
Which Syntactic Capabilities Are Statistically Learned by
Masked Language Models for Code?

Alejandro Velasco, David N. Palacio, Daniel Rodriguez-Cardenas and Denys Poshyvanyk
{svelascodimate,danaderpalacio,dhrodriguezcar,dposhyvanyk}@wm.edu

William & Mary
Williamsburg, Virginia, USA

ABSTRACT
This paper discusses the limitations of evaluating Masked Language
Models (MLMs) in code completion tasks. We highlight that relying
on accuracy-based measurements may lead to an overestimation of
models’ capabilities by neglecting the syntax rules of programming
languages. To address these issues, we introduce a technique called
SyntaxEval in which Syntactic Capabilities are used to enhance the
evaluation of MLMs. SyntaxEval automates the process of masking
elements in the model input based on their Abstract Syntax Trees
(ASTs). We conducted a case study on two popular MLMs using
data from GitHub repositories. Our results showed negative causal
effects between the node types and MLMs’ accuracy. We conclude
that MLMs under study fail to predict some syntactic capabilities.

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools.

KEYWORDS
deep learning, code generation, interpretability, transformers, dl4se
ACM Reference Format:
Alejandro Velasco, David N. Palacio, Daniel Rodriguez-Cardenas and Denys
Poshyvanyk. 2024. Which Syntactic Capabilities Are Statistically Learned
by Masked Language Models for Code? . In New Ideas and Emerging Results
(ICSE-NIER’24), April 14–20, 2024, Lisbon, Portugal. ACM, New York, NY,
USA, 5 pages. https://doi.org/10.1145/3639476.3639768

1 INTRODUCTION
Large language models have illustrated convincing performance
across a range of different software engineering (SE) tasks [5, 7, 23,
35, 36, 39–41]. In particular, code generation has been an important
area of research for SE tasks such as code completion [8]. Code
completion is a disciplined technique for generating missing syn-
tactic features of an incomplete snippet based on its semantic and
structural context [4]. These syntactic features usually adopt the
form of identifiers, function names, conditionals, or parameters de-
pending on the granularity of the snippet. Software researchers are
particularly interested in improving code completion to optimize
time spent during the development and maintenance cycles [12, 13].
Numerous studies have investigated code completion automation

ICSE-NIER’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0500-7/24/04.
https://doi.org/10.1145/3639476.3639768

using machine learning [4, 15, 28, 42]. Current research has focused
on exploiting deep learning representations using LSTMs [33], GPT
[32], RoBERTa [20], and T5 [6, 9].

Masked Language Models (MLMs) have been recently used for
code completion tasks demonstrating promising results (an avg.
accuracy of 38.7% in perfect predictions) at different masking lev-
els (i.e., Token, Construct, and Block) [6]. Some studies suggest
that MLMs statistically learn the underlying structure of Abstract
Syntax Trees (ASTs) at certain degree [19, 24, 37]. Yet, given the
high accuracy achieved by MLMs [6], few attempts have been made
to investigate the role of Syntactic Capabilities for evaluating
code completion. Syntactic Capabilities are interpretable prediction
estimates for a terminal (𝑁) and non-terminal (Σ) nodes of ASTs
that are ruled by a Context Free Grammar (CFG) of Programming
Languages (PLs) [31].

To date, the primary focus on evaluating MLMs has been on
the role of accuracy as the principal metric, which may lead to
erroneous and/or incomplete interpretation of the syntactic fea-
tures embedded in neural architectures [25, 27, 37]. Relatively little
is understood about incorporating these interpretable prediction
estimates into the evaluation of MLMs, hence current evaluation
methods do not help practitioners to decide whether MLMs are confi-
dently generating code at AST node granularity and to what extent
these syntactic features affect general prediction performance. That
is, these methods do not reveal information about syntactic capa-
bilities and their causal effects on the overall MLMs performance.

Our study attempts to establish the causal connection between
syntactic features in the form of AST node types and MLMs’ perfor-
mance. Under this premise, we introduce SyntaxEval, an approach
that leverages syntactic capabilities to evaluate how good MLMs
infer 𝑁 and Σ AST nodes of a given PL. When evaluating the per-
formance of an MLM, SyntaxEval selectively masks tokens accord-
ing to the AST Node types defined by the CFG. Subsequently, an
MLM predicts the masked tokens. Finally, SyntaxEval measures the
causal effect of AST node types on code completion performance.

Our results suggest that although MLMs are homogeneously pre-
dicting individual AST node types with high accuracy, we observed
no evidence of effects from syntactic features on MLMs’ predic-
tion after controlling for confounding factors. Hence, no causal
evidence supports the fact that MLMs are statistically learning syn-
tactic structures with acceptable confidence, contradicting recent
studies in the explainability field [24, 37]. We hope that the results
of our work will shed more light on the syntactic capabilities of
current MLMs to enable a more systematic and rigorous evaluation
of code completion tasks. The contributions of this paper are as
follows: 1) a technique for evaluating the extent to which MLMs

This work licensed under Creative Commons Attribution International 4.0 License.

72

2024 IEEE/ACM 46th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-
NIER)

https://doi.org/10.1145/3639476.3639768
https://doi.org/10.1145/3639476.3639768
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3639476.3639768&domain=pdf&date_stamp=2024-05-24

ICSE-NIER’24, April 14–20, 2024, Lisbon, Portugal Velasco, et al.

predict AST structures; 2) a case study that leverages causal anal-
ysis to understand how different AST node types influence code
completion; 3) experimental data, curated datasets, source code,
and complementary statistical analysis used in this research are
published in an open-source repository [1].

2 BACKGROUND & RELATED WORK
The accurate identification and generation of code tokens is a widely
studied field at the intersection of SE and DL [38]. State-of-the-art
code generators estimate the token prediction using probabilistic
distribution (i.e., a Large Language Model (LLMs)) obtained by train-
ing on large amounts of code corpora. Put simply, code completion
models should statistically approximate the production rules de-
fined by the CFG. These production rules are recursively applied
to terminal 𝑁 and non-terminal Σ nodes to formally define the
structure of a PL. For instance, recent explainability studies have
claimed that the syntactic structures of code are encapsulated in
the internal layers of LLMs across software tasks, implying a foun-
dational statistical comprehension of code semantics [14, 37]. In
this section, we introduce the concept of MLMs and their current
evaluation methods.

Masked LanguageModels for Code. Considerable research at-
tention has been directed toward the usage of Bidirectional Encoder
Representation fromTransformers (BERT) on code completion as an
attempt to push the predictability boundaries beyond the next token
prediction. BERT allows higher granularity syntax structures (i.e.,
entire code statement) to be generated using self-attention layers
trained to restore a masked subset of tokens in the input [6, 10]. This
peculiar form of training the architecture is known as denoising au-
toencoding, or Masked Language Models (MLM), which we formal-
ize as 𝑀𝐿𝑀 (𝐶) = E𝑠∈𝑆E𝑀⊂𝑠

[∑
𝑠 𝑗 ∈𝑀 log 𝑝 (𝑠 𝑗 |𝑠)

]
, |𝑀 | = |𝑚(𝑠) |,

where a masking rate 𝑚 (usually 15%) is applied on the original
sequence 𝑠 of a training corpus 𝑆 . The model attempts to predict the
set of masked tokens𝑀 given the corrupted context 𝑠 (the masked
version of 𝑠) [18]. MLMs for code completion are mostly evaluated
using metrics such as CodeBleu, EM, F1, and Pass@k [16].

Syntax-Based Evaluation of MLMs. Due to the unpredictable
behavior of MLMs while generating tokens, explainability tech-
niques are complementary evaluative methods for understanding
the decision-making process by reducing the uncertainty of the
models. Such uncertainty can be controlled by exploring the inner
layers of the neural net or performing guided perturbations on mod-
els’ input [3]. Recent studies have explored the use of structural
information as an interpretability tool for pre-trained models for
code [25]. For instance, Wan et al. [37] conducted an explainability
analysis focusing on three aspects: 1) how the self-attention weights
align with the syntax structure, 2) whether the syntax structure
is encoded in the hidden layers, and 3) how pre-trained models
induce syntax structures. Similarly, Mohammadkhani et al. [24]
propose an eXplainable AI method (attention mechanism) on three
downstream code tasks: 1) code generation, 2) refinement, and 3)
translation. Previous findings imply that Encoder-based models
can effectively extract detailed syntactic information using self-
attention mechanisms. We used prior observations about encoded
information of ASTs to formulate an evaluative approach based

Figure 1: SyntaxEval Process for the identifier AST Node.

on measuring the prediction performance of syntactic capabilities
directly from (non)terminal nodes.

3 SYNTACTIC CAUSAL EVALUATION
SyntaxEval is an evaluative approach organized into two distinct
parts. The first part estimates a fine-grained performance, grouped
by AST node types, for a given MLM (RQ1). The second part adopts
causal interpretability theory to quantify the influence of previously
estimated AST node types on the accuracy of the model (RQ2).

Evaluating Syntactic Capabilities. Fig. 1 depicts the process of
evaluating syntactic capabilities for code completion using MLMs.
This evaluative process is comprised of five steps. Firstly, we must
define a set of AST node types 𝐶 to be analyzed. This set of AST
node types is ruled by Python CFG adopting the form of𝐶 = 𝑁 ∪ Σ.
Then we search for the positions of these node types 𝐶 in the
code sequence after iterating for each sample 𝑠𝑖 (i.e., snippet) of a
given ground truth 𝑆 (Fig. 1- 1). Secondly, detected tokens, which
correspond to the previously defined set 𝐶 , are masked with the
label <mask> (Fig. 1- 2). Thirdly, we use an MLM to infer the
masked tokens for each sample 𝑠𝑖 obtaining a set 𝑆 of predicted
samples 𝑠𝑖 . Fourthly, we parse the AST of 𝑠𝑖 and 𝑠𝑖 to generate a list
of extracted nodes for the ground truth and predicted samples using
the in-order traversal algorithm (Fig. 1- 4). Finally, we compare
both ground truth 𝑠𝑖 and predicted 𝑠𝑖 lists of extracted nodes by
computing three similarity metrics for each sample (i.e., Jaccard,
Levenshtein & Sorensen-Dice) (Fig. 1- 5).

Computing Causal Interpretability. Causal Inference has
been adopted to complement the assessment of LLMs by controlling
for confounding factors in code data. Palacio et al. [25] introduce
𝑑𝑜𝑐𝑜𝑑𝑒 , a post hoc interpretability methodology that explains model
predictions by providing causal explanations. These explanations
are generated by estimating the effect of binary interventions 𝑇 ,
such as masking random tokens𝑇0 versus masking AST node types
𝑇1, on MLMs’ performance. Specifically, in SyntaxEval, the treat-
ment 𝑇1 refers to samples that are masked on AST node tokens 𝐶 ,
while the control𝑇0 refers to samples that are randomly masked on
any position. The control 𝑇0 preserves the same number of masked
tokens as in 𝑇1.

SyntaxEval formulates a Structural CausalModel (SCM), which
is a graphical model composed of outcomes, treatments, and con-
founders [26], to explain a set of potential outcomes 𝑌 (e.g., Jac-
card, Levenshtein, Sorensen-Dice) in terms of treatments 𝑇 (i.e.,

73

Which Syntactic Capabilities Are Statistically Learned by
Masked Language Models for Code? ICSE-NIER’24, April 14–20, 2024, Lisbon, Portugal

Table 1: Evaluated Encoder-Based Transformers.

Id MLM Size Layers Vocab.
𝑀1 CodeBERTa-small-v1 [21] 84M 6 52,000
𝑀2 codebert-base-mlm [11] 125M 12 50,265

masked AST node types) by controlling for a set of code con-
founders 𝑍 to avoid spurious correlations. These code confounders
consist of seven variables, which include the # of parsing errors,
the height of the AST, the # of nodes, the # of whitespaces, the
of lines of codes, the cyclo complexity, and the token counts.
Finally, SyntaxEval computes the Average Treatment Effect (𝜏) of
a treatment 𝑇 has on the outcomes 𝑌 after controlling for con-
founders 𝑍 . In other words, we want to estimate the expected
value 𝜏 = E[𝜏 (𝑍)] = E[𝑌 |𝑑𝑜 (𝑇1)] − E[𝑌 |𝑑𝑜 (𝑇0)] = E[𝑌1 − 𝑌0].
The variables 𝑌1, 𝑌0 refer to potential outcomes observed under the
treatments 𝑇1,𝑇0. For the sake of brevity, we do not discuss the
details of treatment effects computations. However, these effects
are approximated using propensity score methods after applying the
the back-door criterion [30].

4 CASE STUDY DESIGN
This section outlines the methodology employed to consider the
potential influence of syntactic capabilities on the evaluation of
MLMs, we conducted a case study on two popular architectures to
explore the following RQs:
RQ1 [Performance]How good areMLMs at predicting AST nodes?
RQ2 [Causality] How do node types impact MLMs’ performance?
Data Collection: To mitigate the risk of data snooping, we

curated our testbed with 50𝑘 Python snippets. This testbed ex-
clusively comprises commits executed between January 01, 2022
and January 01, 2023. We collected the snippets from newly added
or updated Python Github repositories with over 1k stars scoring.
Additionally, we discarded duplicated samples by referring to the
history of the commits. The testbed also contains complementary
code features (e.g., LoC, CYCLO, and # of nodes), these features
were extracted using Galeras pipeline [29]. Masked Language
Models: We evaluated two encoder-based transformers trained
on CodeSearchNet [17] with different hyperparameters (see Tab. 1).
These encoders have been assessed in prior studies in which they
were found to capture structural information [37], [37], and [24].
Node Types: Tree-sitter CFG defines 196 AST node types 𝐶 for
Python. For the sake of simplicity, we selected a subset of terminal
and non-terminal nodes defined in Python’s CFG as depicted in
the first column of Tab. 2. The subset entails the most basic syn-
tactic structures for control, iteration, operators, and functional
programming. This study showcases the nodes that exhibited the
most interesting behavior. We chose Python for code completion
experiments due to its extended use in recent studies.

Evaluation Methodology. To address RQ1, we estimated syn-
tactic capabilities of 𝑀1 and 𝑀2 encoders using 8𝐾 randomly se-
lected samples from the collected testbed. SyntaxEval masks the
associated tokens for each chosen node type (𝑇1) and subsequently
uses the MLM to infer the missing elements. Then, we compute nor-
malized similarity distances (i.e., Jaccard, Levenshtain, and Sorence-
Dice) between the AST in-order traversal of both the predictions
and the ground truth. Global results indicate the average prediction

accuracy (i.e., normalized distance) for all node types within 𝐶 . In
contrast, local results detail the prediction accuracy for individual
node types.

To address RQ2, SyntaxEval computes the Average Causal Ef-
fect between syntactic capabilities and MLMs’ performance. This
method consists of estimating 𝜏 using treatments 𝑇1 and 𝑇0 (i.e.,
tokens randomly masked) while controlling for confounders in 𝑍
(code features in Data Collection), to mitigate the presence of spu-
rious correlations. The removal of confounding bias can be formally
achieved using both an SCM and the 𝑑𝑜-operator introduced by
Pearl et al. [26]. To verify the robustness of our SCM, we computed
placebo refutations, which is a method that fakes an unrelated treat-
ment by re-estimating the causal effects. That is, we assessed that
the causal effects of the fake treatment on the outcome were close
to zero. Moreover, to ensure a balanced distribution of randomly
masking tokens within 𝑇0, we created 20 distinct variations for
each sample. Afterward, we computed the average of the resulting
similarity scores. Finally, to ensure statistical significance, we boot-
strapped the similarity scores using the𝑚𝑒𝑎𝑛 for 500 samples per
node type.

5 RESULTS & DISCUSSION
The aim of this study is to determine the effect of Syntactic Capa-
bilities, in the form of interpretable prediction estimates for node
types, on the prediction performance of MLMs. We concentrated
on evaluating Encoder-based Transformers beyond accuracy.

5.1 RQ1 Syntactic Capabilities Performance
Global Results. A cursory glance at Tab. 2 reveals that control
groups 𝑇0 of each performance metric are not significantly different
from treatments 𝑇1 for both encoders. For example, the control me-
dian values greater than 0.8 are within the interquartile range (𝑖𝑞𝑟)
0.78 ± 0.22 of the corresponding treatment. Furthermore, the stan-
dard deviation (𝑠𝑡𝑑) values of the performance are predominantly
more dispersed in the treatments than in the control. For example,
the 𝑇1 𝑠𝑡𝑑 of 𝑀1 Jaccard is 0.21, while the 𝑇0 is 0.17. Appealingly,
all average values of performance are above 0.5, this indicates that
𝑀1 and𝑀2 models are predicting masking tokens with high confi-
dence despite the group treatments 𝑇 . Although the median global
performance has consistently high accuracy among the metrics
(> 0.8), the average separation values between the𝑇 groups are not
significant with an average median distance of 0.096 and 0.06 for
𝑀1 and𝑀2 respectively. However, a preliminary analysis for node
types estimations suggests that𝑀1 and𝑀2 have a tendency to not
statistically learn syntactic-oriented masked tokens 𝑇1. Our find-
ings reveal a subtle inclination towards predicting random masked
tokens over syntactic-oriented ones.

Figure 2: 𝑇0 vs. 𝑇1 Local Jaccard for Nodes using𝑀1.

74

ICSE-NIER’24, April 14–20, 2024, Lisbon, Portugal Velasco, et al.

Table 2: Global Perf. and Causal Effects for𝑀1 and𝑀2.

Performance Jaccard Levenshtein Sorensen-Dice
MLMs 𝑀1 𝑀2 𝑀1 𝑀2 𝑀1 𝑀2

Treatments Performance Metric 𝑌 [avg ± std]*
𝑇0 0.88 ± 0.17 0.84 ± 0.16 0.87 ± 0.16 0.83 ± 0.17 0.92 ± 0.1 0.89 ± 0.12
𝑇1 0.78 ± 0.21 0.76 ± 0.21 0.78 ± 0.22 0.76 ± 0.21 0.85 ± 0.17 0.84 ± 0.17

AST Node Type 𝐶 CausalEffect 𝜏
boolean_operator -0.083 -0.150 -0.069 -0.136 -0.048 -0.095

comparison_operator -0.186 -0.027 -0.179 -0.018 -0.126 -0.015
for_in_clause -0.059 -0.053 -0.050 -0.045 -0.034 -0.029
for_statement -0.269 -0.101 -0.193 -0.041 -0.243 -0.083
identifier 0.016 -0.075 0.001 -0.073 0.010 -0.039
if_clause -0.070 -0.040 -0.058 -0.036 -0.037 -0.022

if_statement -0.163 -0.118 -0.140 -0.093 -0.116 -0.095
parameters -0.140 -0.048 -0.127 -0.046 -0.087 -0.029

return_statement -0.144 -0.121 -0.118 -0.113 -0.087 -0.075
string -0.156 -0.168 -0.102 -0.145 -0.118 -0.116

while_statement -0.200 -0.096 -0.139 -0.009 -0.186 -0.077
* Medians are > 0.8. The biggest causal effect 𝜏 for each node type is in gray.

Local Results. Fig. 2 shows the Jaccard performance statistical
behavior across some selected node types for𝑀1. Due to the non-
overlapping 𝑖𝑞𝑟 between the 𝑇0 and 𝑇1, we observed a significant
difference between treatment groups in the performance distribu-
tion for the nodes comparison_operator and string, revealing that𝑀1
struggles at predicting tokens associated with such types in con-
trast to random masked tokens. We found that identifier was the
only node type that performed better in the treatment than the con-
trol group. Fig. 3 presents the Empirical Cumulative Distribution
(ECD) plots of 𝑇1 Jaccard distance across selected node types. We
observed that if_clause was remarkably achieved with the highest
score prediction (0.9) at the lowest percentage of the population
(42% of the samples in the testbed). Conversely, for_statement was
the most difficult node to predict across the population. We believe
that MLMs struggle to predict these previous nodes due to their
complexity. A node is complex when its block has incorporated
other node types.

Figure 3: Syntactic Capabilities Statistically Learned by𝑀1.

RQ1: MLMs tend to complete missing AST-masked tokens with
acceptable accuracy (> 0.5). However, the reported performance
suffers from high variability (±0.21) making the prediction process
less confident compared to completing randomly masking tokens.

5.2 RQ2 Causal Evaluation Effect
This study used a quantitative causal technique to analyze the in-
fluence of masking binary treatments (i.e., AST and random) on the
performance of both 𝑀1 and 𝑀2 transformers after defining the

Structural Causal Model of the problem. To draw a causal link be-
tween syntactic features (i.e., AST nodes) and performance metrics
(i.e., Jaccard, Levenshtain, and SD), we expect to observe a positive
causal effect. A positive effect would indicate that syntactic fea-
tures 𝐶 are affecting models’ performance and AST nodes would
be statistically learned by MLMs. On the other hand, a negative
causal effect would imply that randomly masked tokens have
more influence on the performance. That is, tokens without any
particular syntactic order are being predicted accurately.

Unlike previous assumptions, it can be inferred from Tab. 2 that
the control group (i.e., masking random treatment) is having more
impact on MLMs’ performance than the actual syntactic features.
For instance, a set of samples masked for for_statement tokens are
underperforming (a.k.a. negative effects) compared to the same set
but randomly masked tokens. This suggests that although trans-
formers are predicting AST node types with confidence (see Fig. 3,
these syntactic features are not particularly relevant compared to
predicting any other set of unstructured tokens in the snippet (see
gray areas in Tab. 2). These findings tend to corroborate Karmakar
et al. research [19] in which MLMs do not fully grasp the syntax
and structural aspects of code. Our findings offer an alternative
perspective compared to claims made by other probing approaches
[22, 34]. For example, Hernandez Lopez et al. [14] argue for the
presence of a syntax subspace within the hidden layers that en-
code structures of PLs. Similarly, Toufique et al. [2] outline that
pre-trained language models learn robust representations of code
semantics, which implies a deep understanding of syntax elements
from the source code.

RQ2: The performance of MLMs is negatively impacted by AST-
masked tokens (𝜏 < −0.1). Our causal analysis yielded no signs of
Transformers’ performance being affected or guided by syntactic
features, contradicting SOTA explainability findings.

6 CONCLUSION & FUTURE PLANS
Our negative causal effect results corroborate recent findings that
show flaws when claiming that MLMs are understanding syntax
rules of PLs. Such effects amplify the disparities between Natural
and Programming languages, underscoring the need for tailored
representations in deep learning architectures. These findings pave
the way for future research to evaluate semantic capabilities in
the form of recursions, dead code, or code smells. We also highlight
the necessity to delve deeper into understanding why MLMs are
more adept at predicting random masked tokens than syntax-based
tokens. This tendency may be linked to the models’ pre-training
objectives, which frequently involve masking random tokens at a
certain rate [10].

7 ACKNOWLEDGEMENTS
This research has been supported in part by the NSF CCF-2311469,
CNS-2132281, CCF-2007246, and CCF-1955853. We also acknowl-
edge support from Cisco Systems. Any opinions, findings, and con-
clusions expressed herein are the authors’ and do not necessarily
reflect those of the sponsors.

75

Which Syntactic Capabilities Are Statistically Learned by
Masked Language Models for Code? ICSE-NIER’24, April 14–20, 2024, Lisbon, Portugal

REFERENCES
[1] 2023. WM-SEMERU/SyntaxEval. https://github.com/WM-SEMERU/SyntaxEval

original-date: 2022-09-09T20:53:59Z.
[2] Toufique Ahmed, Dian Yu, Chengxuan Huang, Cathy Wang, et al. 2023. Towards

Understanding What Code Language Models Learned. https://doi.org/10.48550/
arXiv.2306.11943 arXiv:2306.11943 [cs].

[3] Vaishak Belle and Ioannis Papantonis. 2020. Principles and Practice of Explainable
Machine Learning. CoRR abs/2009.11698 (2020). arXiv:2009.11698 https://arxiv.
org/abs/2009.11698

[4] Marcel Bruch, Martin Monperrus, and Mira Mezini. [n. d.]. Learning from
examples to improve code completion systems. In Proceedings of the 7th joint
meeting of the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering (2009-08-24). ACM, 213–
222. https://doi.org/10.1145/1595696.1595728

[5] Zimin Chen, Steve James Kommrusch, Michele Tufano, Louis-Noël Pouchet, et al.
2019. SEQUENCER: Sequence-to-Sequence Learning for End-to-End Program
Repair. IEEE Transactions on Software Engineering (2019), 1–1. https://doi.org/10.
1109/TSE.2019.2940179

[6] Matteo Ciniselli, Nathan Cooper, Luca Pascarella, Antonio Mastropaolo, et al. [n.
d.]. An Empirical Study on the Usage of TransformerModels for Code Completion.
([n. d.]), 1–1. https://doi.org/10.1109/TSE.2021.3128234

[7] Matteo Ciniselli, Nathan Cooper, Luca Pascarella, Antonio Mastropaolo, et al.
2021. An Empirical Study on the Usage of Transformer Models for Code Com-
pletion. arXiv:cs.SE/2108.01585

[8] Matteo Ciniselli, Nathan Cooper, Luca Pascarella, Denys Poshyvanyk, et al. 2021.
An Empirical Study on the Usage of BERT Models for Code Completion. CoRR
abs/2103.07115 (2021). arXiv:2103.07115 https://arxiv.org/abs/2103.07115

[9] Colin Clement, Dawn Drain, Jonathan Timcheck, Alexey Svyatkovskiy, et al.
[n. d.]. PyMT5: multi-mode translation of natural language and Python code
with transformers. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP) (2020). Association for Computational
Linguistics, 9052–9065. https://doi.org/10.18653/v1/2020.emnlp-main.728

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. [n. d.]. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
https://doi.org/10.48550/arXiv.1810.04805 arXiv:1810.04805 [cs]

[11] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, et al. 2020. CodeBERT: A Pre-
Trained Model for Programming and Natural Languages. arXiv:cs.CL/2002.08155

[12] Sangmok Han, David R. Wallace, and Robert C. Miller. [n. d.]. Code Completion
from Abbreviated Input. In 2009 IEEE/ACM International Conference on Automated
Software Engineering (2009-11). IEEE, 332–343. https://doi.org/10.1109/ASE.2009.
64

[13] Sangmok Han, David R. Wallace, and Robert C. Miller. [n. d.]. Code completion
of multiple keywords from abbreviated input. 18, 3 ([n. d.]), 363–398. https:
//doi.org/10.1007/s10515-011-0083-2

[14] José Antonio Hernández López, Martin Weyssow, Jesús Sánchez Cuadrado, and
Houari Sahraoui. 2022. AST-Probe: Recovering abstract syntax trees from hid-
den representations of pre-trained language models. Proceedings of the 37th
IEEE/ACM International Conference on Automated Software Engineering (Oct.
2022), 1–11. https://doi.org/10.1145/3551349.3556900 Conference Name: ASE ’22:
37th IEEE/ACM International Conference on Automated Software Engineering
ISBN: 9781450394758 Place: Rochester MI USA Publisher: ACM.

[15] Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, et al. 2012. On the natu-
ralness of software. In 2012 34th International Conference on Software Engineering
(ICSE). 837–847. https://doi.org/10.1109/ICSE.2012.6227135

[16] Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, et al. 2023. Large Language Models
for Software Engineering: A Systematic Literature Review. http://arxiv.org/abs/
2308.10620 arXiv:2308.10620 [cs].

[17] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, et al. 2019.
CodeSearchNet Challenge: Evaluating the State of Semantic Code Search.
arXiv:1909.09436 [cs, stat] (Sept. 2019). http://arxiv.org/abs/1909.09436 arXiv:
1909.09436.

[18] Masahiro Kaneko, Masato Mita, Shun Kiyono, Jun Suzuki, et al. 2020. Encoder-
Decoder Models Can Benefit from Pre-trained Masked Language Models in
Grammatical Error Correction. arXiv:cs.CL/2005.00987

[19] Anjan Karmakar and Romain Robbes. 2023. INSPECT: Intrinsic and Systematic
Probing Evaluation for Code Transformers. IEEE Transactions on Software En-
gineering (2023), 1–19. https://doi.org/10.1109/TSE.2023.3341624 Conference
Name: IEEE Transactions on Software Engineering.

[20] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, et al. 2019. RoBERTa: A Robustly
Optimized BERT Pretraining Approach. arXiv:cs.CL/1907.11692

[21] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, et al. 2019. RoBERTa: A Robustly
Optimized BERT Pretraining Approach. https://doi.org/10.48550/arXiv.1907.
11692 arXiv:1907.11692 [cs].

[22] Wei Ma, Mengjie Zhao, Xiaofei Xie, Qiang Hu, et al. 2023. Are Code Pre-trained
Models Powerful to Learn Code Syntax and Semantics? https://doi.org/10.48550/
arXiv.2212.10017 arXiv:2212.10017 [cs].

[23] Antonio Mastropaolo, Simone Scalabrino, Nathan Cooper, David Nader Palacio,
et al. 2021. Studying the Usage of Text-To-Text Transfer Transformer to Support
Code-Related Tasks. (2021), 336–347. https://doi.org/10.1109/icse43902.2021.
00041

[24] Ahmad Haji Mohammadkhani and Hadi Hemmati. [n. d.]. Explainable AI for
Pre-Trained Code Models: What Do They Learn? When They Do Not Work? ([n.
d.]).

[25] David N. Palacio, Nathan Cooper, Alvaro Rodriguez, Kevin Moran, et al. [n. d.].
Toward a Theory of Causation for Interpreting Neural Code Models. https:
//doi.org/10.48550/arXiv.2302.03788 arXiv:2302.03788 [cs, stat]

[26] Judea Pearl. 2009. Causality: models, reasoning, and inference.
[27] Rafiqul Islam Rabin, Arjun Mukherjee, Omprakash Gnawali, and Moham-

mad Amin Alipour. [n. d.]. Towards Demystifying Dimensions of Source Code
Embeddings. ([n. d.]), 29–38. ISBN: 9781450381253.

[28] Veselin Raychev, Martin Vechev, and Eran Yahav. [n. d.]. Code completion with
statistical language models. In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation (2014-06-09). ACM, 419–
428. https://doi.org/10.1145/2594291.2594321

[29] Daniel Rodriguez-Cardenas, David N. Palacio, Dipin Khati, Henry Burke, et al.
2023. Benchmarking Causal Study to Interpret Large Language Models for Source
Code. In 2023 IEEE International Conference on SoftwareMaintenance and Evolution
(ICSME). 329–334. https://doi.org/10.1109/ICSME58846.2023.00040

[30] Amit Sharma, Vasilis Syrgkanis, Cheng Zhang, and Emre Kıcıman. 2021. DoWhy :
Addressing Challenges in Expressing and Validating Causal Assumptions. (2021).

[31] P. K. Srimani and S. F. B. Nasir. 2007. A Textbook on Automata Theory. Foundation
Books. https://doi.org/10.1017/UPO9788175968363

[32] Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. [n.
d.]. IntelliCode compose: code generation using transformer. In Proceedings
of the 28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (2020-11-08). ACM,
1433–1443. https://doi.org/10.1145/3368089.3417058

[33] Alexey Svyatkovskiy, Ying Zhao, Shengyu Fu, and Neel Sundaresan. [n. d.].
Pythia: AI-assisted Code Completion System. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining (2019-
07-25). 2727–2735. https://doi.org/10.1145/3292500.3330699 arXiv:1912.00742
[cs]

[34] Sergey Troshin and Nadezhda Chirkova. 2022. Probing Pretrained Models of
Source Codes. Proceedings of the Fifth BlackboxNLP Workshop on Analyzing and
Interpreting Neural Networks for NLP (2022), 371–383. https://doi.org/10.18653/v1/
2022.blackboxnlp-1.31 Conference Name: Proceedings of the Fifth BlackboxNLP
Workshop on Analyzing and Interpreting Neural Networks for NLP Place: Abu
Dhabi, United Arab Emirates (Hybrid) Publisher: Association for Computational
Linguistics.

[35] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, et al.
2018. Deep Learning Similarities from Different Representations of Source Code.
In 2018 IEEE/ACM 15th International Conference on Mining Software Repositories
(MSR). 542–553.

[36] Rosalia Tufano, Luca Pascarella, Michele Tufano, Denys Poshyvanyk, et al. 2021.
Towards Automating Code Review Activities. In 43rd International Conference on
Software Engineering, ICSE’21. https://arxiv.org/abs/2101.02518

[37] Yao Wan, Wei Zhao, Hongyu Zhang, Yulei Sui, et al. [n. d.]. What Do They
Capture? – A Structural Analysis of Pre-Trained Language Models for Source
Code. https://doi.org/10.48550/arXiv.2202.06840 arXiv:2202.06840 [cs]

[38] Cody Watson, Nathan Cooper, David Nader Palacio, Kevin Moran, et al. 2022. A
Systematic Literature Review on the Use of Deep Learning in Software Engineer-
ing Research. ACM Transactions on Software Engineering and Methodology 31, 2
(March 2022), 32:1–32:58. https://doi.org/10.1145/3485275

[39] Cody Watson, Michele Tufano, Kevin Moran, Gabriele Bavota, et al. 2020. On
Learning Meaningful Assert Statements for Unit Test Cases. In Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering (ICSE ’20).
Association for Computing Machinery, New York, NY, USA, 1398–1409. https:
//doi.org/10.1145/3377811.3380429

[40] Martin White, Michele Tufano, Matías Martínez, Martin Monperrus, et al. 2019.
Sorting and Transforming Program Repair Ingredients via Deep Learning Code
Similarities. In 2019 IEEE 26th International Conference on Software Analysis,
Evolution and Reengineering (SANER). 479–490. https://doi.org/10.1109/SANER.
2019.8668043

[41] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk.
2016. Deep learning code fragments for code clone detection. In 2016 31st
IEEE/ACM International Conference on Automated Software Engineering (ASE).
87–98.

[42] Martin White, Christopher Vendome, Mario Linares-Vasquez, and Denys Poshy-
vanyk. [n. d.]. Toward Deep Learning Software Repositories. In 2015 IEEE/ACM
12th Working Conference on Mining Software Repositories (2015-05). IEEE, 334–345.
https://doi.org/10.1109/MSR.2015.38

76

https://github.com/WM-SEMERU/SyntaxEval
https://doi.org/10.48550/arXiv.2306.11943
https://doi.org/10.48550/arXiv.2306.11943
https://arxiv.org/abs/2009.11698
https://arxiv.org/abs/2009.11698
https://doi.org/10.1145/1595696.1595728
https://doi.org/10.1109/TSE.2019.2940179
https://doi.org/10.1109/TSE.2019.2940179
https://doi.org/10.1109/TSE.2021.3128234
https://arxiv.org/abs/cs.SE/2108.01585
https://arxiv.org/abs/2103.07115
https://doi.org/10.18653/v1/2020.emnlp-main.728
https://doi.org/10.48550/arXiv.1810.04805
https://arxiv.org/abs/1810.04805 [cs]
https://arxiv.org/abs/cs.CL/2002.08155
https://doi.org/10.1109/ASE.2009.64
https://doi.org/10.1109/ASE.2009.64
https://doi.org/10.1007/s10515-011-0083-2
https://doi.org/10.1007/s10515-011-0083-2
https://doi.org/10.1145/3551349.3556900
https://doi.org/10.1109/ICSE.2012.6227135
http://arxiv.org/abs/2308.10620
http://arxiv.org/abs/2308.10620
http://arxiv.org/abs/1909.09436
https://arxiv.org/abs/cs.CL/2005.00987
https://doi.org/10.1109/TSE.2023.3341624
https://arxiv.org/abs/cs.CL/1907.11692
https://doi.org/10.48550/arXiv.1907.11692
https://doi.org/10.48550/arXiv.1907.11692
https://doi.org/10.48550/arXiv.2212.10017
https://doi.org/10.48550/arXiv.2212.10017
https://doi.org/10.1109/icse43902.2021.00041
https://doi.org/10.1109/icse43902.2021.00041
https://doi.org/10.48550/arXiv.2302.03788
https://doi.org/10.48550/arXiv.2302.03788
https://arxiv.org/abs/2302.03788 [cs, stat]
https://doi.org/10.1145/2594291.2594321
https://doi.org/10.1109/ICSME58846.2023.00040
https://doi.org/10.1017/UPO9788175968363
https://doi.org/10.1145/3368089.3417058
https://doi.org/10.1145/3292500.3330699
https://arxiv.org/abs/1912.00742 [cs]
https://arxiv.org/abs/1912.00742 [cs]
https://doi.org/10.18653/v1/2022.blackboxnlp-1.31
https://doi.org/10.18653/v1/2022.blackboxnlp-1.31
https://arxiv.org/abs/2101.02518
https://doi.org/10.48550/arXiv.2202.06840
https://arxiv.org/abs/2202.06840 [cs]
https://doi.org/10.1145/3485275
https://doi.org/10.1145/3377811.3380429
https://doi.org/10.1145/3377811.3380429
https://doi.org/10.1109/SANER.2019.8668043
https://doi.org/10.1109/SANER.2019.8668043
https://doi.org/10.1109/MSR.2015.38

