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A B S T R A C T

Accurate model development is essential for effective model-based control of Reactivity Controlled Compression
Ignition (RCCI) engines. However, due to the intricate nature of engine combustion process, achieving a precise
model that can capture the complex dynamic behavior and ensure high control performance poses a significant
challenge. In this paper, we propose an uncertainty-aware output feedback model predictive control approach
for efficient combustion management in RCCI engines. In contrast to the previously developed approaches,
this method adopts a data-driven approach within the linear parameter-varying (LPV) framework for model
development. To address the model mismatch between the LPV model and the real system/data, Bayesian
Neural Networks (BNNs) are employed which provide the probability distribution of the uncertainties. The
BNNs enable the formation of a scenario tree, effectively characterizing the range of potential uncertainties
in the system. Through the implementation of scenario-based model predictive control, our approach ensures
high tracking performance for the RCCI engine in the presence of modeling uncertainties and measurement
noise. Extensive simulations and experimental validations demonstrate the superiority of our uncertainty-aware
model predictive control over traditional control strategies.

1. Introduction

Internal combustion engines (ICE) have become the predominant
power source in various applications, especially in transportation, yet
controlling their emissions, a significant environmental concern, re-
mains a challenge. Despite the proposal of alternative solutions such as
hydrogen fuel cells and battery electric vehicles, widespread adoption
faces obstacles, leaving ICE as the prevailing power source. In response
to environmental challenges, low-temperature combustion (LTC) en-
gines have been proposed, with Reactivity Controlled Compression
Ignition (RCCI) offering promising characteristics (Lu, Han, & Huang,
2011). RCCI combines the use of low-reactivity fuels injected through
the port fuel injectors (PFI) and high-reactivity fuels directly injected
into the cylinder, achieving controlled and efficient combustion. The
unique fuel combination and stratification enable RCCI to attain higher
thermal efficiency and a broader operating range compared to con-
ventional ICE engines, making it a potential solution for reducing
emissions while also enhancing engine performance (Agarwal, Singh,
& Maurya, 2017; Krishnamoorthi, Malayalamurthi, He, & Kandasamy,
2019; Singh, Kumar, & Agarwal, 2020).
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Managing the combustion process in RCCI engines poses significant
challenges due to their unique nature of ignition, which starts in high
reactivity region and propagates to low reactivity region within the
combustion chamber. Raut, Bidarvatan, Borhan and Shahbakhti (2018)
developed a model-based control approach, including physics-based
dynamic modeling and switched model predictive control (MPC), to
achieve precise cycle-to-cycle control of combustion phasing (𝐶𝐴50)
and indicated mean effective pressure (𝐼𝑀𝐸𝑃 ). Batool, Naber, and
Shahbakhti (2021) focused on stable engine operation by control-
ling combustion cyclic variability, characterized by the coefficient of
variation of IMEP (𝐶𝑂𝑉𝐼𝑀𝐸𝑃 ). They integrated a data-driven model
of 𝐶𝑂𝑉𝐼𝑀𝐸𝑃 with physics-based models of 𝐶𝐴50 and 𝐼𝑀𝐸𝑃 . Then,
nonlinear MPC was applied to regulate 𝐶𝐴50 and 𝐼𝑀𝐸𝑃 while con-
straining 𝐶𝑂𝑉𝐼𝑀𝐸𝑃 . Sitaraman et al. (2022) utilized a data-driven
LPV model of an RCCI engine with scheduling variables defined based
on early and late heat release rate fractions. They employed MPC to
control CA50 and IMEP while also limiting Mean Pressure Rise Rate
(𝑀𝑃𝑅𝑅) to prevent engine knocking.

The MPC schemes employed in the aforementioned studies pro-
vide limited robustness to (even) small uncertainties by re-initializing
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the optimizer at each sampling time. However, this approach is not
sufficient in scenarios with significant uncertainties or model mis-
match, as it does not guarantee closed-loop stability or constraint
satisfaction and may result in poor tracking performance. To address
this challenge, researchers have explored robustification methods for
MPC, including min–max MPC (Campo & Morari, 1987), stochastic
MPC (Mesbah, 2016), and tube-based MPC (Mayne, Seron, & Raković,
2005). Scenario-based MPC (ScMPC) (Bernardini & Bemporad, 2009)
can strike a balance between robustness and computational efficiency
while addressing over-conservatism. It copes with uncertainties by
incorporating multiple possible scenarios or realizations, forming a
scenario tree. Each scenario enables ScMPC to compute distinct con-
trol trajectories, allowing the controller to anticipate various system
behaviors and adapt its control actions dynamically. The inclusion
of feedback or recourse further enhances ScMPC’s adaptability by
adjusting decisions based on real-time feedback.

While ScMPC offers improved control performance and stability,
careful attention is needed when selecting and representing scenarios
to strike a balance between computational complexity and control
effectiveness. Various techniques have been suggested to address this
concern, with data-driven methods emerging as a particularly effec-
tive tool. In Bonzanini, Paulson, Makrygiorgos, and Mesbah (2021),
Gaussian Processes (GPs) were employed to learn the state- and input-
dependent plant-model mismatch in real-time. In contrast, Bao, Chan,
Mesbah, and Velni (2023) used Bayesian Neural Networks (BNN) to
quantify this mismatch, resulting in reduced conservativeness and im-
proved control performance over GPs. However, it is important to
note that these approaches assume the availability of all state infor-
mation online, which may not be the case in practice. To address this
limitation, input- and output-dependent uncertainties are quantified
(learned) in this work using the BNN method, which provides infor-
mation about the posterior distribution of the uncertainties. Compared
with GPs, BNNs offer a more computationally efficient approach for
uncertainty estimation, particularly for larger datasets, as BNNs lever-
age neural networks and optimization techniques, while GP can be
computationally expensive due to matrix inversions and cubic scaling
with the data size.

The main contribution of this work lies in the development and
application of a scenario-based output feedback model predictive
control scheme tailored for RCCI engines operating under uncertain-
ties and disturbances. The intricate and hard-to-model dynamics of
RCCI engines pose considerable complexities, further compounded by
limited output measurements. To address these challenges, we initially
construct a data-driven model of the RCCI engine within the LPV
framework, offering good accuracy but raising concerns about inherent
errors in the learning process. This is mitigated by ScMPC which
enhances the system’s robustness against plant-model mismatch. Given
the limited observability, we quantify this mismatch offline using a
BNN with input and output information. It is shown that this approach
effectively predicts modeling uncertainties, facilitating the generation
of scenarios online for the proposed ScMPC. The probabilities associ-
ated with these scenarios are estimated using the moment matching
method. Additionally, the limited availability of measurements poses
challenges in control design. Here, the system states are estimated using
a Kalman filter, known for its robustness to noisy measurements and
provision of accurate state estimates crucial for effective control. The
infeasibility problem that is highly probable to occur in the ScMPC
framework is avoided through the implementation of soft constraints.
Overall, the proposed work contributes to the advancement of RCCI engine
control by effectively managing uncertainties and improving the closed-loop
system performance.

The structure of this paper is as follows. Initially, a control-oriented
model for the RCCI engine is developed, followed by an exposition of
the state estimation technique utilizing the Kalman filter. Subsequently,
the scenario-based model predictive control approach is introduced,
providing an intricate elucidation of both scenario generation and prob-
ability calculation methods. The ensuing section offers the presentation
of simulation results. The paper concludes with a concise summary
encapsulating the key findings.

2. Control-oriented modeling of RCCI engine

Generally, state-space representation of a discrete-time nonlinear
system is as follows

𝑥𝑘+1 = 𝑓 (𝑥𝑘, 𝑢𝑘) +𝑤𝑘, (1a)

𝑦𝑘 = ℎ(𝑥𝑘, 𝑢𝑘) + 𝑣𝑘, (1b)

where 𝑥𝑘, 𝑢𝑘, and 𝑦𝑘 are the state, input, and output vectors at time
instant 𝑘 ∈ N. Moreover, 𝑓 ∶ R𝑛𝑥 × R𝑛𝑢 ↦ R𝑛𝑥 and ℎ ∶ R𝑛𝑥 × R𝑛𝑢 ↦ R

𝑛𝑦

represent the dynamic and measurement models, and 𝑤𝑘 ∼  (0,) and
𝑣𝑘 ∼  (0,) denote the normally distributed process and measurement
noises, respectively.

The nonlinear dynamic model, 𝑓 (𝑥𝑘, 𝑢𝑘), can be approximated with
an LPV model, opening up opportunities to leverage the benefits of a
linear control framework, while achieving improved model accuracy
across a diverse range of operating conditions. Hence, the dynamic
model (1) in the LPV framework is described as

𝑥𝑘+1 = 𝐴(p𝑘)𝑥𝑘 + 𝐵(p𝑘)𝑢𝑘 + 𝑤̃𝑘, (2a)

𝑦𝑘 = 𝐶(p𝑘)𝑥𝑘 + 𝑣𝑘, (2b)

where 𝐴 ∶ R
𝑛𝑝 ↦ R𝑛𝑥×𝑛𝑥 , 𝐵 ∶ R

𝑛𝑝 ↦ R𝑛𝑥×𝑛𝑢 , and 𝐶 ∶ R
𝑛𝑝 ↦ R

𝑛𝑦×𝑛𝑥

denote state, input and output matrices, which are functions of time-
varying scheduling variables p𝑘 ∈ R

𝑛𝑝 . Furthermore, when describing
the nonlinear model in the LPV framework, there arises a modeling
mismatch, which, together with the process noise, are represented as a
lumped term, 𝑤̃𝑘.

Control of RCCI engines, unlike their counterparts, requires adjust-
ing numerous parameters, and this needs to be reflected in control-
oriented model development. The average pressure exerted on the
piston during the power stroke, indicated by IMEP, serves as a key
metric for evaluating engine power and efficiency. Elevated maximum
pressure rise rate (MPRR) can potentially result in engine knocking, a
phenomenon that must be minimized. The timing at which 50% of the
heat release occurs during the combustion process, known as CA50,
plays a critical role in optimizing power delivery and fuel efficiency.
Extensive research indicates that by incorporating key parameters such
as start of injection (SOI) timing, premixed ratio (PR), and fuel quantity
(FQ), as well as MPRR, IMEP, and CA50, control-oriented models can
accurately capture the intricate dynamics of RCCI combustion (Basina
et al., 2020; Irdmousa, Rizvi, Velni, Nabert, & Shahbakhti, 2019). Thus,
the following input and output vectors are considered for state-space
modeling of the RCCI engine (Sitaraman et al., 2022):

𝑢 =
[
𝑆𝑂𝐼 𝐹𝑄 𝑃𝑅

]𝑇
, (3a)

𝑦 =
[
𝐶𝐴50 𝑀𝑃𝑅𝑅 𝐼𝑀𝐸𝑃

]𝑇
. (3b)

The heat release rate is another critical factor in combustion en-
gines, significantly affecting their performance, efficiency, and emis-
sions. This rate signifies the speed at which energy is released during
combustion, reflecting the conversion rate from fuel-air mixture to ther-
mal energy. It includes two primary aspects: the timing and magnitude
of heat release. Early and rapid heat release can lead to abrupt pressure
rises, while delayed release may result in incomplete combustion. Its
magnitude and shape significantly influence key combustion charac-
teristics such as peak pressure, combustion duration, brake thermal
efficiency, and overall stability. Consequently, the fractions of early
and late heat release, denoted as p𝑒 and p𝑙, respectively, are utilized
as scheduling variables in our LPV model (Sitaraman et al., 2022). This
study employs a model structure similar to that presented by Sitaraman
et al. (2022), featuring five states and a learned LPV model using the
regularized least-squares support vector machine (LS-SVM) technique.
However, the lack of knowledge regarding the system’s internal states
presents challenges that will be addressed in subsequent sections.
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3. Parameter-dependent state estimation

In various practical applications, including the combustion control
in RCCI engines, not all states of the system are directly measurable.
Instead, only noisy measurements from certain sensors are accessi-
ble. However, since MPC relies on complete state information, state
estimation becomes a critical component of output feedback MPC.
In this study, Kalman filtering (Kailath, Sayed, & Hassibi, 2000) is
employed to estimate the unmeasured states. By fusing the available
sensor data with the system model, the Kalman filter generates an
optimal estimate of the true state, enabling the MPC scheme to make
informed and precise control decisions in the presence of limited and
noisy information. Our designed and implemented filter uses the LPV
model and therefore is parameter-dependent.

The Kalman filter operates in two main steps. In the prediction step,
the system’s dynamics model is used to predict the next state based on
the previous state estimate and the control input, taking into account
the system’s inherent uncertainty as

𝑥̂−
𝑘+1

= 𝐴(p𝑘)𝑥̂𝑘 + 𝐵(p𝑘)𝑢𝑘, (4a)

P−
𝑘+1

= 𝐴(p𝑘)P𝑘𝐴(p𝑘)
𝑇 +, (4b)

where 𝑥̂−
𝑘+1

is a priori state estimate at time instant 𝑘 + 1, and P−
𝑘+1

=

E

[
(𝑥𝑘+1 − 𝑥̂−

𝑘+1
)(𝑥𝑘+1 − 𝑥̂−

𝑘+1
)𝑇 |𝑦0∶𝑘

]
and P𝑘 = E

[
(𝑥𝑘 − 𝑥̂𝑘)(𝑥𝑘 − 𝑥̂𝑘)

𝑇 |
𝑦0∶𝑘

]
denote the covariance of the estimation errors.

In the correction or update step, the filter incorporates the actual
sensor measurements, along with their associated noise characteristics,
to correct the predicted state estimate as

𝑥̂𝑘+1 = 𝑥̂−
𝑘+1

+ L𝑘+1(𝑦𝑘+1 − 𝐶(p𝑘)𝑥̂
−
𝑘+1

), (5a)

P𝑘+1 = (𝐼 − L𝑘+1𝐶(p𝑘))P
−
𝑘+1

, (5b)

L𝑘+1 = P−
𝑘+1

𝐶(p𝑘)
𝑇
(
𝐶(p𝑘)P

−
𝑘+1

𝐶(p𝑘)
𝑇 +

)−1

. (5c)

The Kalman filter dynamically adjusts the gain, denoted by L𝑘+1 (which
is parameter-varying), based on their respective uncertainties, optimiz-
ing the accuracy of the final state estimate.

The initial points of these iterative formulas are determined based
on the known statistics of the initial condition in (2). If the modeling
uncertainty exhibits a slow-varying nature, its temporal evolution can
be disregarded, allowing the Kalman update to improve the estimation
at each sampling time by incorporating the available measurements.

The accuracy of state estimation significantly impacts control per-
formance, making it a critical aspect of the control system’s effective-
ness. Various methodologies have been explored to mitigate the impact
of estimation errors, as evidenced by studies such as Subramanian,
Lucia, and Engell (2014, 2018). Our future research will delve deeper
into investigating the implications of estimation errors on control per-
formance, aiming to develop strategies that enhance robustness and
improve overall system performance.

4. Scenario-based model predictive control

In this section, a scenario-based model predictive control strategy is
devised for the combustion control of RCCI engines. By leveraging the
dynamic model, MPC predicts and optimizes future system behavior
in real-time, while taking constraints into account to achieve optimal
control performance within a finite time horizon. However, traditional
MPC may encounter challenges when dealing with uncertainties and
disturbances. To overcome this limitation, ScMPC expands the capa-
bilities of MPC by explicitly incorporating uncertainty characteristics.
This is achieved by considering a set of representative scenarios that
encompass the most likely candidates for the system behavior. By
evaluating control decisions against these scenarios, ScMPC offers a
safer and more robust control strategy.

4.1. Optimal control problem formulation

The finite-horizon output feedback MPC problem under uncertainty
is formulated as

min
𝛩

𝐽 (𝑥, 𝜗, 𝑘) ∶= E

⎧
⎪⎨⎪⎩

𝑁𝑝−1∑
𝑖=0

𝓁𝑠(𝑥𝑖|𝑘, 𝜗𝑖|𝑘) + 𝓁𝑡(𝑥𝑁𝑝|𝑘)
⎫⎪⎬⎪⎭
, (6a)

s.t. 𝑥𝑖+1|𝑘 = 𝐴(p𝑘)𝑥𝑖|𝑘 + 𝐵(p𝑘)𝜗𝑖|𝑘 + 𝑤̃𝑖|𝑘, (6b)

𝑦𝑖|𝑘 = 𝐶(p𝑘)𝑥𝑖|𝑘 + 𝑣𝑖|𝑘, (6c)

𝑥0|𝑘 = 𝑥̂𝑘, (6d)

𝑥 ∈  , 𝜗 ∈  , 𝑦 ∈  , (6e)

where the decision variables are defined by 𝛩 ∶= {𝜗0|𝑘(.), ..., 𝜗𝑁𝑝−1|𝑘(.)},
comprising a sequence of control laws 𝜗𝑖|𝑘 over the prediction horizon
𝑁𝑝. Moreover,  ⊆ R𝑛𝑥 ,  ⊆ R𝑛𝑢 , and  ⊆ R

𝑛𝑦 are the constraint sets of
the states, inputs and outputs, respectively. E represents the expected
value over the random vector sequence W = {𝑤̃0|𝑘,… , 𝑤̃𝑁𝑝−1|𝑘}. Fur-
thermore, 𝓁𝑠(.) and 𝓁𝑡(.) denote the stage and terminal cost functions,
respectively.

Directly solving the optimization problem (6) is challenging. The
main difficulty arises from the fact that optimizing over the control
policy 𝛩 yields an infinite-dimensional problem. To overcome this
challenge, a practical approach is to approximate the control policy
with an affine estimated state feedback policy with a fixed control gain,
such as 𝜗𝑖|𝑘 = 𝑢𝑖|𝑘 + 𝐾(𝑥 − 𝑥̄𝑖|𝑘), where 𝑥̄𝑖|𝑘 represents the nominal
state, 𝑢𝑖|𝑘 is an auxiliary input, and 𝐾 is a constant control gain. Now,
the sequence 𝑈 = {𝑢0|𝑘,… , 𝑢𝑁𝑝−1|𝑘} is optimized using the nominal
dynamic model in the optimization process.

Furthermore, representing uncertainty as a continuous random vari-
able provides a more accurate model. Nevertheless, in practical scenar-
ios, dealing with continuous probability distributions can be computa-
tionally demanding. To address this issue, a solution is to discretize the
uncertainty, resulting in 𝑛𝑠 discrete realizations of uncertainties at each
time instant (de la Penad, Bemporad, & Alamo, 2005). Subsequently,
a scenario tree is constructed, as shown in Fig. 1, to represent the
evolution of uncertainty over the prediction horizon. Each path from
the root node to a leaf node in the scenario tree corresponds to a
specific scenario. However, the exponential growth in the number of
scenarios due to branching at each time step leads to a substantial
increase in the complexity of the optimization problem. A practical
solution is to limit the branching by defining a robust horizon 𝑁𝑟,
beyond which the number of uncertain scenarios are treated as fixed
parameters (Lucia, Finkler, & Engell, 2013). Then, the problem will
be limited to 𝑛𝑠 = 𝑛

𝑁𝑟

𝑑
scenarios. This strategy helps in reducing the

computational burden and facilitating the optimization process in the
ScMPC framework.

The rigorous enforcement of hard constraints can often give rise to
feasibility issues. The task of securing a feasible solution that adheres to
all hard constraints for each scenario becomes increasingly demanding,
particularly with the escalation in the number of scenarios or the
extension of the robust and prediction horizon. This complexity arises
from the expansion of uncertain scenarios over the prediction horizon,
which in turn causes the invariant set to contract. Such a contraction
can persist to the extent that it becomes impossible to identify a feasible
solution. Additionally, even in cases where infeasibility does not arise,
strictly adhering to hard constraints often leads to conservative control
actions, which can constrain the system performance. Soft constraints,
on the other hand, provide a more flexible and practical approach by
allowing controlled violation of constraints. This flexibility enhances
the robustness and feasibility of the control strategy, as it enables
the MPC algorithm to generate feasible control solutions (Kerrigan &
Maciejowski, 2000; Zhang & Morari, 1994).
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Fig. 1. The illustrative example shows a scenario tree with 𝑛𝑑 = 3 discrete realizations
of the uncertainty and a robust horizon of 𝑁𝑟 = 2.

To formulate the tracking problem in the ScMPC framework and
incorporate an integral action for precise performance, we augment the
state-space model as

x𝑘+1 = 𝐴̃𝑘x𝑘 + 𝐵̃𝑘𝛥𝑢𝑘 +𝛺𝑘, (7a)

𝑦𝑘 = 𝐶̃𝑘x𝑘 + 𝑣𝑘, (7b)

𝐴̃𝑘 =

[
𝐴(p𝑘) 𝐵(p𝑘)

0 𝐼

]
, 𝐵̃𝑘 =

[
𝐵(p𝑘)

𝐼

]
,

𝐶̃𝑘 =
[
𝐶(p𝑘) 0

]
, 𝛺𝑘 =

[
𝜔̃𝑇
𝑘

0
]𝑇

,

where the augmented state vector x𝑘 is x𝑘 = [𝑥𝑇
𝑘

𝑢𝑇
𝑘−1

]𝑇 . Additionally,
𝛥𝑢𝑘 represents the change in the control input from the previous time
step, defined as 𝛥𝑢𝑘 = 𝑢𝑘 − 𝑢𝑘−1. Therefore, the output feedback
scenario-based optimal tracking control problem for an uncertain sys-
tem, incorporating penalties for constraint violations, 𝜖, is formulated
as

min
𝑦,𝑢,𝜖

𝑛𝑠∑
𝑗=1

𝜋𝑗

[𝑁𝑝−1∑
𝑖=0

‖𝑦𝑗
𝑖|𝑘 − 𝑟𝑘‖2𝑄 + ‖𝛥𝑢𝑗

𝑖|𝑘‖2𝑅 + ‖𝜖𝑗
𝑖|𝑘‖2𝑆

+ ‖𝑦𝑗
𝑁𝑝|𝑘 − 𝑟𝑘‖2𝑃 + ‖𝜖𝑗

𝑁𝑝|𝑘‖
2
𝑆

]
, (8a)

s.t. x
𝑗

𝑖+1|𝑘 = 𝐴̃𝑘x
𝑗

𝑖|𝑘 + 𝐵̃𝑘𝛥𝑢
𝑗

𝑖|𝑘 +𝛺
𝑗

𝑖|𝑘, (8b)

𝑦
𝑗

𝑖|𝑘 = 𝐶̃𝑘x
𝑗

𝑖|𝑘 + 𝑣
𝑗

𝑖|𝑘, (8c)

x0|𝑘 =
[
𝑥̂𝑇
𝑘

𝑢𝑘−1
]𝑇

, (8d)

𝐺x x
𝑗

𝑖|𝑘 ≤ 𝑔x, (8e)

𝐺𝑢 𝛥𝑢
𝑗

𝑖|𝑘 ≤ 𝑔𝑢, (8f)

𝐺𝑦 𝑦
𝑗

𝑖|𝑘 ≤ 𝑔𝑦 + 𝜖
𝑗

𝑖|𝑘, (8g)

𝛥𝑢
𝑗

𝑖|𝑘 = 𝛥𝑢𝑙
𝑖|𝑘 if x

𝑝𝑗

𝑖|𝑘 = x
𝑝𝑙
𝑖|𝑘, (8h)

where the superscript 𝑗 ∈ {1,… , 𝑛𝑠} designates the scenario number,
and the subscript 𝑖|𝑘, 𝑖 ∈ {0,… , 𝑁𝑝 − 1}, denotes the 𝑖-step-ahead
prediction of variables initiated at time instant 𝑘. Polytopic constraints
on augmented states, inputs variation, and outputs are represented by
𝐺x ∈ R(𝑚𝑥+𝑚𝑢)×(𝑛𝑥+𝑛𝑢), 𝑔x ∈ R(𝑚𝑥+𝑚𝑢), 𝐺𝑢 ∈ R𝑚𝑢×𝑛𝑢 , 𝑔𝑢 ∈ R𝑚𝑢 , and

𝐺𝑦 ∈ R
𝑚𝑦×𝑛𝑦 , 𝑔𝑦 ∈ R

𝑚𝑦 . Additionally, 𝑄 ⪰ 0, 𝑅 ≻ 0, 𝑃 ≻ 0, and 𝑆 ≻ 0

denote weighting matrices, while 𝜋𝑗 signifies the probability of the 𝑗th
scenario. The reference trajectory to be tracked is denoted by 𝑟𝑘.

The non-anticipativity constraint, (8h), enforces the condition that all
decisions branching from the same parent node, x

𝑝(.)

𝑖|𝑘 , in the scenario
tree must be the same. This reflects the fact that the control inputs
cannot anticipate or depend on the future realization of uncertainty.
By imposing non-anticipativity, the MPC algorithm ensures that con-
trol decisions are made based on the available information at each
time instant without any knowledge of future uncertainties (Goodwin,
Østergaard, Quevedo, & Feuer, 2009).

The solution to the optimization problem (8) is denoted by 𝑈∗
𝑘
(𝑥̂𝑘)

and the control law is defined as the first element of the row corre-
sponding to the highest probability, i.e.,

𝑢𝑘 = 𝑢
𝑗∗

0|𝑘. (9)

4.2. Learning-based scenario generation

The ScMPC relies on a limited number of scenarios representing
different realizations of uncertainties and disturbances. These scenarios
should be carefully selected to capture the range of possible variations
in the system’s behavior due to the propagation of uncertainties within
the prediction horizon. Unlike related works in the literature that pri-
marily focus on input- and state-dependent uncertainty quantification,
this work proposes to learn input- and output-dependent uncertainties,
which offers a more practical approach to the problem at hand and
facilitates output feedback control design. To achieve this, the scenarios
are generated using a BNN model to represent the uncertainties asso-
ciated with the LPV model identification, as presented in Bao, Velni,
and Shahbakhti (2020). At each time instant, the BNN model evaluates
a stochastic distribution of the uncertainty based on the control input,
scheduling variables and plant outputs, and then three scenarios are
defined that provide a multifaceted view of the system’s potential
behaviors, enabling the ScMPC controller to consider and adapt to
different outcomes.

In the BNN framework, the parameters of the neural network are
treated as random variables and assigned prior distributions as

𝑝(w𝑗 ) = 𝜌m,𝑗 (w𝑗 |0, 𝜎2𝑗,1) + (1 − 𝜌m,𝑗 ) (w𝑗 |0, 𝜎2𝑗,2). (10)

The tuning parameter, 𝜌m,𝑗 , serves as the controlling factor for the
prior density of the parameters in the 𝑗th layer of the neural net-
work, denoted as w𝑗 . It influences the shape and characteristics of the
prior distribution, allowing for flexible modeling of uncertainty in the
network’s parameters.

During the training process, the network undergoes learning to
approximate the posterior distribution of its parameters, given the
available dataset  , by leveraging variational inference (VI) techniques
with

 =
{
u
(𝑖) = (𝑦(𝑖), 𝑢(𝑖), p(𝑖)), y(𝑖) = 𝑤̃(𝑖)

}𝑛𝑡
𝑖=1

, (11)

where u(𝑖) and y(𝑖) are the 𝑖th input and output of the network, and 𝑛𝑡 is
the number of training data points. VI approximates complex probabil-
ity distributions by selecting a member from a family of densities that
closely approximates the target distribution, minimizing the Kullback–
Leibler (KL) divergence between the true posterior distribution and the
approximation (Blei, Kucukelbir, & McAuliffe, 2017). To approximate
the posterior 𝑝(w𝑗 | ), VI solves

min
𝜃𝑗

KL

(
𝑞(w𝑗 ; 𝜃𝑗 ) ∥ 𝑝(w𝑗 | )

)
(12a)

⇔ min
𝜃𝑗

KL

(
𝑞(w𝑗 ; 𝜃𝑗 ) ∥ 𝑝(w𝑗 )

)
− E𝑞(w𝑗 ;𝜃𝑗 )

[log 𝑝(w𝑗 | )]

⇔ min
𝜃𝑗

(
E𝑞(w𝑗 ;𝜃𝑗 )

[log 𝑞(w𝑗 ; 𝜃𝑗 )] − E𝑞(w𝑗 ;𝜃𝑗 )
[log 𝑝(w𝑗 )]
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− E𝑞(w𝑗 ;𝜃𝑗 )
[log 𝑝( |w𝑗 )]

)
, (12b)

where 𝑞(w𝑗 ; 𝜃𝑗 ) represents a family of densities with parameters 𝜃𝑗 .
The evidence lower bound (ELBO) function, (12b), is solved by Monte
Carlo (MC) methods and backpropagation (Blei et al., 2017), which
parameterizes 𝑞(w𝑗 ; 𝜃𝑗 ) as w𝑗 = 𝜇𝑗 + 𝜎𝑗

⨀
𝜀𝑗 , where

⨀
denotes the

element-wise multiplication, 𝜀𝑗 ∼  (0, 𝐼), and so 𝜃𝑗 = (𝜇𝑗 , 𝜎𝑗 ). Then,
the BNN is trained by solving the following problem over the dataset


min
𝜃

1

𝑛𝑏

𝑛𝑏∑
𝑖=1

[log 𝑞(w(𝑖); 𝜃) − log 𝑝(w(𝑖)) − log 𝑝( |w(𝑖))], (13)

where w(𝑖) is the 𝑖th sample generated by MC for approximating the
ELBO, and 𝑛𝑏 is the MC sample size determined such that (13) con-
verges to a local optimum. To ensure that the estimated mismatch
is reliable and maintains the system inside its operating region, the
following assumption is made:

Assumption 1. For a confidence level 𝛿 ∈ (0, 1], there exists a scaling
factor 𝛼 such that with a probability greater than 1 − 𝛿,

∀𝑘 ∈ N, |𝑤̃𝜄
𝑘
− 𝜇̂𝜄

𝑘
| ≤ 𝛼𝜄𝜎̂

𝜄
𝑘
< |𝜄|, 𝜄 ∈ {1,… , 𝑛𝑥} (14)

given (𝑦𝑘, 𝑢𝑘) ∈  ×  , where 𝜇̂𝜄
𝑘
and 𝜎̂𝜄

𝑘
denote the estimated mean

and standard deviation of the 𝜄th entry of 𝑤̃𝑘, respectively, using the
learned BNN model with MC methods, and |𝜄| denotes the maximum
valid value of 𝑤̃𝜄

𝑘
.

By adhering to Assumption 1, we guarantee that the trained BNN
model achieves sufficient accuracy, ensuring that the predicted mis-
match values lie within the credible intervals outlined by our prob-
abilistic model. In cases where Assumption 1 is not satisfied by the
trained model, enhancing the model should involve modifying the
architecture and optimization techniques, or enriching the training
dataset until the prescribed criteria are fulfilled.

At each time instant 𝑘, a total of 𝑛MC samples are drawn from
normal distributions, which are then used to calculate the weights w(𝑖)

by applying the reparameterization trick to each individual sample. As
the ScMPC works with a finite number of scenarios, instead, similar
to Bao et al. (2023), we calculate

𝜇̂𝑘 =
1

𝑛MC

𝑛MC∑
𝑖=1

𝑤̃(𝑖), (15)

𝜎̂𝑘 =

√√√√ 1

𝑛MC

𝑛MC∑
𝑖=1

(𝑤̃(𝑖) − 𝜇̂𝑘)
⊤(𝑤̃(𝑖) − 𝜇̂𝑘) , (16)

and use 𝜇̂𝑘, 𝜇̂𝑘 ± 𝛼𝑗 𝜎̂𝑘, 𝑗 = 1,… ,
𝑛𝑑−1

2
as the scenarios at each node of

a stage in the scenario tree. Here, 𝛼𝑗 ’s are the tuning multipliers for 𝑛𝑑
discrete uncertainty realizations.

4.3. Probability of the scenarios

After generating the scenario tree, the probability of each scenario
is calculated using the moment matching method. Specifically, the first
four central moments, including mean, variance, skewness and kurtosis,
are matched. This approach ensures that the generated probabilities ac-
curately reflect the underlying distribution and preserve key statistical
characteristics. To achieve this, the following optimization problem is
solved:

min
Π

𝑛𝑤∑
𝑖

(
𝑐1
𝑖
(𝑀−

𝑖
+𝑀+

𝑖
) + 𝑐3

𝑖
(𝛹−

𝑖
+ 𝛹+

𝑖
) (17)

+ 𝑐4
𝑖
(𝛤−

𝑖
+ 𝛤+

𝑖
) +

𝑛𝑤∑
𝑖,𝑗=1

𝑐2
𝑖,𝑗
(𝛴−

𝑖,𝑗
+ 𝛴+

𝑖,𝑗
)

)
,

s.t. 𝐗 Π +𝑀−
𝑖
+𝑀+

𝑖
= 𝑀,

𝑛𝑠∑
𝑖=1

(
𝐗
𝑖 − 𝐗 Π

)2
𝜋𝑖 + 𝛴− − 𝛴+ = 𝛴,

𝑛𝑠∑
𝑖=1

(
𝐗
𝑖 − 𝐗 Π

)3
𝜋𝑖 + 𝛹− − 𝛹+ = 𝛹,

𝑛𝑠∑
𝑠=1

(
𝐗
𝑖 − 𝐗 Π

)4
𝜋𝑖 + 𝛤− − 𝛤+ = 𝛤 ,

𝑛𝑠∑
𝑖=1

𝜋𝑖 = 1, 𝜋𝑖 ≥ 0, 𝑖 = 1,… , 𝑛𝑠,

𝑀−
𝑖
,𝑀+

𝑖
, 𝛹−

𝑖
, 𝛹+

𝑖
, 𝛤−

𝑖
, 𝛤+

𝑖
≥ 0, 𝑖 = 1,… , 𝑛𝑤,

𝛴−
𝑖,𝑗
, 𝛴+

𝑖,𝑗
≥ 0, 𝑖, 𝑗 = 1,… , 𝑛𝑤.

Here, the notation
(
𝐗
𝑖 − 𝐗 Π

)𝑛
represents the 𝑛th central moment,

while 𝑀 , 𝛴, 𝛹 , and 𝛤 denote the estimated first four central moments
obtained from the samples. The superscripts + and − indicate the
positive and negative parts of the associated variables. The objective
function incorporates the weighting coefficients 𝑐1

𝑖
, 𝑐2

𝑖𝑗
, 𝑐3

𝑖
, and 𝑐4

𝑖
. More-

over, Π = (𝜋1,… , 𝜋𝑛𝑠 )𝑇 represents the vector of probabilities for each
scenario, 𝜋𝑖, 𝑖 = 1,… , 𝑛𝑠. The matrix 𝐗 = (𝐗1,… ,𝐗𝑛𝑠 ) ∈ R𝑛𝑤×𝑛𝑠 consists
of the uncertainty realizations, with 𝐗

𝑖 = (𝑋𝑖
1
,… , 𝑋𝑖

𝑛𝑤
) representing the

realization of the uncertainty for the 𝑖th scenario. Here, 𝑛𝑤 denotes
the dimension of each realization and for this problem, it is equal to
the dimension of state vector, 𝑛𝑥. Finally, the number of scenarios,
𝑛𝑠, is determined such that the cost value of the optimization problem
remains within an acceptable range. Next, using the generated adaptive
scenario tree described in Section 4.2 and the scenario probability
calculated from the optimization problem (17), at each time instant,
the optimal control problem (8) can be solved and the control law (9)
can be obtained.

5. Results and discussion

The architecture of the proposed combustion control scheme for
RCCI engines is shown in Fig. 2. To investigate the effectiveness of
the proposed scenario-based output feedback MPC for RCCI engines,
extensive simulations were conducted using a high-fidelity experimen-
tally validated engine model (Raut, Irdmousa and Shahbakhti, 2018)
which captures the intricate dynamics of RCCI combustion and fuel
injection, enabling a realistic representation of the engine behavior
under different operating conditions. This model was built to represent
the dynamics of a modified GM engine, a 2.0 L, 4-cylinder Ecotec
turbocharged gasoline direct injection engine, enhanced to facilitate
dual fuel operation in RCCI mode. The engine uses 𝑛-heptane as the
high reactivity fuel and iso-octane as the low reactivity fuel. The direct
fuel injection pressure is regulated at 100 bar, whereas the port fuel
injection operates at a fuel pressure of 3 bar (Raut, Irdmousa et al.,
2018).

The initial phase of the study involved learning a five-state LPV
representation of the RCCI engine using the least-squares support vector
machines (LS-SVM) (Rizvi, Velni, Tóth, & Meskin, 2015; Sitaraman
et al., 2022). In order to generate data for system identification, open-
loop simulations were run on the engine model in which the variables
of interest, i.e., (3a), were manipulated as shown in Fig. 3(a), and the
resulting states of the system were recorded as shown in Fig. 3(c). The
scheduling variables, which are functions of inputs, follow the trend
shown in Fig. 3(b). Throughout the simulations, the engine speed was
consistently maintained at 1000 rpm, and the intake manifold temper-
ature and pressure were 𝑇𝑚 = 333.15 K and 𝑃𝑚 = 96.5 kPa, respectively.
This data were then fed into the SVM-based model learning algorithm
to generate the LPV state-space matrices (Sitaraman et al., 2022).

By comparing the states obtained from the high-fidelity model and
the learned LPV model, the mismatch is determined, as shown in
Fig. 4. The training dataset, represented as (11), was created using
these signals, consisting of 927 samples. Subsequently, it was randomly
partitioned into training and testing datasets, with a split ratio of 67%
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Fig. 2. Block diagram illustrating the proposed combustion controller. At each time step, the scenario-tree is constructed utilizing estimated states, LPV matrices, discrete scenarios
derived from the plant-model mismatch, and their associated probabilities.

Table 1
Input and output constraints of the RCCI engine.

Variable Unit Min. limit Max. limit

𝑆𝑂𝐼 CAD bTDC 32 45
𝐹𝑄 mg/cycle 18 27
𝑃𝑅 % 0 40
𝐶𝐴50 CAD aTDC −10 30
𝐼𝑀𝐸𝑃 kPa 500 1000
𝑀𝑃𝑅𝑅 bar/CAD 0 6

for training and 33% for testing. The BNN model was constructed with
a three-layer fully connected neural network, which is subsequently
connected to a DenseVariational layer featuring linear activation. The
neural network employs Exponential Linear Unit (ELU) activation func-
tions. Notably, each of the hidden layers in the neural network consists
of 16 units. The hyperparameters of the prior (10) are set as 𝜌 = 0.5,
𝜎1 = 1, and 𝜎2 = 0.1. The BNN was trained using the Adam optimizer
implemented in Keras with the learning rate set to 10−5 and decay to
10−6. All other parameters of Adam were kept at their default values.
The model was trained for a total of 5000 epochs with a batch size
of 8. The results show that 99.03% of training samples and 95.75% of
testing samples fall within the confidence interval defined as [𝜇̂−2𝜎̂, 𝜇̂+
2𝜎̂]. The validation results for the BNN model on the testing data are
presented in Fig. 5, which confirms the high accuracy of the model.

For online scenario generation within the feedback control loop,
𝑛MC samples are drawn at each engine cycle to estimate the mean,
𝜇̂𝑘, and standard deviation, 𝜎̂𝑘, of the mismatch. The parameter 𝑛MC

is determined as the minimum number of sampled models required to
satisfy a given confidence interval based on the design requirements.
We initially made an educated guess for 𝑛𝑀𝐶 and fine-tuned the param-
eter through iterative adjustments until we converged on 𝑛MC = 50 (Bao
et al., 2023). Subsequently, the probabilities of the scenarios, illustrated
in Fig. 6, are computed using the moment matching method, achieved
by solving (17).

The primary control objective is to ensure that both 𝐶𝐴50 and
𝐼𝑀𝐸𝑃 closely follow the desired trajectories, determined from the
engine speed and torque request, while keeping the engine’s inputs and
outputs within the specified constraint range as presented in Table 1.
The prediction horizon is set to 20 engine cycles, while the robust
horizon is chosen to be 2 engine cycles. For a more realistic scenario,
the output measurements are assumed to be corrupted with noise
derived from actual experimental data, with the covariance matrix
 = diag([1, 0.7, 28]).

The tracking capability of the proposed controller is illustrated in
Fig. 7 and compared against both the baseline MPC (Sitaraman et al.,
2022), as well as the worst-case scenario MPC. When focusing on 𝐶𝐴50

tracking, it is evident that the proposed ScMPC swiftly follows the
reference with remarkable precision, displaying a minimal root-mean-
square error (RMSE) of only 1.61 aTDC. In stark contrast, the baseline
MPC exhibits a delay of approximately eight engine cycles after cycle
#80, resulting in an error of 3.79 aTDC. Furthermore, it demonstrates
reduced fluctuations compared to the worst-case scenario, yielding a
tracking error of just 2.32 aTDC. When it comes to 𝐼𝑀𝐸𝑃 track-
ing, once again, the ScMPC outperforms other control schemes by
showcasing the smallest RMSE of 29.88 kPa. Regarding 𝑀𝑃𝑅𝑅, the
ScMPC exhibits only a slight deviation of 0.27 bar/CAD, whereas the
baseline MPC and the worst-case scenario show higher deviations of
1.05 bar/CAD and 1.17 bar/CAD, respectively.

The control inputs of three control schemes are compared in Fig. 8.
As expected, all control inputs consistently operate within the pre-
scribed hard constraints, underscoring the effectiveness of the con-
trollers in maintaining system stability and adhering to safety limits.
During the simulations, it becomes evident that the total amount of fuel
injected by the three controllers remains nearly identical, with values
of approximately 0.51 g for both the baseline and scenario-based MPC
and slightly higher at 0.53 g for the worst-case scenario. Notably, there
is a discernible observation that as the combustion phasing is retarded
between cycles #60 and #80, the ScMPC injects less low reactivity fuel
to achieve control objectives.

The scenario-based optimization problem under consideration
presents a remarkable challenge, primarily stemming from the tight
output constraints and the proximity of the IMEP reference to those
boundaries. As previously highlighted, the primary objective of the
ScMPC is to enhance the system’s robustness against modeling uncer-
tainty. As the scenario tree is constructed over the prediction horizon,
the propagation of uncertainty inherent in the data-driven model be-
comes evident. This uncertainty results in deviations from the nominal
model, leading to considerable divergence of the furthest leaf nodes,
representing extreme scenarios. The extent of this divergence is ob-
served from Fig. 9, highlighting the potential for scenarios to deviate
from the nominal model and violate constraints. While not necessarily
reflective of real-world operating conditions, these scenarios serve as
vital inputs for the ScMPC controller, making it robust against modeling
uncertainty.

When applying hard constraints on output variables, the MPC op-
timization problem faces a delicate trade-off between tracking per-
formance and constraint adherence, provided that the optimization
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Fig. 3. Model identification inputs, scheduling variables and states at engine speed
𝑁 = 1000 rpm, 𝑇𝑚 = 333.15 K and 𝑃𝑚 = 96.5 kPa.

problem is feasible. This compromise leads to a degradation in tracking
performance. However, soft constraints can be employed as a valu-
able solution, allowing outer branches and less probable scenarios
to temporarily breach the hard constraints, while still keeping these
deviations minimized. This strategic approach ensures robust tracking
performance even in the presence of uncertainties, while maintaining
feasibility in solving the optimization problem.

Combustion stability can be assessed using the coefficient of varia-
tion of IMEP defined as

𝐶𝑂𝑉𝐼𝑀𝐸𝑃 =
𝜎𝐼𝑀𝐸𝑃

𝜇𝐼𝑀𝐸𝑃

(18)

where 𝜇𝐼𝑀𝐸𝑃 and 𝜎𝐼𝑀𝐸𝑃 denote the mean and standard deviation,
respectively. Operational zones with 𝐶𝑂𝑉𝐼𝑀𝐸𝑃 values below 5% are
classified as stable operating regions which not only ensures low emis-
sions, but also reduces engine speed fluctuations and favorable NVH
characteristics (Raut, Bidarvatan et al., 2018). In our study, this index is

Fig. 4. RCCI engine model mismatch.

Fig. 5. Comparison between the testing data and predicted mean value of mismatch
(using BNN) in the confidence interval.

Fig. 6. Probability of the scenarios.
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Fig. 7. Tracking performance of the proposed ScMPC controller compared with
baseline MPC controller (Sitaraman et al., 2022) and the worst case scenario.

Fig. 8. Control inputs of the three designed controllers bounded by constraints.

calculated over five engine cycles and presented in Fig. 10. As observed,
the controller successfully maintains the combustion stability.

6. Conclusion

This paper presents a new approach to output feedback scenario-
based model predictive control design for high performance combus-
tion control of RCCI engines. The proposed controller demonstrates
robust performance by accounting for measurement noise and mod-
eling uncertainties, effectively handling real-world complexities. For
dynamic modeling, LS-SVM is employed to map the complex dynam-
ics of the engine combustion process into an LPV description. This
learning-based approach proves effective in accurately representing the
engine’s intricate behavior. To address stochastic modeling uncertainty,
Bayesian Neural Networks (BNN) is utilized, enabling the quantification
of uncertainties based on input and output data. This BNN model is
then used for online scenario generation in the feedback control loop.

Fig. 9. Extreme scenarios in contrast to constraints.

Fig. 10. Coefficient of variation of 𝐼𝑀𝐸𝑃 compared to combustion stability limit.

The moment-matching technique is subsequently employed to calculate
probabilities for the generated scenarios, empowering the controller to
make realistic decisions. To ensure the feasibility of the underlying pre-
dictive optimization problem, soft constraints are applied to the output
constraints, providing more flexibility in the control process. Further-
more, as the engine states are not directly measurable, a parameter-
dependent Kalman filter is used for state estimation, enabling the
controller to work with estimated state information. Simulation results
validate the efficacy of the proposed controller in handling challenges
posed by noise and uncertainties while effectively controlling constraint
violations on outputs. The ScMPC strategy emerged as a promising
solution for real-time control of combustion in RCCI engines, offering
improved stability and performance compared to conventional control
methods. Our future work will focus on considering the state estimation
error in the output feedback MPC-LPV design.
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