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Abstract— This paper presents a learning-based safety-critical
Model Predictive Control (MPC) design approach based on
stochastic Control Barrier Functions (CBFs). To address the
safety concerns and tackle model uncertainties in both the MPC
and CBF, we first propose to use a parameterized stochastic CBF
in the MPC scheme. We next devise a Reinforcement Learning
(RL)-based algorithm based on the proposed stochastic CBF-
MPC scheme to learn the approximate version of the proposed
stochastic CBF for coping with an unknown CBF model, which
cannot capture the correct structure of the CBF used in the
real environment. To illustrate the performance of the proposed
safety-critical control approach, we examine two test cases
including trajectory tracking and path planning for a wheeled
mobile robot.

I. INTRODUCTION

Control barrier functions (CBFs) have become a popular
tool for synthesizing safety-critical controllers due to their
generality and relative ease of synthesis and implementation
[1]. Barrier functions made their debut in optimization, and
now they are frequently mentioned in control and verification
literature because of their bond with Lyapunov-like functions,
their ability to establish safety and collision avoidance, and
their association with multi-objective control [2], [3], [4].
Although CBF is a popular tool to achieve provable safety
guarantees, designing CBFs and calculating the corresponding
safe control inputs may be nontrivial if the dynamics are
complex.

In the last decade, there have been studies on incorporating
safety measures into model predictive control (MPC). MPC
is a popular, widely used and practical approach to optimal
control design. This optimization-based control approach is
often desired for its capability to handle both input and state
constraints [5]. Previous studies have explored the inclusion
of safety considerations within MPC framework to ensure
that the controlled system operates within predefined safety
boundaries. For example, barrier functions were utilized to
develop a safety-critical MPC with CBFs [6].

Safety criteria within the scope of model predictive control
(MPC) are commonly expressed as constraints within the
underlying optimization problem, as demonstrated in previous
works [6], [7]. These constraints include factors such as
obstacle constraints and actuation limits. An example of a
specific situation where safety criteria are relevant is obstacle
avoidance. However, they only restrict the movement of
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an agent when it is in a close proximity to obstacles. In
order to prompt the robot to take preventive actions even
when obstacles are far away, a larger prediction horizon
is typically required. Nevertheless, this elongated horizon
leads to increased computational time during the optimization
process. As a result, there is a motivation to develop a new
form of model predictive control that ensures safety within
the framework of set invariance. This approach employs the
CBF constraints to confine the robot’s movement throughout
the optimization process [3].

Reinforcement learning (RL) has attracted high attention in
the control systems community as a tool for solving Markov
Decision Processes (MDPs) without prior knowledge of the
process to be formulated as an MDP. The RL algorithms
typically rely on Deep Neural Networks (DNNs) as function
approximators [8], [9]. An MPC-based RL framework was
proposed in [10] which showed that by adjusting not only
the MPC model parameters but also the parameters in the
MPC cost (terminal and stage costs) and constraints, the MPC
scheme can, theoretically, generate the optimal closed-loop
policy even if a simple and inaccurate predictive model is
used. Moreover, a parameterized MPC scheme was used as a
function approximator instead of a DNN required in both the
Q-learning and the policy gradient methods [11], [12], [13].

In this paper, we leverage the core idea of using an
MPC-based RL framework combined with the control barrier
functions in order to provide a safety-critical MPC design
scheme. In the proposed learning-based CBF-MPC, we
consider a stochastic setting upon the CBF-MPC to cope
with the problems induced by the uncertainties in both the
MPC and CBF models. However, the proposed stochastic
framework is constructed based on an approximate model of
the uncertainty propagation via a deterministic model of the
stochastic chance-constraint CBF. Moreover, we assume that
the CBF model used in the MPC scheme cannot capture the
true CBF in the real environment. To tackle these problems, a
parameterized version of the stochastic CBF and MPC scheme
is then introduced where the corresponding parameters are
adjusted by RL to improve the closed-loop performance in
the presence of model uncertainties and unknown CBF.

This paper is structured as follows. Introductory infor-
mation on the CBFs is provided in Section II. Section III
describes a parameterization of the stochastic CBF-MPC
scheme, which is learned by RL. To achieve the best closed-
loop performance, an MPC-based policy gradient algorithm
is detailed in Section IV in order to adjust the parameterized
CBF-MPC and learn a policy captured from the proposed
stochastic CBF-MPC scheme. Finally, numerical examples
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are presented in Section V.

II. CONTROL BARRIER FUNCTIONS

In the context of safety-critical systems, CBFs are adopted
to provide an admissible control input space for safety
assurance of dynamical systems. More specifically, safety can
be formulated by enforcing invariance of a set, i.e., not leaving
a safe set. Let us consider a set C defined as the super-level
set of a continuously differentiable function h : D C R” — R
such that

C={xeDCR":h(x) >0}, )
C={xeDCR":h(x)=0},
Int(C)={x €D CR":h(x)>0},

where JC and Int (C) are the boundary of C and the interior

of C, respectively. We additionally assume that Int (C) # ().

We then refer to C as the safe set so that a CBF certifies
whether a control policy achieves forward invariance of C
by evaluating if the system trajectory remains away from the
boundary of C. Let us consider a control-affine system as
follows:

&= f(z)+g(x)u @

where f : R — R”™ and g : R® — R"*™ are locally
Lipschitz continuous functions, € R™ and u € R™ are the
system states and control inputs. The closed-loop dynamics
of the system then is

&= fq(x)=f(2)+9(@) tra 3)

where the control policy (feedback controller) 7 : R™ — R™
is locally Lipschitz continuous. Then, one can consider a
maximum interval of existence I (o) = [to, tmax) for any
initial condition @¢ € D such that  (¢) is the unique solution
to (3) on I (). In the case i, = 00, the closed-loop system
f is forward complete.

Definition 1. (Forward Invariance) The closed-loop system
(3) is forward invariant w.r.t. the set C if for every xy € C,
we have x (t) € C for all t € I (x¢).

Definition 2. (Control Barrier Function) Given a dynamical
system (2) and the safe set C with a continuously differentiable
function h : D — R, then h is a CBF if there exists a class
Koo function k for all x € D such that

sup { (@, u) } > —r ( (x)) @
ueld

where h(x,u) = Lsh(z) + Lyh(x)u with Lih, Lyh
being the Lie derivatives of h along the vector fields f and

g, respectively [3]. As a common choice of x, one can use a
linear form « (h (x)) = ah (x), where oo > 0 is a parameter

where dj, € R™¢ is the process disturbance. This disturbance
dp ~ N (El, A) is assumed to be normally distributed with
the mean of d and variance of A. Considering a linear
representation of k as ah (xy),0 < o < 1, the condition (4)
can be extended to the discrete-time case as

Ah (mk,uk) > —ah (.’Bk) (6)
III. PARAMETERIZATION OF STOCHASTIC CBF-MPC

A. Parameterization of CBF

Although most CBF-based control methods in the literature
assume that a complete knowledge of the unsafe regions
is available to express a CBF, it is not straightforward to
capture a perfect model of CBFs due to model uncertainty
and unknown environment, e.g., imperfect model of obstacles.
To tackle this issue, we propose to learn the unknown CBFs
using an MPC-based reinforcement learning (RL) algorithm.
To this end, we first provide a parameterized CBF in which a
parameterized class o, function kg is used. In the simplest
case, one can consider a linear form of x and choose « as
a learning parameter such that kg (h (x)) = 6h (x). In the
present paper, we propose a linear combination of candidate
CBFs. Moreover, we use this parametric CBF in the context
of MPC, where the mapping function « is constructed as
a polynomial function containing independent odd-powered
safety functions, which are candidate class /C functions [14].
Although this parametric CBF can regulate how fast the state
of the system can approach the boundary of the safe set C,
it has an approximate structure so that one needs to adjust
its parameters to achieve the desired performance. We then
propose to learn an approximate parametric CBF by RL.
Considering an approximate safety function h,, a parametric
version of (6) then reads as

ha (Tr11) — ha (k) + Ko (ha (1)) >0, (7a)

CBF® (hy(zk))
ko (ha (xp)) = H (z1)' 0, 0<0<1 (7b)
where

H (x)) — ®)

[ha(@e). (ha@))® .. (s @)™ ] pEN.

Note that the parameterized function kg can be perfectly
approximated using a rich parameterization, e.g., one can
use a Neural Network (NN) under certain conditions. This
method will be investigated in the future work.

B. Parameterized MPC

Next, we will formulate a parameterized nominal nonlinear
MPC for some constant noises d (possibly chosen as d =
E[dy]) as

N-1
controlling the system behavior near the boundary of C. . _ o

e Y v ey min YWNTo (@N)+ > Flo (@r, W)  (92)

Remark 1. In this paper, we consider a discrete-time CBF ' k=0
used in the MPC scheme with imperfect CBF and MPC st. ZTr+1 = fo (:Ek,ﬁk,d), Ty = x, (9b)
models to control a discrete-time nonlinear system as CBF? (hfz (ik)) >0, i=1,...,n4 (9¢)
Ty1 = f(or, up, di) Q) q () <0, (9d)
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where 0 < 7 < 1 is a discount factor. The sequences
Z,u denote the nominal state and control input trajectories,
respectively. Ty and lg are the parameterized terminal and
stage cost functions, respectively. The control input constraints
are introduced by ¢ (ux). An approximate propagation of the
state covariance matrix then reads as [13]
Y41 = AkaA;cr + BkAB];r,

Yo=2% (10)

where X, is the positive definite covariance matrix. The matrix
3 denotes the uncertainty of the current state estimation, e.g.,
Xy = «, and the Jacobian matrices A; and B, are obtained
as

_9f
T Oz

0
Ay, , Br= 872 (1D

T, Ul Tp, Ul

Taking the uncertainty into account in the CBF-MPC scheme
above, we next present a probabilistic CBF.

C. Probabilistic Parameterized CBF

As discussed earlier, one can use a parameterized CBF in
(7) to cope with an unknown model of the true h. Additionally,
the CBFs are extremely affected by an imperfect model due to
model mismatch and disturbances. To address this issue, the
notion of state covariance upon the uncertainty propagation
can be invoked to provide a robust (stochastic) CBF such
that CBF? (R (z1)) > 0 for each CBF, i =1,..., ney, and
at each time step k = 0,..., N. To tackle the effect of the
uncertainty on the CBFs, we then propose a stochastic CBF
in the MPC scheme to ensure that the probability of violating
each CBF? (R (1)) > 0 is below a certain level ¢; € [0,1).
To this end, let us consider a safe parameterized CBF such
that the following condition holds

Pr (CBFf (b (k) > 0) >1-¢. (12)

Proposition 1. Given a user-defined probability level €;, we
consider a back-off coefficient value 3; =

BF® (ni (x,
C; = W. The stochastic CBF condition (12) is

then approximated by a deterministic CBF condition as

CBF? (Rl (z1)) > Biy/CiSiC).

Proof. To provide a tractable deterministic version of (12),
we employ Cantelli’s inequality [15] so that for any scalar

¢; > 0, we have
ack>

(14)

% and choose
i

13)

br (CBF? (1 (20)) > E [CBF? (i (21))] ~ G

Var [CBF? (i (wk))}

>1-

Var [CBF‘? (hi (wk))] e

To capture the probability level ¢; in the stochastic condition
3 > 1 — ¢;, we then select

Pr (CBFf (hi(z1)) >0

and consider the lower bound in the inequality (14) as follows

Var [CBF;-9 (n (xk))}

1- >1—¢ . (16)
Var [CBFY (b (21))] + ¢

Cantelli’s inequality then leads to

E [CBE? (' (a1) | = G (17)
> 57;\/Var [CBF? (1 (1)),
where

E[CBFY (' (a4))| = CBFY (i, (@), (18a)
Var [CBF? ( (mk))} = 05,0, (18b)
and the condition (13) then holds. |

Note that the back-off coefficient value 3; is computed
to ensure the probability level in the CBF condition (13).
However, this 3; is obtained independently of the under-
lying probability distribution, which may lead to relatively
conservative bounds. To address this issue, one can use an ap-
proximation, assuming normally distributed state trajectories,
such that the back-off is

51’ = \/QCI'fil (1 — 262) s

where erf ! denotes the inverse error function. The CBF
vector C; is computed as

~ OCBF (ki (x1))
t ox
Oh!

a

19)

= (20)
7|7 _%‘7 8/@ (hfl (:ck)) 8/1; (mk)|*

ox "Mt gx T Oht (x) or %
D. Stochastic CBF-MPC Formulation

In this paper, a parameterized CBF-MPC scheme will be
used to deliver a parameterized policy mg using policy gra-
dient methods. We then formulate an approximate stochastic
parameterized CBF-MPC scheme as follows:

min YN Ty (Zx) + (21a)
z,u,2,0"
N-1 .
> Ao (@, @ + Komr, Sk) + (') 0,
k=0

st. Zpp1 = fo Bk, uk + Koy, d), To =z, (21b)

Ypa1 = ApSpAl + BRAB), Yo =13, 21¢)
CBF! (Ll (@) + 6}, > B; \/OE—kOT 21d)
q(ux) <0, (21e)
60 >0, di=1,...,nf (21f)

In practice, a slack variable, 8%, is often introduced to ensure
constraint feasibility. This relaxation is then penalized in
the cost with a large coefficient p’. The overall control
input is in the feedforward/feedback form uy + Kexj, due

i to the prestabilizing controller. Note that we consider a
i = E[CBF? (' (a4)) | 1 : ; ;
G CBE; ( (wk)) ’ (15) compensation term Ky for the feedback gain such that
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Ko = Kg + K. We then let RL adjust the term f(g. The
Jacobian matrices are computed as

Ak:ﬁ ) Bk:g
ox

od
Ty, ur+Kz Zp,ur+Ka

(22)

Remark 2. To achieve a computationally tractable formula-
tion, the stochastic CBF-MPC scheme above uses a feedback
control law with a prestabilizing feedback gain K. However,
this is an approximate gain, and we then propose to tune
this term by adding the compensation term Ky adjusted by
RL. Given the reference steady state and input x,,u,, we
use uy = Kay, for the linearized system at the steady state,
and a quadratic cost of x Qxy + u, Ruy such that

K =—(R+B,XB,) ' Bl XA,, (23)

where

X = Al XA, — AT XB, (R+ B XB,)” BI XA, +Q,
(24a)

_of
T oz

A, , Br= 87f (24b)
ou

Tr,Ur Tr, Uy

Although we use a fixed linearization (K is a time-invariant
feedback gain), one can use a time-varying sequence of
affine feedback laws, which can be embedded in the MPC
scheme. The initial guess for the covariance matrix of the
state deviation is labeled by . Although we initialize S at
zero in this paper, one can use an observer to estimate this
initial matrix. The modified stage cost function is

lo (Zk, Uy, X) = Lo (T, Ur) + o (Tk, Ui, X)),  (25)

where the local cost term Lg can be, for instance, a quadratic
function and

0?Leg (%4, uy,)

— MY ) (26)
0x3 i

o (T, Uy, X)) = trace (
is a cost modification term. More specifically, this term is
considered to deliver the impact of the uncertainty on the
adopted stage cost. We propose to use a quadratic form for
this term, which includes the adjustable matrix M as an RL
parameter. Note that fo is the nonlinear dynamics, which
could be adjusted by RL through the model bias parameters.

IV. PoLiCcY GRADIENT USING CBF-MPC

In this paper, we consider the parameterized CBF-MPC
scheme (21) as an approximator of the policy, which is
used in the context of policy gradient. The parameterized
deterministic policy 7y is then delivered by (21). Let us
define the closed-loop performance of a parameterized policy
mg for a given stage cost L (x,u) as the following total
expected cost

Z’YkL(wk,uk)

k=0

J(ﬂ'g) =E

uy = 71'9(331«)1 , @D

where the expectation E is taken over the distribution of the
Markov chain in the closed-loop system under policy 7g. We
will focus on Deterministic Policy Gradient (DPG) method
that formally maximizes the policy performance based on the
deterministic policy gradient theorem. The policy parameters
6 can be directly optimized by the gradient descent method
such that the best expected closed-loop cost (a.k.a. policy
performance index .JJ) can be achieved by applying the policy
o,

0+ 60— OngJ(TI’g) (28)

where o > 0 is the learning rate. The policy gradient then
reads as

Vol (we) =E |Vomg (x1) VuQ™ (z1, uy)

uk—""ﬂ(mk):| )

(29)
Under some conditions detailed in [16], one can use a compat-
ible approximation of the action-value function Q™ (xy, uy)
in which a class of compatible function approximator
Q™ (xk, uy) exists such that the policy gradient is preserved.
The compatible state-action function then reads as

Q™ (x, ur) = (ur — o (zx)) Vormg (x) w+VY (x).

Aw

(30)

The first term in the above compatible function as critic part
is an approximation for the advantage function A" ~ A™*
and the second is a baseline function approximating the value
function V¥ ~ V™¢. Both functions can be computed by the
linear function approximators as

VY () =Y () v, AV (zg,up) = P (2, up) | w,

€1y

where Y (x)) is the feature vector, and ¥ (xy,ur) :=
(up, — o (ack))TV.gﬂ';;r (zy) includes the state-action fea-
tures. The parameters w and v of the action-value function
approximation then become the solutions of the following
Least Squares (LS) problem

r’l{)lill;l]E Q™ (g, ur) — Q% (zr, ur))? | -

(32)

The problem above can be solved via the Least Square
Temporal Difference (LSTD) method, which belongs to batch
methods, seeking to find the best fitting value function and
action-value function, and it is more sample efficient than
other methods. To compute the sensitivity Vgmg, we first
define the Lagrange function Ly associated with the CBF-
MPC scheme in (21) as follows

Lo (z) = Bg+ A Go+ p' H, (33)

where ®g is the total parameterized costs of the CBF-MPC
scheme. The inequality constraints of (21) are collected by
Hpg while Gg collects the equality constraints. Let A be the
Lagrange multipliers associated with the equality constraints
Gg. Variables p are the Lagrange multipliers associated with
the inequality constraints. We then label I' = {a‘c, u, X, 5i}
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the primal variables. The associated primal-dual variables then
read as z = {T', A, u}. The sensitivity of the policy delivered
by the MPC scheme (21) w.r.t the policy parameters can
be obtained using the Implicit Function Theorem (IFT) on
the Karush-Kuhn-Tucker (KKT) conditions underlying the
parametric Nonlinear Programming (NLP) such that

Hz* 390 —1 8(29 VI‘»CG
26~ 9z oo 07 Co Y
8 diag (1) He

where (g is the KKT matrix associated with the proposed
CBF-MPC scheme (21). As g is a part of z*, the sensitivity
of the CBF-MPC policy Vgmg can be extracted from
gradients 88—%*.

V. SIMULATION RESULTS AND DISCUSSION

To illustrate the proposed RL-based stochastic CBF-MPC
design approach, we implement two different scenarios: (1)
trajectory tracking; and (2) path planning. In the first test
case, a Wheeled Mobile Robot (WMR) is to follow a desired
trajectory while avoiding some unknown obstacles, where the

WMR is affected by model uncertainties and disturbances.

Let us define the WMR model as

cos(y)) 0
f(z,u) = |sin(¢p) 0] wu, (35)
0 1
where x = [x,y,w]T and u = [v,w}—r are the state and

control input vectors, respectively. The position coordinates
of the WMR are labeled by z, y, and 1 is the robot orientation
angle. The control inputs v and w are the linear and angular
velocities, respectively. To discretize the above continuous
model, we use a fourth-order Runge-Kutta (RK4) integrator
providing discretized function f; of the WMR model as

z(k+1) = fq(x(k),u(k) + T1(k)) + T2(k),  (36)
where I'; and I's model the uncertainties as
0
T, (k) = v(k) [Zlgg] , Tok)=Tw®) | 0 |, 37
2 do (k)

where dy(k) ~ N (0,%3%) and da(k) ~ N (0,%3). The
sampling time is T,= 0.1 s and disturbance variances X;
and X, are set as 0.3 and 0.4, respectively. We initialize
the adjustable process noise covariance matrix (3 X 3) as
A = diag(¥?,%2,%2). The expected value of the process
noise d and the matrix M in (25) as RL parameters are also
initialized at zero. The parameters adjusted by RL in the

CBE-MPC scheme (21) are 6 — {lg,Tg,Kg,A,J, CBF’ }

The safety functions hi,i=1,..., nes are defined by circle
equation, where the radius of circle is unknown.

A. Trajectory Tracking

First, we consider a trajectory tracking scenario for the
mobile robot while it must avoid two unknown static obstacles
(the blue ovals as CBFs in the real environment) shown in
Figure 1. As it is observed, the stochastic CBF-MPC scheme

without learning (the baseline scheme) cannot guarantee a
collision-free trajectory tracking even if the probability level is
a small value, ¢; = 0.1. The initial position of the mobile robot
is &y = [0.5,0, O]T. To achieve a safe trajectory tracking, we
then propose to modify the imperfect CBF-MPC scheme by
RL such that the WMR can track the desired trajectory and
avoid the unknown obstacles as shown in Figure 2.

Fig. 1: Baseline CBF-MPC scheme with imperfect CBF. The
green ovals are the imperfect CBF models used in the MPC
scheme. The blue ovals are the obstacles (correct CBFs) in
the real environment. The black dashed line is the desired
trajectory.
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Fig. 2: Proposed stochastic CBF-MPC. The imperfect CBF
models (green ovals in Figure 1) are used in the MPC scheme.
The red ovals are the obstacles in the real environment. The
blue line is the actual path obtained using a stochastic CBF-
MPC without learning while the cyan line is generated by
the proposed learning-based motion controller (RL-based
stochastic CBF-MPC).

B. Path Planning

In this test case, we assume that the obstacles (CBFs) are
modeled precisely. We consider a larger probability level
€; = 0.3 and let RL adjust the proposed stochastic CBF-MPC
scheme. As shown in Figure 3, we observe that the stochastic
CBF-MPC without learning still cannot provide a safe path
planning even if we use an exact model of the true CBFs in
the MPC scheme. Indeed, the approximate stochastic CBF-
MPC uses an approximate chance-constraint CBF, and so this
constraint may not be satisfied in the presence of uncertainties
and stochastic disturbances. To tackle this issue, we then use
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the proposed learning-based CBF-MPC scheme such that the
path generated after almost 40 RL steps can be regarded
as the best path (a collision-free path). More specifically,
the best closed-loop performance is achieved after 40 RL
steps as there is no more significant improvement in the
performance index J (mg) shown in Figure 3. The optimal
policies captured by the CBF-MPC after 80 RL steps are
shown in Figure 4.
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34210
32
sl
28
>
£ 26
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22+
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Fig. 3: The evolution of trajectories is shown in (a). The cyan
line is the path obtained after 80 RL steps. The closed-loop
performance is shown in (b).
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Fig. 4: The evolution of control inputs with the optimal
policies shown in cyan.

VI. CONCLUSION

In this paper, a tractable safety-critical MPC scheme based
on the stochastic CBFs has been proposed to cope with
unknown systems, where both the CBF and MPC models
used in the nominal CBF-MPC scheme cannot perfectly
capture the real system due to stochastic disturbances and
model uncertainties. In the proposed stochastic CBF-MPC
scheme, an approximate chance-constraint CBF is formulated.
We then use an MPC-based policy gradient algorithm to
learn this approximate CBF-MPC scheme in order to achieve
the optimal closed-loop performance. To demonstrate the
performance of the learning-based stochastic CBF-MPC, we
have used both trajectory tracking and path planning for
a mobile robot in the presence of model uncertainties and
unknown structure of CBFs.
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