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Abstract—One of the most common solutions adopted by
software researchers to address code generation is by training
Large Language Models (LLMs) on massive amounts of source
code. LLMs are rooted in the concept of emergent capabilities in
which machines statistically learn complex patterns from code
data. Although a number of studies have shown that LLMs
have been effectively evaluated on popular accuracy metrics
(e.g., BLEU, CodeBleu), previous research has largely overlooked
the role of Causal Inference as a fundamental component of
the interpretability of LLMs’ performance. Existing benchmarks
and datasets are meant to highlight the difference between the
expected and the generated outcome, but do not take into account
confounding variables (e.g., lines of code, number of tokens,
prompt size) that equally influence the accuracy metrics. The
fact remains that, when dealing with generative software tasks
by LLMs, no benchmark is available to tell researchers how to
quantify neither the causal effect of SE-based treatments nor
the correlation of confounders to the model’s performance. In
an effort to bring statistical rigor to the evaluation of LLMs,
this paper introduces a benchmarking strategy named Galeras
comprised of curated testbeds for three SE tasks (i.e., code
completion, code summarization, and commit generation) to help
aid the interpretation of LLMs’ performance.

We illustrate the insights of our benchmarking strategy by
conducting a case study on the performance of ChatGPT under
distinct prompt engineering methods. The results of the case
study demonstrate the positive causal influence of prompt se-
mantics on ChatGPT’s generative performance by an average
treatment effect of ≈ 3%. Moreover, it was found that confounders
such as prompt size are highly correlated with accuracy metrics
(≈ 0.412). The end result of our case study is to showcase causal
inference evaluations, in practice, to reduce confounding bias.
By reducing the bias, we offer an interpretable solution for the
accuracy metric under analysis.

Index Terms—Software Engineering, Testbeds, Large Lan-
guage Models, dl4se, Interpretability

I. INTRODUCTION

Deep Learning for Software Engineering (DL4SE) is an
emerging research area in the field of software maintainability
that entails a paradigm shift in the form by which machines
statistically learn complex patterns from code data. To sup-
port actionable downstream SE tasks (e.g., code completion,
code summarization, or commit generation), ample evidence
supports that DL4SE approaches in the form of Language
Models are able to generate code conditioned on a well-
defined prompt [1]–[3]. While essential, DL4SE approaches
have been reduced to a group of large and self-supervised
neural architectures (i.e., Large Language Models or simply

LLMs) comprised of multiple self-attention layers that per-
form linear transformations to extract salient features from
programming and natural language data. In particular, Large
Language Models for Code (LLMc) have led to a renewed
interest in the automation of software engineering tasks. Most
of this automation is a generative process in which underlying
code and natural language features interact with each other
to auto-complete [4]–[9], summarize [10]–[12], review [13]–
[16], trace [17] and translate code [18]; generate test cases
[19]–[21], detect cone clones [22], [23] or fix bugs [24]–[31].
In fact, LLMc have been deployed in large-scale solutions
to provide code generative services. Tools such as ChatGPT
and GitHub Copilot, which are based on the gpt architecture,
exhibit good performance at the aforementioned tasks [2].

Therefore, an increased interest has emerged in further
evaluating these LLMc [32]–[35] to standardize the quality
assessment of the generated code. Unfortunately, the current
evaluation process overly-relies on accuracy metrics leaving no
consensus as to what other features or properties are impacting
the code generation process. In other words, we require to
control for factors that influence the performance of LLMc
if our goal is to interpret models’ output. Few studies have
sought to examine accuracy metrics from a causal perspective
to interpret LLMc [36]. Ergo, the problem remains that, when
attempting to understand the prediction performance of LLMc,
no benchmarks are available to articulate causal queries.

Previous research has largely overlooked the role of causal
inference in evaluating LLMc. In fact, existing benchmarks are
not without flaws to detect confounding bias, which refers to
the statistical ability to control for variables that can influence
models’ performance beyond the SE treatments under study
(i.e., evaluating the best prompting method). That is, we study
causation because we need to understand not only what but
also why LLMc arrive at performance decisions. To overcome
these challenges, we pose a code-based benchmarking strategy,
named Galeras, to interpret LLMc concentrated on answering
causal queries of interest. Galeras enables SE researchers to
explain LLMc performance decisions from a curated set of
code-based confounders, which are associated with a given SE
treatment under study. Galeras is comprised of three parts: 1)
seven testbeds for evaluating distinct SE downstream tasks free
of sampling bias and data snooping, 2) a set of confounders to
compute causal effects, and 3) a pipeline to curate data from
open repositories.
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To illustrate how to exploit Galeras to interpret LLMc,
we conducted a causal study to quantify the impact of con-
founding variables on ChatGPT’s prediction performance to
assess whether certain types of prompt engineering methods
are excelling at automating code completion tasks. Prompt
engineering is associated with the emergent ability of LLMs to
learn from prompts (i.e., in-context learning). This ability com-
prises a set of techniques that manipulates the structure of a
LLM’s input sequence to attain better and less computationally
expensive outputs than applying other downstream methods
such as fine-tuning [33]. We organize our study around two
RQs that are fundamentally centered on the problem of prompt
engineering for code:
RQ1 Exploratory Analysis: How different is the distribu-

tion of tokens between the generated and ground-truth code?
RQ2 Causal Analysis: To what extent the type of Prompt

Engineering is influencing the code completion performance?
The achieved results show that prompt engineering methods

indeed causally impact the accuracy of the model by an
Average Treatment of Effect (ATE) of 3% between the seman-
tics of the prompt and the accuracy metric. Hence, choosing
an adequate prompting strategy can positively influence the
code completion performance of ChatGPT. To summarize,
our key contributions are: 1) A filtered testbed with non-
contaminated code snippets for LLMc benchmarking; 2) a
set of (confounding) features (e.g., Cyclo Complexity, # of
AST levels) included in the testbed; 3) a pipeline to generate
new testbeds for a given SE task; and 4) a causal inference
benchmarking to interpret LLMc.

II. RELATED WORK

Considerable research attention has been devoted to data
collection and benchmarking for LLMc. Tab.I showcases eight
qualitative properties that we use to compare three state-of-
art benchmarks (i.e., CodeXGLUE, IdBench, and MultiPL-E)
with Galeras. Firstly, Husain et al. introduced CodeSearchNet
for code retrieval automation [37]. Their datasets have been
mostly employed to pre-train LLMs rather than benchmarking
software tasks. Later, researchers at Microsoft extended Code-
SearchNet and amalgamated 12 SE-related datasets for other
relevant downstream tasks (e.g., clone detection, refinement,
translation) [38]. These datasets and benchmarks are known
as CodeXGLUE, which partially support some accuracy and
distance metrics. Secondly, Wainakh et al. proposed IdBench
to evaluate generated identifiers by measuring similarity dis-
tances of semantic representations [39]. Finally, Chen et al. no-
tably posed HumanEval to validate the functional correctness
of generated code [35]. Cassano et al. amplified HumanEval
to create MultiPL-E for code translation [40]. Although these
three benchmarks have been successfully employed for evalu-
ating LLMc, these benchmarking strategies were not conceived
to address the interpretation of models’ outputs.

As LLMc are quickly evolving due to data and hyperparam-
eter augmentation, current models (e.g., ChatGPT, AlfaCode,
Copilot) could have been trained on samples already used

TABLE I: SOTA Benchmark qualitative properties compari-
son.

Benchmarks
Qualitative Properties CodeXGLUE IdBench MultiPL-E Galeras

Clone detection ✓ ✗ ✗ ✗
Defect detection ✓ ✗ ✗ ✗
Type Inferring ✗ ✓ ✗ ✗
Summarization ✗ ✗ ✗ ✓

Code generation ✗ ✗ ✗ ✓
Commit generation ✗ ✗ ✗ ✓

Repair ✓ ✗ ✗ ✗
Translation ✓ ✗ ✓ ✗

Software
Tasks

Search ✓ ✗ ✗ ✗
code-code ✓ ✗ ✗ ✓
code-text ✓ ✓ ✗ ✓I/O
text-code ✓ ✗ ✓ ✗
Identifiers ✗ ✓ ✗ ✗
Code line ✓ ✗ ✗ ✗
Method ✓ ✗ ✓ ✓

Output
Granularity

Files ✓ ✗ ✗ ✗
Words ✗ ✓ ✗ ✗
Tokens ✓ ✗ ✗ ✓

Snippets ✓ ✗ ✓ ✓
Type of
Datum

Prompts ✗ ✗ ✗ ✓
Size 416K 500 answers 164 problems 227KDimension Languages ≈ 12 3 19 1

BLEU ✓ ✓ ✗ ✓
CodeBLEU ✓ ✗ ✗ ✓

Cloze testing ✓ ✗ ✗ ✗
Levenshtein ✗ ✓ ✗ ✓

Accuracy ✓ ✗ ✗ ✗

Supported
Metrics

Causal Effect ✗ ✗ ✗ ✓
Prompt [33] Single-step ✗ ✗ ✓ ✓
Engineering Multiple-step ✗ ✗ ✗ ✓

Confounders ✗ ✗ ✗ ✓tab.IICausal
Evaluation Inference ✗ ✗ ✗ ✓

Shadowed cells indicate Galeras only.

for evaluation (a.k.a. data snooping) and datasets such as
BigQuery [41], BigPython [42], and the Pile [43] have omitted
the importance of interpreting LLMc’ performance. Galeras,
however, offers curated testbeds for enabling prompt engi-
neering evaluation. This evaluation includes an interpretability
analysis based on causal inference in the form of Structural
Causal Models (SCM). What is more, Galeras provides a
pipeline to collect and access confounders and treatment data.
Such data is plugged into the SCM to estimate the causal
effects between treatments and outcomes. Estimating these
casual effects promote statistical rigor in evaluating SE-based
generative tasks.

III. TESTBED CURATION PIPELINE

This section considers our proposed pipeline to structure and
collect required testbeds for the comparative causal evaluation
of LLMc. Galeras is a benchmarking strategy that entails a
software architecture solution for the curation process.

1 Data Collection

2 Pre-processing

3 Data Validation

Repository
Filter

Commit
filtering

Methods &
Comments

Testbeds
AST

Parsing
Feature

computation
Database

insert

Distinct
Deduplication

Remove
ducplicates
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Feature
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4 SE Testbed Generation

RandomCut
code

Docstring
filtering

Commit
filtering

Specification

Jaccard
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Filter

Raw data
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Indexed
Data

Artifacts

Hugginface

Fig. 1: Testbed Curation Pipeline of Galeras
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A. Structuring Testbed’s Features

Galeras testbeds are sets of Python methods that serve
as evaluative data points. Each data point comprises four
dimensions. The first dimension corresponds to snippets’ iden-
tification, which includes the commit id (i.e., commit hash),
repository name, path, file name, and fun name. The second
dimension corresponds to snippets’ documentation, which
includes the commit message and docstring. The docstring be-
longs to a JSON object that is extended to complementary nat-
ural language features such as n words, vocab size, language,
and n whitespaces. The third dimension corresponds to the
snippet’s syntactic information, which includes the actual code
base, n ast errors, n ast levels, n ast nodes,n words, vo-
cab size, token count, and n whitespaces. Finally, the fourth
dimension corresponds to canonical software metrics, which
include nloc, complexity, and n identifiers.

B. Collecting Code Samples

Figure 1 describes a 4-step pipeline that Galeras uses
to collect code samples. In the first step (Fig. 1- 1 ), we
filtered the most popular Python Github repositories using
the following query: language : Python, fork : false,
size :>= 30, 000, pushed :> 2021−12−31, stars :> 1, 000.
From the last paper report of ChatGPT [44], we assumed
ChatGPT and other LLMc under analysis were not trained
on commits from Jan 2, 2022 to Jan 1, 2023. Therefore, we
claim that our testbeds help to avoid data snooping, which
is the misuse of data points to evaluate statistical hypotheses
using training samples. Then, we collected a set of brand-new
methods for each commit. This step resulted in ≈ 338k data
points. For each data point, we also collected its corresponding
documentation without considering inline comments.

In the second step (Fig. 1- 2 ), we engineered and pre-
processed both code and documentation-related features from
collected data points. Then we parsed the AST variables
for our data points by employing the Tree-Sitter library. To
guarantee efficient data management and once the previous
features were engineered and extracted, we stored raw and
preprocessed data points in a relational database. Next, we
removed duplicated samples using a distinct query reducing
the testbeds size to ≈ 227K data points for code (RawData
in tab. II). Of these reduced data points, ≈ 77K contains a
valid docstring (RawDataDocstring in tab. II). A docstring is
valid when its text is larger than 3 words.

In the third step 1- 3 ), we manually validated 960 out
of ≈ 227K data points. These validated data points were
randomly selected from RawData and RawDataDocstring.
The remaining data points were automatically validated. Our
validation process ensures the date of each pushed commit
is within the range of dates stated in the original query.
We also validated that the methods attached to each commit
were indeed updated within the same range of dates. In
addition, we validated the meaningfulness of the docstring and
commit message by inspecting the consistency of the natural
language descriptions with the actual code implementation,
removing ≈ 1.9% RawDataDocstring obtaining ≈ 57K

BLEU-4
CodeBLEU
Levenshtein
Similarity

T0  Control
T1 T1
T1 T2

Treatments
Tn

Outcomes
Yn

ChatGPT
API

Prompt Causal Effect

 Z2  nloc
 Z3 token_count

 Z0  prompt_size
 Z1 whitespaces

Confounders
Zn

Effect
Modifiers

Average Treatment Effect
p(Y|do(T))

Fig. 2: Galeras Structural Causal Model Benchmarking

datapoints (tab. II). Lastly, complexity was validated using
the Codalyze plugin in Visual Studio Code. For the sake
of simplicity, we omit explaining all considered fine-grained
validation steps in this paper. However, the reader can consult
our online appendix for more information [45].

In the final step (Fig.1- 4 ), we sampled 3k data points from
RawData testbed to build five additional testbeds, each one for
a specific SE task. Galeras comprises RandomCut, WithDoc-
String and FromDocString for code completion; CommitGen
for code generation; and SummarizationGen for code summa-
rization. These additional testbeds are described in Tab. II. To
build RandomCut, we chose data points with more than 10
tokens or 100 characters. Next, the data point is randomly cut
after the method signature. To build SummarizationGen and
CommitGen, we filtered the RawDataDocstring data points
with more than 10 words or 50 characters. After building
the five testbeds, we removed duplicated snippets using the
Jaccard similarity on preprocessed data points with BPE
HuggingFace tokenizer. Because the de-duplication between
training and test sets was discarded (i.e., no multiset thresh-
old), we set 0.7 as the similarity threshold for our testbeds
[46], [47]. Table. III shows the SE Task associated with each
curated testbed, the percentage rate of detected duplicates, and
the final size.

IV. CAUSAL ANALYSIS FOR INTERPRETABLE LLMC

Galeras is a causal benchmarking to compare the perfor-
mance of LLMc against each other by controlling for con-
founding variables, which are features of the source code that
can influence the prediction performance of LLMc. Ideally,
researchers can use Galeras to contextualize the outcomes of
LLMc by presenting possible tailored treatment variables that
explain the behavior of the model. Galeras’ goal is to empower
the research community to interpret typical performance met-
rics by stating the assumptions of the prediction problem in
a Structural Causal Model (SCM). The SCM comprises four
random variables. The first variable is the treatments T , which
represents the input configuration prompts in our case study.
The second variable is the potential outcomes Y , which is the
model prediction performance measured using distance metric
(e.g., BLEU, CodeBLEU, Levenshtein). The third variable is
the confounders Z, which represents variables affecting both
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TABLE II: Descriptive Analysis [avg ± std] of Galeras’ Testbeds and Code Features.
Confounders* Effect modifiers

Testbed Dedup n whitespaces nloc token counts n ast errors ast levels n ast nodes complexity token counts n identifiers
RawData 277226 259.23± 902.22 21.16± 47.46 137.38± 262.59 0.09± 0.42 11.85± 3.5 221.91± 438.23 3.25± 6.98 137.38± 262.59 17.94± 16.45
RawDataDocstring 57045 206.98± 453.06 18.89± 30.98 112.50± 183.78 0.10± 0.73 11.57± 3.45 184.53± 436.76 3.42± 6.61 112.50± 183.78 15.96± 14.48
RandomCut 2931 229.24± 479.38 18.27± 26.98 126.54± 177.19 0.10± 0.30 12.25± 3.06 207.55± 259.46 3.16± 6.09 126.54± 177.19 17.70± 13.42
WithDocstring 2926 208.48± 414.67 18.08± 20.65 111.98± 122.27 0.08± 0.58 12.22± 3.10 188.99± 400.74 3.78± 4.33 111.98± 122.27 16.61± 11.50
FromDocsting 2937 167.96± 244.56 16.68± 20.91 100.13± 118.36 0.10± 0.59 11.38± 3.44 156.39± 180.71 3.48± 4.48 100.13± 118.36 14.62± 11.94
CommitGen 2919 179.62± 363.64 16.75± 21.37 101.66± 128.65 0.09± 0.36 11.51± 3.36 160.30± 201.11 3.28± 4.93 101.66± 128.65 15.07± 11.90
SummarizationGen 2924 212.08± 415.90 18.66± 21.63 114.38± 128.94 0.07± 0.32 12.22± 3.16 197.05± 532.69 3.85± 5.36 114.38± 128.94 16.71± 12.16

*The confounder prompt size was omitted due to its treatment dependency. We measured its correlations in Tab. IV

TABLE III: Jaccard Similarity de-duplication
SE Task Testbed I/O Dupes Dupe % size

RandomCut code ⇒ code 69 2.30% 2931
WithDocString code-text ⇒ code 74 2.47% 2926Code completion
FromDocString text ⇒ code 63 2.10% 2937

Code generation CommitGen code ⇒ text 81 2.70% 2919
Summarization SummarizationGen code ⇒ text 76 2.53% 2924

T and Y (see Fig. 2). The last variable is the effect modifiers,
which is the features directly affecting outcomes Y .

The purpose of the causal analysis is to eliminate spurious
correlations between the treatments T and the outcomes Y
by controlling for confounding features Z. The elimination
of the confounding features can be formally described with
both an SCM and the do-operator introduced by Pearl et al.
[48]. We measure the Average Treatment Effect (ATE) by
approximating the conditional probability p(Y |do(T )) with
statistical methods such as the propensity score matching,
stratification, or IPW [48], [49]. An in-depth analysis and
explanation of causal inference methods are beyond the scope
of this paper.

V. CAUSAL STUDY: INTERPRETABLE CODE COMPLETION

To demonstrate how to employ Galeras for causal analysis,
in practice, we design a study in which we evaluate ChatGPT’s
performance for two prompt engineering methods T1 and T2

based on Liu et al. [33]. Prompt engineering is the activity of
optimizing the input space of a given LLM in order to generate
better outcomes without giving rise to expensive fine-tuning.
The goal of our case study is to compare these two prompting
methods after controlling for confounding features.

A. Evaluation Methodology

The evaluation methodology of the case study is divided into
three parts. The first part addresses the exploratory analysis
of Galeras testbeds. We employed the BPE tokenizer to
normalize the vocabulary of each treatment T and outcome
Y sentence. The token count categorized by taxonomy is
presented in Fig.3. Tokens within each sentence were classified
based on their taxonomy, i.e., ‘try’ and ‘catch’ are classified
as exceptions and ‘if’ and ‘else’ as conditionals. Since the
analysis focused solely on Python, keywords related to data
types were classified as casting tokens.

The second part canonically evaluates ChatGPT using our
testbed WithDocString. CodeBLEU was computed with a
default parameter value of 0.25. In addition, BLUE was
computed with a 4-gram parameter. On the other hand, we
computed the Levenshtein distance and similarity for a local
evaluation (see Tab .IV-Performance Metrics).

The third part estimates the causal effect of prompt engi-
neering methods and ChatGPT performance. Figure 2 illus-
trates our Structural Causal Models for the prompt engineering
case of ChatGPT. We use Galeras to compare the performance
of two different treatments. The first treatment T1 is one
prompt, which contains a command (e.g., Complete the fol-
lowing a Python code, return only code and complete method:
‘{partial code}’ ) followed by the actual input code to be
completed. The second treatment T2 comprises two prompts.
The first one is a context prompt that entails both the docstring
and the incomplete cut code. The second one is a processing
prompt that contains sentences asking for removing comments
and optimizing code (e.g., Remember you have a Python
function named ‘{ fun name }’, the function starts with the
following code ‘{code}’. The description for the function is:
‘{ docstring }’ ). We used the previous treatments against a
control group. The control is a task prompt that encompasses
an action word or verb followed by the incomplete code
input (e.g., Complete the following python method: ‘{partial
code}’). To evaluate whether treatments T are impacting Chat-
GPT performance Y , we controlled for confounding features
Z. Our confounders prompt size, n whitespaces, token count,
and nloc were selected due to their high correlation ([0.4−0.8])
with the Levenstein distance in control and treatment groups.
Although n ast nodes has a high correlation with the Leven-
stein distance, we assumed that structural features are ignoring
the treatments. Hence, AST-based features are effect modifiers.
The potential outcomes Y2,Y1,Y0 are observed under the
treatments T1,T2,control. Next, we approximate the Average
Treatment Effect p(Y |do(T ) using the SCM defined in Fig .2.

B. Results
RQ1 Exploratory Analysis. The purpose of the exploratory

analysis is to expose and understand the testbeds’ feature
distribution grouped by prompt engineering methods T . Table
II depicts the average and standard deviation for each code fea-
ture. We observed high variability in n whitespaces (902.22)
and token count (262.59), which implies the method sizes are
not homogeneous across the testbeds. While the descriptive
analysis showcases high variability for all code features, our
testbeds are a representative sub-sample of open repositories.
For instance, the complexity feature has an average value of
3.25 suggesting that the code has a reasonable number of
loops, conditionals, and operators. Therefore, our collected
methods exhibit that our pipeline process guarantee data point
diversity.

We observed no significant differences in the counting
of tokens among potential outcomes (including the control)
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and the ground truth (see Fig. 3-A). For instance, control
and T2 on declarations (with a diff. around 550 tokens)
and loops (with a diff. around 600 tokens) are relatively
small. However, T1 outcome exhibited high difference and
excessive use of OOP, declarations, and loops with a diff.
around 2.6k, 2k, and 1.5k tokens respectively. Figure 3-B
showcases the token distribution for each testbed. We detected
that the two prompt engineering methods were generating a
similar amount of tokens (i.e., green and red distributions)
compared to the control and ground truth. This suggests that
sophisticated prompts tend to generate repetitive tokens. Figure
3-C depicts the Levenshtein similarity distance between the
ChatGPT outputs, generated with both prompt engineering
methods and the control, and the ground truth. We can observe
from the proportion curve that T1 similarity performs the worst
compared to the control and T2.

RQ1 Exploratory Analysis: Grouped by taxonomy the ground
truth does not repeat the same tokens as much as the treat-
ments. The T1 outcome seems to have notable intense use of
keywords for OOP, declarations, and loops; T2 obtains better
performance with the highest similarity average of 0.43

Fig. 3: Descriptive Analysis: Top graph the token count for
each testbed, bottom left the token frequency distribution,
bottom right the similarity proportion score.

RQ2 Causal Analysis.
For two basic prompt engineering methods, code completion

performance of ChatGPT is mainly affected by the following
confounders: number of white spaces, lines of code, tokens
in the outcome, and tokens in the prompt with a maximum
correlation of 0.80 with the Levenstein distance (see Tab. IV-
Correlations). This suggests that after controlling for con-
founders, the Average Treatment Effect (ATE) the prompt
engineering method1, represented by T1, has a negative causal
effect p1(Y |do(T )) = E[Y1 − Y0] ≈ −5.1% compared to a
positive causal effect p2(Y |do(T )) = E[Y2 − Y0] ≈ 3.3%
of method2, represented by T2 (see Tab. IV-Causal Effects).

This indicates that method1 is negatively affecting the Lev-
enshtein similarity (i.e., poor performance) across WithDoc-
String testbed, while method2 is actually enhancing ChatGPT
prediction performance. These results are consistent with the
previous section in which we demonstrated that T2 performs
better than T1. After controlling for the confounding effect of
the code features such as the prompt size and token counts,
we can claim that the reason why T2 is performing better than
T1 is purely due to the information contained in the prompt.

In order to validate the robustness of computed ATEs and
proposed SCM, we refuted our effects using the following
methods: Placebo, Random Common Cause (RCC) and Subet
(see DoWhy refuters in [49]). We found that, for the ATEs
computed with score matching, their corresponding refutation
values are not stable. That is, the placebo value for Y1

similarity is far from zero with 2.98, while the RCC value
differs by around 212 in Y2 distance.

TABLE IV: Code Completion Testbed Results: Performance
Metrics, Correlations, and Causal Effects.

Treatments Control T1 T2
Performance Metrics
Distance Bleu 0.444 0.45 0.42

CodeBleu 0.441 0.438 0.469
Similarity Avg. Lev. 0.40±0.20 0.35±0.18 0.43±0.20
Correlations (vs Levenshtein) Dist. Sim.% Dist. Sim.% Dist. Sim.%
Confounders prompt size 0.45 25.6% 0.40 41.2% 0.45 28.3%

n whitespaces 0.69 5.6% 0.62 20.7% 0.80 1.8%
token count 0.67 5.3% 0.59 24.8% 0.70 3.9%
nloc 0.64 4.2% 0.57 20.7% 0.70 0.1%

Effect Modifiers complexity 0.43 4.3% 0.40 16.8% 0.47 0.9%
n ast nodes 0.72 7.8% 0.62 29.4% 0.77 4.3%
n ast errors 0.02 -2.4% 0.05 3.7% 0.18 2.3%
n ast levels 0.40 9.9% 0.31 30.4% 0.44 8.1%

Causal Effects (T → Y )
Score Matching ATE - - 104.02 -3.7% -314.36 6.9%

Placebo - - -0.21 298% 0.02 0.1%
RCC - - 112.14 -5.2% -102.71 3.3%
Subset - - 110.85 -5.1% -101.6 3.3%

Stratification ATE - - 111.05 -5.1% -101.73 3.3%
Placebo - - -0.17 0.04% 0.01 0.05%
RCC - - 111.17 -5.1% -101.7 3.3%
Subset - - 110.95 -5.2% -101.49 3.3%

IPW ATE - - 111.05 -5.1% -101.73 3.3%
Placebo - - -0.54 -0.02% -1.30 -0.07%
RCC - - 111.04 -5.1% -101.74 3.3%
Subset - - 111.12 -5.1% -101.47 3.3%

bold: highest correlation, underline: null effect.

RQ2 Causal Analysis: The prompt engineering method1

(treatment T1) has a negative causal impact on the ChatGPT
performance with an ATE estimation of −5%. Conversely,
the prompt engineering method2 (treatment T2) has a subtle
positive influence on the same performance with an ATE of
3%. This suggests that after controlling for prompt size, white
spaces, # of tokens, and nlocs; prompt engineering strategies
are indeed affecting the quality of code completion.

VI. CONCLUSION & FUTURE WORK

This study used a qualitative technique to analyze the causal
effect of SE-oriented treatments on the performance of LLMc.
Such a technique is embedded into a benchmarking strategy
named Galeras. Our benchmarking enables researchers to
interpret why a given LLMc is reporting a particular accuracy
metric. We curated two raw Python testbeds: RawData with
only mined code and RawDataDocstring with the correspond-
ing documentation from GitHub. We also provide five SE
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Python testbeds for three SE tasks (i.e., code completion,
code summarization, and commit generation), we proposed a
pipeline for collecting testbeds from git repositories. Finally,
we conducted a rigorous evaluation of code completion with
ChatGPT. Our causal study suggests that ChatGPT’s perfor-
mance is not only affected by the prompt size but also by the
prompt semantics. Future research will focus on determining
whether other unmeasured confounders are affecting LLMc’s
prediction by augmenting the number of testbeds.
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