
Semantic GUI Scene Learning and Video Alignment for Detecting
Duplicate Video-based Bug Reports

Yanfu Yan
yyan09@wm.edu
William & Mary

Williamsburg, Virginia, USA

Nathan Cooper
nacooper01@.wm.edu

William & Mary
Williamsburg, Virginia, USA

Oscar Chaparro
oscarch@wm.edu
William & Mary

Williamsburg, Virginia, USA

Kevin Moran
kpmoran@ucf.edu

University of Central Florida
Orlando, Florida, USA

Denys Poshyvanyk
denys@cs.wm.edu
William & Mary

Williamsburg, Virginia, USA

ABSTRACT

Video-based bug reports are increasingly being used to document
bugs for programs centered around a graphical user interface (GUI).
However, developing automated techniques to manage video-based
reports is challenging as it requires identifying and understand-
ing often nuanced visual patterns that capture key information
about a reported bug. In this paper, we aim to overcome these chal-
lenges by advancing the bug report management task of duplicate
detection for video-based reports. To this end, we introduce a new
approach, called Janus, that adapts the scene-learning capabilities
of vision transformers to capture subtle visual and textual patterns
that manifest on app UI screens — which is key to differentiating be-
tween similar screens for accurate duplicate report detection. Janus
also makes use of a video alignment technique capable of adaptive
weighting of video frames to account for typical bug manifestation
patterns. In a comprehensive evaluation on a benchmark containing
7,290 duplicate detection tasks derived from 270 video-based bug
reports from 90 Android app bugs, the best configuration of our
approach achieves an overall mRR/mAP of 89.8%/84.7%, and for the
large majority of duplicate detection tasks, outperforms prior work
by ≈9% to a statistically significant degree. Finally, we qualitatively
illustrate how the scene-learning capabilities provided by Janus
benefits its performance.

CCS CONCEPTS

• Software and its engineering → Software evolution.

KEYWORDS

Bug Reporting, GUI Learning, Duplicate Video Retrieval

ACM Reference Format:

Yanfu Yan, Nathan Cooper, Oscar Chaparro, Kevin Moran, and Denys Poshy-
vanyk. 2024. Semantic GUI Scene Learning and Video Alignment for Detect-
ing Duplicate Video-based Bug Reports. In 2024 IEEE/ACM 46th International

ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0217-4/24/04.
https://doi.org/10.1145/3597503.3639163

Conference on Software Engineering (ICSE ’24), April 14–20, 2024, Lisbon, Por-
tugal. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3597503.
3639163

1 INTRODUCTION

Video-based bug reports are becoming increasingly popular for
mobile applications [23, 34, 35, 52]. As mobile app bugs typically
manifest visually via the graphical user interface (GUI), record-
ing videos depicting bugs is more natural compared to textual
bug reports [23, 35]. App users can easily record app bugs via the
recording features of mobile operating systems (e.g., Android [5])
or via third-party recording apps [4]. Additionally, popular issue
trackers, such as GitHub [8], offer easy-to-use features for users to
submit these videos to app developers. The rapidly increasing use of
videos in mobile app issue trackers has been documented by recent
studies [34, 52]. Feng et al. studied open source apps hosted on
FDroid [6], and reported the usage of over 13k video recordings in
issue trackers between 2012-2020, with a significant increase in us-
age during 2018-2020 (i.e., a 15% - 35% increase). Kuramoto et al. [52]
reported a 13% increase in issues containing videos in 2017-2021
for 289k popular GitHub projects.

While video-based bug reporting offers various advantages (ease
of recording and submission, and visual details about app bugs [23,
26, 34, 35, 52]), it also presents several challenges for developers
during bug report management tasks, particularly in scenarios
where a high volume of bug reports is encountered [23, 34, 35, 52].

One of the most challenging tasks for developers is determining
whether video-based bug reports depict the same app bug. This
situation arises when multiple users independently report identical
problems with the application (e.g., during crowd-sourced app test-
ing [26, 31, 40]). In such scenarios, developers face the challenge of
watching, understanding, and assessing incoming and previously
submitted video-based bug reports. This task can be extremely
challenging since these recordings typically show numerous steps
executed rapidly, making it difficult to recognize the bug reproduc-
tion scenario from the videos [23, 26, 35]. Additionally, the depicted
buggy app behavior may not be apparent in the videos for the vari-
ous types of bugs that apps can show in their GUI [33]. Developers
often need to pause and replay the videos multiple times in order
to fully understand the reported problems [23, 35]. The task of
duplicate (video-based) bug report detection is crucial during the

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597503.3639163&domain=pdf&date_stamp=2024-04-12

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Yan, et al.

bug triage process, as it helps developers avoid excessive redundant
effort in investigating and resolving identical issues [26, 31, 40, 71].

This challenge is particularly prominent in crowd-sourced test-
ing of mobile apps [31, 40], wherein software vendors engage a
large distributed user base to test applications across diverse opera-
tional environments, for example, encompassing various devices,
locations, and mobile networks. Crowd-sourced app testing often
leads to multiple users encountering and reporting the same app-
related issues. In fact, previous research has found that a substantial
proportion (80%+) of bug reports submitted by users during crowd-
sourced app testing are duplicates [71]. Consequently, developers
often spend considerable effort on duplicate detection, which can
impede the overall bug resolution process [26, 31, 40, 71].

In this paper, we propose Janus, a novel automated approach
designed to assist developers in identifying duplicate video-based
bug reports. Janus combines visual representation learning, infor-
mation retrieval, and sequence-based algorithms, to analyze the
visual, textual, and sequential information present in video-based
bug reports. Through these methods, Janus establishes the degree
of similarity between videos in reporting the same bug, thus en-
abling the automated detection of duplicate reports.

To model the visual information within videos, Janus lever-
ages the Vision Transformer (ViT) architecture [30] and the self-
supervised training scheme DINO [18], which extract rich hierarchi-
cal features that explicitly capture scene layout information related
to GUI screens. In addition, Janus analyzes the textual content of
videos by leveraging the Efficient and Accurate Scene Text Detector
(EAST) [81] and a Transformer-based Optical Character Recogni-
tion (TrOCR) model [53], which accurately localize and extract
text from video frames. By encoding this textual content via an
adapted vector space model (VSM) [37], Janus assesses the textual
similarity between two videos. Finally, to encode the sequential
aspect of videos, Janus incorporates an adapted version of the clas-
sical longest common substring algorithm, giving higher weight to
subsequent video frames that show the buggy app behaviors even
if the videos show distinct bug reproduction scenarios.

We evaluate Janus using a comprehensive benchmark of 7,290
duplicate detection tasks, constructed from 270 video-based bug
reports representing 90 unique bugs found in nine Android apps.
We created this benchmark by extending an existing dataset that
relied mostly on synthetic bugs [26]. Specifically, we extended it
by incorporating 90 video-based bug reports pertaining to 30 real
bugs of different kinds (e.g., crashes, incorrect app output, and
cosmetic issues) from three additional apps, resulting in a more
comprehensive, realistic, and diverse benchmark.

Through multiple ablation experiments, we systematically assess
the performance of the individual components of Janus as well as
various combinations of these components. Our evaluation demon-
strates that the most optimal configuration of Janus (when visual,
textual, and sequential video information is combined) achieves
an overall mRR/mAP of 89.8%/84.7%, surpassing the performance
of an existing duplicate detector by ≈9% (with statistical signifi-
cance). These results suggest that Janus can significantly reduce
the effort required to identify duplicate video-based bug reports, as
developers would only need to review fewer video reports to assess
whether an incoming report depicts a known bug.

Furthermore, we conducted a qualitative analysis to understand
the reasons behind Janus’ performance compared to prior work.
Notably, Janus exhibits an interpretable representation of video
frames, effectively capturing nuanced patterns related to GUI com-
ponent style, composition, and layout, which are crucial in accu-
rately distinguishing duplicate video-based bug reports.

In summary, this paper makes the following main contributions:
• A new approach (Janus) that leverages visual representation
learning for the graphical/lexical analysis of video-based bug
reports. It also leverages sequential information within these
reports for more accurate duplicate detection;

• A comprehensive empirical evaluation that demonstrates state-
of-the-art improvements achieved by Janus in detecting du-
plicate video-based bug reports, when compared to a prior
duplicate detector;

• A qualitative analysis into potential reasons for our improved
results as well as future research directions on how the results
can be further improved; and

• A publicly available benchmark for evaluating duplicate video-
based bug report detectors [75], composed of 7,290 dupli-
cate detection tasks created from 120/150 reports about 40/50
real/synthetic bugs—the largest benchmark to date.

2 THE JANUS DUPLICATE DETECTOR

This section describes the architecture and design details behind
Janus, our approach for duplicate video-based bug report detection.

2.1 Problem Formulation and Challenges

We formulate the problem of duplicate detection as an information
retrieval (IR) problem, as is typically done for textual bug reports [47,
54, 78]. A newly-submitted video-based bug report (the query) is
compared against the set of previously submitted video reports in
the issue tracker (the corpus) via a retrieval engine (e.g., Janus),
which retrieves and ranks the corpus reports by their similarity
with the query. The higher a video-based report is ranked, the more
likely it is to depict the same bug as the query. A developer then
would watch the ranked videos in a top-down manner, marking
the new video as duplicate if they find a video depicting the same
bug. Video-based bug reports depict the incorrect behavior of an
application (e.g., GUI screens showing a crash, layout problems,
or functional misbehavior), and the actions performed by the user
on the GUI screens that lead to such misbehavior (i.e., the steps to
reproduce the bug). Duplicate video-based bug reports are pairs
of two reports, e.g., the query report and one corpus report, that
depict the same buggy behavior, possibly showing different GUI
steps, as multiple sequences of steps can lead to the manifestation
of the same buggy behavior. An advantage of an IR formulation
over other methods (e.g., binary classification as (non-)duplicates
reports [19]) is the fact that a ranked list gives higher flexibility
to developers, because multiple bug reports are recommended as
possibly showing the same bug.

While the primary goal of a duplicate detector is to identify
whether two distinct videos depict the same incorrect app behavior,
there are multiple challenges that make this task particularly diffi-
cult. For instance, duplicate videos may vary in length and display
different reproduction steps, stemming from diverse reproduction

Semantic GUI Scene Learning and Video Alignment for Detecting
Duplicate Video-based Bug Reports ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Video 1 Video 2(Fixed Sampling Rate)

JANUSvis JANUS+txt

Keyframe Representation Text Detection & Recognition

DINO (ViT)

TrOCR

Video Representation Video Representation

JANUStxt

ViT (Encoder)
Decoder

Encoder

Frame Patches

JANUSseq
LCS-Based Frame

Alignment & Weighting

Similarity Computation

EAST

Frame Set 1

Video 1+2
Frame Sets

Frame Set 2
Video Processing

K-Means TF-IDF Lucene TF-IDF

JANUSseq-v JANUSseq-t
Visual Frame

Weighting
Textual Frame

Weighting

Figure 1: Overview of the Janus duplicate detector.

scenarios executed by the users or the omission of certain steps
during recording. Even if the reproduction steps appear the same
or highly similar across videos, users may execute them at varying
speeds. Distinguishing between different videos displaying distinct
yet similar unexpected app behavior and reproduction steps can
pose challenges for detectors. Furthermore, certain applications
may exhibit dynamic content. For example, a mobile web browser
allows users to navigate websites with varying layouts/content.

2.2 Janus Overview

An overview of Janus is shown in Fig. 1. Janus receives as input
two video-based bug reports and outputs a similarity score that
indicates how similar they are at depicting the same app bug. Janus
can be used to compute scores between a new video-based bug
report and a corpus of videos representing previously-submitted
bug reports. The scores allow for ranking the corpus videos as a
list of potential duplicate candidates. The goal of Janus is to rank
higher in this list, the actual duplicates for the new video.

Internally, Janus begins sampling a number of frames from the
two videos at a given rate (every sixth frame following the find-
ings of past work [26]) to reduce overhead, given that successive

frames tend to be exact or near duplicates of each other. Next,
Janus computes a vector representation of the videos, by process-
ing the visual and/or textual content of the frames. Janus’s visual
component, Janus𝑣𝑖𝑠 , vectorizes each video into a visual TF-IDF
representation by discretizing the frames into a Bag of Visual Words
(BoVW) [45], using a feature extractor based on a Vision Trans-
former (ViT) model [30] and the DINO self-supervised training
scheme [18]. Janus’s textual component, Janus𝑡𝑥𝑡 , vectorizes each
video into a textual TF-IDF representation by extracting video frame
text (via the EAST [81] and TrOCR [53] models) and constructing a
document of the concatenated text, represented as a Bag of Words
(BoW) [65]. Each pair of visual or textual TF-IDF representations
is then compared via cosine similarity. The visual and textual sim-
ilarities can be used individually to rank duplicate candidates, or
they can be combined into a single similarity score to account for
both modalities of information, ideally leading to more effective
duplicate detection.

To account for the sequential nature of video-based bug reports,
which typically show the reproduction steps first and the incorrect
app behavior afterward, Janus can compute an alternative similar-
ity score, based on a customized version of the longest common sub-
string (LCS) algorithm, which matches the vector representation of
video frames via cosine similarity and produces an overall similarity
score that weights more heavily the later frames in the video than
the earlier ones. This similarity is computed by Janus’s sequential
component, Janus𝑠𝑒𝑞 , which operates on the visual (Janus𝑠𝑒𝑞−𝑣)
and textual (Janus𝑠𝑒𝑞−𝑡) vector representations of the frames.

2.3 Janus𝑣𝑖𝑠 : Visual Representation of Videos

Janus𝑣𝑖𝑠 obtains a visual representation of a video in two steps.
First, the sampled video frames are resized to 224 × 224 (pixels)
and encoded via visual representation learning [49]. Second, these
frame embeddings are further processed into a Bag of Visual Words
(BoVW) [50], which is used to represent a video as a TF-IDF vec-
tor [65]. The goal is to learn useful visual information from app
GUI components and layouts shown in the videos to distinguish
potential duplicates from non-duplicates.

2.3.1 Visual Representation of Video Frames. Visual represen-
tation learning aims to obtain high-quality visual representations
that are helpful for downstream tasks such as image classifica-
tion [51], object detection [80], or image captioning [43]. This task
is typically carried out in an unsupervised, self-supervised, or su-
pervised manner [25, 60]. Most recently, there has been a focus
on contrastive [25, 60] and distillation learning methods [18]. A
promising technique, known as the Vision Transformer (ViT) [30]
has recently been proposed to better learn visual representations.
The performance of this architecture has been demonstrated to
surpass or, at the very least, match previous models relying on
Convolutional Neural Networks (CNNs) for image classification.
However, the most significant advantage of ViT lies in its ability to
excel beyond CNNs in capturing explicit information concerning
the semantic segmentation of an image (i.e., layouts and object
boundaries) [30].

We posit that learning object segmentation within an image
is particularly useful for app GUI screens, given their structured,
component-based nature. Hence, we adopted the ViT architecture

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Yan, et al.

for designing Janus𝑣𝑖𝑠 . The ViT architecture is comprised of a stan-
dard Transformer encoder model [29] but instead of lexical tokens,
“patches” from images are fed into the network. These patches are
treated the same way that tokens are in lexical transformers: they
are linearly transformed and have added positional embeddings.

Given that image-level supervision requires labor-intensive an-
notations and limits the information that can be learned during
training to a single concept with a few categories of objects (as
is the case of app GUI screens, which contain components and
layouts of well-defined kinds), we need to train our ViT model in
a self-supervised manner. Janus𝑣𝑖𝑠 trains its ViT using the self-
supervised training methodology DINO [18], which leverages a
student-teacher knowledge distillation training scheme [42]. In this
scheme, the student network is trained to match the distribution
of the teacher network by minimizing the standard cross-entropy
loss. Usually, the teacher network is larger than the student net-
work in terms of the number of model parameters. However, the
teacher network in DINO is built from the past iterations of the stu-
dent network with an exponential moving average strategy, whose
parameters are frozen over an epoch by applying a stop-gradient
operator, given that direct replication of the student weights fails
to converge. The outputs of both networks are normalized using
a temperature softmax. To adapt the knowledge distillation archi-
tecture to self-supervised learning, two global views and several
local views are constructed on the basis of data augmentations [38]
and the multi-crop strategy [17], with local views passed through
the student while only the global views are passed through the
teacher network, to encourage local-to-global correspondence. By
combining DINO with ViT, we aim to further improve the ability
to capture global GUI layouts.

Through this self-supervised training process, the model learns
a rich representation of images that emphasize scene layouts and
object boundaries. To further refine the DINO model’s capabilities
to our domain of app GUI screens, we fine-tuned Janus’s ViT model,
which was pre-trained on ImageNet [28], on a collection of 66k
mobile app screenshots from the popular RICO dataset [27]. We
directly use the projected output of the [CLS] token, a special token
that marks the aggregation of all image patch embeddings, from the
last block of the ViT model as the representation of video frames.

2.3.2 Visual Representation of Videos. To represent a video,
Janus𝑣𝑖𝑠 implements a BoVW + TF-IDF approach since it has been
shown to be more useful for video retrieval compared to other
approaches [50] (e.g., using directly the frame representations for
similarity computation or aggregating them into a single vector).

Janus discretizes the frame representations by leveraging a Code-
book of visual words [50]. The Codebook represents a catalog of
visual words, which are representative vectors found in a corpus
of images (in our case, images of app GUIs). The Codebook is con-
structed via a trained 𝐾-Means model that clusters the corpus of
image representations into𝐾 clusters, the centroids being the visual
words. Janus then assigns each video frame representation to its
closest cluster centroid (i.e., a visual word) via Euclidean distance.
The Codebook is trained by randomly sampling 15k mobile app
screenshots from the RICO dataset [27], vectorizing them via our
fine-tuned ViT model, and running the 𝐾-Means algorithm on the
vectors, with 𝐾 = 1𝑘 recommended by prior work [50]. We take a

sample rather than using the full RICO dataset due to computational
constraints of the 𝐾-Means algorithm. The Codebook is trained
only once before the TF-IDF representation approach is applied.

Once each frame representation is discretized to its correspond-
ing visual word, Janus computes a TF-IDF vector representation of
a video, as similarly done for text retrieval [65]. The term frequency
(TF) is the count of each visual word in the video. The inverse
document frequency (IDF) is the count of BoVW representations of
existing videos where a visual word appears. Since a corpus of exist-
ing videos for a particular app may be small and may lack diversity,
we consider the set of RICO images as the corpus of existing videos.
By considering the diversity of apps in the RICO dataset, we aim to
improve the generalization of the TF-IDF video representations.

Janus𝑣𝑖𝑠 compares the TF-IDF representation of two videos via
cosine similarity to establish the likelihood of the videos showing
the same app bug. This method is applied to the existing corpus of
TF-IDF visual representations for an app to generate a ranked list
of candidate duplicate videos for a new video-based bug report.

To address potential biases due to random sampling when creat-
ing the Codebook, we adapted Janus𝑣𝑖𝑠 to use four Codebooks (each
trained on 15k RICO images, 60k in total). Specifically, Janus𝑣𝑖𝑠
uses each Codebook to produce similarity scores for a set of videos.
These similarity scores are averaged to produce a final set of simi-
larities and video ranking. More details are given in section 3.3.2.

2.4 Janus𝑡𝑥𝑡 : Textual Representation of Videos

Janus𝑡𝑥𝑡 creates a textual representation of a video in two steps: (1)
it localizes and extracts the text present in video frames via neural
text localization and Optical Character Recognition (OCR); and (2),
it encodes the extracted text using a standard TF-IDF representa-
tion [65]. The goal is to leverage the text from labels, messages, and
other sources shown in the frames to compute video similarity.

For the first step, Janus𝑡𝑥𝑡 has two components: (1) a text lo-
calization component that proposes image regions where text is
rendered, and (2) a text recognition component that takes those
regions and extracts any text present in them. The text localiza-
tion component implements the Efficient and Accurate Scene Text
Detector (EAST) model [81], which has been trained to directly
derive region proposals. The text recognition component leverages
the TrOCR Transformer model [53], which takes region proposals
from EAST and directly predicts the text represented in the propos-
als. The combination of EAST and TrOCR was adopted over the
popular TesseractOCR [1] approach because: (1) such a combina-
tion simplifies the overall OCR pipeline since it relies on neural
models only, without needing heuristic-based approaches to filter
out poor text region candidates (as TesseractOCR does); and (2)
such a combination has shown strong performance improvements
in detecting scene text as well as handwritten/printed text, which
means it is less sensitive to noise in the images. Each video frame
is put through this 2-stage pipeline to extract its text.

For the second step, Janus𝑡𝑥𝑡 concatenates the text from all video
frames and pre-processes it via tokenization, lemmatization, and
removal of special characters, such as non-ASCII characters, punc-
tuation, or stop words. This resulting text is used to build a Bag of
Words (BoW) representation of the video, which is then encoded as
a standard textual TF-IDF representation using the popular Lucene

Semantic GUI Scene Learning and Video Alignment for Detecting
Duplicate Video-based Bug Reports ICSE ’24, April 14–20, 2024, Lisbon, Portugal

library [37], which implements the standard information retrieval
Boolean model and the Vector Space Model (VSM) [65]. We use this
textual representation approach over neural text encoding models
because it is based on exact text matching, which could lead to
more accurate similarity computation of duplicate videos (as they
are likely to show the same text on the buggy app screens).

Finally, Janus𝑡𝑥𝑡 compares the TF-IDF representation of two
videos using Lucene’s similarity scoring function (based on cosine
similarity and document length normalization) [11]. Similarity com-
putation can be applied to a corpus of video-based bug reports to
generate a ranked list of potential duplicate videos to the new video.

2.5 Janus𝑠𝑒𝑞: Sequential Similarity of Videos

Janus𝑣𝑖𝑠 and Janus𝑡𝑥𝑡 ignore the sequential order of the videos, as
these components are based on Bags Of (Visual) Words. However,
the buggy app behavior is typically shown toward the end of a
video-based bug report, after the bug reproduction steps have been
rendered. To account for the sequential order of the videos, Janus
employs a modified version of the longest common substring (LCS)
algorithm to compute an alternative similarity score between videos.
This approach is coined as Janus𝑠𝑒𝑞 and operates on both visual
(Janus𝑠𝑒𝑞−𝑣) and textual representations of the videos (Janus𝑠𝑒𝑞−𝑡).

Janus𝑠𝑒𝑞 treats a video as a sequence of visual/textual words,
based on the vector representation of the video frames, and applies
an LCS-based approach for similarity computation. Intuitively, the
longer the LCS between videos is, the higher their similarity is.
The textual representation of a video frame is the TF-IDF vector
of the text extracted from the frame, using the approach described
in section 2.4. In the standard word-based LCS algorithm, words
are compared using exact text matching. To account for similar, yet
different video words (which might be common for textual video
representations), we relaxed this matching scheme and instead
used cosine similarity between video frame representations. Addi-
tionally, the similarity-based matching should weigh more heavily
the frames that appear later in the videos as they are more likely
to show the buggy app behavior and should give a normalized
similarity score between zero and one.

Given these requirements, we defined the following similarity
computation for Janus𝑠𝑒𝑞 : 𝑆𝑠𝑒𝑞 = w-𝐿𝐶𝑆

max w-𝐿𝐶𝑆 , where the numerator,
w-𝐿𝐶𝑆 , represents the amount of overlap between two videos, given
by our modified LCS algorithm, which uses the cosine similarity be-
tween frames (rather than exact matching) and a weighting scheme
that favors later frames in the videos. The weighting scheme is
𝑖
𝑚 × 𝑗

𝑛 , where 𝑖 is the 𝑖𝑡ℎ frame of a first video, with𝑚 being its # of
frames, and 𝑗 is the 𝑗𝑡ℎ frame of a second video, with 𝑛 being its #
of frames. The denominator, max w-𝐿𝐶𝑆 , represents the maximum
possible overlap if the videos were identical. Since the videos could
be of different lengths, we align the end of the shorter video (with
length𝑚𝑖𝑛), to the end of the longer video (with length𝑚𝑎𝑥), and
calculate the maximum overlap as:

∑𝑚𝑖𝑛
𝑖=1

𝑖
𝑚𝑖𝑛 × 𝑚𝑎𝑥−𝑖

𝑚𝑎𝑥 .

2.6 Combining Janus’s Components

To design Janus, we explore different combinations of its compo-
nents. The similarity scores from Janus𝑣𝑖𝑠 and Janus𝑡𝑥𝑡 can be
linearly combined as (1−𝑤) ×𝑆𝑣𝑖𝑠 +𝑤 ×𝑆𝑡𝑥𝑡 , with𝑤 ∈ [0, 1]— the
higher 𝑤 is the more weight it gives to textual information from

the videos. We also explore various combinations that replace this
similarity calculation with those given by Janus𝑠𝑒𝑞 (Janus𝑠𝑒𝑞−𝑣 &
Janus𝑠𝑒𝑞−𝑡), which consider the sequential video information.

3 EVALUATION METHODOLOGY

We investigate the performance of Janus’s components (Janus𝑡𝑥𝑡 ,
Janus𝑣𝑖𝑠 , and Janus𝑠𝑒𝑞), as well as the performance of various com-
binations of these components, and compare these to a baseline
duplicate detection technique proposed in prior work [26]. Addi-
tionally, we aim to understand why we observe various trends in
the overall performance of Janus, and qualitatively examine cases
where Janus is able to outperform the baseline technique. To that
end, we formulate the following research questions (RQs):
RQ1: What is Janus𝑣𝑖𝑠 ’s duplicate detection performance?
RQ2: What is Janus𝑡𝑥𝑡 ’s duplicate detection performance?
RQ3: What is Janus𝑠𝑒𝑞 ’s duplicate detection performance?
RQ4: What is the performance of Janus’s component combinations?

3.1 Duplicate Detection Dataset

We constructed a comprehensive evaluation dataset by extending
a prior dataset that mostly relied on synthetic app bugs [26]. The
previous dataset collected 60 distinct bugs (35 crashes and 25 non-
crashes) across six Android apps of different sizes and domains (e.g.,
podcast, finance, and weight management apps). The dataset con-
tains ten confirmed real bugs and 50 bugs injected by the mutation
testing tool MutAPK [33], which generates code mutations based
on diverse mutant operators that affect various app features. The
dataset includes three duplicate videos per bug, for a total of 180
video-based bug reports, and a set of 810 duplicate detection tasks
per app, for a total of 4,860 tasks, created from the videos. We refer
to this dataset as the original dataset. We next describe how we
extended this dataset and detail the creation of video-based bug
reports and duplicate detection tasks to evaluate Janus.

3.1.1 ExtendedReal BugDataset. Weextended the prior dataset
by constructing an evaluation dataset containing only real bugs.
Wendland et al. [74] released the AndroR2 dataset containing 90
manually reproduced bug reports for Android apps. This dataset
was later extended through the addition of another 90 reproduced
bug reports in the AndroR2+ dataset [46], for a total of 180 real,
reproducible reports. For each bug report, AndroR2+ provides a
link to the original bug report in the issue tracker, an apk of the
buggy app version, a reproduction script, and metadata for bug
reproduction (device, OS version, etc.).

To construct our new dataset of real bugs, we chose the three
apps with the largest number of bugs from AndroR2+, while also
ensuring the diversity of app categories. We selected: Firefox Focus
(FCS) [7], a web browser; PDF Converter (ITP) [10], an image-to-
PDF converter; and GPSTest (GPS) [9], a GPS testing app. FCS is
the only app that renders dynamic content on the screen. For these
apps in Andror2+, we found ten bug reports for FCS, nine reports
for GPS, and eight reports for ITP. We further manually checked
each app’s issue tracker and collected one more bug for GPS and
two more bugs for ITP to have the same number of bugs per app. To
find the apk files of the correct buggy version of the apps for these
three bugs, we chose the app version closest to the date the issue

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Yan, et al.

was created and confirmed that the apk allowed for the successful
reproduction of the bug. Based on the AndroR2+ metadata and the
three bug reports we collected, there are seven different OS versions
used to reproduce the bugs, namely, Android version 4.4.4, 6.0.1, 7,
7.1, 8, 8.1, & 9.

3.1.2 Duplicate Video Recording. The paper authors and ex-
ternal participants recorded videos replicating the collected 30 real
bugs from the three AndroR2+ apps, following prior work [26].

We rewrote the descriptions of steps to reproduce (S2R), expected
behaviors, and observed behaviors for these bugs to ensure they
are clear and easy for participants to reproduce from an end-user
perspective. Although the AndroR2+ bugs were reproducible on a
Pixel 2 emulator, we chose Nexus 5X to maintain the same device
configuration as the previous dataset [26], since the bugs were also
reproducible on the Nexus 5X. This ensures a consistent resolution
of the videos across the benchmarks. Additionally, we minimized
the different OS versions to three (6, 8.1, and 9) to reduce partici-
pants’ effort by finding the closest OS versions to their original ones
while ensuring the bugs were still reproducible. Also, having these
additional OSes in our video reproductions of these bugs has the
added benefit of being more realistic—the prior dataset only used
Android 7.0. While AndroR2+ provides automated bug reproduc-
tion scripts, we avoided using them for two reasons: (i) we found
that certain scripts led to errors that did not properly reproduce the
bug, and (ii) we wanted to capture video-based reports depicting
real human actions, to ensure the most realistic setting possible.

Video-based reports were created by the paper authors for all 30
bugs according to the S2R. To maintain three duplicate videos per
bug, in line with the previous dataset, two authors (who previously
did not record any videos) alongwith two Ph.D. students were asked
to record the additional 60 videos, each responsible for reproducing
15 distinct bugs with only the descriptions of expected and observed
behaviors, to ensure diversity of reproduction steps. Unlike the
prior dataset, the recorded videos do not show the Android touch
indicator when the user taps on the screen.

In total, our new dataset consists of 90 video-based bug reports
corresponding with three duplicates of 30 real bugs from three
apps. It contains two crashes and 28 non-crashes, comprising 270
reproduction steps in total (249 taps, six gestures, and 15 input
entry actions) and ≈35-second videos, on average. There are six
videos for Android 6, nine for Android 9, and 75 for Android 8.1.

3.1.3 Duplicate Detection Tasks. In line with the prior dataset,
we construct duplicate detection tasks for each app to be as realistic
as possible. We define a duplicate detection task as having: (1)
a query video that represents a newly reported video-based bug
report, and (2) a corpus of 13 existing video-based reports. The query
must be compared against the corpus in order to determine whether
the incoming report is a duplicate of an existing report. Each task
contains videos of the 10 bugs for an app. The corpus contains
two duplicate videos of the query (i.e., they show the same bug).
The remaining eleven videos are non-duplicates: three of them are
duplicates of each other but not of the query (i.e., they show a bug
different from the query bug), and eight videos show distinct bugs.
Each task simulates a situation that is similar to crowd-sourced app
testing, where duplicates of the query, of other bugs, and unique
video-based reports exist together on the issue tracker for an app.

Using different combinations of bugs and videos, we created a
total of 810 tasks per app or 2,430 tasks across all apps. Combin-
ing both the prior and new datasets, there are 7,920 tasks in our
extended evaluation benchmark to evaluate Janus.

3.2 Baseline Duplicate Detector

We compare Janus against the Tango duplicate detector introduced
by Cooper et al. [26]. Tango also leverages multi-modal information
to detect duplicate video-based reports, using less-sophisticated
methods as compared to Janus. It extracts visual features from
video frames using a contrastive learning method called SimCLR,
which uses a ResNet-50 CNN to learn local features of app GUIs [25].
It also analyzes text displayed on GUI screens using an approach
that combines LSTM-based language models and heuristics, relying
on TesseracOCR to extract video frame text [1]. Finally, Tango
performs limited alignment of video frames: only for its extracted
visual SimCLR features. Tango’s evaluation found the best per-
forming configuration is when the visual and textual components
are combined, hence we compare Janus against this configura-
tion while also performing ablation comparisons between their
individual components.

3.3 Metrics and Experimental Settings

3.3.1 Evaluation Metrics. We use standard metrics used in prior
work on duplicate bug report detection evaluations [26, 47, 54, 78]:
• Mean Reciprocal Rank (mRR): it gives a measure of the aver-
age ranking of the first duplicate video found in the candidate
list of videos given by a duplicate detector. It is calculated as:
𝑚𝑅𝑅 = 1

𝑁

∑𝑁
𝑖=1

1
𝑟𝑎𝑛𝑘𝑖

, for 𝑁 duplicate detection tasks (𝑟𝑎𝑛𝑘𝑖 is
the rank of the first duplicate video for task 𝑖).

• Mean Average Precision (mAP): it gives a measure of the
average ranking of all the duplicate videos for a query video.
It is computed as: 𝑚𝐴𝑃 = 1

𝑁

∑𝑁
𝑖=1

1
𝐷𝑉

∑𝐷𝑉
𝑣=1 𝑃𝑖 (𝑟𝑎𝑛𝑘𝑣), where

𝐷𝑉 is the set of duplicate videos for task 𝑖 , 𝑟𝑎𝑛𝑘𝑣 is the rank of
the duplicate video 𝑣 , and 𝑃𝑖 (𝑘) = 𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑠

𝑘
is the number of

duplicates in the top-𝑘 candidates.
All metrics give a normalized score in [0, 1]—the higher the

score, the higher the duplicate detection performance. We executed
different configurations of Janus and the baseline on the 7,920 tasks
and computed/compared the metrics between these approaches.

3.3.2 Model Configurations. We compared Janus𝑣𝑖𝑠 against
Tango’s visual component by experimenting with two ViT models:
ViT-Small (ViT-S) and ViT-Base (ViT-B), which have six and 12 self-
attention heads respectively. ViT-S has a similar size to RestNet-50’s
size (used by Tango’s SimCLR): ≈23M parameters. To evaluate the
differences between the SimCLR (contrastive) and DINO (distil-
lation) training schemes, we implemented Janus𝑣𝑖𝑠 with DINO +
RestNet-50. We also experimented with the following patch sizes
for ViT: 16𝑥16 (/16) and 8𝑥8 (/8) pixels, as the patch size can af-
fect Janus𝑣𝑖𝑠 ’s performance [30]. In total, we executed four DINO
models: DINO (ResNet), DINO (ViT-S/16), DINO (ViT-S/8), & DINO
(ViT-B/16). ViT-B/8 was not included in the experimentation for
Janus𝑣𝑖𝑠 due to its substantial computation overhead.

To account for potential biases from random image selection
when constructing the Janus𝑣𝑖𝑠 ’s Codebook, we used four distinct

Semantic GUI Scene Learning and Video Alignment for Detecting
Duplicate Video-based Bug Reports ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 1: The network configurations andfine-tuning hyperpa-

rameters for Janus𝑣𝑖𝑠 compared with SimCLR used by Tango

model dim # params batch size w-temp temp
SimCLR 2,048 23M 1,792 – –

DINO (ResNet) 2,048 23M 96 0.03 0.03 (0)
DINO (ViT-S/16) 384 21M 96 0.03 0.03 (0)
DINO (ViT-S/8) 384 21M 18 0.04 0.05 (30)
DINO (ViT-B/16) 768 85M 64 0.05 0.07 (50)

Codebooks, each trained on 15k distinct RICO images (60K images
in total). With each Codebook, Janus𝑣𝑖𝑠 generates similarity scores
for a set of videos. These similarities are averaged across the four
Codebooks to produce final scores used for ranking. To perform a
fair comparison with Tango’s visual component, we implemented
the same Codebook generation strategy onTango, using its publicly
released implementation [26]. The recomputed Tango results on
the prior dataset are slightly higher than those reported in the
original paper (76.2 vs 75.3 mRR and 69.8 vs 67.8 mAP).

We compared Janus𝑡𝑥𝑡 against Tango’s textual component by
experimenting with different configurations for the EAST and
TrOCR models. For EAST, we used three different resolution thresh-
olds to filter out small text regions: 5×5 (EAST-5), 40×20 (EAST-40),
and 80 × 40 (EAST-80). The 5 × 5 threshold is used by default in
EAST. We did not test larger resolutions than 80× 40 to ensure that
each textual document created for the video has at least one valid
detection. 40 × 20 was included as a middle ground to understand
the impact of the threshold size on the video similarity calculation.
For TrOCR, we used its large version with BEiT Large [14] as the
encoder and RoBERTa Large [55] as the decoder. Two fine-tuned
TrOCR-Large models are used, namely TrOCR-p (fine-tuned on the
printed text dataset SROIE [44]) and TrOCR-s (finetuned on the
synthetic scene text datasets such as ICDAR15 [48] and SVT [72]).

3.3.3 Model Training. All visual models were fine-tuned on the
66k mobile app screenshots from the RICO dataset [27] for 100
epochs using model checkpoints trained on ImageNet [28], ex-
cept for DINO (ViT-B/16), to fairly compare it with the Tango𝑣𝑖𝑠 ’s
SimCLR model. After examining preliminary results showing the
advantages of DINO with ViT, we decided to train DINO (ViT-B/16)
for 400 epochs [18]. Fine-tuning was carried out on three NVIDIA
T4 Tesla GPUs with 16GB of memory each. Because DINO does not
use contrastive learning, we were able to use a much smaller batch
size as compared to the SimCLR model used in Tango: 96 vs 1,792
for ViT-S/16 and ResNet-50. For the ViT-B/16 and ViT-S/8 models,
we used a batch size of 64 and 16 due to memory constraints. Table
1 shows the network configurations and three fine-tuning hyperpa-
rameters, where dim is the representation dimension of the output,
params is the total number of model parameters. "temp" and "w-
temp" represent the teacher temperature and the warm-up teacher
temperature respectively, and the numbers in parentheses are the
epochs used for warm-up. Model training was not required for
Janus𝑡𝑥𝑡 as we directly use pre-trained EAST and TrCOR models
for GUI text localization and recognition [53, 81].

4 EVALUATION RESULTS AND DISCUSSION

Table 2 shows Janus’s duplicate detection performance compared
to the baseline Tango, for their individual components: visual,

textual, and sequential. Table 3 shows the performance of different
combinations of Janus components, compared to the baseline.

Cells shaded green in these tables indicate a statistically signifi-
cant (via Wilcoxon’s paired test at the 𝑝 < 0.05 level) higher effec-
tiveness when comparing a given Janus configuration/component
to a given Tango configuration/component. Yellow shaded cells
indicate a higher performance, but without statistical significance.
We present the results for each app of the original (mostly syn-
thetic bugs) and extended (real bugs) datasets and the overall results
accounting for all the apps in both sets, separately and combined.

Whilewe computed the performance of four Janus𝑣𝑖𝑠 DINOmod-
els (i.e., DINO with ResNet, ViT-S/16, ViT-S/8, and ViT-B/16), we
present (in tables 2 and 3) the best-performing model for Janus𝑣𝑖𝑠 :
DINO with ViT-B. Likewise, we report here the results of the best
performing model configuration for Janus𝑡𝑥𝑡 , namely EAST-80
(EAST that filters out region proposals smaller than 80𝑥40) com-
bined with TrOCR-s (TrOCR fine-tuned on real-world scenes, e.g.,
street scenes, instead of text found in printed and handwritten
documents). The results for all the DINO, EAST, and TrOCR config-
urations can be found in our replication package [75].

Tables 2 and 3 show a consistent trend: the performance achieved
by any duplicate detector (i.e., any configuration) is lower for the
original dataset than for the extended dataset. After investigating
the minimal set of ground-truth reproduction steps of the bugs used
in the datasets, we found this trend is explained by the number
of overlapping steps across distinct bugs in an app. We observed
that distinct bugs for a given app in the original dataset have a
larger step overlap than distinct bugs in the extended dataset. It is
more challenging for a duplicate detector to distinguish between
duplicate and non-duplicate videos if there is a larger step overlap
across bugs (hence, across videos). Recall that in a duplicate detec-
tion task, the videos in the corpus are for distinct bugs; if there is a
larger overlap among them, particularly between duplicates and
non-duplicates, a detector would struggle to discern the differences.

4.1 RQ1: Janus𝑣𝑖𝑠 ’s Performance

Table 2 shows the duplicate detection effectiveness of Janus𝑣𝑖𝑠
(DINO with ViT-B) compared to visual Tango (SimCLR).

Before discussing the table results, we briefly discuss the re-
sults of comparing the training schemes (distillation via DINO vs
contrastive via SimCLR, both using the same pre-trained ResNet
weights). We found that SimCLR outperforms DINO for six of nine
apps by a relatively small margin (by 3.5% mRR and 4.2% mAP, on
average), but DINO outperforms SimCLR for the remaining three
apps (APOD, GNU, DINO) by a larger margin (7.5% mRR and 6%
mAP, on avg.). Overall, across all the apps, we found a similar per-
formance between these two approaches (less than 1.1% mRR/mAP
improvement), which indicates the training scheme does not have
a large impact on duplicate detection performance.

Furthermore, both ViT-S/16 and ViT-S/8 used by Janus𝑣𝑖𝑠 ’s
DINO exhibit superior performance compared to ResNet-50 used by
visual Tango’s SimCLR. Specifically, although ViT-S/16 and ViT-S/8
have a similar model size to RestNet-50, they outperform ResNet-50
by 2.91% and 2.92% respectively, in terms of mRR on average, with
statistical significance. This highlights the effectiveness of ViT over
ResNet for duplicate video-based bug report detection.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Yan, et al.

Table 2: Performance of the individual components of Janus and the baseline Tango

Visual Textual Sequential (visual) Seq. (textual)

Tango Janus𝑣𝑖𝑠 Tango Janus𝑡𝑥𝑡 Tango Janus𝑠𝑒𝑞−𝑣 Janus𝑠𝑒𝑞−𝑡App

mRR mAP mRR mAP mRR mAP mRR mAP mRR mAP mRR mAP mRR mAP

APOD 77.19 69.98 87.32 79.79 80.80 75.30 79.76 73.09 55.01 44.85 84.45 71.11 73.40 68.09
DROID 68.43 58.82 80.77 71.44 67.90 64.70 78.88 72.52 46.54 37.91 61.49 50.88 76.19 73.64
GNU 81.53 75.83 81.83 75.54 84.50 82.30 89.53 81.28 55.91 43.37 71.41 58.82 52.79 43.81
GROW 83.53 78.60 87.46 80.33 76.80 69.00 82.65 77.38 74.57 64.46 92.14 84.57 77.45 76.24
TIME 70.26 65.35 73.76 69.46 47.40 37.70 64.80 56.67 50.85 43.62 63.14 56.18 69.34 66.16
TOK 76.03 70.37 81.11 71.33 61.30 53.30 53.95 44.48 38.13 33.36 53.39 43.22 54.00 47.83

Original 76.16 69.83 82.04 74.65 69.80 63.70 74.93 67.57 53.50 44.59 71.00 60.80 67.20 62.63

FCS 91.09 85.82 86.88 82.69 85.12 79.12 86.17 84.88 65.23 55.42 90.20 85.91 90.53 88.21
GPS 95.99 92.15 98.09 95.70 92.11 84.82 97.51 96.10 68.34 60.63 93.72 86.64 57.83 53.33
ITP 81.93 73.92 93.29 84.08 89.73 86.34 96.77 89.83 69.50 54.37 90.56 78.20 54.74 46.87

Extended 89.67 83.96 92.75 87.49 88.98 85.74 93.48 90.27 67.69 56.81 91.50 83.58 67.70 62.80

Overall 80.66 74.54 85.61 78.93 76.14 70.06 81.11 75.14 58.23 48.67 77.84 68.39 67.36 62.69

Table 2 shows that Janus𝑣𝑖𝑠 (DINO with ViT-B) significantly
outperforms the baseline on both datasets. We observe an over-
all improvement of (85.61 - 80.66)/80.66 = 6.1% mRR and (78.93 -
74.54)/74.54 = 5.9% mAP, with statistical significance. This overall
performance comes from an improvement in eight out of nine apps
compared to the baseline (seven with statistical significance), with
Tango only having a substantial improvement over Janus𝑣𝑖𝑠 for
the FCS app. These FCS results are due to the nature of the app and
the underlying models. Specifically, FCS is a web browser and the
video-based bug reports produced for this app show users navigat-
ing to different websites. The app produces dynamic content: the
navigated websites have different layouts and visual characteristics.
Janus𝑣𝑖𝑠 ’s ViT is prone to focusing more on the structure of the
GUIs, extracting global features about the layouts, while the base-
line’s ResNet tends to focus on local visual features of the GUIs, not
necessarily on general screen layouts, which are more beneficial
to detect duplicates. Compared to ResNet, ViT’s emphasis on GUI
layouts leads to a more substantial dissimilarity between duplicates
when sequential visual information is not taken into account.

4.2 RQ2: Janus𝑡𝑥𝑡 ’s Performance

Table 2 shows that Janus𝑡𝑥𝑡 is substantially more effective than
textual Tango for seven of nine apps (with statistical significance),
especially for DROID (improvement of 16.2% mRR and 12.1% mAP)
and TIME (improvement of 36.7% mRR and 50.3% mAP). Only for
the apps APOD and TOK, Tango is higher, resulting in Janus𝑡𝑥𝑡 ’s
overall superiority on both the original and the real bug datasets
(overall, by 6.5%/7.3% mRR/mAP). The reason why Janus𝑡𝑥𝑡 does
not perform better for APOD and TOK is that these apps usually
contain short or small pieces of text (e.g., due to small fonts) on
many of their screens, and EAST fails to identify them because these
pieces fit in smaller regions than 80×40 pixels. Indeed, when reduc-
ing the threshold to 40×20, Janus𝑡𝑥𝑡 outperforms Tango for APOD
and TOK (by 1.5%/1.1% and 8.8%/5.2% mRR/mAP respectively).

Janus𝑡𝑥𝑡 ’s performance is slightly higher than Janus𝑣𝑖𝑠 ’s for the
extended dataset (improvement of 0.8%/3.1%mRR/mAP overall), but
lower for the original dataset (by 9.5%/10.5% mRR/mAP). The lower
improvements come from the TOK app, which does not contain
enough textual information to accurately detect duplicates [26].

4.3 RQ3: Janus𝑠𝑒𝑞’s Performance

Table 2 shows that Janus𝑠𝑒𝑞−𝑣 is substantially more effective in
detecting duplicates than sequential Tango, when using visual
frame representations. Janus𝑠𝑒𝑞−𝑣 outperforms the baseline for
every app in the original dataset (by 32.7% mRR and 36.4% mAP
overall) and in the extended dataset (by 35.2% mRR and 47.1% mAP
overall). The high improvements can be attributed to the power of
Janus’s ViT in learning the global structure of GUI screens, while
Tango’s ResNet focuses on learning local GUI features. Global GUI
structure representations are more useful to measure the sequential
overlap between video frames even when there are small varia-
tions in the frames because of slightly different reproduction steps.
Also, we note that the improvements for the FCS app are substan-
tial (38%/55% mRR/mAP). Since we observed highly different GUI
layouts in video frames for this app (because users navigated to
different websites), these results are indicative of the effectiveness
of the sequential similarity approach of Janus in combination with
ViT-based frame representations (compared to the baseline).

Since Tango’s sequential component is not designed to work
with textual frame representations (unlike Janus), we only com-
pare the performance of Janus𝑠𝑒𝑞−𝑡 with Janus𝑠𝑒𝑞−𝑣 . Overall,
Janus𝑠𝑒𝑞−𝑣 outperforms Janus𝑠𝑒𝑞−𝑡 by 15.6%/9.1% mRR/mAP. It
substantially outperforms Janus𝑠𝑒𝑞−𝑡 for five of nine apps by 39.4%/
35.8% mRR/mAP on average, while having a lower performance
for the remaining four apps (7.4%/14.6% mRR/mAP). The largest
improvement is observed in the GPS and ITP apps. ITP is an app
used to convert images to PDF, involving mostly image editing,
while GPS focuses on editing coordinates and displaying locations
on a map. Consequently, video-based bug reports have limited
text on each frame, which negatively impacts the performance of
Janus𝑠𝑒𝑞−𝑡 . However, since Janus𝑡𝑥𝑡 leads to high performance
for these two apps, we attribute Janus𝑠𝑒𝑞−𝑡 ’s relatively low per-
formance to the alignment approach, which processes each video
frame text rather than using the text from all frames together.

4.4 RQ4: Component Combination Performance

We linearly combined Janus’s components (as described in sec-
tion 2.6) to determine how much they improve the performance,

Semantic GUI Scene Learning and Video Alignment for Detecting
Duplicate Video-based Bug Reports ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 3: Performance of different component combinations

for Janus and the baseline Tango

Visual + Textual Vis + Seq Txt + Seq Vis+Txt+Seq

Tango Janus Janus Janus JanusApp

mRR mAP mRR mAP mRR mAP mRR mAP mRR mAP

APOD 81.08 75.11 86.72 80.64 86.59 77.30 91.54 86.30 94.95 86.55
DROID 71.74 64.31 83.95 78.98 75.50 64.96 89.26 83.15 88.56 81.06
GNU 89.16 85.92 89.62 81.75 83.48 74.18 84.24 73.80 90.58 81.58
GROW 86.61 80.73 89.84 86.32 91.40 86.88 83.56 80.96 93.32 90.72
TIME 65.06 59.23 67.51 64.31 71.33 63.68 73.69 69.67 74.88 71.92
TOK 71.11 63.95 75.51 62.59 63.35 57.30 55.23 48.57 75.92 67.91
Orig. 77.46 71.54 82.19 75.76 78.61 70.72 79.59 73.74 86.37 79.95

FCS 91.11 86.87 88.46 85.95 93.98 89.85 90.38 84.74 94.73 91.90
GPS 97.35 95.53 99.30 98.31 98.09 96.01 89.20 86.91 98.24 97.26
ITP 90.64 86.51 96.84 91.58 96.05 89.99 83.94 77.07 97.41 93.51
Ext. 93.03 89.64 94.87 91.94 96.04 91.95 87.84 82.91 96.79 94.22

Overall 82.65 77.57 86.42 81.16 84.42 77.79 82.34 76.80 89.84 84.71

compared to the baseline and individual components. We experi-
mented with different weights (from 0 to 1 in 0.1 increments) using
all duplicate detection tasks and selected the weights that lead to
the highest mRR/mAP performance.

As mentioned earlier, the best Tango configuration is when its
visual and textual components are combined (with a weight of 0.8
and 0.2, respectively), as reported in the original paper [26]. Janus’s
visual and textual components (i.e., Janus𝑣𝑖𝑠 and Janus𝑡𝑥𝑡) are com-
bined using 0.9 and 0.1 as weights. This combination is denoted as
"Visual + Textual" in Table 3. The table also shows the combination
of Janus’s visual/textual components and the sequential one: “Vis
+ Seq” denotes the average of the similarity scores produced by
Janus𝑣𝑖𝑠 and Janus𝑠𝑒𝑞−𝑣 , while “Txt + Seq” denotes the average
of the similarity scores produced by Janus𝑡𝑥𝑡 and Janus𝑠𝑒𝑞−𝑡 . An
average combination means a weight of 0.5. Finally, we combine the
similarities produced by the last two combinations using a weighted
linear combination as follows: Sim(Vis + Seq) × 0.6 + Sim(Txt +
Seq) × 0.4. This combination incorporates every information source
from the videos and is denoted as “Vis + Txt + Seq”.

Table 3 shows that the best performing Janus combinations are
“Visual + Textual” and “Vis + Txt + Seq”, both outperforming the
baseline by 4.6%/4.6% mRR/mAP and 8.7%/9.2% mRR/mAP overall
respectively (with statistical significance). The other two Janus
combinations lead to mixed results: “Vis + Seq” leads to overall
performance gains while “Txt + Seq” does not produce overall
gains, due to its lower performance on the extended dataset.

When using “Visual + Textual”, Janus significantly outperforms
Tango on seven of nine apps and is only worse than Tango on
FCS, considering both mRR and mAP. As previously mentioned,
Janus’s lower performance for FCS, compared to Tango, stems
from the nature of the app itself. FCS is a web browser and the
bugs used for this app were not dependent on a particular web
page. When reproducing the bugs, the users navigated to different
web pages, each one having different layouts and appearances.
This means that the duplicate video-based bug reports appeared
to be substantially different. Since Janus focuses more heavily on
global GUI layout information, via its DINO+ViT model, Janus
struggles to differentiate duplicates from non-duplicates. The local
features learned by Tango seem to be useful for duplicate detection
even when the duplicate videos show different layouts. The lower

Janus mAP value on GNU is explained by the lower mAP values of
Janus𝑣𝑖𝑠 and Janus𝑡𝑥𝑡 on that app (by 0.4% and 1.2%—see Table 2).

Janus’s configuration “Vis + Txt + Seq” consistently shows
mRR/mAP improvement in all nine apps except GNU, when com-
pared to the baseline Tango. Across these apps, we observe im-
provements ranging from 6.8%/6.2% to 23.4%/26% mRR/MAP in the
original dataset, and from 0.9%/1.8% to 7.5%/8.1% mRR/MAP in the
extended dataset. This is interesting because the performance of
the individual components of this configuration is substantially dif-
ferent across the apps. For instance, for TOK, the sequential aspect
of the videos, individually combined with Janus𝑣𝑖𝑠 or Janus𝑡𝑥𝑡 ,
is less effective than Tango, but when Janus𝑣𝑖𝑠 and Janus𝑡𝑥𝑡 are
combined together with Janus𝑠𝑒𝑞 , Janus leads to substantial im-
provement (by 6.8%/6.2% mRR/mAP). Another example is the FCS
app, which seems to benefit from the visual and sequential infor-
mation, as Janus𝑣𝑖𝑠 +Janus𝑠𝑒𝑞−𝑣 seems to contribute most to the
overall performance of the “ Vis + Txt + Seq” configuration. This
suggests that the incorporation of sequential information enhances
the Janus’s ability to handle dynamic content, resulting in improved
performance in comparison to its “Visual + Textual” configuration
and the baseline Tango.

Best Janus configuration: The best performing Janus configuration
is when combining visual (Janus𝑣𝑖𝑠), textual (Janus𝑡𝑥𝑡), and sequential
information (Janus𝑠𝑒𝑞) from video-based bug reports. This configuration
consistently outperforms the baseline duplicate detector for 8/9 mobile
apps. It achieves an overall performance of 89.8%/84.7 mRR/mAP, outper-
forming the baseline by 8.7%/9.2% mRR/mAP. This means that Janus can
reduce the effort that developers spend determining if a new video-based
bug report shows a known bug (by (1.60 − 1.38)/1.38 = 16%, based on
avg. rank), since they would need to inspect only 1.38 videos on average
(i.e., 1.38 avg. rank across all tasks) for finding the first duplicate video in
the candidate duplicates suggested by Janus.

4.5 Qualitative Analysis

We discuss two qualitative examples that illustrate the validity of
our hypothesis that the richer representations learned by Janus’s
transformer-based visual representation and OCR models improve
duplicate detection for video-based bug reports.

4.5.1 Example 1: Transformer-based Representations Cap-
ture Subtle GUI patterns. To illustrate why we observed im-
provement in visual Janus as compared to visual Tango, we use
interpretability techniques that generate saliency maps that help vi-
sualize the learned visual features. To visualize patterns learned by
CNNs, we use a technique called AGF [39]. Although AGF can visu-
alize self-supervised models such as SimCLR (used by the baseline),
this requires training a supervised linear classifier after each layer
and a dedicated algorithm to extract the segmentation information
from their weights. Therefore, to simplify our comparison, instead
of visualizing SimCLR directly, we visualize its main component,
the ResNet-50 CNN using AGF under supervision. We follow past
work and use the pre-trained ResNet-50 (on ImageNet [28]: the
training dataset for ResNet) to generate the saliency map based
on the class IDs with the highest probabilities for a given target
GUI screen [39]. We further visualized the ViT-S/16 model (used
by Janus𝑣𝑖𝑠 ’s DINO) by directly displaying the self-attention maps.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Yan, et al.
R

es
N

et
-5

0
V

iT
-S

Video Frames for Droid-CC1 Video Frame
for Droid-CC2

(a) (b) (c)

Figure 2: Visualization of ResNet-50 and ViT on keyframes

of video-based bug reports

Visualization of ViTs does not necessitate sophisticated algorithms,
given the inherent attention mechanism within these architectures.

In Fig. 2, we show three keyframes of two non-duplicate video-
based bug reports from DroidWeight (DROID) [2]: DROID-CC1
and DROID-CC2. SimCLR fails to distinguish between the videos
of these two bugs and mistakenly ranks DROID-CC2 as the first
duplicate video of DROID-CC1. The DROID-CC1 video mainly has
one trace that generates a newweight record by entering the weight
on a pop-up component (Fig. 2 (b)), while the DROID-CC2 video
not only includes the previous trace but also a trace that further
edits the recorded weight on another different pop-up component
(Fig. 2 (c)). Fig. 2 illustrates the saliency maps, overlaid over frames
from two Droidweight video-based bug reports. We observe that
the ViT-S/16 is able to attend to key parts of GUI components
that ResNet-50 does not. Specifically, for the main screen (a) and
entering weight screen (b) from videos of DROID-CC1 shown in Fig.
2, ResNet-50 and ViT-S/16 are all able to attend well to the objects,
but ViT-S/16 pays more attention to the GUI layout information.
However, for the edit weight screen (c) from videos of DROID-CC2,
ResNet-50 has more difficulty in distinguishing between foreground
pop-up components and the background. We can see it pays less
attention to the lower edges and the bottom part of the foreground
component. In contrast, ViT-S/16 effectively attends better to the
edges and pays enough attention to the foreground component to
help distinguish between (b) and (c), hence improving performance
on this specific duplicate detection task.

From this example, there is a clear benefit to the visual nuances
learned by ViTs. While here we present one example, after inves-
tigating several cases where Janus𝑣𝑖𝑠 outperforms the baseline,
we observed this pattern holds, wherein Janus𝑣𝑖𝑠 learned visual
representation is able to better capture nuanced visual patterns,

Te
ss

er
ac

t O
C

R
EA

ST
(a) (b) (c)

Video Frame
From GNU-CC6

Video Frame
From GNU-CC9

Video Frame
From GNU-CC7

Figure 3: Bounding boxes localized by EAST and the Tesseract

OCR library on keyframes of video-based bug reports

such as the difference between two similar pop-ups, or the differ-
ence between background and foreground element when menus
are displayed.

4.5.2 Example 2: Scene-based Text Detection Improves Text
Localization. Textual Tango, which uses Tesseract OCR is un-
able to distinguish between similar video reports for a number
of bugs, including three bugs from the GNUCash (GNU) app [3].
Therefore, we visualize the detection bounding boxes of text for
three keyframes of these three videos in Fig. 3 for both Tesseract
(first row) and EAST [81] (used by Janus). The first report for the
GNU-CC6 bug has a main trace that goes to the balance sheet

screen and checks the sub-account: we show one keyframe for this
report in (Fig. 3-(a)), while the second video report for the GNU-CC9
bug navigates to the General Preferences screen, as shown in
keyframe in (Fig. 3-(b)), and finally, the report for GNU-CC7 changes
the password under the General Preferences menu, as shown
in (Fig. 3-(c)). While these bugs are different, they include many
similar screens where keywords are important for differentiation.

As observed in Fig. 3, EAST is more accurate than Tesserac-
tOCR for GUI component and text detection. In Fig. 3-(a), Tesseract
OCR fails to localize the text on some buttons (e.g., sheet) and the
text in brighter colors (e.g., Asset). Also, for the keyframe of GNU-
CC9 (Fig. 3-(b)), Tesseract misses the text General Preferences,
making it difficult to distinguish between report GNU-CC9 and
GNU-CC7, as they both access various parts of the settings menu.
In addition, Tesseract fails to detect the text when it is in low bright-
ness and low contrast regions, including the text on the dialing
circles (Fig. 3(c)), which also helps with differentiating between
GNU-CC9 and GNU-CC7, since GNU-CC7 enters a passcode, but

Semantic GUI Scene Learning and Video Alignment for Detecting
Duplicate Video-based Bug Reports ICSE ’24, April 14–20, 2024, Lisbon, Portugal

GNU-CC9 only accesses the passcode settings. Thus, the more accu-
rate text extraction of EAST clearly aids in the accurate extraction of
key text that can help to differentiate between similar GUI screens.

5 THREATS TO VALIDITY

5.1 Internal and Construct Validity

Beyond the evaluation dataset, the implementation of Janus’s mod-
els and experimental settings represent key validity threats. We
controlled as many factors as possible for a fair comparison with the
baseline. For instance, we implemented the 4-Codebook approach
on both Janus and the baseline, used the same duplicate detection
tasks, and measured their performance using well-known metrics
in duplicate detection studies.

5.2 External Validity

To improve generalization, we created a new dataset to include ≈3k
more duplicate detection tasks, for real bugs of different kinds,
reported on mobile app issue trackers. These bugs were video
recorded by multiple users on various mobile OS versions and
did not include touch indicators. We ensured the recorded videos
contained different reproduction scenarios for the same bugs. The
decisions were made to make our dataset more comprehensive,
realistic, and diverse. Our dataset could be improved by considering
different app languages or other mobile platforms such as iOS.

6 RELATEDWORK

6.1 Duplicate Textual Bug Report Detection

Many approaches have been proposed to detect duplicate textual
bug reports to help developers avoid redundant effort during bug
management. Most of the approaches leverage text retrieval tech-
niques to obtain a ranked list of candidate duplicates for a query
report [13, 64, 67, 69]. Some approaches leverage extra informa-
tion (fields [63, 68, 76], contexts [12, 41], execution traces [73],
etc.) and/or more effective similarity techniques (BM25F [68, 70],
topic-modeling [58], word-embedding [76], etc.) to improve the
detection. Wang et al. [71] proposed SETU, which combines textual
bug descriptions with screenshots to detect duplicates, rather than
focusing on video reports (as we do).

6.2 Automated GUI Understanding for SE

Various GUI understanding approaches have been proposed to help
software engineering tasks related to mobile apps, such as GUI
reverse engineering [15, 21, 57, 79], software testing [16, 56, 77],
and GUI search [20, 22]. Most of them detect GUI elements first
to understand GUI information. Chen et al. [24] show that deep
learning-based object detection models (FasterRCNN [62], YOLOv3
[61], and centerNet [32]) and scene text detector EAST [81] out-
perform old-fashioned detection models [59] and OCR tool Tesser-
act [66] respectively. However, these models, based on supervised
learning, leverage GUI information limited to a few GUI element
categories, and the relationships between different elements are not
considered, thus lacking an understanding of the entire screen. Fu
et al. [36] therefore attempt to understand the whole screen by con-
sidering these relationships, based on the Transformer architecture
to detect GUI elements more accurately.

The most closely related work to our own is Cooper et al.’s [26],
which proposed the Tango duplicate detector and a dataset to eval-
uate it. While Janus leverages the same information from video-
based bug reports as Tango does, there are key differences that set
Janus apart. First, Janus learns visual features from app GUIs (via
distillation and Vision Transformers) which capture GUI layouts
more effectively for duplicate detection than Tango, which focuses
on learning local GUI features (via contrastive learning and CNNs).
Second, Janus learns textual representations of videos that are more
useful for duplicate detection, by recognizing and extracting frame
text more accurately (via fully neural models rather than heuris-
tic+neural based approaches adopted by Tango). Third, Janus’s
sequential similarity computation, which attempts to align video
frames, can be applied to both visual and textual representations,
rather than to only visual representations as Tango does. Fourth,
the best configuration of Janus combines all three modalities of
video information (visual, textual, and sequential), and significantly
outperforms the best Tango configuration, on duplicate detection
tasks that include both injected and real bugs for a diverse set of mo-
bile apps. Notably, our evaluation dataset is more comprehensive,
realistic, and diverse than the one used to evaluate Tango.

7 CONCLUSIONS

To assist developers in identifying video-based bug reports that
show identical mobile app bugs, we propose Janus, a new approach
for duplicate video-based bug report detection. Janus leverages vi-
sual, textual, and sequential information from videos via the combi-
nation of representation learning, information retrieval, and frame-
alignment approaches.

We evaluated Janus and found that it significantly outperforms
an existing duplicate detector. The evaluation considered a new
benchmark of 7,290 duplicate detection tasks based on 270 video-
based bug reports, drastically extending a prior dataset (with real
bugs as opposed to injected bugs from prior work). We conducted
ablation experiments and an in-depth qualitative analysis visually
showing that Janus learns a more interpretable hierarchical visual
representation and localizes text regions more accurately.

ACKNOWLEDGMENTS

This work is supported in part by the following NSF grants: CCF-
2311469, CCF-2007246, and CCF-1955853. Any opinions, findings,
and conclusions expressed herein are the authors’ and do not nec-
essarily reflect those of the sponsors.

REFERENCES

[1] [n. d.]. Tesseract OCR Library https://github.com/tesseract-ocr/tesseract/wiki.
[2] 2020. Droidweight https://test.f-droid.org/de/packages/de.delusions.measure/

index.html.
[3] 2020. GnuCash https://github.com/codinguser/gnucash-android.
[4] 2023. Android apps for screen recording: https://www.androidauthority.com/best-

screen-recording-apps-600838/.
[5] 2023. Android screenshot and video recording features: https://support.google.

com/android/answer/9075928?hl=en.
[6] 2023. FDroid https://f-droid.org/en/.
[7] 2023. Firefox Focus https://github.com/mozilla-mobile/focus-android.
[8] 2023. GitHub video uploads: https://github.blog/2021-05-13-video-uploads-

available-github/.
[9] 2023. GPSTest https://github.com/barbeau/gpstest.
[10] 2023. Images To PDF https://github.com/Swati4star/Images-to-PDF.
[11] 2023. Lucene’s TFIDF Similarity Javadoc - https://tinyurl.com/ybhqqrqm.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Yan, et al.

[12] Anahita Alipour, Abram Hindle, and Eleni Stroulia. 2013. A contextual approach
towards more accurate duplicate bug report detection. In 2013 10th Working
Conference on Mining Software Repositories (MSR). IEEE. https://doi.org/10.1109/
msr.2013.6624026

[13] Sean Banerjee, Zahid Syed, Jordan Helmick, and Bojan Cukic. 2013. A fusion
approach for classifying duplicate problem reports. In 2013 IEEE 24th International
Symposium on Software Reliability Engineering (ISSRE). IEEE. https://doi.org/10.
1109/issre.2013.6698920

[14] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. 2021. Beit: Bert pre-training
of image transformers. arXiv preprint arXiv:2106.08254 (2021).

[15] Tony Beltramelli. 2018. pix2code: Generating Code from a Graphical User Inter-
face Screenshot. In Proceedings of the ACM SIGCHI Symposium on Engineering
Interactive Computing Systems. ACM. https://doi.org/10.1145/3220134.3220135

[16] Carlos Bernal-Cárdenas, Nathan Cooper, Kevin Moran, Oscar Chaparro, Andrian
Marcus, and Denys Poshyvanyk. 2020. Translating video recordings of mobile
app usages into replayable scenarios. In Proceedings of the ACM/IEEE 42nd In-
ternational Conference on Software Engineering. ACM. https://doi.org/10.1145/
3377811.3380328

[17] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and
Armand Joulin. 2020. Unsupervised learning of visual features by contrasting
cluster assignments. Advances in neural information processing systems 33 (2020),
9912–9924.

[18] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr
Bojanowski, and Armand Joulin. 2021. Emerging properties in self-supervised
vision transformers. In Proceedings of the IEEE/CVF international conference on
computer vision. 9650–9660.

[19] Oscar Chaparro, Juan Manuel Florez, Unnati Singh, and Andrian Marcus. 2019.
Reformulating queries for duplicate bug report detection. In 2019 IEEE 26th
international conference on software analysis, evolution and reengineering (SANER).
218–229.

[20] Chunyang Chen, Sidong Feng, Zhengyang Liu, Zhenchang Xing, and Shengdong
Zhao. 2020. From Lost to Found: Discover Missing UI Design Semantics through
Recovering Missing Tags. Proceedings of the ACM on Human-Computer Interaction
4, CSCW2 (Oct. 2020), 1–22. https://doi.org/10.1145/3415194

[21] Chunyang Chen, Ting Su, Guozhu Meng, Zhenchang Xing, and Yang Liu. 2018.
FromUI design image to GUI skeleton. In Proceedings of the 40th International Con-
ference on Software Engineering. ACM. https://doi.org/10.1145/3180155.3180240

[22] Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xin Xia, Liming Zhu, John
Grundy, and Jinshui Wang. 2020. Wireframe-based UI Design Search through
Image Autoencoder. ACM Transactions on Software Engineering and Methodology
29, 3 (June 2020), 1–31. https://doi.org/10.1145/3391613

[23] Jieshan Chen, Amanda Swearngin, Jason Wu, Titus Barik, Jeffrey Nichols, and
Xiaoyi Zhang. 2022. Extracting replayable interactions from videos of mobile
app usage. arXiv preprint arXiv:2207.04165 (2022).

[24] Jieshan Chen, Mulong Xie, Zhenchang Xing, Chunyang Chen, Xiwei Xu, Liming
Zhu, and Guoqiang Li. 2020. Object detection for graphical user interface: old
fashioned or deep learning or a combination?. In Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. ACM. https://doi.org/10.1145/3368089.
3409691

[25] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A
simple framework for contrastive learning of visual representations. In Interna-
tional conference on machine learning. PMLR, 1597–1607.

[26] Nathan Cooper, Carlos Bernal-Cárdenas, Oscar Chaparro, Kevin Moran, and
Denys Poshyvanyk. 2021. It takes two to tango: Combining visual and textual
information for detecting duplicate video-based bug reports. In 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE). IEEE, 957–969.

[27] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan,
Yang Li, Jeffrey Nichols, and Ranjitha Kumar. 2017. Rico: A mobile app dataset
for building data-driven design applications. In Proceedings of the 30th annual
ACM symposium on user interface software and technology. 845–854.

[28] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. IEEE, 248–255.

[29] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[30] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

[31] Mingzhe Du, Shengcheng Yu, Chunrong Fang, Tongyu Li, Heyuan Zhang, and
Zhenyu Chen. 2022. SemCluster: a semi-supervised clustering tool for crowd-
sourced test reports with deep image understanding. In Proceedings of the 30th
ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 1756–1759.

[32] Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qingming Huang, and Qi
Tian. 2019. CenterNet: Keypoint Triplets for Object Detection. In 2019 IEEE/CVF

International Conference on Computer Vision (ICCV). IEEE. https://doi.org/10.
1109/iccv.2019.00667

[33] Camilo Escobar-Velásquez, Michael Osorio-Riaño, and Mario Linares-Vásquez.
2019. Mutapk: Source-codeless mutant generation for android apps. In 2019 34th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 1090–1093.

[34] Sidong Feng and Chunyang Chen. 2022. GIFdroid: automated replay of visual
bug reports for Android apps. In Proceedings of the 44th International Conference
on Software Engineering. 1045–1057.

[35] Sidong Feng, Mulong Xie, Yinxing Xue, and Chunyang Chen. 2023. Read It,
Don’t Watch It: Captioning Bug Recordings Automatically. arXiv preprint
arXiv:2302.00886 (2023).

[36] Jingwen Fu, Xiaoyi Zhang, YuwangWang, Wenjun Zeng, Sam Yang, and Grayson
Hilliard. 2021. Understanding Mobile GUI: from Pixel-Words to Screen-Sentences.
arXiv preprint arXiv:2105.11941 (2021).

[37] Otis Gospodnetic, Erik Hatcher, and Douglas R. Cutting. [n. d.]. Lucene in Action.
Manning Publications.

[38] Jean-Bastien Grill, Florian Strub, Florent Altch’e, Corentin Tallec, Pierre H.
Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Ávila Pires, Zhao-
han Daniel Guo, Mohammad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu,
Rémi Munos, and Michal Valko. 2020. Bootstrap Your Own Latent: A New
Approach to Self-Supervised Learning. ArXiv abs/2006.07733 (2020).

[39] Shir Gur, Ameen Ali, and Lior Wolf. 2021. Visualization of Supervised and Self-
Supervised Neural Networks via Attribution Guided Factorization. Proceedings
of the AAAI Conference on Artificial Intelligence 35, 13 (May 2021), 11545–11554.
https://doi.org/10.1609/aaai.v35i13.17374

[40] Rui Hao, Yang Feng, James A Jones, Yuying Li, and Zhenyu Chen. 2019. CTRAS:
Crowdsourced test report aggregation and summarization. In 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE). IEEE, 900–911.

[41] Abram Hindle, Anahita Alipour, and Eleni Stroulia. 2015. A contextual approach
towards more accurate duplicate bug report detection and ranking. Empirical
Software Engineering 21, 2 (June 2015), 368–410. https://doi.org/10.1007/s10664-
015-9387-3

[42] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. 2015. Distilling the Knowl-
edge in a Neural Network. ArXiv abs/1503.02531 (2015).

[43] MD Zakir Hossain, Ferdous Sohel, Mohd Fairuz Shiratuddin, and Hamid Laga.
2019. A comprehensive survey of deep learning for image captioning. ACM
Computing Surveys (CsUR) 51, 6 (2019), 1–36.

[44] Zheng Huang, Kai Chen, Jianhua He, Xiang Bai, Dimosthenis Karatzas, Shijian
Lu, and CV Jawahar. 2019. Icdar2019 competition on scanned receipt ocr and
information extraction. In 2019 International Conference on Document Analysis
and Recognition (ICDAR). IEEE, 1516–1520.

[45] Yu-Gang Jiang, Chong-Wah Ngo, and Jun Yang. 2007. Towards optimal bag-of-
features for object categorization and semantic video retrieval. In Proceedings of
the 6th ACM international conference on Image and video retrieval. 494–501.

[46] Jack Johnson, Junayed Mahmud, Tyler Wendland, Kevin Moran, Julia Rubin, and
Mattia Fazzini. 2022. An Empirical Investigation into the Reproduction of Bug
Reports for Android Apps. In 2022 IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER). 321–322. https://doi.org/10.1109/
SANER53432.2022.00048

[47] Li Kang. 2017. Automated Duplicate Bug Reports Detection - An Experiment at
Axis Communication AB. Master’s thesis.

[48] Dimosthenis Karatzas, Lluís Gómez i Bigorda, Anguelos Nicolaou, Suman K.
Ghosh, Andrew D. Bagdanov, M. Iwamura, Jiri Matas, Lukás Neumann, Vijay Ra-
maseshan Chandrasekhar, Shijian Lu, Faisal Shafait, Seiichi Uchida, and Ernest
Valveny. 2015. ICDAR 2015 competition on Robust Reading. 2015 13th In-
ternational Conference on Document Analysis and Recognition (ICDAR) (2015),
1156–1160.

[49] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung,
Sylvain Gelly, and Neil Houlsby. 2020. Big transfer (bit): General visual repre-
sentation learning. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part V 16. Springer, 491–507.

[50] Giorgos Kordopatis-Zilos, Symeon Papadopoulos, Ioannis Patras, and Ioannis
Kompatsiaris. 2019. FIVR: Fine-grained incident video retrieval. IEEE Transactions
on Multimedia 21, 10 (2019), 2638–2652.

[51] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. Advances in neural information
processing systems 25 (2012).

[52] Hiroki Kuramoto, Masanari Kondo, Yutaro Kashiwa, Yuta Ishimoto, Kaze Shindo,
Yasutaka Kamei, and Naoyasu Ubayashi. 2022. Do visual issue reports help
developers fix bugs? a preliminary study of using videos and images to report
issues on GitHub. In Proceedings of the 30th IEEE/ACM International Conference
on Program Comprehension. 511–515.

[53] Minghao Li, Tengchao Lv, Jingye Chen, Lei Cui, Yijuan Lu, Dinei Florencio,
Cha Zhang, Zhoujun Li, and Furu Wei. 2021. Trocr: Transformer-based optical
character recognition with pre-trained models. arXiv preprint arXiv:2109.10282
(2021).

Semantic GUI Scene Learning and Video Alignment for Detecting
Duplicate Video-based Bug Reports ICSE ’24, April 14–20, 2024, Lisbon, Portugal

[54] Meng-Jie Lin, Cheng-Zen Yang, Chao-Yuan Lee, and Chun-Chang Chen. 2016. En-
hancements for Duplication Detection in Bug Reports with Manifold Correlation
Features. Journal of Systems and Software 121 (2016), 223–233.

[55] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[56] Zhe Liu, Chunyang Chen, Junjie Wang, Yuekai Huang, Jun Hu, and Qing Wang.
2020. Owl eyes. In Proceedings of the 35th IEEE/ACM International Conference on
Automated Software Engineering. ACM. https://doi.org/10.1145/3324884.3416547

[57] Kevin Moran, Carlos Bernal-Cardenas, Michael Curcio, Richard Bonett, and
Denys Poshyvanyk. 2020. Machine Learning-Based Prototyping of Graphical
User Interfaces for Mobile Apps. IEEE Transactions on Software Engineering 46, 2
(Feb. 2020), 196–221. https://doi.org/10.1109/tse.2018.2844788

[58] Anh Tuan Nguyen, Tung Thanh Nguyen, Tien N. Nguyen, David Lo, and Cheng-
nian Sun. 2012. Duplicate bug report detection with a combination of in-
formation retrieval and topic modeling. In Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering. ACM. https:
//doi.org/10.1145/2351676.2351687

[59] Tuan Anh Nguyen and Christoph Csallner. 2015. Reverse Engineering Mobile
Application User Interfaces with REMAUI (T). In 2015 30th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE). IEEE. https:
//doi.org/10.1109/ase.2015.32

[60] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from natural language supervision.
In International conference on machine learning. PMLR, 8748–8763.

[61] Joseph Redmon and Ali Farhadi. 2018. Yolov3: An incremental improvement.
arXiv preprint arXiv:1804.02767 (2018).

[62] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2017. Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence 39, 6 (June 2017), 1137–
1149. https://doi.org/10.1109/tpami.2016.2577031

[63] Henrique Rocha, Marco Tulio Valente, Humberto Marques-Neto, and Gail C.
Murphy. 2016. An Empirical Study on Recommendations of Similar Bugs. In
2016 IEEE 23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER). IEEE. https://doi.org/10.1109/saner.2016.87

[64] Per Runeson, Magnus Alexandersson, and Oskar Nyholm. 2007. Detection of Du-
plicate Defect Reports Using Natural Language Processing. In 29th International
Conference on Software Engineering (ICSE'07). IEEE. https://doi.org/10.1109/icse.
2007.32

[65] Gerard Salton and Michael J. McGill. 1986. Introduction to Modern Information
Retrieval. McGraw-Hill, Inc., USA.

[66] R. Smith. 2007. An Overview of the Tesseract OCR Engine. In Ninth International
Conference on Document Analysis and Recognition (ICDAR 2007) Vol 2. IEEE.
https://doi.org/10.1109/icdar.2007.4376991

[67] Yang Song, Junayed Mahmud, Ying Zhou, Oscar Chaparro, Kevin Moran, Andrian
Marcus, and Denys Poshyvanyk. 2022. Toward interactive bug reporting for
(android app) end-users. In Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.

344–356.
[68] Chengnian Sun, David Lo, Siau-Cheng Khoo, and Jing Jiang. 2011. Towards more

accurate retrieval of duplicate bug reports. In 2011 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2011). IEEE. https://doi.org/
10.1109/ase.2011.6100061

[69] Chengnian Sun, David Lo, Xiaoyin Wang, Jing Jiang, and Siau-Cheng Khoo.
2010. A discriminative model approach for accurate duplicate bug report re-
trieval. In Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering - ICSE '10. ACM Press. https://doi.org/10.1145/1806799.1806811

[70] Yuan Tian, Chengnian Sun, and David Lo. 2012. Improved Duplicate Bug Report
Identification. In 2012 16th European Conference on Software Maintenance and
Reengineering. IEEE. https://doi.org/10.1109/csmr.2012.48

[71] Junjie Wang, Mingyang Li, Song Wang, Tim Menzies, and Qing Wang. 2019.
Images don’t lie: Duplicate crowdtesting reports detection with screenshot
information. Information and Software Technology 110 (June 2019), 139–155.
https://doi.org/10.1016/j.infsof.2019.03.003

[72] Kai Wang, Boris Babenko, and Serge J. Belongie. 2011. End-to-end scene text
recognition. 2011 International Conference on Computer Vision (2011), 1457–1464.

[73] Xiaoyin Wang, Lu Zhang, Tao Xie, John Anvik, and Jiasu Sun. 2008. An approach
to detecting duplicate bug reports using natural language and execution informa-
tion. In Proceedings of the 13th international conference on Software engineering -
ICSE '08. ACM Press. https://doi.org/10.1145/1368088.1368151

[74] Tyler Wendland, Jingyang Sun, Junayed Mahmud, SM Hasan Mansur, Steven
Huang, Kevin Moran, Julia Rubin, and Mattia Fazzini. 2021. Andror2: A dataset
of manually-reproduced bug reports for android apps. In 2021 IEEE/ACM 18th
International Conference on Mining Software Repositories (MSR). IEEE, 600–604.

[75] Yanfu Yan, Nathan Cooper, Oscar Chaparro, KevinMoran, andDenys Poshyvanyk.
2023. JANUS Replication Package: https://doi.org/10.5281/zenodo.10455811.

[76] Xinli Yang, David Lo, Xin Xia, Lingfeng Bao, and Jianling Sun. 2016. Combining
Word Embedding with Information Retrieval to Recommend Similar Bug Reports.
In 2016 IEEE 27th International Symposium on Software Reliability Engineering
(ISSRE). IEEE. https://doi.org/10.1109/issre.2016.33

[77] Shengcheng Yu, Chunrong Fang, Yulei Liu, Ziqian Zhang, Yexiao Yun, Xin Li,
and Zhenyu Chen. 2022. Universally Adaptive Cross-Platform Reinforcement
Learning Testing via GUI Image Understanding. arXiv preprint arXiv:2208.09116
(2022).

[78] Ting Zhang, DongGyun Han, Venkatesh Vinayakarao, Ivana Clairine Irsan,
Bowen Xu, Ferdian Thung, David Lo, and Lingxiao Jiang. 2023. Duplicate bug
report detection: How far are we? ACM Transactions on Software Engineering
and Methodology 32, 4 (2023), 1–32.

[79] Tianming Zhao, Chunyang Chen, Yuanning Liu, and Xiaodong Zhu. 2021.
GUIGAN: Learning to Generate GUI Designs Using Generative Adversarial Net-
works. In 2021 IEEE/ACM 43rd International Conference on Software Engineering
(ICSE). IEEE. https://doi.org/10.1109/icse43902.2021.00074

[80] Zhong-Qiu Zhao, Peng Zheng, Shou-tao Xu, and Xindong Wu. 2019. Object
detection with deep learning: A review. IEEE transactions on neural networks and
learning systems 30, 11 (2019), 3212–3232.

[81] Xinyu Zhou, Cong Yao, He Wen, Yuzhi Wang, Shuchang Zhou, Weiran He,
and Jiajun Liang. 2017. East: an efficient and accurate scene text detector. In
Proceedings of the IEEE conference on Computer Vision and Pattern Recognition.
5551–5560.

