrelated protein (NSD2-PWWP1), and data from orthogonal binding assays (19F-NMR shown here). Data for compound
CACHE_1195_6 is shown as an example. (c) Crystal structure of CACHE_1193_26 bound at the interface of two LRRK2 monomers (PDB 9C61),
distant from the targeted central cavity, at a site lined by G2385, recurrently mutated to Arg in PD patients.
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All data were evaluated by an independent Hit Evaluation
Committee composed of industry experts (Table S1). Overall,
seven chemical series were convincingly confirmed with two
orthogonal assays (Tables 1, S3, S7, Figure 5). These are the first
reported molecules targeting LRRK2-WDR. Other chemical
series with a lower score from the Hit Evaluation Committee
may also be valid LRRK2-WDR binders. Interestingly, some
compounds of interest that displayed significant liability in
Round 1 produced convincing chemical series in Round 2
(Figure 5). For instance, CACHE_1181_33 (KD 123 μM)
showed signs of insolubility and aggregation at 200 μM as
measured by DLS, but its fluorinated analog, CACHE-
HO_1181_24 (KD 56 μM), was soluble, did not aggregate at
200 μM and showed a clear binding signal by 19F-NMR. This
result supports the decision to take an inclusive approach to
advancing nonconvincing compounds of interest from Round 1
to Round 2 in order to avoid false negatives.

Additionally, we cannot discount the possibility that some of
the chemical series that were not validated by 19F-NMR (due to
lack of a fluorinated compound) or by DSF (possibly due to
distinct mode of binding) in Round 2 may still be valid LRRK2-
WDR ligands. As such, CACHE results should be interpreted as
evidence that certain computational workflows are performing
well, but do not necessarily imply that other workflows are
performing poorly. With this in mind, our next step was to
analyze common and distinct features and design strategies
adopted by the best performing CACHE participants.

Emerging Trends from the Seven Best Performing
ComputationalWorkflows. Superimposing the docked poses
of some of the top hits reveals that, while all were predicted to
occupy the central channel of the LRRK2-WDR domain, there is
no significant overlap in the predicted network of interactions
with the protein, reflecting the open-ended and challenging

Table 1. Summary of Round 2 Experimental Results

Participant Round 1 compound of interest Analogs tested in Round 2 Analogs with KD < 150 μM Best KD [μM] Confirmed by 19F-NMR or DSF

1179 CACHE_1179_36 34 2 47
1179 CACHE_1179_94 7 1 13
1181 CACHE_1181_33 32 2 56 Yes
1181 CACHE_1181_50 1 1 147
1183 CACHE_1183_2 4 0 0
1183 CACHE_1183_25 43 3 5 Yes
1184 CACHE_1184_17 23 0 0
1184 CACHE_1184_22 21 0 0
1186 CACHE_1186_2 36 0 0
1186 CACHE_1186_70 2 0 0
1186 CACHE_1186_85 9 0 0
1187 CACHE_1187_59 23 1 93
1188 CACHE_1188_3 13 0 0
1188 CACHE_1188_48 15 0 0
1188 CACHE_1188_92 21 1 150
1193 CACHE_1193_26 25 2 66 Yes
1193 CACHE_1193_27 13 1 140
1193 CACHE_1193_8 1 0 0
1195 CACHE_1195_1 3 0 0
1195 CACHE_1195_28 17 0 0
1195 CACHE_1195_32 3 0 0
1195 CACHE_1195_43 8 0 0
1195 CACHE_1195_5 5 0 0
1195 CACHE_1195_6 5 1 58 Yes
1195 CACHE_1195_60 3 1 64
1200 CACHE_1200_39 11 0 0
1200 CACHE_1200_51 25 0 0
1201 CACHE_1201_96 38 2 59
1202 CACHE_1202_13 13 2 93 Yes
1202 CACHE_1202_37 5 1 37
1202 CACHE_1202_45 6 1 88
1202 CACHE_1202_80 1 0 0
1202 CACHE_1202_97 7 0 0
1203 CACHE_1203_35 25 0 0
1205 CACHE_1205_40 34 0 0
1205 CACHE_1205_93 12 0 0
1207 CACHE_1207_98 49 0 0
1208 CACHE_1208_88 48 1 82
1208 CACHE_1208_98 1 1 133
1209 CACHE_1209_15 37 5 65 Yes
1209 CACHE_1209_48 4 0 0
1210 CACHE_1210_69 35 2 71 Yes
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Figure 5. continued
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nature of this binding site for structure-based drug design
(Figure 6).
The seven computational workflows that produced a chemical

series experimentally confirmed in Round 2 were highly diverse
(Figure 7, detailed description in https://cache-challenge.org/
challenges/predict-hits-for-the-wdr-domain-of-lrrk2/
computational-methods), though close examination makes a
few recurring trends and strategies apparent.
First, all but one of these workflows included at least one ML

step, and five used some element of deep learning. Workflow

1181 (WF1181) adopted a physics-based high-throughput
docking strategy complemented with a 3D convolutional neural
network (CNN) scoring function implemented in GNINA17 to
select compounds. WF1209 used DeepDocking,18,19,26 where a
deep neural network (DNN) predicts docking scores in order to
rapidly screen an ultralarge library, followed by more refined
active learning selection cycles where free energy calculation
data was used to train an ML model.19 WF1193 used Glide
docking scores (Schrödinger, New York) to train REINVENT, a
recurrent neural network (RNN) and transformer-based ML

Figure 5. Top seven chemical series identified in Round 2. Activity of the parent molecules and experimental data from Round 2 analogs are shown,
including SPR sensorgrams, 19F-NMR spectra and thermal shifts from DSF. Computational workflow IDs are encoded into compound names.

Figure 6. Docked poses of experimental hits. Four compounds are shown: CACHE_1183_13 (light blue), CACHE_1202_13 (yellow),
CACHE_1210_69 (pink), CACHE_1181_33 (maroon). Top scoring poses for each ligand are shown. Computational workflows are included in the
compound names and summarized in Figure 2.
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model20,21 that generated de novo ligand candidates. WF1183
and WF1202 decomposed the binding site into local protein
microenvironments with ligand-occupied structural homo-
logues in the PDB. WF1183 used FRASE-bot22 where a graph
convolutional network (GCN) distills an optimal feature vector
from the protein−ligand interaction graphs to select the best
fragments. Commercial molecules overlapping fragment pairs
were then docked and ranked. WF1202 applied the POEM
screening cascade where fragments positioned with a point
cloud pocket registration system are linked with DeLinker, a
generative ML model with a multimodal encoder-decoder setup
based on a standard gated graph neural network (GGNN).23−25

These successful strategies used deep learning to accelerate
classical methods (WF1209),19,26 to predict affinity (WF1181),
or to generate new molecules (WF1183, WF1193, WF1202).

Finally, WF1210 did not use a neural network architecture but
used CReM27 to grow previously docked fragments, followed by
fine-tuning using a genetic algorithm. Workflow 1195
(WF1195) used VirtualFlow28 (first generation) to deploy
conventional physics-based virtual screening tools across tens of
thousands of CPUs to efficiently dock an ultralarge chemical
library.
Three of the workflows (WF1183, WF1202 and WF1210)

used fragment-based approaches. Three used some form of de
novo generative method to invent molecules customized for the
target site (WF1193,WF1202,WF1210) followed by fingerprint
similarity search to identify commercially available chemical
analogs. As no ligand was reported at the outset of this challenge,
available structures of the binding pocket were in the apo state,
which is typically challenging for ligand binding and virtual

Figure 7. Overview of the best performing computational workflows. Details of the seven computational workflows that had a chemical series
experimentally confirmed with two binding assays. (a) Team leads, workflow IDs, aggregated scores from the hit evaluation committee, and size of the
library originally screened (Table S1 − Each committee member gave a score from 0 to 5 to each workflow based on the experimental data). (b)
Schematics representation of the computational steps for each workflow. (c) Classification of the workflows based on some of their distinct features.
Defining computational tools are outlined in bold. Neural network architectures are shown in italic. CNN: convolutional neural network; DNN: deep
neural network; GCN: graph convolutional network; GGNN: gated graph neural network; RNN: recurrent neural network. DL: deep learning.
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screening. Three design strategies included molecular dynamics
simulations to generate a conformational ensemble of the target
site against which compounds were docked (WF1181, WF1195,
WF1210).
Together, these results demonstrate that multiple design

strategies and technical tools can successfully drive the structure-
based discovery of pioneer ligands for an unprecedented target.
Significant differences were also observed in the amount of
computational resources used (Table S8). Two of the seven best
performing workflows exclusively deployed conventional
computational tools and methodologies that have been in use
for decades (WF1195, WF1210), achieving results comparable
to those obtained with deep learning-driven screening cascades.
This indicates that advanced neural network architectures did
not lead to a breakthrough in this challenge.

■ DISCUSSION
Unlike previous computational challenges, where participants
were asked to predict pregenerated experimental data blinded to
them, CACHE is the first benchmarking challenge where
computational predictions are experimentally tested prospec-
tively. A new CACHE challenge is launched every four months,
each addressing a different type of technical challenge (e.g.,
availability of protein structures and known ligands). For each
CACHE target, suitable assays are used to confirm predicted
hits.
In this first iteration, the selected target had no known ligand

to validate computational workflows or experimental assays.
While this high bar may be considered a debatable choice for an
inaugural target, we believe it sets reasonable expectations for
nonexperts regarding virtual screening. Despite the difficulty
presented by the chosen target, seven independent teams were
able to use the apo structure of LRRK2-WDR to predict ligands,
which were subsequently confirmed as mid-to-high micromolar
binders through experimental testing.
Several important lessons emerged from CACHE #1,

spanning both experimental and in-silico aspects of the
challenge. One major challenge faced by the experimental
team was the poor solubility of many of the predicted molecules.
Virtual screening can yield high hit rates and potent molecules
when experienced researchers work with well-characterized
targets, where the structural chemistry of the target or target-
class is well-understood, and known ligands are available to
identify favorable pocket conformation(s), define interaction
hotspots, and validate docking protocols.29−31 However, hit
rates are typically low or null and compounds weak when
computational screening is applied to underexplored proteins
with no known ligand, as was the case here. As a result, predicted
molecules must be tested at high concentrations (up to 200 μM
in this challenge), where they frequently precipitate or
aggregate. Indeed, 53% of the molecules tested by DLS in
Round 1 were not fully soluble at 200 μM in the SPR buffer
minus detergent.
To our knowledge, solubility prediction, when not trained on

a given chemical series, remains unreliable. However, introduc-
ing a mechanism to filter out poorly soluble compounds before
procurement and testing would improve the screening process.
This would also reduce uncertainties related to compounds of
interest showing weak activity and poor solubility.
In Round 1, we chose not to filter out compounds that

behaved poorly in solution, for instance due to low solubility.
Unlike a typical drug discovery project, the CACHE
experimental team cannot afford to disregard second tier hit

candidates. It is important not to prematurely dismiss a
computational pipeline that may have generated structurally
valid molecules. As a result, some dubious molecules were
advanced to Round 2, where the focus is to identify convincing
hits and clearly successful computational pipelines. In some
cases, these successful pipelines emerged despite their producing
problematic compounds in Round 1 (e.g.: Figure 5, WF1181,
WF1183).
While this challenge succeeded in providing a unified metric

for comparing computational screening pipelines and high-
lighting successful ones, there are areas for future improvement.
First, although we identified methods that performed well, we
cannot definitively conclude that others did not. Some
workflows that did not rank in the top seven produced
chemically related hits detected by SPR but not confirmed by
DSF or by 19F-NMR. It is possible that some of these hits were
valid but did not produce a detectable binding signal in the
orthogonal assays.
Second, the original white paper detailing the scope and

operational setup of the CACHE challenges1 proposed a step
where all participants would blindly screen a library composed of
all compounds predicted in Round 1. This would have allowed
direct comparison of methods using the same compound library.
However, with few experimentally confirmed hits and only two
or fewer hits predicted by each participant, this data was
insufficient for a statistically significant analysis, and the step was
ultimately dismissed.
Third, structure-based virtual screening is not an exact science

and the same computational workflow may succeed for one
researcher and fail for another. While this variability may not be
an issue when the goal is to identify suitable partners for drug
discovery projects (i.e., a successful combination of team and
technology), it could be seen as a limitation when evaluating
scientific methodologies. One perspective, related to the first
point, is that CACHE remains a valuable metric for identifying
successful workflows: experimental validation of active mole-
cules implies that the workflow produced valid hits, and humans
selected some of them. Conversely, if a pipeline fails to produce
valid molecules, even the most skilled computational or
medicinal chemists would struggle to identify active compounds
based on intuition alone. To eliminate the human factor,
participants could submit containerized versions of their
pipelines instead of a set of predicted molecules. CACHE
organizers would then run these methods blindly and select
compounds. A similar approach has been used in the CELPP
challenges5 and could enhance objectivity here. Alternatively,
CACHE participants may be asked in the future to clearly
specify the human factor in compound selection.

■ CONCLUSION
The first iteration of the CACHE challenges closely followed a
process carefully designed by a diverse group of stakeholders in
computational hit finding.1 Despite expected and unexpected
challenges encountered along the way, CACHE #1 successfully
identified computational pipelines in structure-based virtual
screening and produced the first experimentally confirmed
ligands binding outside of the kinase domain of LRRK2, an
important target in Parkinson’s disease. These ligands could
serve as a starting point to explore previously untested
therapeutic hypotheses. The range of methods used, including
many that leverage modern neural network architectures,
reflects an intensely dynamic and explorative community.
However, despite the current hype surrounding AI-driven
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drug discovery, a true breakthrough in the field has yet to
emerge.

■ METHODS
Computational Workflows. Computational methods are

available from https://cache-challenge.org/results-cache-
challenge-1
Protein Expression and Purification. DNA fragments

encoding LRRK2 residues (T2124-E2527) and (T2141-E2527)
were cloned into pFastBac HTA donor plasmid downstream of a
His-tag or into pFBD-BirA expression vector, a derivative of
Invitrogen pFastBac Dual vector for in-cell biotinylation
(https://www.thesgc-dev.org/sites/default/files/toronto_
vectors/pFB-BirA.pdf), respectively. The resulting plasmid was
transformed into DH10Bac Competent E. coli (Invitrogen) to
obtain recombinant viral bacmid DNA, followed by a
baculovirus generation for protein production in Sf9 insect
cells.32 For in-cell biotinylation, D-biotin was added at the final
concentration of 10 μg/mL during protein expression. The cells
were harvested by centrifugation (2500 rpm for 10 min at 10
°C), 72−96 h postinfection with well-developed signs of
infections and 70−80% viability as previously described.30

Harvested cells were resuspended in 20 mM Tris-HCl, pH 7.5,
500 mM NaCl, 5 mM imidazole and 5% glycerol, 1X protease
inhibitor cocktail (100 X protease inhibitor stock in 70% ethanol
(0.25 mg/mL Aprotinin, 0.25 mg/mL Leupeptin, 0.25 mg/mL
Pepstatin A and 0.25 mg/mL E-64) or Pierce Protease Inhibitor
Mini Tablets, EDTA-free. The cells were lysed chemically by
addition of 1 mM PMSF, 1 mM TCEP, 0.5% NP40 and
benzonase (in-house) followed by sonication at frequency of 7.0
(5” on/7” off) for 5 min (Sonicator 3000, Misoni). The crude
extract was clarified by high-speed centrifugation (60 min at
14000 rpm at 10 °C) by Beckman Coulter centrifuge. The
clarified lysate was loaded onto open columns containing pre-
equilibrated Ni-NTA resin (Sigma-Aldrich). The column was
washed and eluted by running 20 mM Tris-HCl, pH 7.5, 500
mM NaCl, 5% glycerol, containing 5 mM, 15 mM and 250 mM
imidazole, respectively. The eluted proteins were then
supplemented with 2 mM TCEP. The His- and Avi-tagged
protein was then further purified by size-exclusion chromatog-
raphy on a Superdex200 16/600 using an ÄKTA Pure (Cytiva)
after the column was equilibrated with 50 mMTris-HCl pH 7.5,
300 mM NaCl, 2 mM TCEP.
For the His-tagged protein, the tag was cleaved after elution

using tobacco etch virus protease (TEV) overnight while the
protein was dialyzed against 20 mM Tris-HCl, pH 7.4,
containing 300 mM NaCl, 2 mM TCEP. The protein was
then loaded on equilibrated Ni-NTA resin for reverse affinity to
remove His-tagged TEV enzyme and the uncut His-tagged
proteins. The purity and size of the cut protein was confirmed on
SDS-PAGE gel and mass spectrometry, respectively and the
pure protein was concentrated and flash frozen.
Surface Plasmon Resonance. The binding affinity of

compounds was assessed by Surface plasmon resonance (SPR,
Biacore 8K, Cytiva Inc.) at 25 °C. Biotinylated LRRK2 (2141−
2527aa - https://www.addgene.org/210899/) was captured
onto flow cells of a streptavidin-conjugated SA chip at
approximately 5,000 response units (RU) (according to
manufacturer’s protocol). Compounds were dissolved in 100%
DMSO (30 mM stock) and diluted to 10 mM before serial
dilutions were prepared in 100% DMSO (dilution factor of 0.33
was used to yield 5 concentrations). For SPR analysis, serially
titrated compound was diluted 1:50 in HBS−buffer (10 mM

HEPES pH 7.4, 150 mM NaCl, 0.01% Tween-20) to a final
concentration of 2%DMSO. Experiments were performed using
the same buffer containing 2% DMSO and multicycle kinetics
with a 60 s contact time and a dissociation time of 120 s at a flow
rate of 40 μL/min. Kinetic curve fittings and KD value
calculations were done with a 1:1 binding model using the
Biacore Insight Evaluation Software (Cytiva Inc.).

Differential Scanning Fluorimetry. LRRK2was diluted to
0.1mg/mL in buffer (100mMHepes, 100mMNaCl, pH 7.5) in
the presence of 5x SYPRO Orange dye (Life Technologies, S-
6650) and serially titrated compounds (up to 200 μM) in a total
volume of 20 μL in a white polypropylene 384-well plate
(Axygen, PCR-384-LC480-W). DSF was performed in a
LightCycler 480 II (Roche Applied Science, Penzberg,
Germany) using a 4 °C/min temperature gradient from 20 to
95 °C. Data points were collected at 0.5 °C intervals. DSF data
was fitted to a Boltzmann sigmoid function and Tm values were
determined as previously described.33

Dynamic Light Scattering. The solubility of compounds
was estimated by DLS that directly measures compound
aggregates and laser power in solution. Compounds were
serially diluted directly from DMSO stocks, then diluted 50x
into filtered 10 mM HEPES pH 7.4, 150 mM NaCl(2% DMSO
final). The resulting samples were then distributed into 384-well
plates (black with a clear bottom, Corning 3540), with 20 μL in
each well. The sample plate was centrifuged at 3500 rpm for 5
min before loading into DynaPro DLS Plate Reader III (Wyatt
Technology) and analyzed as previously described.34,35

19F-NMR Spectroscopy. The binding of fluorinated
compounds was assayed by looking for the broadening and/or
perturbation of 19F resonances upon addition of LRRK2 (at
protein to compound ratios of 0.5:1 to 4:1) in PBS buffer (pH
7.4, 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM
KH2PO4, and with 5% D2O). 1D-19F spectra were collected at
298 K on a Bruker AvanceIII spectrometer, operating at 600
MHz, and equipped with a QCI probe. Two to four thousand
transients were collected with an acquisition period of 0.2 s, over
a sweep width of 150 ppm, a relaxation delay of 1.5 s, and using
90° pulses centered at −120 ppm. The concentration of the
compounds in both reference and protein-compound mixtures
was 5−10 μM. TFA (20 μM) was added as an internal standard
for referencing. Prior to Fourier transformation, an exponential
window function was applied (lb = 1 to 3) to the FID. All
processing was performed at the workstation using the software
Topspin 3.5.

Crystallization and Structural Determination. Human
LRRK2 WDR domain (residues 2142−2527) was expressed,
purified and crystallized as described previously (PMID:
30635421). Apo-LRRK2 WDR domain crystals were obtained
by mixing equimolar amounts of protein (concentrated at 9 mg/
mL) and precipitant solution containing 0.1 M Tris-HCl at pH
8.5, 1 M LiCl, 14% (w/v) polyethylene glycol (PEG) 6000, and
10% galactose in a manual plate vapor-diffusion hanging drops.
LRRK2 crystals were then soaked into a 1 μL reservoir solution
supplemented with 1 mM CACHE 1193−26 (dissolved from a
previously prepared 100 mM DMSO stock solution) and 10%
(v/v) Ethylene glycol for 2 h at room temperature, then
mounted and cryo-cooled in liquid nitrogen. Diffraction data
were collected at the 24ID-E beamline at the Advanced Photon
Source (APS). Data set was processed with HKL3000.36 Initial
phases were obtained by using Apo-LRRK2WDRdomain (PDB
ID:6DLO) as initial model in Fourier transform with refmac5.37

Model building was performed in COOT38 and the structure
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was validated with Molprobity.39 CACHE 1193−26 structure
restraints were generated using gradeWeb Server (http://grade.
globalphasing.org).

■ ASSOCIATED CONTENT
Data Availability Statement
The crystal structure of LRRK2-WDR in complex with
CACHE_1193_26 was deposited in the Protein Data Bank,
PDB code 9C61. All files and document available from the
CACHE#1 data release webpage and the description of
computational methods posted on the CACHE Web site are
also posted on Zenodo at https://zenodo.org/records/
13820554 (DOI 10.5281/zenodo.13800102), including man-
uals on interpreting SPR and DSF data for nonexperts.
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.4c01267.

CACHE1 committees (Table S1), Round 1 compounds
(Table S2), Experimental data for all compounds (Table
S3), Round 1 compounds advanced to Round 2 (Table
S4), X-ray data collection (Table S5), Round 2
compounds (Table S6), Score from Hit Evaluation
Committee (Table S7), and Computational resources
(Table S8) (XLSX)
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