Even singular integral operators that are well behaved on a
purely unrectifiable set

Benjamin Jaye and Manasa N. Vempati

Abstract: We prove the existence of a (d — 2)-dimensional purely unrectifiable set upon
which a family of even singular integral operators is bounded.

1 Introduction

Understanding the geometry of a measure p for which an associated odd singular integral
operator is bounded in L?(p) is a heavily studied problem in harmonic analysis. For instance,
the question of whether the L?(u) boundedness for s-dimensional Riesz transforms implies
the rectifiability (and closely related conditions) of the measure pu, is known as the David-
Semmes question [DS]. This is only known when s = 1 [MMV, Dav, Le|] and s = d — 1
[ENV2, NToV, DT, To|. There are several positive and negative results that have been proved
for a wide variety of odd kernels, see e.g. [Ch, CMPT, Hu, JN, MP].

Taking our inspiration from [MOV, MOV2], the goal of this note is to take a first step in the
study of the problem for even kernels by characterizing the even kernels that can be bounded
in L? on a particular class of purely unrectifiable sets, namely, the natural analogues of the
sets first considered in R? in [JN] and recently generalized by [MP] to co-dimension one sets in
R

Let us recall that a set A C R%is called m-rectifiable if there are Lipschitz maps f; : R™ — R¢
for all ¢ = 1,2, ..., such that

KA\ UF(R™)) = 0.

(Here ™ denotes the m-dimensional Hausdorff measure.) In contrast, a set B is m-purely
unrectifiable if #™(B N A) = 0 for every m-rectifiable set A C R

A measure p is said to have m-growth if there exists a constant C' > 0, such that pu(B(z, R)) <
Cr™ for every ball B(z,r) C R?. Finally, we say p is an m-dimensional measure if 7™ (supp u) <
oo and p has m-growth.

Throughout the paper, we will denote by Q an even Hélder continuous function on S%—!
with [y, Q(€)ds#41(£) = 0. For a finite measure 1, the m-dimensional SIO associated to
is bounded in L?(y) if there is a constant C' > 0 such that for every f € L?(p)

sup /
e>0 JRA

Employing the T'(1)-theorem for spaces of non-homogeneous type [NTV], provided that
has m-growth one can reduce the study of operator boundedness to understanding whether the
potential, defined for = ¢ supp (u) by

Q(ﬁ) 2 2
[ R du) < 151,

z—y|>e |.7} - y|m

(2=
roe = [ T ),

1



2 B. Jaye and M. N. Vempati

belongs to L>®(R%\ supp (u)).
Now let us state the main result of this paper, which concerns even SIOs of co-dimension 2.

Theorem 1.1. Let d > 3. There exists a (d — 2)-purely unrectifiable set E and a (d — 2)-
dimensional probability measure supported on E such that the (d — 2)-dimensional potential
associated to Q belongs to L (R%\ supp (1)) if and only if

/ €& QE) dANE) = 0 for all i,j € {1.....d). (1.1)
Sd*l

Additionally, unless Q) vanishes identically, the SIO associated to  fails to exist in the sense
of principal value p-almost everywhere.

It is interesting to note that for the singular integral operator associated to the measure u
we construct in Theorem 1.1, the two properties of L?(u)-boundedness and existence in the
principle value are quite distinct.

The class of kernels that satisfy the hypothesis for our main result above is non-empty.
To construct an example, fix a non-negative function ¢ € C*([0,1]) with ¢(1) = 0. For
£ = (&,8&,¢) € R? first define

a(ér, €2,€) = (& — E)e(&F + [€'7) (& + 1€'P).

For any ¢ € R%~2 with |¢/| < 1, the integral of a(-, -, £") over the quarter circle {(&;,&) @ & >
0, & >0, &2+ &2 = 1 —[€|?} equals 0, and a vanishes if either |¢1|? or |¢]? equals 1 — [&/|?
For & = (£1,62,€') € S set

9(5175%6,) = a(£17£27§/) Zf {51752 > O} U {51752 < 0}
Q(&1,62,8) = a(&2,61,€) = —a(61,&2,¢) if {&>0,& <0pU{& <0,& >0}

The function 2 is a Holder continuous mean-zero even function on the sphere that satisfies
(1.1).
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2 The reflectionless property

We will denote by my the d-dimensional Lebesgue measure, and we often denote the surface
area measure on S ! by ¢. The next lemma is the key to our construction, and is based
around the proof of Lemma 3 of [MOV?2].

Lemma 2.1 (The Reflectionless Property). Let o € RY, r > 0. The condition (1.1) holds if
and only if

/ K(x —y)dmg(y) =0 for any x € B(xo,r). (2.1)
B(xzo,r)



Even SIOs on rough sets 3

Proof. Without loss of generality we may assume that zp = 0 and r = 1. Employing the mean
zero property of €2, first observe that

/ K(x —y)dmg(y) = / K(z — y)dmq(y).
B(0,1) B(z,1+|z[)\B(0,1)

Express this integral in terms of the polar coordinates y = x +r( centered at x. Setting r(x, &)
to be the (smallest) solution of |z + 7(z,€) - £| = 1, we get

B 1+|x| 1 d—l
K(z —y)dmg(y — drdo(§)
B(0,1) I<I=1 Jr(z,0) rd

= T g L r\xr 2 g
- /;5 Ha00d0) ~ 5 [ (ol 0000
=1-1I

The term I vanishes as [g4-1 Q(z)do(x) = 0.
Set U™ be the half of the unit sphere above the hyperplane {x; = 0}. Since 2 is an even
function,

=3 r(x 2 o :1 (2. )2+ r(z. —C)2 .
11— AHH,WQ@d@ 5 | @0+ 1o~ Q)

A simple computation yields (r(z,()? 4+ r(z, —¢)?) = 4(z - ¢)? — 2(|z|*> — 1), which leads to

11:21;@@4V+ma—o%9@wﬂo

_} - ()2 o —1 z|? — o =:
=5 e PQao(€)— 5 [ 2l = 0RAQYdo(Q) = 1T+ 1V

Since ) has mean-zero over Uy, the term IV vanishes.
We conclude that (2.1) holds if and only if the term II] vanishes for every x € B(0,1),
which is in turn equivalent to the condition (1.1). This completes the proof of the lemma. [

3 Construction of the zero lower density set and the associated
measure

The construction our zero lower density set follows along the same lines as the papers [JN] and
[MP].

3.1 The set F

Set kg = to be the volume of the d-dimensional unit ball.

d
F(d +1)
Lemma 3.1. One can pack (g)d_2 pairwise essentially disjoint cubes of side length \/kqrd—2R?2

pd—2

into a ball of radius R(l +Vd kg Rd_—2>'

Proof. Without loss of generality we can assume that our ball is centered at the origin. Now we

will consider a cubic grid of mesh size {/kqrd=2R2. Suppose now that the cubes Q1, Q2 ...., Qar
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intersect B(0, R). These cubes are contained in the ball centred at 0 with radius R(l +

Vd kg I’;l 2) Finally, since

M
Mrgr®2R? = Zmd(Qj) > ma(B(0, R)) = raR?,
=1

we have M > ,1 -, and the lemma follows. O

To begin let us consider a sequence {ry};>o that tends to zero quickly and such that 7o = 1
and rk+1 < & for an absolute constant B which will be chosen later. Additionally shall assume

-~ €N
Set B0 = B(0, 1). We will construct the set iteratively. Given the k-th generation of Td%Q
kK
balls Bf of radius 7, we proceed to the (k + 1)-st generation as follows: for each ball B}“ we

apply Lemma 3.1 with R = r; and r = rgy1, so we find (r,:ﬁ)di2

Qk'H balls of sidelength {/ /idrgﬁr,% contained in ball (1+ AY{ EZ__QQ)EI? where A = /d /rq.
Set Ekﬂ = B(z lkH Tk+1) where zkH denotes the center of the cube QkJrl We carry out
this process for each ball Bk from the k-th generation. In total, we get d 5 balls B'erl in the

kJrl
(k 4+ 1)-st level.

of pairwise disjoint cubes

d 2
Set 041 = A{ ’; +1 and

Tk

BF = (1+61)BY and EF =B

J
j>1
We will frequently make use of the following properties of the construction

(i) For each k > 1,
oyt c EX.

l

(ii) Foreach k > 1, we have BJ’? - Q?, and moreover (provided that B is chosen appropriately)

1
dlSt(Bk aQ] 1\/’%7”19
(iii) For each k > 1 and for i # 7, dist( Bk BF) > %\/HdTZ 2

Observe that for each k¥ > 0 we have E¥*1 ¢ E¥ and now set E = MNk>o EF. Tt is not hard to
check that the set E satisfies 0 < #92(E) < oo, and liminf,_,q w
x € E. Consequently the set E is (d — 2)-purely unrectifiable [Mat].

It will be convenient to use the following notation: Each z € E* is contained in a some
unique ball BJ’-C and in a unique cube Q?, we will denote these by B¥ (x) and Qk(m) respectively.

= 0 for every
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3.2 The measure u

Set

1
My = xgema and = .
k j

Observe that supp (u*) € EF and pF(R?) = 1 for all k. The following properties hold for
the measures p*:

(a) supp (u¥) C Ujs1 B if k> m.
k(pm\ _ ,.d—2
(b) w*(B}*") =y, = for k > m.
(c) There exists a constant C' > 0 such that for any k& and ball B(z,r),

pF(B(x,r)) < Cri—2

Properties (a) and (b) follow immediately from construction. For (c), first note that for
r > 1, this property is clear as p* is a probability measure. If 0 < r < 1, then r € (rymi1,"m)
for some m € N. In the case when m > k, r,,, < ri, and hence the ball B(z,r) intersects with
at most one BJ’-“. Therefore

pE(B(z,1)) = T—zmd(B(z,r) N BY) < — < rd=2,

On the other hand, if & > m, then property (iii) of the construction ensures that B(z,r)
intersects at most 1+ C #dg balls B;.”H. Property (b), then ensures that

T'm-ﬁ—lrm

d
k _ k m+1 r d—2 d—2
p¥(B(z,r)) = Ej 1 (B(z,r)ﬂBj ) < <1+0Tfln_+21?”%1>rm+l <Cr% =,

and (c) is proved.
Finally, passing to a subsequence if necessary, the measures u* converge weakly to a (d — 2)-
dimensional measure u supported on F.

4 The boundedness of the potential associated to (2

Fix o € (0,1] to be the Holder exponent of €. All absolute constants in this section may
depend on dimension, and the quantity

|2(w) — Q(8)]
[Qlcaga-1y == sup —————==
w,£eSd-1 |w - £|
without further mention. We will write P < @ to mean that P < CQ for an absolute constant

C > 0.
We shall henceforth assume that E is constructed so that

S < . (4.1)

k>1

Our first goal will be to show that the property (1.1) will ensure that ||7},(1)[| Lo (ra\ supp ) <
0o. This will in turn follow from the weak convergence of u* to p and the following proposition.
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Proposition 4.1. There is a constant C' > 0 such that the following holds: Provided dist (z, supp (u)) =
€ >0, then for any m € N with rp, < 53,

[ KG-qamo| <c.

Proof. To begin the proof of Proposition 4.1, fix 2* € supp () with dist (z,2*) = €. Select m
satisfying rp,, < 57, and let n be the least integer such that r, < e (hence m > n). Observe
that

K(z—O)du™(¢) = K(z — O)du™(C) + K(x — ) du™(¢
JKe—omr@= [ K- omr© > L e K= 07)
=A; + As.

To estimate A; observe that every ( € supp (u™) is contained in a ball B of radius
(1 + 0pmt1)7m. Therefore

dist (z, supp (™)) > € — (1 + Syt )rm > % (4.2)

Consequently, using property (b) of the measure p,

(B (at)) _ rd?
As/ K(z = O)ldp™() < s <1,
s e oo s Y S

To estimate the term As we make the following claim: For some constant C' > 0 such that
for any k € {1,2...,n},

m < a2/d d 62
K(x — Qdp™(Q)| S 67 + o) . (4.3)
Bk=1(z*)\ BF(z*) Tk—1

Employing (4.3) yields (recalling the assumption (4.1))

n 2
2a/d €
Ao $ D0 (85+ il S—)3 L,
k=1 k—1

and Proposition 4.1 follows. Therefore our goal will be to prove our claim (4.3). To do so we
will appeal to the following comparison lemma.

Lemma 4.2. Let zg € R Fiz r, R € (0,1] with v smaller than R. Let Q € R? be some cube
centered at xo with the sidelength 1(Q) = /kqr®2R? and let B = B(xo,2r). Suppose that
v1, v are Borel measures with supp (v1) C Q, supp (v2) C B and vi(R?) = vo(R?). Then for

d/ rd—2R2
any x € RY with dist (z,Q) > %R, we have

N (R Q) | [ rdn()
[ =i - [ - o] 5 [ TR [T G

Proof. We can set xg = 0, without loss of generality. For any ¢ € @ and for any = such that
kgri—2R2

d
dist (z, Q) > S
kernel estimate

, we have |z| = |z — t£| for any ¢ € [0, 1], and so we have the standard
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(9

|K(z —¢) — K(z)]| 5m7 (4.5)

Therefore

[ K= an(@) - [ K- Qano)

Q B
<[ [ K60~ K(x)]du1<5>\+\ [ 1K@ = 0) = K(a)ldua(c)
9% ¢l

S g+ [ Gt
Observing that |¢| < Vrd—2R2 for ¢ € Q, while [¢| < r for £ € B, completes the proof of
lemma. O

Now we will proceed to prove the claim (4.3). Denote by S the collection
S ={j: B} # B"(z*) and B} c B" '(2")}.

df d-2 3
First consider j € S satisfying dist (z, Q;“) > VT TRL 1y this case we apply Lemma 4.2

8
with v = XQk and vo = Xgrl'"y R="k—1, 7 =1 and zg = Tk This gives
J J

dma(C) (i "r4)*/ dma(¢) rpdpm (¢)
KT [ K eam(o)| £ St E
‘ Q? ( ) Tl%—l B;-“ ( rl%—l Q? ]x—C|d 24« Bé? ]a:—C|d 2+«
(4.6)
a ndrd_ZTQ
There can be at most C' indices j € S satisfying dist (z, Q?) < %. For such a j
we employ the elementary fact that for any set S with finite measure
1
J1E©lama©) £ [ apdma©) S malS)P. (4.7)
s s I¢]
Combined with (4.2) this results in
d kY)2 m pk
dmq(Q) (md(Qj)) K (Bj)
~0T - [ K- gawn(o) 5 B LT
‘ Qk e Bk o1 ed=2
But now notice that
d—2 d d—2,2
VR T - ) Rk Tkt
S > dist (.%,Q?) > dist (z ,Q?) —d(x,z%) > S

and hence we have ¢ > {/ TZ_Qrz_l. Therefore we can bound

{/(ma(Qh))? <( - )2(d72)/d<

_2 Tk—1

=9
TN

7”k1
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Altogether, we can therefore estimate

_ _ dmd(C)_ N m
to=|f K 0TFEE - [ K- 0w

I

d d—2 2
by a sum of two terms: The contribution to Az from j which satisfy dist (z, Qf) > %
is at most a constant multiple of

(r e ) dma(C) / rdp™ ()
2 [ rd_27‘2 —_ d—2+a af,. rd_2r2 —_ d—2+a’
k-1 B(z,2re_1\B(z, \/ d ks kfl) |x C‘ Rd\B(az,W) ‘(L‘ C’

which is in turn bounded by a constant multiple of (%)a(d_m/ d+(m’:—f1)2a/ d,S 52’1/ ¢ The

contribution from the remaining j is at most a constant multiple of 5,3, and so we arrive at
2a/d
Az S 6207

Now write

‘ / Ko - <>dum<<>] < g+ As,
BE-1 @)\ B (a*)

where
d
Ay = ’/ K(z - ¢ dmaQ],
Ujes Q? k1

Observe that

dmg(Q) dmg(¢) ‘ ’ dmg(¢)
A _ _ _ _
= ‘ /UJ'GSQ? fle=9 i /B'“l(ﬂ»‘*) e =¢) e i /Bkl(a:*) Kle=¢) i

= Ay + Ag.

To estimate the term As we use the equation (4.7):

1 1, w2
A5 5 ma(UjesQABY (@) < {62 (4.9)
k—1

Finally, to estimate the term Ag, notice that x € (1+ 7QQL)B]“A (z*). Using the reflectionless
k—1

property in Lemma 2.1 and the inequality (4.7), we get

dm 1 € 1« ~r 1, s )@
A6='/  K@-0 ;’(O\s i md<<1+ B )\ B >)
(=) BF M@\ BF 1 (a%) Tk—1 Te—1 Tk—1

€ 2
§d<(5k+2 >
Tk—1

This gives the desired claim (4.3) hence finishes the proof for the proposition.
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4.1 The potential is unbounded when the condition (1.1) fails

Now we will show that the potential associated to €2 is unbounded if the reflectionless property
(2.1) (or equivalently the condition (1.1)) fails. So suppose that there exists some z¢ € B(0,1)
such that fB(o 3 K(z9 — y)dmg(y) > 0. Hence, there exists some rg > 0 such that

/ K(x —y)dmg(y) > co >0, for every x € B(xg,r9) C B(0,1).
B(0,1)

Recalling the notation of our set, put G;? = :17;1 + rpB(xg,r0) for all n. So we have

K(x — y) 4

B”
i n

>co >0, forall x € GY.

Fix N € N, fix some z € E,11 N Uj G’. A straightforward modification of the analysis of
the previous section leads to

20
/ K(z —y)du(y) > co — Coy*
Bn(z)\B"+1(z)

and so, if z € ﬂ,]:le Uj G%, then by summing over allm =1,..., N we get

N 2
/ K(x—y)du(y)>Nc0—C’Z<5nd.
RI\ Bn+1(z)

n=1

Consequently, the potential associated to {2 does not belong to in L% (R%\ supp (u)).

5 On the non-existence of the principal value integral

The result of this section will be rather general and be valid for all odd and even kernels (it will

also not depend on the particular co-dimension, but we only state the result for co-dimension
2).

Theorem 5.1. Suppose that  : S¥=1 — R is a-Hélder continuous and does not vanish identi-

cally on the sphere. Then provided the sequence % converges to zero sufficiently quickly, the

potential associated to € fails to exist in the sense of principal value, meaning that

Q(=4) »
lim — = du(y),
0 Jra\ B(a,e) [T — yl?2

fails to exist for p-almost every x € R%.
The main estimate is the following lemma;:

Lemma 5.2. There exists cg > 0 denpending on € such that, provided n is sufficiently large,
there is a ball D7 C B} with mq(D7) > cord such that if z € D7, then

/ Kz — O)du(0)] > o
B(z,trn)\B(z,srn)
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Before we exhibit the proof of this lemma, let us see how we get the Proposition 5.1 using this.
To observe this, set F' = {z € E': 2 ¢ U;D} for all but finitely many n} and then it suffices to
show pu(F') = 0. Also observe that by denoting by Fj, = {2 € E: 2 ¢ U;D]* for all m > n},
we have that F' C F,,, so it will suffice to show that p(F;,) = 0 for all n.

To show this, note that there exists dy > 0 such that for all sufficiently large m > 0, at most
(1- alo)(’ﬂ—’")d_2 cubes Q"*! fail to intersect D', thus

Tm+41

“(U {B;”+1 B N DT = @}) <(1- do)< Im >d2rg;fl < (1 — do)u(B).

I Tm+1
Whenever n is large enough, this inequality can be iterated to get
p{zeE:z¢ D}Hk for k=1,2,...... ,m}) < (1—dy)™,

which shows that p(Fy,) = 0.
In order to prove the Lemma 5.2, we use the following result, which relies on an application
of Lemma 4.2.

Claim 5.3. Forr,s € (0,2). Forn € Zy sufficiently large and any disc B}, z € R?, we have

mq

/ Ko = Qi = (0| £ 62
BIN[B(z,trn)\B(z,5rn)] n

Proof. To prove this, let us first denote by A(z,r,) = B(z,tr,) \ B(z,sr,). Next we suppose
that some cube Q?H € A(z,7y). Then using Lemma 4.2, we get

mq Tpi1\4=2+e  rprp g\ ([@d=2)A+a/d) o, (d=2)(14a/d)
_ _ e < <
[ e Q0] 5 ()T () < () |
If we instead have an“ NOA(z,1,) # (), then we have the crude estimate
| Ko - Q- 00| 5 ()"
QI NA(z, ) 2 ~\ oy,

d—2

There are at most (-22—)%"“ squares Q?H contained in A(z,r,) and observe that no more

Tn41
than C(%)(d_m(d_l)/d cubes Q' intersect 0A(z, 7).
On the other hand observe that the set A consisting of points in A(z,7,) N B} that are not

contained in any cube Q?H has measure that is no greater than

md([U{Q;}“ QU c (1+ 5n+1)By}} AB;?) < parrd

Whence, [ [K (2 = Q)] 74 < 6,41,
Bringing all these estimates together yields

K(z—()d(p—

md)@)‘ e e R T

2
T T'n T'n

‘ / TO[B(z,trn)\B(z,5mn)]

as required. ]
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Proof. If © does not vanish identically, then there exists ¢ > 0, zgp € B(0,1) and r,s € (0,1)
such that
/ K(z = ()dma(C) > c.
B(0,1)N[B(z0,r)\B(z0,9)]
(One can select zy close enough to 0 in the correct direction, » = 2 and s = 1.) Now observe
next that have fB(O DAB (ot )\B(z,5mm)] K(z — ¢)dmy(C) is a continuous function. Hence, then
there exists some a > 0, such that if z € B(zp,«) C B(0,1) we have

c
/ K (s = Qama()| > §.
B(0,)N[B(2,t)\B(z:5)]
Therefore, with D}, = B (2] + rpz, ary) we have
d
/ K(z— () md2(§)‘ > € for every z € D7.
BINB(z,trn)\B(2,57n) Tn 2

Now applying the Claim 5.3, we deduce for all z € D7, |fB(z,tTn)\B(z,srn) K(z—Q)du(¢)| >

c/2 — Coy .. Finally, note that the right hand side is atleast § for n sufficiently large, and
Lemma 5.2 is proved for a suitable choice of ¢g. O
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