
Implementation-Oblivious Transparent Checkpoint-Restart
for MPI

Yao Xu
Khoury College of Computer Sciences

Northeastern University
Boston, MA, USA

xu.yao1@northeastern.edu

Leonid Belyaev
Khoury College of Computer Sciences

Northeastern University
Boston, MA, USA

belyaev.l@northeastern.edu

Twinkle Jain
Khoury College of Computer Sciences

Northeastern University
Boston, MA, USA

jain.t@northeastern.edu

Derek Schafer
University of New Mexico
Albuquerque, NM, USA
dschafer1@unm.edu

Anthony Skjellum
College of Engineering

Tennessee Tech University
Cookville, TN, USA

askjellum@tntech.edu

Gene Cooperman
Khoury College of Computer Sciences

Northeastern University
Boston, MA, USA
gene@ccs.neu.edu

ABSTRACT
This work presents experience with traditional use cases of check-
pointing on a novel platform. A single codebase (MANA) transpar-
ently checkpoints production workloads for major available MPI
implementations: “develop once, run everywhere”. The new plat-
form enables application developers to compile their application
against any of the available standards-compliant MPI implementa-
tions, and test each MPI implementation according to performance
or other features.

Since its original academic prototype, MANA has been under
development for three of the past four years, and is planned to
enter full production at NERSC in early Fall of 2023. To the best of
the authors’ knowledge, MANA is currently the only production-
capable, system-level checkpointing package running on a large
supercomputer (Perlmutter at NERSC) using a major MPI imple-
mentation (HPE Cray MPI). Experiments are presented on large
production workloads, demonstrating low runtime overhead with
one codebase supporting four MPI implementations: HPE Cray MPI,
MPICH, Open MPI, and ExaMPI.

CCS CONCEPTS
• Computer systems organization → Reliability.

KEYWORDS
MPI, MPICH, Open MPI, ExaMPI, MANA, transparent checkpoint-
ing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SC-W 2023, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0785-8/23/11. . . $15.00
https://doi.org/10.1145/3624062.3624255

ACM Reference Format:
Yao Xu, Leonid Belyaev, Twinkle Jain, Derek Schafer, Anthony Skjellum,
andGeneCooperman. 2023. Implementation-Oblivious Transparent Checkpoint-
Restart for MPI. InWorkshops of The International Conference on High Per-
formance Computing, Network, Storage, and Analysis (SC-W 2023), Novem-
ber 12–17, 2023, Denver, CO, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3624062.3624255

1 INTRODUCTION
A checkpointing library for MPI-agnostic checkpointing of MPI
applications has been available for application-level checkpointing
since at least 2003 [10, 43]. This allows an MPI developer to choose
the best MPI implementation for that application. Similarly, some
large application codes maintain their own code for saving and
restoring data across a checkpoint. As with all application-level
approaches, the developer has the burden of declaring and main-
taining those data structures that must be preserved and restored
across a checkpoint-restart.

However, many large, complex codes do not have their own
application-level checkpointing. One large application that is typ-
ical of this constraint is VASP [24]. VASP accounted for approxi-
mately 20% of CPU time at the NERSC supercomputing center [37]
as of 2020 [17, Figure 4]. VASP supports multiple algorithms and
data structures that are continually evolving. As the VASP code
evolves, it would be a large burden to continually update any
application-specific module to reflect VASP’s latest algorithms and
data structures.

MANA [19] (MPI-Agnostic Network-Agnostic checkpointing) is
open-source, and freely available at https://github.com/mpickpt/
mana. MANA [19] has achieved production quality in recent testing,
and is planned for production use at NERSC [37] in early Fall of
2023. To the best of the authors’ knowledge, MANA is currently
the only production-capable, system-level checkpointing package
for MPI [47].

Yet, just as it would be a burden for each application developer
to implement their own application-specific checkpointing for MPI,
it is also a burden for each MPI implementation to support its
own transparent checkpointing feature. This was attempted in
the decade of the 2010s for MVAPICH and Open MPI (see details
in Section 7). However, those modules required specific code to
support each type of network being used by MPI. Eventually, the

1738

https://doi.org/10.1145/3624062.3624255
https://doi.org/10.1145/3624062.3624255
https://github.com/mpickpt/mana
https://github.com/mpickpt/mana
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3624062.3624255&domain=pdf&date_stamp=2023-11-12

SC-W 2023, November 12–17, 2023, Denver, CO, USA Yao Xu et al.

need to support checkpointing of a proliferation of networks [5, 15,
26, 33, 34] caused the MPI developers to drop checkpoint support.

MANA’s split-process approach (Section 2.2) created, for the
first time, a transparent checkpointing package that was Network-
Agnostic in the strong sense of not requiring any knowledge or code
to support particular networks. Earlier MPI-specific checkpointing
implementations relied on knowledge of each supported network, in
order to shut downMPI’s network connections prior to a checkpoint
and then restart the network connections during restart. Hence,
although Open MPI promised “Interconnect-Agnostic” checkpoint-
ing [27], it still required sufficient network code for stopping and
starting each supported network.

In addition to transparent and application-level checkpointing,
one should note the intermediate choice of library-based, application-
specific checkpointing. For examples, see VeloC, SCR, FTI, ULFM,
and Reinit in Section 7. These libraries are often used in conjunc-
tion with applications that support a particular execution model: a
main loop, with each iteration globally synchronized by a call to
an MPI barrier. At the synchronization point, there are no active
MPI objects, and hence no MPI context needs to be saved.

The library-based and transparent varieties of checkpointing
each make important contributions. First, transparent checkpoint-
ing will usually be preferred for applications that do not follow the
execution model of a globally synchronized main loop. As stated,
VASP accounts for about 20% of execution time at NERSC, and yet
its multi-algorithm execution model conflicts with the model of a
single main-loop often assumed by library-based packages.

Second, an MPI application may encounter bugs and crash at an
arbitrary place in the code. The ability to take frequent checkpoints
at arbitrary times aids in isolating the environment for analysis and
replay, just prior to the crash.

Third, and most important for the future, the United States DOE
(Department of Energy) has a goal of supporting large real-time
computations, such as data processing due to an astronomical event,
a high-energy particle accelerator, or responding to natural disas-
ters. This requires preemptible jobs using system-level checkpoint-
ing on short notice (even minutes). An example of large real-time
computations with a particularly extensive literature is X-ray scat-
tering experiments using Free Electron Lasers (XFELs) [7, 8, 20].
Still other examples can be found in the workshop on Interactive and
Urgent HPC (https://www.urgenthpc.com/). Library-based check-
pointing using the main-loop execution model may not be able
to reach the next globally synchronized iteration within the short
notice. Quoting from [2, Section3.6] (Real-time scheduling):

“In the next five years, we expect an increasing
amount of our workload to come from short-
notice, rapid-turnaround compute jobs from
experiment facilities. Our system of reserva-
tions plus preemptible jobs is working well at
relatively small scales - it is unclear whether
this will scale to jobs that require a significant
fraction of the machine. Work will be needed to
appropriately incentivise a preemptible work-
load to fill the gaps in reservations. This will

include increased use of (and support for) check-
pointable applications. . . . A large pool of gen-
eral workload that is preemptible (e.g., via user
or perhaps system checkpointing) may be an
option, but significant work is still needed to
identify a technical solution.”

1.1 MANA’s New Implementation-Oblivious
Virtual Ids: Supporting diverse MPI
implementations

MANA’s new production platform is now capable of supporting
transparent checkpointing for any standards-compliant implemen-
tation of MPI, while maintaining low runtime overhead. Low over-
head is essential for production MPI jobs. This work is based on a
flexible design for virtual ids that is no longer targeted primarily
toward HPE Cray MPI (based on MPICH [23]). This is demon-
strated on the highly diverse MPI implementations by MPICH [23],
Open MPI [22], and ExaMPI [44]. For details, see Section 2.2 for
MANA’s need for virtual ids, and Section 4 for a novel virtual-id
design to implement a platform supporting arbitrary standards-
compliant implementations of MPI.

As transparent checkpointing for MPI reaches ever wider use,
it is important to accommodate multiple MPI implementations.
Developers should not need to port MANA to work with each new
major release of a MPI implementation. The existing MANA code
is unfortunately directly tied to implementation decisions within
HPE Cray MPI (hereafter called Cray MPI). This work concentrates
on the novel implementation-oblivious production platform needed
to bring that vision to fruition.

The ability of MANA developers to “develop once, run every-
where” impacts strongly on user support. As an example, MVA-
PICH [18] and Open MPI [27, 28] both used to include separate
support for transparent checkpointing. Both MPI implementations
were later forced to drop support for transparent checkpointing,
due to the large developer burden of supporting an ever-increasing
variety of network interconnects. By adopting a philosophy of
“develop once, run everywhere”, MANA hopes to avoid that trap.

MANA [19] demonstrated “MPI-Agnostic Network-Agnostic”
checkpointing in an academic prototype in 2019. Since then, the
academic prototype has been made fully robust, and is planned
to enter production use at NERSC in early Fall of 2023. MANA’s
novel split-process design originally promised the “MPI-Agnostic”
feature: the promise to develop MANA once, and use MANA with
every MPI implementation. However, this feature was only tested
in the original academic prototype, which concentrated on Cray
MPI. An analysis of the original MANA internals shows that much
of the original design was hardwired for Cray MPI.

This work describes a new platform for MANA that is MPI
“implementation-oblivious”, to distinguish from the more limited
MPI-agnostic demonstration of the original academic prototype.
The prototype was tested only on Cray MPI, with the exception of
one experiment checkpointing under Cray MPI, and then restarting
under Open MPI [19, Section 3.6]. That experiment ran a simple ver-
sion of GROMACS [4], which was restricted to the MPI primitives
(such as MPI_COMM_World), and did not create any new MPI objects
— not even a new MPI communicator. Finally, when the academic

1739

https://www.urgenthpc.com/

Implementation-Oblivious Transparent Checkpoint-Restart for MPI SC-W 2023, November 12–17, 2023, Denver, CO, USA

prototype was replaced by a production-quality version, even that
limited version of MPI agnosticism was lost. (To understand better
why the original GROMACS experiment [19, Section 3.6] cannot
be extended to larger MPI codes, see Section 9.)

This work demonstrates a modified MANA that is truly “MPI-
Agnostic”. It is tested against Cray MPI, MPICH, Open MPI, and
ExaMPI. The previous MANA work replaced the communicator,
group, request, operation and datatype integer ids of Cray MPI
and MPICH with virtual ids. The use of MANA-internal virtual
ids allows MANA to re-bind the virtual ids to new ids in the MPI
library during restart. However, the 32-bit virtual integer ids are
not compatible with the 64-bit pointers and dynamically allocated
MPI global constants used by Open MPI and ExaMPI.

In this work, a new “virtual-id” subsystem was designed to elim-
inate the multiple places where the original MANA design was
hardwired to favor Cray MPI. Further, the new design is also in-
tended to support subsets of the full MPI implementation (e.g.,
ExaMPI). For this purpose, a modified version of MANA was de-
veloped to (i) use the new virtual-id subsystem; and (ii) remove
MANA’s reliance on some MPI calls outside of a core subset. This
work also identifies the core subset of MPI required for MANA
support.

1.2 Points of Novelty

The novelty of this work is as follows.

(1) No currently used MPI implementation provides direct sup-
port for transparent checkpointing. A single, implementation-
oblivious codebase now supports transparent checkpointing
for Open MPI and ExaMPI, as well as continuing to support
the MPICH family.

(2) This design makes MANA more flexible in supporting future
MPI implementations. A virtual id is now a pointer to a
MANA-internal struct that can flexibly point to MPI physical
ids based on int, pointer, pointer to struct, or other datatypes
for MPI ids. The MANA virtual id occupies the first 32 bits
of any MPI id type declared in the mpi.h include file of a
particular MPI implementation.

(3) A single virtual id that encodes any of the five MPI id types:
communicator, group, request, operation, and datatype.

(4) The MANA virtual id stores additional MANA-internal in-
formation to adapt to future evolutions of the MANA ar-
chitecture (e.g., the choice between record-replay of MPI
objects during restart; or use of MPI functions to serialize
a representation of the MPI object; or hybrids of the two
strategies).

1.3 Organization of This Work

This work is organized into the following sections. Section 2 briefly
describes the underlying split-process design of the original MANA,
and then provides further details of how wrapper functions are
used to translate MPI calls. Section 3 reviews the range of design
choices made by different MPI implementations. Section 4 describes

the new design of virtual ids, and how it supports multiple MPI im-
plementations. Section 5 specifies the MPI subset support required
of a particular MPI implementation, to be supported by MANA.
The chosen MPI must support both MANA and the targeted appli-
cation. (MANA itself supports most of the full range of MPI-3.0,
except for MPI’s one-sided communication.) Section 6 presents an
experimental evaluation of the novel virtual-id design for MANA,
while maintaining low runtime overhead. Section 7 presents related
work. Section 8 is the conclusion, and Section 9 describes future
work.

2 BACKGROUND
2.1 Design of MANA
MANA (MPI-Agnostic Network-Agnostic transparent checkpoint-
ing tool) is a previously developed package for checkpointing MPI
applications [19]. A newer version, MANA-2.0 [47], has been devel-
oped for production use in supercomputing. MANA uses the idea
of split processes.

Hence, the large family of MPI calls are passed to the actual MPI
library: while maintaining efficiency; and while guaranteeing that
no MPI process is blocked in a call to the lower half at the time of
checkpoint.

2.2 Split processes
The most difficult challenge of MANA is to be able to checkpoint
an MPI application, while not having to checkpoint the network li-
braries or operating system kernel modules for RDMA-based shared
memory across computer nodes. The solution is a split-process
strategy in which the MPI-based code is split into two parts:

upper half: the MPI application itself; and
lower half: the MPI library, along with the network

library, kernel drivers, etc.

This approach is formalized using a split process architecture.
The split-processes architecture is summarized in Figure 1. In

split processes, two programs are loaded into the address space of
a single process. One program (upper half) is the MPI application
(linked to a MANA library), and the second program (lower half)
is a small MPI application that includes the actual MPI library. A
MANA-internal library includes a stub function (wrapper function)
for each MPI function, and each wrapper function calls one or more
actual MPI functions in a small (lower-half) MANA-internal MPI
program. On checkpoint, only the memory of the upper-half MPI
application is saved. On restart, a new lower-half MPI program is
launched, and that program restores the upper-half MPI application
to its original location in memory.

The split process technique saves the memory of an MPI applica-
tion (the upper half), while at the same time avoiding the need to
save the memory of the MPI library. This is critical, since the MPI
library intensively uses hardware associated with the network and
possibly a high-performance network switch. Saving and restoring
the state of the network switch, and possibly some kernel modules,
is impractical, due to the difficulty of restoring the state of the
associated hardware. The term “Network-Agnostic” in the MANA
acronym (MPI-Agnostic Network-Agnostic checkpointing) is based

1740

SC-W 2023, November 12–17, 2023, Denver, CO, USA Yao Xu et al.

LOWER HALF

 HELPER

libcMPI APPLICATION

libmpi libc

GNU link map (doubly linked list) of dynamic libraries

GNU link map (doubly linked list) of dynamic libraries

network and kernel
device drivers

UPPER HALF:

LOWER HALF:

Array of function pointers into libmpi

(MANA)

libmpi
stub

Figure 1: MANA implementation: split processes

on using split processes to make the design of MANA independent
of the particular network hardware or software drivers.

2.3 Virtual Ids for Split Processes
A final piece of this puzzle is the problem of restoring the ids for
MPI communicators, groups, and datatypes at the time of restart.
In the split-process design, the MPI application is linked to a stub
library, which calls the actual MPI library function in the lower half
(see Figure 1). Upon creation of a communicator, group, request,
operation, or datatype, a corresponding global MPI id is created
by the lower-half MPI library and passed to the end-user code (the
upper-half MPI application).

Upon restart, before returning control to the user’s MPI appli-
cation, MANA makes calls to the lower-half MPI library to create
new copies of each of the communicators, groups, and datatypes
that were present at the time of checkpointing. The difficulty here
is that on restart, the MPI library will create new MPI ids that do
not correspond to the original MPI ids at the time of checkpoint.
Hence, any MPI ids saved and later restored inside the memory of
the upper-half MPI application will no longer be valid.

The solution is to maintain a MANA-internal table of virtual
MPI ids that are passed to the upper half and physical MPI ids that
are maintained in the lower-half MPI library. Thus, in Figure 1, the
stub function shown in the upper half refers to the MANA-internal
table and translates from virtual id to physical id when making an
MPI function call; and translates from physical id to virtual id when
returning from the MPI function call.

The core issue in this work is to design a more general scheme
for virtual-to-real translation of ids. The ids include MPI ids for
communicator, group, request, operation, and datatype. During
runtime, each MPI application can create new instances of ids.

3 DESIGN CHOICES MADE BY DIFFERENT
MPI IMPLEMENTATIONS

This section reviews the range of design choices made by different
MPI implementations.

Communicators/datatypes in Open MPI are 64 bits, for sake of
a pointer. The pointer directly points to an internal struct with
information about the communicator, group, request, operation or
other.

The MPICH family of MPI implementations (including MPICH,
MVAPICH, Intel MPI, and Cray MPI) uses a special 32-bit id to sup-
port a 2-layer table (similar to what is found in 2-layer page tables in
operating systems): The MPICH id consists of: (i) bits representing
whether it is a communicator, group, or other; (ii) first-level index
into an internal table that then points to a second table; and (iii) the
second-level index that accesses the actual struct representing the
communicator, group, request, operation, or other MPI objects.

ExaMPI makes an unusual design choice. Primitive datatypes
are defined in an enum class. Other types are defined as pointers to
internal structs. The enum conflicts with the class template used
by MANA. The new virtual-id subsystem is compliant with the
ExaMPI design choices.

4 A NEW ARCHITECTURE FOR VIRTUAL IDS
OF MPI OBJECTS

First, we present the motivation for why a new architecture is
needed for MANA’s virtual ids. In the following subsection, we
present the new architecture that now supports MANA’s MPI-
oblivious feature.

4.1 Motivation
MANA’s current design of virtual id’s forMPI types likeMPI_Comm
is based on a series of C++ std::map. Each map represents one
MPI type. This design has several drawbacks:

(1) All virtual ids are defined as int. It’s okaywhen runningwith
MPICH. However, other MPI implementations define MPI
types as pointers to their internal structure representations.
Using int as virtual id’s will conflict with user applications
linked with other MPI implementations.

(2) MANA’s existing virtual ids use C++ associative arrays based
on a string index. Repeated string comparisons add some
small overhead.

(3) The virtual id table only translates between real and virtual
ids without any other information. As a result, all data asso-
ciated with a virtual id have to be stored in separate maps.
When accessing multiple data related to the same virtual id,
MANA needs to look up the same virtual id multiple times.

(4) MANA needs to replay functions that create communicators,
groups, operations, requests, and datatypes on restart to
update the real id’s in the virtual id table.

(5) The virtual-to-real translation’s performance depends on the
map implementation of C++. The std::map class is O(logn)
and the std::unordered_map is faster, at O(1). However,
the real-to-virtual translation is always O(n) because MANA
needs to iterate over all values of the map. (Real-to-virtual
translation is used rarely — in just one MANA wrapper
function.)

4.2 The New Virtual Id Architecture
To solve the problems mentioned above, a new data structure has
been designed, based on a two-level table. Prior to this work, MANA
maintained a simple integer for the virtual id, with a separate vir-
tual id for each type of MPI object id. In the academic prototype
of MANA [19], this was sufficient to support Cray MPI. But as
MANA grew to production quality, independent data structures

1741

Implementation-Oblivious Transparent Checkpoint-Restart for MPI SC-W 2023, November 12–17, 2023, Denver, CO, USA

had to be added, motivated solely by support for Cray MPI. Hence,
MANA’s initial promise of being MPI-agnostic was lost in the pro-
duction development. A new virtual id architecture presented here
now recovers that MPI-agnostic feature, and is here designated
implementation-oblivious, to recognize the new architecture.

Each virtual id in the new design is represented by a structure
that corresponds to an MPI communicator, group, request, opera-
tion, or datatype. This structure contains additional MANA-specific
information associated with that MPI object. The MANA-specific
information can be updated during normal execution. It is used to
correctly save the state of MPI objects created by the lower-half
MPI library.

The MANA virtual id consists of a 32-bit integer index into a
table of the structures described earlier. The 32-bit index internally
includes a ggid or “global group id” for communicators and groups,
and a related index for request, operation, and datatype. The MANA
stub functions of the upper half pass back to the MPI application
the MPI object id (MPI_Comm, MPI_Group, etc.) as declared by the
include file for the specific MPI implementation. MANA embeds
its virtual id (the 32-bit integer) into the first 4 bytes of the MPI
object type declared by the MPI include file. The integer is an
index into a table of pointers to the structures. When the MPI
application (compiled against the existing MPI include file) passes
an MPI object as an argument, the MANA stub function recovers
the 32-bit integer and uses this to call the lower-half MPI library
with the corresponding “physical” MPI object id.

The new virtual-id structures are important to MANA at the time
of checkpoint and restart. At the time of checkpoint, the structures
may be further updated based on the current state of MPI objects.
The structures are then saved as part of the checkpoint image of
the upper half. MANA does not require a special data structure in
the checkpoint image to identify these MANA-internal structures.

At the time of restart, MANA must create MPI objects that are
semantically equivalent to the objects that existed prior to check-
point. The MPI objects are re-created during restart. After restoring
the upper-half memory, control is passed back to MANA in the
upper half. For each MANA-internal structure representing an MPI
object, MANA calls the MPI library in the lower half, in order to
create a semantically equivalent MPI object. MANA then updates
the internal structures to represent the new “physical ” object id
(of types MPI_Comm, MPI_Group, etc.) returned by the call to the
MPI library of the lower half.

Note that a consequence of the design of MANA (regardless
of virtual ids) is that MANA must be recompiled for each MPI
implementation that it supports. This is required because theMANA
stub functions (see Figure 1) make calls to the MPI library, and
MANA itself may make internal calls to the MPI library. Hence,
MANA must be recompiled against the MPI include file for the
targeted MPI implementation. However, under the new virtual-id
system, none of the code of MANA needs to be modified when a
different MPI include file (“mpi.h”) is substituted. Hence, MANA
remains truly “MPI implementation-oblivious”.

4.3 MPI Global Constants as functions
In the development of virtual ids to support MPI implementations
outside the MPICH family, it was discovered that Open MPI im-
plements certain global constants, such as MPI_COMM_WORLD, as
macros that expand to functions. In the MPICH family,
MPI_COMM_WORLD and other MPI constants expand to unique
integers that are the same in the upper and lower half, and the same
before checkpoint and after restart.

In Open MPI, it expands to a function call that returns a pointer,
which may vary when it occurs in the upper-half MPI application
(linked dynamically against MPI), or in the lower-half trivial appli-
cation (linked statically against MPI). (See Figure 1 to review the
MANA architecture.) Further, the value of MPI_COMM_WORLD
for Open MPI can vary between its use prior to checkpoint and its
use after restart.

ExaMPI adds a small additional requirement to MANA. In Open
MPI, global MPI constants are determined at library startup. But Ex-
aMPI defines the global constants using smart, shared pointers with
reinterpret casts. This is done so that, for example, MPI_INT8_T and
MPI_CHAR can share a pointer. But a consequence of this decision
is that the address of a constant is known relatively late at runtime,
on a lazy basis. MANA now accounts for this “lazy” design, when
translating MPI global constants in the upper half to the correct
lower-half form.

The situation is analogous to the case of MPICH’s Fortran named
constants (e.g., MPI_STATUS_IGNORE, MPI_MPI_IN_PLACE),
which can vary from one session to the next [48, Section 3.3]. The so-
lution in the case of MANA is to re-define theMPI_COMM_WORLD
and other macros as a pointer to a lower-half array that contains
the results of calling the corresponding functions.

5 MPI SUBSET REQUIREMENTS FOR
“MPI-AGNOSTIC” MANA SUPPORT

MANA uses MPI functions internally to operate the network and
to gather and sync MPI’s runtime status among ranks. MANA is
designed to be MPI implementation agnostic and network agnostic.
Therefore, MANA cannot use lower-level network libraries for
operations like draining messages in the network.

MANA requires three categories of MPI functions from MPI
implementation to work properly:

(1) Functions that send, detect, and receive messages in the net-
work. At checkpoint time, some point-to-pointmessagesmay
still be pending in the network. MANA requires MPI_Iprobe
to detect pending messages in the network, MPI_Recv, and
MPI_Test to complete pending point-to-point communica-
tions.

(2) Functions that decode MPI objects that need to be recon-
structed at restart time. MPI objects like communicator, op-
eration, and datatype need to be reconstructed at restart
time. Therefore, MANA needs the functions that decode
such objects to obtain essential information for the recon-
struction. Currently, MANA requires: MPI_Comm_group,
MPI_Group_translate_ranks, MPI_Type_get_envelope, and
MPI_Type_get_contents.

1742

SC-W 2023, November 12–17, 2023, Denver, CO, USA Yao Xu et al.

HPCG Lulesh-2 CoMD LAMMPS SW4
0

100

200

300

400

500
Ti

m
e

(s
ec

on
ds

)

17
4 17

3

32
.8

28
.9 89

.2

18
4 18
4

33
.9

38
.2 10

317
3 20

9

33
.7

37
.6 10

216
6 16

3

51
.5

35
.5 11

016
6 17

1

57
.0

48
.6 13

0

native/MPICH
MANA/MPICH

MANA+virtId/MPICH
native/OMPI

MANA+virtId/OMPI

Figure 2: Application runtimes of MPI for MPICH versus Open MPI. A median of ten trials for each applicatoin was taken, and
the standard deviation is shown. The five cases are: native, MANA, and MANA with virtual ids (virtId) for MPICH, and then
native and MANA with virtual ids, for Open MPI.

(3) A small set of MPI communication functions used by MANA
to sharemessages among processes, which includes:MPI_Send,
MPI_Recv, and MPI_Alltoall.

6 EXPERIMENTAL EVALUATION
The experiments for MPICH, Open MPI and ExaMPI were run on a
local HPC cluster called “Discovery”, at Northeastern University,
using Linux kernel 3.10. OpenMPI and ExaMPI both used intra-
node TCP, while MPICH used intra-node shared-memory. The
cluster was configured with CentOS 7.9 and Slurm 21.08.8-2. Jobs
were run on Cascade Lake processors: Intel Xeon Platinum 8276
rated at 2.20GHz. Each node had 2 sockets, with a total of 56 cores
per node (no hyper-threading). The MPI implementations were
MPICH-3.3.2 (provided on the cluster); Open MPI 4.1.5 (built locally,
since both dynamically and statically linked MPI are required to
build MANA); and ExaMPI (git developer branch for August, 2023,
requiring C++-20). The “mpicc” commands were based on gcc-10.1.
Due to the experimental nature of ExaMPI, it was tested with a
subset of applications known to be compatible. In all instances,
MANA was built with gcc optimizations enabled. Timings were
obtained through the use of SBATCH scripts and the Linux date
utility – internal application timings were NOT used.

Section 6.4 contains runs on the Perlmutter supercomputer, using
Cray MPI and dual-socket AMD EPYC 7763 CPUs. Cray mpicc
is based on gcc-11.2. The Linux operating system is SUSE Linux
Enterprise Server 15 SP4 (Release 15.4), with Linux kernel 5.14.
The Perlmutter supercomputer is the #8 supercomputer, as of the
TOP500 list of June, 2023 [46].

Note that due to the much older Linux-3.10 kernel (introduced
in 2013) at the local site, the kernel does not support the FSGSBASE
kernel feature (introduced in 2020). Hence, the MANA split pro-
cesses required using a call to the kernel (“prctl(ARCH_SET_FS,
...)”) to switch to a new “fs” register during any MPI function calls.
The FSGSBASE feature allows recent kernels to support switching
“fs” registers in user space with a single assembly instruction. The
penalty of using the older “prctl” approach has been found to range
anywhere from 3% to 30% or higher, depending on the frequency
of MPI calls (calls to the lower-half program).

Laguna et al. [30] present a long list of MPI-based real-world ap-
plications.We selected five real-world applications with diverseMPI
features, including ExaMPI compatibility. The selected applications
include CoMD [35, 41], HPCG [16], LAMMPS [45], Lulesh-2.0 [29],
and SW4 [42].

In the rest of this section, subsection 6.1 shows the use of
MANA+virtId (the new virtual id design) on Open MPI. Subsec-
tion 6.2 shows the use of MANA+virtId on ExaMPI. Subsection 6.4
shows the use of MANA+virtId on Cray MPI on the Perlmutter
supercomputer. We report runtime overhead for these cases. Sub-
section 6.5 shows trends for checkpoint time versus checkpoint
image size.

Table 1 shows the inputs used for each of the applications of
Figure 2.

App. Ranks Input
CoMD 27 = 33 -N 10000

HPCG 56 –nx=104 –ny=104 –nz=104 –it=50

LAMMPS 56 -in bench/in.lj (run=50000)

LULESH 27 = 33 -p -i 100 -s 100

SW4 56 tests/curvimr/energy-1.in

Table 1: Input for each application on a single node

6.1 Analysis of Open MPI versus MPICH
Figure 2 shows runtimes for each application in five cases:

(1) native/MPICH (no MANA)
(2) MANA/MPICH (the previous production version of MANA,

using MPICH)
(3) MANA/MPICH with the new virtual-ids feature, described

in 4
(4) native/Open-MPI (no MANA)
(5) MANA/Open-MPIwith the new virtual-ids feature, described

in 4
The MPICH implementation of MPI was highlighted since HPE

Cray MPI is part of the MPICH family. HPE Cray MPI and MPICH

1743

Implementation-Oblivious Transparent Checkpoint-Restart for MPI SC-W 2023, November 12–17, 2023, Denver, CO, USA

share much of their code. This makes possible a rough comparison
of trends, by using MPICH as the “standard” for comparison on the
local site, and HPE Cray MPI as the standard for production jobs
on Perlmutter.

As seen in Figure 2, HPCG and Lulesh-2 have substantially more
timing variation than the other applications even in native exe-
cution, which appeared to fall into clusters. As such, reasoning
about the possible runtime overhead is more difficult – it is unlikely
that MANA+virtId can improve HPCG performance while running
with MPICH beyond the native execution. This work still illustrates
the new capability to run these applications under non-MPICH
MPI. Runtime overhead analysis later in this section is restricted to
CoMD, LAMMPS, and SW4, although there exists some evidence
to believe that the true runtime overhead with HPCG and Lulesh-2
is low (See Section 6.3).

In the cases of Lulesh-2 and SW4, a particular observation is
pertinent. These programs are not built in the default manner (using
MPI plus OpenMP). When running natively under MPICH, Lulesh-2
and SW4 consumed over 50% more time than native OpenMPI. This
was tracked down to the MPICH on Slurm 21.08.8-2 and CentOS 7.9
thrashing with too many OpenMP threads when run with these
codes. As a workaround, these programs are built without OpenMP
support. All Lulesh-2 and SW4 tests are reported in this mode.

We observe that while running with MPICH, the new virtId
feature can improve performance by up to 1.6% (in the case of
LAMMPS). We speculate that this is the result of an improved
differentiation and access mechanism for virtual ids, which embeds
binary tags in the 32-bit virtual ids to determine virtual id type
inside a single map, instead of maintaining separate singleton maps
for each type chosen between via macro-encoded string comparison.
Especially when very many MPI calls are made, the time needed to
look up a virtual id can become a significant factor.

We observe that while runtime overhead differs for each appli-
cation (see Section 6.3), runtime overhead between Open MPI and
MPICH in each application is comparable. However, the overhead
under Open MPI tends to be greater than under MPICH. For in-
stance, LAMMPS has a 37% runtime overhead under Open MPI,
and 32% under MPICH. SW4 has a 18% runtime overhead under
Open MPI, and 15% under MPICH. This may be the result of a differ-
ence in the speed of network calls causing more context switches to
occur, e.g., while MANA internally calls MPI_Test while wrapping
non-blocking communication.

6.2 Analysis of ExaMPI versus MPICH
Figure 3 demonstrates the ability of MANA to run with ExaMPI
by using the new virtId feature. Recall that ExaMPI is intended as
an experimental implementation that allows developers to easily
experiment with new algorithms. Hence, rather than carry out
research on implementing multiple, experimental new algorithms
inside a productionMPI, one can do the same experimentation more
easily inside the smaller, C++-based ExaMPI codebase, and later
port the best of the algorithms to a production implementation.

We build Lulesh-2 without OpenMP in order to be consistent
with the methodology used for MPICH and Open MPI. Recall that
native MPICH had unaccountably high overhead when built with
OpenMP in the experiments of Section 6.1.

Lulesh-2 CoMD0

50

100

150

200

250

300

Ti
m

e
(s

ec
s)

17
3

32
.8

18
4

33
.9

20
9

33
.7

18
7.

4

44
.0

18
0.

2

41
.8

native/MPICH
MANA/MPICH
MANA+virtId/MPICH
native/ExaMPI
MANA+virtId/ExaMPI

Figure 3: Runtimes for ExaMPI on Discovery. A median of
ten trials for each application was taken, and the standard
deviation is shown. The five cases of the legend are similar
to that indicated in Figure 2.

These experiments show that MANA+virtId under ExaMPI can
improve the runtime of CoMD by approximately 5% as compared
to its native runtime under ExaMPI. It is speculated that the new
virtId design may improve cache performance by producing greater
code locality, or by caching some information that is otherwise
re-computed in ExaMPI. We are continuing to investigate the exact
cause of the improved performance with MANA+virtId.

6.3 Analysis of context switches per application
We observe that the runtime overhead measured at the local site for
the five applications varies per application. There exists evidence
to support the view that the body of this overhead variation is
accounted for by the lack of the userspace FSGSBASE feature at
the local site. Recall that this feature is a factor whenever MANA
switches into the lower half (and back out of it) per the split-process
architecture for MPI API wrappers.

We examined the amount of context switches performed by each
application in a batch run of the graphed class, i.e., the same input
and the same number of ranks as shown in Figure 2. Although
the precise quantity of context switches can vary (as would be
expected under network variability), it differs by as much as an
order of magnitude between applications. In one experiment, CoMD
made 3.7M CS/s under 27 ranks. Under 56 ranks, LAMMPSmade the
most switches: 22.9M CS/s. SW4made 12.5M CS/s. This observation
agrees with the relative differences in runtime overhead observed
when running these applications under MANA at the local site.
Recall that, per the split-process architecture, an applicationmaking
more MPI calls results in MANA performing more context switches.
Therefore, with more MPI calls, the lack of userspace FSGSBASE at
the local site becomes a more significant factor.

HPCG and Lulesh were also tested for context switch rate: 4.7M
CS/s and 1.3M CS/s respectively. This observation implies that the
true runtime overhead for these applications is comparable to that
of CoMD, or is yet lower.

1744

SC-W 2023, November 12–17, 2023, Denver, CO, USA Yao Xu et al.

6.4 Analysis of FSGSBASE runtime overhead for
Cray MPI on Perlmutter

CoMD LAMMPS SW40

20

40

60

80

100

Ti
m

e
(s

ec
s)

46
.1

28
.0

73
.1

48
.1

29
.5

77
.1

48
.6

27
.6

76
.2

native/CrayMPI
MANA/CrayMPI
MANA+virtId/CrayMPI

Figure 4: Runtimes for Cray MPI on Perlmutter. Amedian of
twenty-five runs for each timing was used. The purpose is to
show that on a production system supporting the FSGSBASE
feature, both MANA and MANA+virtId do indeed perform
comparably to the native execution. Error bars represent the
standard deviation among 25 trials.

App. Ranks Input
CoMD 64 = 43 -N 30000

LAMMPS 64 -in bench/in.lj (run=50000)

SW4 64 tests/curvimr/energy-1.in

Table 2: Input for each application on Perlmutter

Figure 4 shows the results of testing CoMD, LAMMPS, and SW4
on Perlmutter, where the userspace FSGSBASE feature is present.
Recall that Figure 2 showed LAMMPS and SW4 to scale poorly with
MANA, especially with Open MPI, at the local site.

Figure 4 confirms that the high runtime overhead for LAMMPS
and SW4 disappears when the userspace FSGSBASE feature is avail-
able. It’s likely that the phenomenon was emphasized for SW4
and LAMMPS due to very frequent MPI calls for those particular
applications.

Recall that, in our context switch measurements, LAMMPS had
the highest context switch rate out of any application. Yet, the me-
dian runtime overhead across twenty-five trials is found to be 5.4%
in the case of standard MANA, dramatically lower than the 32.2%
observed on the local site. SW4 is measured to have an overhead
of 5.5% with standard MANA, but this is improved to 4.2% with
virtId. Improvement in median runtime was not observed under
virtId with CoMD, as it was at the local site. These results show that
virtId can potentially improve performance even with userspace
FSGSBASE available, as in a production context.

6.5 Analysis of checkpoint times per
application

On Discovery, the filesystem is based on NFSv3. Table 3 shows
that checkpoint image sizes and checkpoint times follow similar
trends. While it is dangerous to draw strong conclusions from the
low-performance NFSv3 filesystem, it is clear that checkpoint times
will continue to be modest on the high-performance filesystems of
larger HPC sites.

Applic. Ckpt size/rank Ckpt time MB/s/rank
CoMD 32MB 8.9 3.6

LAMMPS 42MB 12.8 3.3
SW4 49MB 12.3 4.0

Lulesh-2 207MB 16.3 12.7
HPCG 934MB 72.9 12.8

Table 3: Checkpoint times on Discovery

7 RELATEDWORK
MANA [47] appears to be the only current production-ready pack-
age supporting transparent checkpointing of MPI.

The history of checkpointing of MPI is one that moved toward
greater ease of use. Some milestones along the way include:

• application-level library-based checkpointing [10, 43] (2003,
2004);

• MPICH-V [9] (2006), based on a software framework at the
lowest level of the MPICH [23] software stack;

• BLCR [25] and DMTCP [1] (2006, 2009) as lower-level tools
for transparently saving and restoring process images;

• the MVAPICH2 checkpoint-restart service [18]) (2006), based
on BLCR;

• the OpenMPI checkpoint-restart service [27, 28] (2007, 2009),
based on BLCR;

• an early attempt at MPI-agnostic checkpointing over Infini-
Band [12] (2014), based on DMTCP (including the first petas-
cale transparent checkpoints: 16,368 processes for NAMD
and 32,368 processes for HPCG [11] (2016));

• VeloC [38] (2019) with its support for asynchronous, adaptive
I/O in library-based checkpointing, as well as the earlier
library-based tools: SCR [36] (2010), FTI [3] (2011), ULFM [6,
32] (2014), and Reinit [31] (2016, a simpler interface inspired
by ULFM); and

• MANA [19] (2019) for network-agnostic, transparent check-
pointing (but primarily focused on Cray MPI and the MPICH
family of MPI implementations);

In the quest for a production-ready checkpointing package for
MPI, VeloC [38] and MANA [47] are the two packages in greatest
recent use (although SCR and ULFM/Reinit continue to see active
use). The MVAPICH and Open MPI packages that were dependent
on BLCRwere sometimes used after they were developed. But BLCR
does not support SysV shared memory, and so the MVAPICH and
Open MPI checkpointing packages are no longer supported.

As noted in the introduction, the original and later work on
MANA [13, 19, 47] concentrated mainly on Cray MPI, on the Cori

1745

Implementation-Oblivious Transparent Checkpoint-Restart for MPI SC-W 2023, November 12–17, 2023, Denver, CO, USA

supercomputer at NERSC [37]. An exception to the use of Cray MPI
was an example checkpointing under Cray MPI on Cori and restart-
ing under Open MPI at a university cluster [19, Section 3.6]. That
example was performed solely on GROMACS [4], and did not create
any additional MPI ids beyond those that are built into MPI (such
as MPI_COMM_WORLD).

CrayMPI [14, 21] andMVAPICH [39, 40] derive from theMPICH [23]
family of MPI implementations. Open MPI [22] is an independently
developed full production version of MPI. ExaMPI [44] is an ex-
perimental implementation of MPI designed to quickly test new
algorithms, implementations, and features for MPI.

8 CONCLUSION
An implementation-oblivious feature was added to the production-
quality MANA package for transparent checkpointing of MPI. This
feature enables a philosophy of “developing once, and running
everywhere”: i.e., re-compiling MANA against the MPI include file
of each new MPI implementation. This was demonstrated for three
widely diverse MPI implementations: MPICH, Open MPI, and the
experimental ExaMPI implementation. This was demonstrated with
five real-world applications. A runtime overhead of about 5% or
less was demonstrated — except where Linux lacked the userspace
FSGSBASE feature and frequent MPI calls were made. A subset of
the MPI standard was identified that is sufficient to support MANA
on each of the three MPI implementations.

9 FUTURE WORK
Note that the MANA-internal structure can store a copy of the MPI
object id directly in the MANA-internal structure. The MPI object
is declared in an MPI-specific include file (i.e., mpi.h), which is
different for each MPI implementation. Currently, the MANA struc-
ture saves the “physical” MPI object id directly on the MPI types
found in the MPI include file, and MANA is re-compiled for the MPI
include file of each separate MPI implementation. In future work,
it may be possible to define a MANA version of the MPI include
file, in which MANA’s MPI types are defined to have sufficiently
large size to contain any implementation-specific information.

This would recover interoperability between MPI implementa-
tions even at the level of checkpointing. One could checkpoint arbi-
trary MPI applications under one MPI implementation and restart
under a different MPI implementation. This was previously accom-
plished only for an MPI application (a version of GROMACS) that
used only the MPI primitives, but did not create MPI user-defined
objects.

On a more modest level, we currently use an eager policy for
computing the ggid (see Section 4.2 for new communicators. Be-
cause some codes repeatedly create and free communicators in a
loop, we are considering the use of a lazy or hybrid policy.

ACKNOWLEDGMENTS
This work used the resources of the National Energy Scientific
Computing Center (NERSC) at the Lawrence Berkeley National
Laboratory. The work of the first author was partially supported
by NSF Grant OAC-1740218. We are grateful for the collaboration
of Zhengji Zhao, Rebecca Hartman and William Arndt of NERSC,
along with the collaboration of MemVerge, Inc., for earlier bringing

MANA to the production quality upon which the current work is
based. We would especially like to highlight the generous dona-
tions of time by Zhengji Zhao that helped bring MANA into its
production-ready phase at NERSC. We would also like to thank
Kapil Arya for suggestions on how to work around a misfeature in
MANA when taking timings for checkpoint.

REFERENCES
[1] Jason Ansel, Kapil Arya, and Gene Cooperman. 2009. DMTCP: Transparent

checkpointing for cluster computations and the desktop. In 2009 IEEE International
Symposium on Parallel & Distributed Processing (IPDPS’09). IEEE, Rome, Italy, 1–
12.

[2] Deborah Bard, Cory Snavely, Lisa Gerhardt, Jason Lee, Becci Totzke, Katie Anty-
pas, William Arndt, Johannes Blaschke, Suren Byna, Ravi Cheema, et al. 2022. The
LBNL superfacility project report. Technical Report. U.S. Department of Energy
Office of Scientific and Technical Information (OSTI); and Lawrence Bekeley
National Laboratory (LBNL).

[3] Leonardo Bautista-Gomez, Seiji Tsuboi, Dimitri Komatitsch, Franck Cappello,
Naoya Maruyama, and Satoshi Matsuoka. 2011. FTI: High performance fault toler-
ance interface for hybrid systems. In Proceedings of 2011 international conference
for high performance computing, networking, storage and analysis. 1–32.

[4] H.J.C. Berendsen, D. van der Spoel, and R. van Drunen. 1995. GROMACS: A
Message-passing Parallel Molecular Dynamics Implementation. Computer Physics
Communications 91, 1 (1995), 43 – 56.

[5] Mark S Birrittella, Mark Debbage, Ram Huggahalli, James Kunz, Tom Lovett,
Todd Rimmer, Keith D Underwood, and Robert C Zak. 2015. Intel® Omni-Path
architecture: Enabling scalable, high performance fabrics. In 2015 IEEE 23rd
Annual Symposium on High-Performance Interconnects. IEEE, 1–9.

[6] Wesley Bland, Aurelien Bouteiller, Thomas Herault, George Bosilca, and Jack
Dongarra. 2013. Post-failure recovery of MPI communication capability: De-
sign and rationale. The International Journal of High Performance Computing
Applications 27, 3 (2013), 244–254.

[7] Johannes P Blaschke, Aaron S Brewster, Daniel W Paley, Derek Mendez, Asmit
Bhowmick, Nicholas K Sauter, Wilko Kröger, Murali Shankar, Bjoern Enders, and
Deborah Bard. 2021. Real-time XFEL data analysis at SLAC and NERSC: a trial
run of nascent exascale experimental data analysis. Technical Report.

[8] Johannes P Blaschke, Felix Wittwer, Bjoern Enders, and Debbie Bard. 2023. How
a Lightsource Uses a supercomputer for live interactive analysis of large data
sets: Perspectives on the NERSC-LCLS superfacility. Synchrotron Radiation News
(Sept. 2023), 1–7.

[9] Aurelien Bouteiller, Thomas Herault, Géraud Krawezik, Pierre Lemarinier, and
Franck Cappello. 2006. MPICH-V project: A multiprotocol automatic fault-
tolerant MPI. The International Journal of High Performance Computing Ap-
plications 20, 3 (2006), 319–333.

[10] Greg Bronevetsky, Daniel Marques, Keshav Pingali, and Paul Stodghill. 2003.
Automated application-level checkpointing of MPI programs. In Proc. of the Ninth
ACM SIGPLAN Symp. on Principles and Practice of Parallel Programming. 84–94.

[11] Jiajun Cao, Kapil Arya, Rohan Garg, Shawn Matott, Dhabaleswar K. Panda, Hari
Subramoni, Jéôme Vienne, and Gene Cooperman. 2016. System-level Scalable
Checkpoint-Restart for Petascale Computing. In 22nd IEEE Int. Conf. on Parallel
and Distributed Systems (ICPADS’16). IEEE Press, 932–941.

[12] Jiajun Cao, Gregory Kerr, Kapil Arya, and Gene Cooperman. 2014. Transparent
Checkpoint-Restart over InfiniBand. In ACM Symposium on High Performance
Parallel and and Distributed Computing (HPDC’14). ACM Press, 12 pages.

[13] Prashant Singh Chouhan, Harsh Khetawat, Neil Resnik, Twinkle Jain, Rohan
Garg, Gene Cooperman, Rebecca Hartman–Baker, and Zhengji Zhao. 2021. Im-
proving scalability and reliability of MPI-agnostic transparent checkpointing
for production workloads at NERSC (extended abstract). In First International
Symposium on Checkpointing for Supercomputing (SuperCheck’21). Berkeley, CA,
1–3. https://arxiv.org/abs/2103.08546; from https://supercheck.lbl.gov/resources.

[14] Cray. 2014. Understanding Communication and MPI on Cray XC40.
https://www.hpc.kaust.edu.sa/sites/default/files/files/public//KSL/150607-
Cray_training/3.05_cray_mpi.pdf

[15] Daniele De Sensi, Salvatore Di Girolamo, Kim H McMahon, Duncan Roweth,
and Torsten Hoefler. 2020. An in-depth analysis of the Slingshot interconnect.
In SC20: International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 1–14.

[16] Jack Dongarra, Michael A Heroux, and Piotr Luszczek. 2016. A New Metric for
Ranking High-performance Computing Systems. National Science Review (2016),
30–35. (benchmark at https://www.hpcg-benchmark.org/).

[17] Benjamin Driscoll and Zhengji Zhao. 2020. Automation of NERSC Application
Usage Report. In 2020 IEEE/ACM International Workshop on HPC User Support
Tools (HUST) and Workshop on Programming and Performance Visualization Tools
(ProTools). IEEE, 10–18.

1746

https://arxiv.org/abs/2103.08546
https://supercheck.lbl.gov/resources
https://www.hpc.kaust.edu.sa/sites/default/files/files/public//KSL/150607-Cray_training/3.05_cray_mpi.pdf
https://www.hpc.kaust.edu.sa/sites/default/files/files/public//KSL/150607-Cray_training/3.05_cray_mpi.pdf
https://www.hpcg-benchmark.org/

SC-W 2023, November 12–17, 2023, Denver, CO, USA Yao Xu et al.

[18] Qi Gao, Weikuan Yu, Wei Huang, and Dhabaleswar K. Panda. 2006. Application-
Transparent Checkpoint/Restart for MPI Programs over InfiniBand. In Int. Conf.
on Parallel Processing (ICPP’06). 471–478.

[19] Rohan Garg, Gregory Price, and Gene Cooperman. 2019. MANA for MPI: MPI-
Agnostic Network-Agnostic Transparent Checkpointing. In Proc. of the 28th Int.
Symp. on High-Performance Parallel and Distributed Computing. ACM, 49–60.

[20] Anna Giannakou, Johannes P Blaschke, Deborah Bard, and Lavanya Ramakrish-
nan. 2021. Experiences with cross-facility real-time light source data analysis
workflows. In 2021 IEEE/ACM HPC for Urgent Decision Making (UrgentHPC). IEEE,
45–53.

[21] Richard L Graham, George Bosilca, and Jelena Pješivac-Grbovic. 2007. A Com-
parison of Application Performance Using Open MPI and Cray MPI. Cray Users
Group (CUG’07) (2007), 10 pages.

[22] Richard L Graham, Timothy S Woodall, and Jeffrey M Squyres. 2006. Open MPI:
A flexible high performance MPI. In Parallel Processing and Applied Mathematics:
6th International Conference, PPAM 2005, Poznań, Poland, September 11-14, 2005,
Revised Selected Papers 6. Springer, 228–239.

[23] William Gropp and Ewing Lusk. 1996. User’s guide for MPICH, a portable
implementation of MPI.

[24] Jürgen Hafner. 2008. Ab-initio simulations of materials using VASP: Density-
functional theory and beyond. Journal of computational chemistry 29, 13 (2008),
2044–2078.

[25] Paul H Hargrove and Jason C Duell. 2006. Berkeley Lab Checkpoint/Restart
(BLCR) for Linux Clusters. Journal of Physics: Conference Series 46, 1 (2006), 494.

[26] Hewlett Packard Enterprise. 2017. Aries High-Speed Network. https:
//pubs.cray.com/bundle/Urika-GX_Hardware_Guide_H-6142_Rev_C_Urika-
GX_HW_Guide_DITAval/page/Aries_High_Speed_Network_Urika-GX.html

[27] Joshua Hursey, Timothy I Mattox, and Andrew Lumsdaine. 2009. Interconnect
agnostic checkpoint/restart in Open MPI. In Proc. of 18th ACM Int. Symp. on High
Performance Distributed Computing. 49–58.

[28] Joshua Hursey, Jeffrey M Squyres, Timothy I Mattox, and Andrew Lumsdaine.
2007. The design and implementation of checkpoint/restart process fault tolerance
for Open MPI. In 2007 IEEE International Parallel and Distributed Processing
Symposium. IEEE, 1–8.

[29] Ian Karlin, Jeff Keasler, and J Robert Neely. 2013. Lulesh 2.0 updates and changes.
Technical Report. Lawrence Livermore National Lab.(LLNL), Livermore, CA
(United States).

[30] Ignacio Laguna, Ryan Marshall, Kathryn Mohror, Martin Ruefenacht, Anthony
Skjellum, and Nawrin Sultana. 2019. A large-scale study of MPI usage in open-
source HPC applications. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. 1–14.

[31] Ignacio Laguna, David F Richards, Todd Gamblin, Martin Schulz, Bronis R de
Supinski, KathrynMohror, andHoward Pritchard. 2016. Evaluating and extending
User-Level Fault Tolerance in MPI applications. The International Journal of High
Performance Computing Applications 30, 3 (2016), 305–319.

[32] Nuria Losada, Patricia González, María J Martín, George Bosilca, Aurélien
Bouteiller, and Keita Teranishi. 2020. Fault tolerance of MPI applications in
exascale systems: The ULFM solution. Future Generation Computer Systems 106
(2020), 467–481.

[33] Ping-Jing Lu, Ming-Che Lai, and Jun-Sheng Chang. 2022. A survey of high-
performance interconnection networks in high-performance computer systems.
Electronics 11, 9 (2022), 1369.

[34] Mellanox Technologies. 2015. RDMA Aware Networks Programming User Man-
ual (Rev 1.7). https://www.mellanox.com/related-docs/prod_software/RDMA_
Aware_Programming_user_manual.pdf

[35] Jamaludin Mohd-Yusof, Sriram Swaminarayan, and Timothy C Germann. 2013.
Co-design for molecular dynamics: An exascale proxy application. LA-UR 13-
20839 (2013), 88–89.

[36] Adam Moody, Greg Bronevetsky, Kathryn Mohror, and Bronis R De Supinski.
2010. Design, modeling, and evaluation of a scalable multi-level checkpointing
system. In SC’10: Proceedings of the 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis. IEEE, 1–11.

[37] NERSC [n. d.]. NERSC, the primary scientific computing facility for the Office of
Science in the U.S. Department of Energy. https://nersc.gov/.

[38] Bogdan Nicolae, Adam Moody, Elsa Gonsiorowski, Kathryn Mohror, and Franck
Cappello. 2019. VeloC: Towards high performance adaptive asynchronous check-
pointing at large scale. In 2019 IEEE International Parallel and Distributed Process-
ing Symposium (IPDPS). IEEE, 911–920.

[39] Dhabaleswar Kumar Panda, Hari Subramoni, Ching-Hsiang Chu, and Moham-
madreza Bayatpour. 2021. The MVAPICH project: Transforming research into
high-performance MPI library for HPC community. Journal of Computational
Science 52 (2021), 101208.

[40] Dhabaleswar K Panda, Karen Tomko, Karl Schulz, and Amitava Majumdar. 2013.
The MVAPICH project: Evolution and sustainability of an open source production
quality MPI library for HPC. InWorkshop on Sustainable Software for Science: Prac-
tice and Experiences, held in conjunction with Int’l Conference on Supercomputing
(WSSPE). 5 pages.

[41] Massimo Papa, Toshiki Maruyama, and Aldo Bonasera. 2001. Constrained molec-
ular dynamics approach to fermionic systems. Physical Review C 64, 2 (2001),
024612.

[42] N Anders Petersson and Björn Sjögreen. 2015. Wave propagation in anisotropic
elastic materials and curvilinear coordinates using a summation-by-parts finite
difference method. J. Comput. Phys. 299 (2015), 820–841.

[43] Martin Schulz, Greg Bronevetsky, Rohit Fernandes, Daniel Marques, Keshav
Pingali, and Paul Stodghill. 2004. Implementation and evaluation of a scalable
application-level checkpoint-recovery scheme for MPI programs. In SC’04: Proc.
of the 2004 ACM/IEEE Conf. on Supercomputing. IEEE, 38–38.

[44] Anthony Skjellum, Martin Rüfenacht, Nawrin Sultana, Derek Schafer, Ignacio
Laguna, and Kathryn Mohror. 2020. ExaMPI: A modern design and implemen-
tation to accelerate Message Passing Interface innovation. In High Performance
Computing: 6th Latin American Conference, CARLA 2019, Turrialba, Costa Rica,
September 25–27, 2019, Revised Selected Papers 6. Springer, 153–169.

[45] Aidan P Thompson, H Metin Aktulga, Richard Berger, Dan S Bolintineanu,
W Michael Brown, Paul S Crozier, Pieter J in’t Veld, Axel Kohlmeyer, Stan G
Moore, Trung Dac Nguyen, et al. 2022. LAMMPS-a flexible simulation tool for
particle-based materials modeling at the atomic, meso, and continuum scales.
Computer Physics Communications 271 (2022), 108171.

[46] Top500 2021. Top500 Supercomputers (June, 2021). https://www.top500.org/lists/
top500/2021/06/. [Online; accessed Aug., 2021].

[47] Yao Xu, Zhengji Zhao, Rohan Garg, Harsh Khetawat, Rebecca Hartman-Baker,
and Gene Cooperman. 2021. MANA-2.0: A future-Proof design for transparent
checkpointing of MPI at scale. https://ieeexplore.ieee.org/document/9721343;
technical report at https://arxiv.org/abs/2112.05858. In Int. Symp. on Checkpoint-
ing for Supercomputing (SuperCheck’SC-21), 2021 SC Workshops Supplementary
Proceedings (St. Louis, MO). IEEE, 68–78.

[48] Junchao Zhang, Bill Long, Kenneth Raffenetti, and Pavan Balaji. 2014. Imple-
menting the MPI-3.0 Fortran 2008 binding. In Proceedings of the 21st European
MPI Users’ Group Meeting. 1–6.

1747

https://pubs.cray.com/bundle/Urika-GX_Hardware_Guide_H-6142_Rev_C_Urika-GX_HW_Guide_DITAval/page/Aries_High_Speed_Network_Urika-GX.html
https://pubs.cray.com/bundle/Urika-GX_Hardware_Guide_H-6142_Rev_C_Urika-GX_HW_Guide_DITAval/page/Aries_High_Speed_Network_Urika-GX.html
https://pubs.cray.com/bundle/Urika-GX_Hardware_Guide_H-6142_Rev_C_Urika-GX_HW_Guide_DITAval/page/Aries_High_Speed_Network_Urika-GX.html
https://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf
https://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf
https://nersc.gov/
https://www.top500.org/lists/top500/2021/06/
https://www.top500.org/lists/top500/2021/06/
https://ieeexplore.ieee.org/document/9721343
https://arxiv.org/abs/2112.05858

	Abstract
	1 Introduction
	1.1 MANA's New Implementation-Oblivious Virtual Ids: Supporting diverse MPI implementations
	1.2 Points of Novelty
	1.3 Organization of This Work

	2 Background
	2.1 Design of MANA
	2.2 Split processes
	2.3 Virtual Ids for Split Processes

	3 Design choices made by different MPI implementations
	4 A New Architecture for Virtual Ids of MPI Objects
	4.1 Motivation
	4.2 The New Virtual Id Architecture
	4.3 MPI Global Constants as functions

	5 MPI Subset Requirements for ``MPI-Agnostic'' MANA Support
	6 Experimental Evaluation
	6.1 Analysis of Open MPI versus MPICH
	6.2 Analysis of ExaMPI versus MPICH
	6.3 Analysis of context switches per application
	6.4 Analysis of FSGSBASE runtime overhead for Cray MPI on Perlmutter
	6.5 Analysis of checkpoint times per application

	7 Related Work
	8 Conclusion
	9 Future Work
	Acknowledgments
	References

