
Even singular integral operators that are well behaved on a
purely unrectifiable set

Benjamin Jaye and Manasa N. Vempati

Abstract: We prove the existence of a (d−2)-dimensional purely unrectifiable set upon
which a family of even singular integral operators is bounded.

1 Introduction

Understanding the geometry of a measure µ for which an associated odd singular integral
operator is bounded in L2(µ) is a heavily studied problem in harmonic analysis. For instance,
the question of whether the L2(µ) boundedness for s-dimensional Riesz transforms implies
the rectifiability (and closely related conditions) of the measure µ, is known as the David-
Semmes question [DS]. This is only known when s = 1 [MMV, Dav, Le] and s = d − 1
[ENV2, NToV, DT, To]. There are several positive and negative results that have been proved
for a wide variety of odd kernels, see e.g. [Ch, CMPT, Hu, JN, MP].

Taking our inspiration from [MOV, MOV2], the goal of this note is to take a first step in the
study of the problem for even kernels by characterizing the even kernels that can be bounded
in L2 on a particular class of purely unrectifiable sets, namely, the natural analogues of the
sets first considered in R2 in [JN] and recently generalized by [MP] to co-dimension one sets in
Rd.

Let us recall that a set A ⊂ Rd is calledm-rectifiable if there are Lipschitz maps fi : Rm → Rd

for all i = 1, 2, ..., such that

H m(A \ ∪fi(Rm)) = 0.

(Here H m denotes the m-dimensional Hausdorff measure.) In contrast, a set B is m-purely
unrectifiable if H m(B ∩A) = 0 for every m-rectifiable set A ⊂ Rd.

A measure µ is said to havem-growth if there exists a constant C > 0, such that µ(B(x,R)) ≤
Crm for every ball B(x, r) ⊂ Rd. Finally, we say µ is anm-dimensional measure if H m( suppµ) <
∞ and µ has m-growth.

Throughout the paper, we will denote by Ω an even Hölder continuous function on Sd−1

with
∫
Sd−1 Ω(ξ)dH d−1(ξ) = 0. For a finite measure µ, the m-dimensional SIO associated to Ω

is bounded in L2(µ) if there is a constant C > 0 such that for every f ∈ L2(µ)

sup
ε>0

∫
Rd

∣∣∣∫
y:|x−y|>ε

Ω
( x−y
|x−y|

)
|x− y|m

f(y)dµ(y)
∣∣∣2dµ(x) ≤ C∥f∥2L2(µ).

Employing the T (1)-theorem for spaces of non-homogeneous type [NTV], provided that µ
has m-growth one can reduce the study of operator boundedness to understanding whether the
potential, defined for x /∈ supp (µ) by

T (µ)(x) =

∫
Rd

Ω
( x−y
|x−y|

)
|x− y|m

dµ(y),

1
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belongs to L∞(Rd\ supp (µ)).
Now let us state the main result of this paper, which concerns even SIOs of co-dimension 2.

Theorem 1.1. Let d ≥ 3. There exists a (d − 2)-purely unrectifiable set E and a (d − 2)-
dimensional probability measure supported on E such that the (d − 2)-dimensional potential
associated to Ω belongs to L∞(Rd\ supp (µ)) if and only if∫

Sd−1

ξi · ξj · Ω(ξ) dH d−1(ξ) = 0 for all i, j ∈ {1, . . . , d}. (1.1)

Additionally, unless Ω vanishes identically, the SIO associated to Ω fails to exist in the sense
of principal value µ-almost everywhere.

It is interesting to note that for the singular integral operator associated to the measure µ
we construct in Theorem 1.1, the two properties of L2(µ)-boundedness and existence in the
principle value are quite distinct.

The class of kernels that satisfy the hypothesis for our main result above is non-empty.
To construct an example, fix a non-negative function φ ∈ C1([0, 1]) with φ(1) = 0. For
ξ = (ξ1, ξ2, ξ

′) ∈ Rd first define

a(ξ1, ξ2, ξ
′) = (ξ22 − ξ21)φ(ξ

2
1 + |ξ′|2)φ(ξ22 + |ξ′|2).

For any ξ′ ∈ Rd−2 with |ξ′| ≤ 1, the integral of a(·, ·, ξ′) over the quarter circle {(ξ1, ξ2) : ξ1 ≥
0, ξ2 ≥ 0, |ξ1|2+ |ξ2|2 = 1− |ξ′|2} equals 0, and a vanishes if either |ξ1|2 or |ξ2|2 equals 1− |ξ′|2
For ξ = (ξ1, ξ2, ξ

′) ∈ Sd−1 set

Ω(ξ1, ξ2, ξ
′) = a(ξ1, ξ2, ξ

′) if {ξ1, ξ2 ≥ 0} ∪ {ξ1, ξ2 ≤ 0}
Ω(ξ1, ξ2, ξ

′) = a(ξ2, ξ1, ξ
′) = −a(ξ1, ξ2, ξ

′) if {ξ1 ≥ 0, ξ2 < 0} ∪ {ξ1 ≤ 0, ξ2 ≥ 0}.

The function Ω is a Hölder continuous mean-zero even function on the sphere that satisfies
(1.1).
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2 The reflectionless property

We will denote by md the d-dimensional Lebesgue measure, and we often denote the surface
area measure on Sd−1 by σ. The next lemma is the key to our construction, and is based
around the proof of Lemma 3 of [MOV2].

Lemma 2.1 (The Reflectionless Property). Let x0 ∈ Rd, r > 0. The condition (1.1) holds if
and only if ∫

B(x0,r)
K(x− y)dmd(y) = 0 for any x ∈ B(x0, r). (2.1)
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Proof. Without loss of generality we may assume that x0 = 0 and r = 1. Employing the mean
zero property of Ω, first observe that∫

B(0,1)
K(x− y)dmd(y) =

∫
B(x,1+|x|)\B(0,1)

K(x− y)dmd(y).

Express this integral in terms of the polar coordinates y = x+ rζ centered at x. Setting r(x, ξ)
to be the (smallest) solution of |x+ r(x, ξ) · ξ| = 1, we get∫

B(0,1)
K(x− y)dmd(y) =

∫
|ζ|=1

∫ 1+|x|

r(x,ζ)

1

rd−2
Ω(ζ)rd−1drdσ(ξ)

=
1

2

∫
|ζ|=1

(1 + |x|)2Ω(ζ)dσ(ζ)− 1

2

∫
|ζ|=1

(r(x, ζ))2Ω(ζ)dσ(ζ)

=: I − II

The term I vanishes as
∫
Sd−1 Ω(x)dσ(x) = 0.

Set U+ be the half of the unit sphere above the hyperplane {xd = 0}. Since Ω is an even
function,

II =
1

2

∫
|ζ|=1

(r(x, ζ))2Ω(ζ)dσ(ζ) =
1

2

∫
U+

[
r(x, ζ)2 + r(x,−ζ)2

]
Ω(ζ)dσ(ζ)

A simple computation yields (r(x, ζ)2 + r(x,−ζ)2) = 4(x · ζ)2 − 2(|x|2 − 1), which leads to

II =
1

2

∫
U+

(r(x, ζ)2 + r(x,−ζ)2)Ω(ζ)dσ(ζ)

=
1

2

∫
U+

4(x · ζ)2Ω(ζ)dσ(ζ)− 1

2

∫
U+

2(|x|2 − 1)Ω(ζ)dσ(ζ) =: III + IV.

Since Ω has mean-zero over U+, the term IV vanishes.

We conclude that (2.1) holds if and only if the term III vanishes for every x ∈ B(0, 1),
which is in turn equivalent to the condition (1.1). This completes the proof of the lemma.

3 Construction of the zero lower density set and the associated
measure

The construction our zero lower density set follows along the same lines as the papers [JN] and
[MP].

3.1 The set E

Set κd = π
d
2

Γ( d
2
+1)

to be the volume of the d-dimensional unit ball.

Lemma 3.1. One can pack (Rr )
d−2 pairwise essentially disjoint cubes of side length d

√
κdrd−2R2

into a ball of radius R

(
1 +

√
d d
√
κd

d

√
rd−2

Rd−2

)
.

Proof. Without loss of generality we can assume that our ball is centered at the origin. Now we
will consider a cubic grid of mesh size d

√
κdrd−2R2. Suppose now that the cubes Q1, Q2, ...., QM
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intersect B(0, R). These cubes are contained in the ball centred at 0 with radius R
(
1 +

√
d d
√
κd

d

√
rd−2

Rd−2

)
. Finally, since

Mκdr
d−2R2 =

M∑
j=1

md(Qj) > md(B(0, R)) = κdR
d,

we have M > Rd−2

rd−2 , and the lemma follows.

To begin let us consider a sequence {rk}k≥0 that tends to zero quickly and such that r0 = 1
and rk+1 <

rk
B for an absolute constant B which will be chosen later. Additionally shall assume

that rk
rk+1

∈ N and 1
rk

∈ N.

Set B̃0
1 = B(0, 1). We will construct the set iteratively. Given the k-th generation of 1

rd−2
k

balls B̃k
j of radius rk, we proceed to the (k + 1)-st generation as follows: for each ball B̃k

j we

apply Lemma 3.1 with R = rk and r = rk+1, so we find ( rk
rk+1

)d−2 of pairwise disjoint cubes

Qk+1
l balls of sidelength d

√
κdr

d−2
k+1r

2
k contained in ball (1 + A d

√
rd−2

Rd−2 )B̃
k
j where A =

√
d d
√
κd.

Set B̃k+1
j = B(zk+1

l , rk+1) where zk+1
l denotes the center of the cube Qk+1

l . We carry out

this process for each ball B̃k
j from the k-th generation. In total, we get 1

rd−2
k+1

balls B̃k+1
j in the

(k + 1)-st level.

Set δk+1 = A d

√
rd−2
k+1

rd−2
k

and

Bk
j = (1 + δk+1)B̃

k
j and Ek =

⋃
j≥1

Bk
j .

We will frequently make use of the following properties of the construction

(i) For each k ≥ 1, ⋃
l

Qk+1
l ⊂ Ek.

(ii) For each k ≥ 1, we have Bk
j ⊂ Qk

j , and moreover (provided that B is chosen appropriately)

dist(Bk
j , ∂Q

k
j ) ≥

1

4
d

√
κdr

d−2
k r2k−1.

(iii) For each k ≥ 1 and for i ̸= j, dist(Bk
j , B

k
i ) ≥ 1

4
d

√
κdr

d−2
k r2k−1.

Observe that for each k ≥ 0 we have Ek+1 ⊂ Ek and now set E =
⋂

k≥0E
k. It is not hard to

check that the set E satisfies 0 < H d−2(E) < ∞, and lim infr→0
H d−2(E∩B(x,r))

rd−2 = 0 for every
x ∈ E. Consequently the set E is (d− 2)-purely unrectifiable [Mat].

It will be convenient to use the following notation: Each x ∈ Ek is contained in a some
unique ball Bk

j and in a unique cube Qk
j , we will denote these by Bk(x) and Qk(x) respectively.
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3.2 The measure µ

Set

µk
j =

1

r2k
χB̃k

j
md and µk =

∑
j

µk
j .

Observe that supp (µk) ⊂ Ek and µk(Rd) = 1 for all k. The following properties hold for
the measures µk:

(a) supp (µk) ⊂
⋃

j≥1B
m
j if k ≥ m.

(b) µk(Bm
j ) = rd−2

m for k ≥ m.

(c) There exists a constant C > 0 such that for any k and ball B(x, r),

µk(B(x, r)) ≤ Crd−2.

Properties (a) and (b) follow immediately from construction. For (c), first note that for
r ≥ 1, this property is clear as µk is a probability measure. If 0 < r < 1, then r ∈ (rm+1, rm)
for some m ∈ N. In the case when m ≥ k, rm ≤ rk, and hence the ball B(z, r) intersects with
at most one Bk

j . Therefore

µk(B(z, r)) =
1

r2k
md(B(z, r) ∩ B̃k

j ) ≤
rd

r2k
≤ rd−2.

On the other hand, if k ≥ m, then property (iii) of the construction ensures that B(z, r)

intersects at most 1 + C rd

rd−2
m+1r

2
m

balls Bm+1
j . Property (b), then ensures that

µk(B(z, r)) =
∑
j

µk(B(z, r) ∩Bm+1
j ) ≤

(
1 + C

rd

rd−2
m+1r

2
m

)
rd−2
m+1 ≤ Crd−2,

and (c) is proved.
Finally, passing to a subsequence if necessary, the measures µk converge weakly to a (d−2)-

dimensional measure µ supported on E.

4 The boundedness of the potential associated to Ω

Fix α ∈ (0, 1] to be the Hölder exponent of Ω. All absolute constants in this section may
depend on dimension, and the quantity

∥Ω∥Cα(Sd−1) := sup
ω,ξ∈Sd−1

|Ω(ω)− Ω(ξ)|
|ω − ξ|α

without further mention. We will write P ≲ Q to mean that P ≤ CQ for an absolute constant
C > 0.

We shall henceforth assume that E is constructed so that∑
k≥1

δ
2α/d
k < ∞. (4.1)

Our first goal will be to show that the property (1.1) will ensure that ∥Tµ(1)∥L∞(Rd\ suppµ) <

∞. This will in turn follow from the weak convergence of µk to µ and the following proposition.
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Proposition 4.1. There is a constant C > 0 such that the following holds: Provided dist (x, supp (µ)) =
ϵ > 0, then for any m ∈ N with rm < ϵ

2d ,∣∣∣∣ ∫ K(x− ζ)dµm(ζ)

∣∣∣∣ ≤ C.

Proof. To begin the proof of Proposition 4.1, fix x∗ ∈ supp (µ) with dist (x, x∗) = ϵ. Select m
satisfying rm < ϵ

2d , and let n be the least integer such that rn ≤ ϵ (hence m ≥ n). Observe
that

∫
K(x− ζ)dµm(ζ) =

∫
Bn(x∗)

K(x− ζ)dµm(ζ) +
n∑

k=1

∫
Bk−1(x∗)\Bk(x∗)

K(x− ζ)dµm(ζ)

= A1 +A2.

To estimate A1 observe that every ζ ∈ supp (µm) is contained in a ball Bm
j of radius

(1 + δm+1)rm. Therefore

dist (x, supp (µm)) ≥ ϵ− (1 + δm+1)rm ≥ ϵ

2
. (4.2)

Consequently, using property (b) of the measure µm,

|A1| ≤
∫
Bn(x∗)

|K(x− ζ)|dµm(ζ) ≲
µm(Bn(x∗))

ϵd−2
≲

rd−2
n

ϵd−2
≲ 1.

To estimate the term A2 we make the following claim: For some constant C > 0 such that
for any k ∈ {1, 2..., n},∣∣∣∣ ∫

Bk−1(x∗)\Bk(x∗)
K(x− ζ)dµm(ζ)

∣∣∣∣ ≲ δ
α2/d
k + d

√
ϵ2

r2k−1

. (4.3)

Employing (4.3) yields (recalling the assumption (4.1))

|A2| ≲
n∑

k=1

(
δ
2α/d
k + d

√
ϵ2

r2k−1

)
≲ 1,

and Proposition 4.1 follows. Therefore our goal will be to prove our claim (4.3). To do so we
will appeal to the following comparison lemma.

Lemma 4.2. Let x0 ∈ Rd. Fix r,R ∈ (0, 1] with r smaller than R. Let Q ∈ Rd be some cube

centered at x0 with the sidelength l(Q) = d
√
κdrd−2R2 and let B = B(x0, 2r). Suppose that

ν1, ν2 are Borel measures with supp (ν1) ⊂ Q, supp (ν2) ⊂ B and ν1(Rd) = ν2(Rd). Then for

any x ∈ Rd with dist (x,Q) ≥
d
√

κdrd−2R2

8 , we have

∣∣∣∣ ∫
Q
K(x− ζ)dν1(ζ)−

∫
B
K(x− ζ)dν2(ζ)

∣∣∣∣ ≲ ∫
Q

(rd−2R2)α/ddν1(ζ)

|x− ζ|d−2+α
+

∫
B

rαdν2(ζ)

|x− ζ|d−2+α
. (4.4)

Proof. We can set x0 = 0, without loss of generality. For any ζ ∈ Q and for any x such that

dist (x,Q) ≥
d
√

κdrd−2R2

8 , we have |x| ≈ |x− tξ| for any t ∈ [0, 1], and so we have the standard
kernel estimate
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|K(x− ζ)−K(x)| ≲ |ζ|α

|x− ζ|d−2+α
, (4.5)

Therefore ∣∣∣∣ ∫
Q
K(x− ζ)dν1(ζ)−

∫
B
K(x− ζ)dν2(ζ)

∣∣∣∣
≤

∣∣∣∫
Q
[K(x− ζ)−K(x)]dν1(ξ)

∣∣∣+∣∣∣∫
B
[K(x− ζ)−K(x)]dν2(ζ)

∣∣∣
≲

∫
Q

|ζ|α

|x− ζ|d−2+α
dν1(ζ) +

∫
B

|ζ|α

|x− ζ|d−2+α
dν2(ζ).

Observing that |ζ| ≲ d
√
rd−2R2 for ξ ∈ Q, while |ζ| ≲ r for ξ ∈ B, completes the proof of

lemma.

Now we will proceed to prove the claim (4.3). Denote by S the collection

S = {j : Bk
j ̸= Bk(x∗) and Bk

j ⊂ Bk−1(x∗)}.

First consider j ∈ S satisfying dist (x,Qk
j ) ≥

d
√

κdr
d−2
k r2k−1

8 . In this case we apply Lemma 4.2
with ν1 = χQk

j

md

r2k−1
and ν2 = χ

B̃k
j
µm, R = rk−1, r = rk and x0 = xQk

j
. This gives

∣∣∣∣ ∫
Qk

j

K(x−ζ)
dmd(ζ)

r2k−1

−
∫
Bk

j

K(x−ζ)dµm(ζ)

∣∣∣∣ ≲ (rd−2
k r2k−1)

α/d

r2k−1

∫
Qk

j

dmd(ζ)

|x− ζ|d−2+α
+

∫
Bk

j

rαk dµ
m(ζ)

|x− ζ|d−2+α
,

(4.6)

There can be at most C indices j ∈ S satisfying dist (x,Qk
j ) ≤

d
√

κdr
d−2
k r2k−1

8 . For such a j
we employ the elementary fact that for any set S with finite measure∫

S
|K(ζ)|dmd(ζ) ≲

∫
S

1

|ζ|d−2
dmd(ζ) ≲

d
√
(md(S))2. (4.7)

Combined with (4.2) this results in

∣∣∣∣ ∫
Qk

j

K(x− ζ)
dmd(ζ)

r2k−1

−
∫
Bk

j

K(x− ζ)dµm(ζ)

∣∣∣∣ ≲ d

√
(md(Q

k
j ))

2

r2k−1

+
µm(Bk

j )

ϵd−2
. (4.8)

But now notice that

d

√
κdr

d−2
k r2k−1

8
≥ dist (x,Qk

j ) ≥ dist (x∗, Qk
j )− d(x, x∗) ≥

d

√
κdr

d−2
k r2k−1

4
− ϵ,

and hence we have ϵ ≳ d

√
rd−2
k r2k−1. Therefore we can bound

d

√
(md(Q

k
j ))

2

r2k−1

+
µm(Bk

j )

ϵd−2
≲

( rk
rk−1

)2(d−2)/d
≲ δ2k.
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Altogether, we can therefore estimate

A3 =
∣∣∣∫⋃

j∈S Qk
j

K(x− ζ)
dmd(ζ)

r2k−1

−
∫
⋃

j∈S Qk
j

K(x− ζ)dµm(ζ)
∣∣∣,

by a sum of two terms: The contribution to A3 from j which satisfy dist (x,Qk
j ) ≥

d
√

κdr
d−2
k r2k−1

8
is at most a constant multiple of

(rd−2
k r2k−1)

α/d

r2k−1

∫
B(x,2rk−1\B(x,

d
√

κdr
d−2
k

r2
k−1

8
)

dmd(ζ)

|x− ζ|d−2+α
+

∫
Rd\B(x,

d
√

κdr
d−2
k

r2
k−1

8
)

rαk dµ
m(ζ)

|x− ζ|d−2+α
,

which is in turn bounded by a constant multiple of
(

rk
rk−1

)α(d−2)/d
+
(

rk
rk−1

)2α/d
≲ δ

2α/d
k . The

contribution from the remaining j is at most a constant multiple of δ2k, and so we arrive at

A3 ≲ δ
2α/d
k .

Now write ∣∣∣∣ ∫
Bk−1(x∗)\Bk(x∗)

K(x− ζ)dµm(ζ)

∣∣∣∣ ≤ A3 +A4,

where

A4 =

∣∣∣∣ ∫⋃
j∈S Qk

j

K(x− ζ)
dmd(ζ)

r2k−1

∣∣∣∣.
Observe that

A4 ≤
∣∣∣∣ ∫

∪j∈SQ
k
j

K(x− ζ)
dmd(ζ)

r2k−1

−
∫
Bk−1(x∗)

K(x− ζ)
dmd(ζ)

r2k−1

∣∣∣∣+ ∣∣∣∣ ∫
Bk−1(x∗)

K(x− ζ)
dmd(ζ)

r2k−1

∣∣∣∣
:= A5 +A6.

To estimate the term A5 we use the equation (4.7):

A5 ≲
1

r2k−1

md(∪j∈SQ
k
j△Bk−1(x∗))

2
d ≲ d

√
δ2k. (4.9)

Finally, to estimate the term A6, notice that x ∈ (1+ ϵ
r2k−1

)Bk−1(x∗). Using the reflectionless

property in Lemma 2.1 and the inequality (4.7), we get

A6 =

∣∣∣∣ ∫
(1+ ϵ

rk−1
)Bk−1(x∗)\B̃k−1(x∗)

K(x− ζ)
dmd(ζ)

r2k−1

∣∣∣∣ ≲ 1

r2k−1

md

(
(1 +

ϵ

r2k−1

)Bk−1(x∗) \ B̃k−1(x∗)

) 2
d

≲ d

√(
δk +

ϵ

r2k−1

)2
.

This gives the desired claim (4.3) hence finishes the proof for the proposition.
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4.1 The potential is unbounded when the condition (1.1) fails

Now we will show that the potential associated to Ω is unbounded if the reflectionless property
(2.1) (or equivalently the condition (1.1)) fails. So suppose that there exists some x0 ∈ B(0, 1)
such that

∫
B(0,1)K(x0 − y)dmd(y) > 0. Hence, there exists some r0 > 0 such that∫

B(0,1)
K(x− y)dmd(y) > c0 > 0, for every x ∈ B(x0, r0) ⊂ B(0, 1).

Recalling the notation of our set, put Gn
j = xnj + rnB(x0, r0) for all n. So we have∫

Bn
j

K(x− y)
dmd(y)

r2n
> c0 > 0, for all x ∈ Gn

j .

Fix N ∈ N, fix some x ∈ En+1 ∩
⋃

j G
n
j . A straightforward modification of the analysis of

the previous section leads to∫
Bn(x)\Bn+1(x)

K(x− y)dµ(y) > c0 − Cδ
2α
d
n ,

and so, if x ∈ ∩N
n=1

⋃
j G

j
n, then by summing over all n = 1, . . . , N we get

∫
Rd\Bn+1(x)

K(x− y)dµ(y) > Nc0 − C
N∑

n=1

δ
2α
d
n .

Consequently, the potential associated to Ω does not belong to in L∞(Rd\ supp (µ)).

5 On the non-existence of the principal value integral

The result of this section will be rather general and be valid for all odd and even kernels (it will
also not depend on the particular co-dimension, but we only state the result for co-dimension
2).

Theorem 5.1. Suppose that Ω : Sd−1 → R is α-Hölder continuous and does not vanish identi-
cally on the sphere. Then provided the sequence rn+1

rn
converges to zero sufficiently quickly, the

potential associated to Ω fails to exist in the sense of principal value, meaning that

lim
ϵ→0

∫
Rd\B(x,ε)

Ω
( x−y
|x−y|

)
|x− y|d−2

dµ(y),

fails to exist for µ-almost every x ∈ Rd.

The main estimate is the following lemma:

Lemma 5.2. There exists c0 > 0 denpending on Ω such that, provided n is sufficiently large,
there is a ball Dn

j ⊂ Bn
j with md(D

n
j ) ≥ c0r

d
n such that if z ∈ Dn

j , then

|
∫
B(z,trn)\B(z,srn)

K(x− ζ)dµ(ζ)| ≥ c0.
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Before we exhibit the proof of this lemma, let us see how we get the Proposition 5.1 using this.
To observe this, set F = {z ∈ E : z /∈ ∪jD

n
j for all but finitely many n} and then it suffices to

show µ(F ) = 0. Also observe that by denoting by Fn = {z ∈ E : z /∈ ∪jD
m
j for all m ≥ n},

we have that F ⊂ Fn, so it will suffice to show that µ(Fn) = 0 for all n.
To show this, note that there exists d0 > 0 such that for all sufficiently large m ≥ 0, at most

(1− d0)
(

rm
rm+1

)d−2
cubes Qm+1

l fail to intersect Dm
j , thus

µ

(⋃
l

{
Bm+1

l : Bm+1
l ∩Dm

j = ∅
})

≤ (1− d0)

(
rm
rm+1

)d−2

rd−2
m+1 ≤ (1− d0)µ(B

m
j ).

Whenever n is large enough, this inequality can be iterated to get

µ({z ∈ E : z /∈ Dn+k
j for k = 1, 2, ......,m}) ≤ (1− d0)

m,

which shows that µ(Fn) = 0.
In order to prove the Lemma 5.2, we use the following result, which relies on an application

of Lemma 4.2.

Claim 5.3. For r, s ∈ (0, 2). For n ∈ Z+ sufficiently large and any disc Bn
j , z ∈ Rd, we have∣∣∣∣ ∫

Bn
j ∩[B(z,trn)\B(z,srn)]

K(x− ζ)d(µ− md

r2n
)(ζ)

∣∣∣∣ ≲ δαn+1.

Proof. To prove this, let us first denote by A(z, rn) = B(z, trn) \ B(z, srn). Next we suppose
that some cube Qn+1

l ∈ A(z, rn). Then using Lemma 4.2, we get

∣∣∣∣ ∫
Qn+1

l

K(x− ζ)d(µ− md

r2n
)(ζ)

∣∣∣∣ ≲ (rn+1

rn

)d−2+α
+
(rn+1

rn

)(d−2)(1+α/d)
≲

(rn+1

rn

)(d−2)(1+α/d)
.

If we instead have Qn+1
l ∩ ∂A(z, rn) ̸= ∅, then we have the crude estimate∣∣∣∣ ∫
Qn+1

l ∩A(z,rn)
K(x− ζ)d(µ− md

r2n
)(ζ)

∣∣∣∣ ≲ (rn+1

rn

)d−2
.

There are at most ( rn
rn+1

)d−2 squares Qn+1
l contained in A(z, rn) and observe that no more

than C
(

rn
rn+1

)(d−2)(d−1)/d
cubes Qn+1

l intersect ∂A(z, rn).

On the other hand observe that the set Ã consisting of points in A(z, rn) ∩Bn
j that are not

contained in any cube Qn+1
l has measure that is no greater than

md

([⋃
{Qn+1

ℓ : Qn+1
ℓ ⊂ (1 + δn+1)B

n
j }

]
△Bn

j

)
≲ δn+1r

d
n.

Whence,
∫
Ã |K(z − ζ)|dmd(ζ)

r2n
≲ δn+1.

Bringing all these estimates together yields∣∣∣∣ ∫
Bn

j ∩[B(z,trn)\B(z,srn)]
K(x− ζ)d(µ− md

r2n
)(ζ)

∣∣∣∣ ≲ (rn+1

rn

)α(d−2)/d
+
(rn+1

rn

)(d−2)/d
+δn+1 ≲ δαn+1,

as required.
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Proof. If Ω does not vanish identically, then there exists c > 0, z0 ∈ B(0, 1) and r, s ∈ (0, 1)
such that ∫

B(0,1)∩[B(z0,r)\B(z0,s)]
K(z − ζ)dmd(ζ) ≥ c.

(One can select z0 close enough to 0 in the correct direction, r = 2 and s = 1.) Now observe
next that have

∫
B(0,1)∩[B(z,trn)\B(z,srn)]

K(z − ζ)dmd(ζ) is a continuous function. Hence, then

there exists some α > 0, such that if z ∈ B(z0, α) ⊂ B(0, 1) we have∣∣∣∣ ∫
B(0,1)∩[B(z,t)\B(z,s)]

K(z − ζ)dmd(ζ)

∣∣∣∣ ≥ c

2
.

Therefore, with Dj
n = B(znj + rnz, αrn) we have∣∣∣∣ ∫

Bn
j ∩B(z,trn)\B(z,srn)

K(x− ζ)
dmd(ζ)

r2n

∣∣∣∣ ≥ c

2
for every z ∈ Dn

j .

Now applying the Claim 5.3, we deduce for all z ∈ Dn
j , |

∫
B(z,trn)\B(z,srn)

K(z − ζ)dµ(ζ)| ≥
c/2 − Cδαn+1. Finally, note that the right hand side is atleast c

4 for n sufficiently large, and
Lemma 5.2 is proved for a suitable choice of c0.
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