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ABSTRACT. We prove the global existence of solutions with small and smooth
initial data of a nonlinear dispersive equation for the motion of generalized
surface quasi-geostrophic (GSQG) fronts in a parameter regime 1 < a < 2,
where a = 1 corresponds to the SQG equation and o« = 2 corresponds to the
incompressible Euler equations. This result completes previous global well-
posedness results for 0 < oo < 1. We also use contour dynamics to derive the
GSQG front equations for 1 < a < 2.

1. Introduction. The inviscid generalized surface quasi-geostrophic (GSQG) equa-
tion is a two-dimensional transport equation for an active scalar

0:(x,t) + u(x,t) - VO(x,t) = 0, (1)
(=A)*2u(x,t) = V4O(x, 1), (2)

where 0 < o < 2 is a parameter. Here, the scalar field #: R? x R, — R is
transported by the divergence-free velocity u: R? x R, — R2, which is determined
nonlocally from 6 by (2), x = (z,y) is the spatial variable, V+ = (—=9,,9,), and
(—=A)*/? is a fractional Laplacian. When a = 2, equations (1)—(2) correspond to
the streamfunction-vorticity formulation of the two-dimensional incompressible Eu-
ler equations [41]. When « = 1, these equations are the surface quasi-geostrophic
(SQG) equation, which arises from oceanic and atmospheric science [40, 44] and has
mathematical similarities with the three-dimensional incompressible Euler equa-
tions [8, 9].

The transport equation (1) is compatible with piecewise-constant solutions for
0, and the simplest class of such solutions is obtained when 6 takes on two distinct
values. As in [28], we distinguish between different geometries. We refer to patch
solutions when one of the values is 0 and the support of 6 is a simply connected,
bounded set whose boundary is a simple closed curve; we refer to front solutions
when the two different values of 6 are taken on in half-spaces whose common bound-
ary is a curve, or front, with infinite length. In this paper we consider front solutions.
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The advantage of these solutions over patch solutions is that their boundary geome-
try is simpler, especially when the front can be represented as a graph, although the
lack of compact support in 6 introduces additional complications in the formulation
of front equations.

Smooth and analytic solutions for spatially periodic SQG fronts are proved to be
locally well-posed in [18, 45], and almost-sharp SQG fronts are studied in [10, 17,
19, 20]. Global C1¢ regularity of the spatially periodic Euler fronts is proved in [4].
Contour dynamics equations for GSQG fronts with 0 < a < 1 are straightforward
to derive because the standard potential representation for u converges even though
6 does not have compact support, and Cordoba et. al. [11] prove that flat planar
fronts are asymptotically stable in that case. However, the same derivation does not
work when 1 < a < 2 because the Riesz potential [46, 47] for (—A)~%/? decays too
slowly at infinity for the straightforward potential representation of u to converge.

A derivation of front contour dynamics equations for 1 < «a < 2 by a regular-
ization procedure is given in [25], and the same equations are derived in [29] for
SQG fronts with @ = 1 by decomposing the velocity field into a planar shear flow
and a perturbation due to the front motion with an absolutely convergent poten-
tial representation. We provide a similar derivation of GSQG front equations with
1 < o < 2 in the appendix of the present paper. A derivation for Euler fronts with
a = 2 is given in [24]. The local well-posedness of a cubically nonlinear approxi-
mation for SQG fronts is proved in [26], and flat planar SQG fronts are shown to
be globally asymptotically stable in [1, 27]. A similar idea is also used in proving
globally asymptotically stability of the quasi-geostrophic shallow water front [48].
A related two-front GSQG problem is studied in [28].

This paper is concerned with the regime 1 < o < 2. We assume that the front
is a graph y = ¢(z,t) and study piecewise-constant distributional solutions of the
GSQG equations (1)—(2) with

_ 0+ ify>g0($,t),
blx.t) = {9 if y < p(z,t), 3)

where 6, §_ are distinct constants. The graph assumption greatly simplifies the
evolution equation for the front, but it does not describe wave-breaking or filamen-
tation of the front. However, for the small-slope fronts we study in this paper, we
will prove that wave-breaking never occurs.

In Appendix A, we show that for 1 < a < 2 the front location satisfies the
evolution equation

u(@,t) + OA|0|" " pu (. 1) =

1 1
=6 [leae) = nte + €O s ~ @ e T }2;

where |0,|1 7 denotes the Fourier multiplier with symbol [£[1~¢, and

T -a/2)

. xes
@:ga(e_,_—@_), A:2Sln (7) F(Ol—l)7 QQ—W

(5)
Our main result, stated in Theorem 4.1, is that the Cauchy problem on R for the
GSQG front equation (4) with sufficiently small and smooth initial data has smooth
solutions globally in time. Together with [11] for 0 < a < 1 and [27] for & = 1,
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this completes the proof of asymptotic stability of planar GSQG fronts in the entire
range 0 < o < 2.

Our proof follows the ones in [11, 27] with improvements on the regularity re-
quirement of the initial data by means of a more detailed analysis of the nonreso-
nant and resonant interactions of the high-frequency components in Section 7.3 and
Section 7.5. These high-frequency components were previously controlled using a
cruder high-order Sobolev energy estimate, which required a large value of s.

A similar reduction in s could be made to our previous result for SQG fronts [27],
where we took s = 1200. These results are still not optimal, and Ai and Avadanei
have recently proved low-regularity results for the SQG [2] and GSQG [3] front
equations.

The GSQG front equation is of order 2 — « for o # 1, and in making standard
Sobolev energy estimates we can gain one derivative by use of a Kato-Ponce com-
mutator estimate [38]. For o € (0,1) the fractional derivative loss is greater than
1, and for the SQG case a = 1 there is a logarithmic loss of derivatives. To control
this loss, we need to use a weighted energy, which can be constructed by means of
para-differential calculus. In the current case, when « € (1,2), the order of deriva-
tive loss is less than one, and standard Sobolev energy estimates suffice. Thus, in
contrast to [11, 27] with « € (0, 1], we do not need to construct a weighted energy,
and para-differential calculus is not required.

The linear part of the equation provides t~/2 decay for the L>®-norm of the
solution, but this is not sufficient to close the global energy estimates for the full
equation, since the O(¢~!) contribution from the cubically nonlinear term is not
integrable in time. We therefore use the method of space-time resonances introduced
by Germain, Masmoudi and Shatah [21, 22, 23], together with estimates for weighted
Lg°-norms — the so-called Z-norms — developed by Ionescu and his collaborators
[11, 12, 13, 33, 34, 35, 36].

We remark that the Euler front equations with o = 2 are nondispersive [5, 25],
and — in the absence of dispersive decay — one cannot expect to get global smooth
solutions. In that case, numerical solutions of the full contour dynamics equations
[14] indicate that the graphical description of the front may fail in finite time, after
which the front breaks and forms extremely thin filaments, similar to the ones that
are observed in patches [15].

The rest of the paper is organized as follows. In Section 2, we review results from
Fourier analysis and state some estimates for multilinear Fourier integral operators.
In Section 3, we carry out a multilinear expansion of the nonlinearity in (4) and
discuss the structure of the equation, which enables us to derive improved energy
estimates. In Section 4, we state the main global theorem and outline the steps in
the proof of the theorem. Finally, in Sections 5—7 we provide the proofs of each
step.

2. Preliminaries. In this section, we summarize some notations and lemmas that

we will use below. R .
We denote the Fourier transform of f: R — C by f: R — C, where f = Ff is
given by

f(x):Af(f)eigxdg, fe) = %/Rf(x)efigmdz'

For s € R, we denote by H*(R) the space of Schwartz distributions f with || f||g- <
00, where
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1/2

e = [ [a+erifor a

Throughout this paper, we use A < B to mean there is a constant C such that
A < CB, and A Z B to mean there is a constant C' such that A > C'B. We remark
that the constant C' may depend on a. We use A ~ B to mean that A < B and
B < A. The notation O(f) denotes a term satisfying

10 < 1S Nl

whenever there exists s € R such that f € H°. We also use O(f) to denote a term
satisfying |O(f)| < |f] pointwise.

Let ¢: R — [0, 1] be a smooth function supported in [-8/5,8/5] and equal to 1
in [-5/4,5/4]. For any k € Z, we define

Ur(€) = P(E/25) = (/257 () = 9(E/25), k(€ = T—w(g/2"h),

Vi (§) = Yr—1(8) + Yr (&) + Yrt1(),

(6)
and denote by Pj, P<p, P>k, and P, the Fourier multiplier operators with sym-
bols Y, Y<k, Y>k, and @k:respectively. Notice that ¥y (&) = 1o(&/2F), Yp(E) =
Po(€/2%), and

lkllce = 282, g llpe = 2702 (7)

Using this notation, we define the dyadic components of a function ¢ by

ok = Pro,  @r = Yrp. (8)
The proof of the following interpolation lemma can be found in [36].

Lemma 2.1. For any k € Z and f € L*(R), we have
1P 13w S IPCFIEs S 2741 F sz [2106 e + 1lce]

Next, we state an estimate for multilinear Fourier multipliers proved in [35].
Define a class S of symbols by

S ={k: R™ — C| & is continuous and ||x| g~ < 0o} |6]lses = [|IF (K] L1,

(9)
and given k € §°°, define a multilinear operator M, acting on Schwartz functions
fisoooy fm € S(R) by

Mn(flv RS fm)(l') = /m eiz(&—&-w-&-im)m(&’ cee agm)fl(gl) e fm(gm) d§1 R dgm

Lemma 2.2. (i) If k1, ke € S, then K1ka € S™.
(ii) Suppose that 1 < p1,...,pm < 00, 1 < p < oo, satisfy
1 1 1 1
e =D
p1 P2 Pm P
If Kk € S°°, then
[MycllLesx...xom—re S |6l so -
(iii) Assume p,q,7 € [1,00] satisfy 1/p+1/q+1/r =1, and m € Sp° Lg°.
Then, for any f € LP(R), g € LY(R), and h € L"(R),
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H / 2, €)F )3 (m)(E — . — ) iy

Le

S llmllsg

.
n1-M2 L

rellfllzellglzalln]
We define a B*" semi-norm by

1 llpew = 3202 +229) | Py e (10)
JEL
Here 0 < a < b and a, b are indices of higher and lower frequencies. Compared with
the L™ norm, B*? satisfies one property not shared with the L norm, that is

£l pae = > 1P fll pas-
JEZ

When a = b, we write the semi-norm as B* := B%“ for short.

3. Structure of the equation and energy estimate. In this section, we derive
an a priori energy estimate for the GSQG front equation. Local well-posedness
then follows by standard arguments for quasi-linear evolution equations [32, 37],
similar to the ones in [27] for local solutions of the SQG front equation.

When 1 < a < 2, standard Sobolev H*-energy estimates for (4) follow in a similar
way to the ones proved in [28] for the two-front GSQG equations. The result is that

%Hs@(tm%{s < P(lo()%-)

for s > 4, where P is a smooth, nonnegative, increasing function.
In this section, we use a dyadic frequency decomposition to prove an improved
energy estimate:
d 2 < e 2n
P OlE: < lle®z- 221 (callllB-aszss)
n—
where s > 5/2 and 0 < 0 < s — 5/2, in which case H® is continuously embedded
in B2~*2%9  We will prove the time decay of the B>~*2%9_norm in the following
sections, and use it to prove global existence.
Without loss of generality, we fix © = —1 in the following.
Assuming that |¢,| < 1, we first carry out a multilinear expansion of the non-
linear term, in a similar way to [11, 27]. Omitting the details, we find by a Taylor
expansion that (4) can be written as

e(x,t) = Al0s|'""pu(2,1) + 0N () = 0, (11)

where N'(9) = 3 Nans1(e), with
n=1

FNoni1(p) (&) =

Cp, . .
T (s s Tan, & — 11 — - — Thom e BN
2n + 1 / oo (1, 12, € = N2n)@(m) -+ ¢(12n)

P& —m =+ —n2n) dn,.
Here n,, = (n1,M2, - .., M2n), and the symbol T, is given by
(1 - etni€)

Tn(nla"' 7772n+1) /RHj_l <2n+1 ‘C|ailsgnCd<’ Cp = (E)

T
L(n+1)C (5 —n)
(12)
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We have suppressed the dependence of $(€,t) on ¢ in the expression for FN,11 in
order to save space. We will use this convention in the whole paper.
By taking the dyadic decomposition of ¢ in (8) we get

Cn
FlNonir(9)(€) = 3 / To(nrs Mo € =11 — -+ = an)
2TL =+ 1 . . R2n
Ji, s d2n41 €L
@i (M) Pian (M20) Pz a (§ = 1 — =+ = M2n) Ay - -+ dnjan.
Since the symbol T, is a symmetric function, we can assume by a change of variables
that j; > jo > -+ > jopt1. We denote the summation over these ordered indices
by >, so that
Q
c
FMNoy, =" // To(, - s Mon, &E— N1 — -+ — Ton
2n+1(9) (§) Gntl) > e (m N2ns € — M N2n)
Q
@i (M) P (120) Py (€ — M1 — - — m2n) i - -+ 2y

For the higher-order energy estimate, we multiply the Fourier transform of (11)
by (14 ]€|%)°@(&,t), take the real part, and integrate with respect to &, to get

d / Lt ieripe o de

At Jp 2
— C

= — _m 1 QST’IL S, ns — —_— . — n
§2n+12§//]g2n+1€( + 1€1%) (m Non, & — M Non)

0 (1) (1)~ B (2n) B,y (€ = 11— =+ = M) (=€) gy -+ gy .
Furthermore, making the change of variables n2p+1 = Nont1(m) =&—m —- - —N2n,
we get

d 1
— (1 2\5| 2 t 2d
5 [ 3 IeE I ag
— C
= — n_ - 1 25Tn — — e = o1, Mons s Ton
;2n+12§/\/ﬂg2n+1 g( + |€| ) (5 T2 M2n+1, 12 > +1)
@]& (g — Mg — = 772n+1)¢j2 (7]2) N ¢j2n+1 (772n+1)¢(7£) dng - -+ dngpy dE. (13)

When j; < 0, all the frequencies are bounded. By Proposition B.1, the nonlinear
terms satisfy

// EQ+EP)* Th(€—m2 = — Nont1sM2n, > N2nt1)
R2n+1
G (E=m2 = = Nant1)Pia(M2) -+ * Py M2ny1)P(=E) dnz - - - dnapy1 d§
< 2 @)ttt (1 4 Inn) ||, |2 0l 2 g oo - - 1€ganin Lo (14)

When j; > 0, we rewrite the symbol as

Tn(n1, s M2n41)
2n+1

- / 1] sgn IT inje™s*5< ds, d¢
R [0’1]2n+1 j=1
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Ta 2n+1 2n+1 —« 2n+1
= — 2i['(c) sin (2) H (in;) / Z 1;8; sgn( Z njsj> ds,
j:l 0 1]2n+1 , j:1
. 2n+1 2n+1 -
=—2I'(a — 1) sin (2) L. H (in;) / 1+ Z 781
=2 [0.1] = M
2n+1 ) e’
— Z n—jsj ds,
=
=T, (- s m2asr) + T3 (0, M2nsn)
where s, = (s1,8,) = (81,82, -, S2n+1)s
o 2n+1
T ) = 2 = Dsin (5 )il T (o)
=2
o 2n+1
T (m,- - mensr) = — 20(a — 1) sin <2> [~ T (iny)
=2
/ 2n+1 n l—« 2n+1 n 11—
. 1+Z—jsj —1- Z—]sj ds,,.
[0,1]2n =2 m =2 m
Here T=~1(n1, -+ ,M2ny1) is the lower-order symbol satisfying

||T§_1(7717 o ,n2n+1)¢j1 (m)--- ¢j21b+1(n2n+1)‘|sw < 2(—a)j1+2j2+j3+~~+j2n+1’

and TL=%(n1,--+ ,Mant1) is a symbol of order (1 — «) with respect the highest
frequency
||T:L*04(771, e a772n+1)'¢]j1 (771) e Q/szn“ (772n+1)HS°° 5 2(17&)]‘1+j2+j3+--~+j2n+1.
(15)
Therefore
// . 5(1 + |§|2)S T§71(§ — N2 == M2nt+1,M2n, " " ,772n+1)
Rl"n, 1
i (E=m2 =+ = M2n41)Pjs (M2)  + * Pion s M2n4+1)P(=E) dmz - -+ A2 11 dE
< 2B =Rt st et o) | o [l gl| L2 |05 [l Loe + - 190 [l e -
To estimate
[ 1Py T = = = st )
R2n+1
i (E—m2 = = M2nt1)Pja(M2)  + * Pjonyr (M2n+1)P(—=E) Az - - - Az 41 dE,

we use a symmetry argument, which is equivalent to a Kato-Ponce commutator
estimate carried out in frequency space. Interchanging the variables —¢ and £ —
N2 — -+ — Nan+1, and then taking the average, we have

//2 41 EA+ [P T “E—m2— = Nong1, M2, M2nt1)
R"L
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Gi(E=m2 = = N2nt1)Pia(M2) -+ Py M2ny1)P(=E) dnz - - - dnjapy1 d
:// _(f —nN2 == T]2n+1)(1 + |f - N2 — = T]2n+1|2)S
R2n+1

: T'}L_a(_€7 n2,--- 7772n+1)

@1 (=€)@j2 (12) *+ Pjapis (M2nt1)P(§ — M2 — - — M2ny1) Az - -+ 21 d€
=5 [ e T e = = = i)
W (E=m = = namg1) = (E—m— =) A+ [E—m2 — - = mana[*)°
ST (=& m2, -+ s Mans 1), (=€)
@iz (M2) + Pjapir (M2ns1)P(=E)P(E = M2 — -+ = Mang1) dmz -+ dr2ng d€.
We can split the symbol into three parts
['5(1 + P TL (€ —m2 — = Mant1, M2y > Mot 1)V (€ — M2 — =+ — Topt1)
—E=m— =)A= — o — 7727l+1|2)ST’}L7a(7€77727 L M2nt1)
wjl(—f)}
=(E0+ 16 (€ —m— — me) L+ =~ = o))
) T}fa(f =M = = Mant 1 M2, s Ment 1)V (§ = M2 — o = M2ny)
+(€=—m— =)A€ == = n2ng1?) %, (E =12 — -+ — N2ng1)
: (qufa(f — 2= = Mang1s M2, Nang1) — Thm (=€, mg, - 7772n+1)>
FE == =)A€ =2 = =21 [1) T (=&, 2, -+ 20 11)
(G €= = = mns1) = 65, ().
When writing it as the symbol of a multilinear Fourier integral operator, we use n;
to replace & — g — - -+ — 241 By (15) and the algebraic property of S norm,
2

2n+1

Z i
i=1

—m (1+|771|2)S 'T}lioé(Th?“' a"72ny”2n+1)

2n+1
(&)
=1

%‘1 (771) e ij'n. (n2n)¢j2n+1 (772n+1)

Soo
< (1+ 228j1)2j22(2*a)j2+j3+-~+j2n+1 (1+1Inn).

Since the symbol TL~¢ is real, and it is an even function with 71, i.e.

T}L_a(nth)"' aﬁ?n—&-l) - T:L_Oé(_nlalrhv"' an2n+1)7

we have
2n+1

m (L+|ml?)” (T}L_a(m,nz, o) = TN (= ) M, »772n+1)>
i=1

: %‘1 (771) e q/jjén (n2ﬂ)wj2n+1 (772”4-1)

Soo
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2n+1
Hﬁl(l + m[?)* - (T}z_a(nlﬂbv o mangn) = TR mi, 7772n+1))
i=1

. 'l/}jl (771) e wjzn (nQn)¢j2n+1 (772n+1) H

SOO
2n+1
<n(l+ 2283'1) H 2]5(1 + 2(1+5)j2)7
i=2
where § > 0 is arbitrarily small. Also, using % (§) = 2%11//(5/2jl) and Proposition
B.1 we get
2n+1
Hm(l + m?) TL(— Z NisM2 5 Nent1) Wiz (M2) Vg s (N2ns1)
i=1

2n+1

(s ) = s (= > )|
=1

< 225j1+((2—a)j2+j3+'"+j2n+1)(]_ +1n TL)

SOC
Combining the above estimates, we have
2n41 ant1 |2
() (1450
i=1 i=1
2n+1 2n+1
—(m)(A 4 |m[*)° Ty <— > nima e 7772n+1> V5, <— > Th‘)
i=1 i=1

Tn(n, M2, s M2n41)¥5, (M)

Soc
< (1+ 22Sj1)(2(2*a)j2 + 2(2+5)j2)2(j3+'"+j2n+1)n.
(16)
Therefore,
‘// A+ Tn(m, -+ s M2n & = — -+ — 72n)
R2n+1
iy (M) Pja (02) * + + P (M20) P41 (§ — M1 — =+ = M2n)P(=E) dmy -+ - A1z, €
2n+1
Sl 2 11102177 + 10217 ) 0 o [T 102051z~
i=3
After taking the summation for integers j; > - -+ > japt1, We obtain
d 2
— t s
Sle®I
o) 2n+1
S @iz > | en > 11027 +10:1**)pjn o [T 10251l
n=1 ji €Z =3
i=2,---,2n+1
S ez Y (enllelit-ants) (17)
n=1

where & > 0 is arbitrarily small.
Based on this improved energy estimate, we can summarize the theorem of local
well-posedness as following.
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Theorem 3.1. Let o € (1,2). Assume the initial data @y € H*(R) with s > 2,
and ||@ol| p2—a.2+s < 1 for any 0 < § < s —5/2. Then there exists a positive number
T, such that the Cauchy problem (4) with the initial data po has a unique solution
o(,1) in C([0,T); H*(R)),

4. Global solution for small initial data. From now on, we choose the following
parameter values

7 3
l<a<2, s>-4+-a, s—1>2r>0,

2 2
positive numbers py and § satisfying:
1 7T 3 4 3 1 0.005 la—1
0<d<=(s—=—=a)— = - — = < 55— d -
_3(5 9 204) 3P0(5+404 2)ap0 5235‘*‘%7% p0<3a+1,
! !
=— =24 —+24.
m= 5 Vh + B +
(18)

One possible choice, for example, is s =7, 7 =0, § = 1074, pg = 10~*(a — 1).
We denote by
S =(2— )td + x0, (19)
the scaling vector field that commutes with the linearization of the GSQG front
equation (11), ¢y = A0, |0, " %¢.
Theorem 4.1 (Main theorem). Let s, r, py be defined as in (18). There exists
0 <e <1 such that if 0 < eg < e and o € H*(R) satisfies
llollr= + |20zpollm+ < eo,
then there exists a unique global solution ¢ € C([0,00); H*(R)) of (4) with initial
condition ¢|,_q = po. Moreover, this solution satisfies
le@llae + [Se@)|lar < €olt + 1),
where S is the vector field in (19).
This theorem is a consequence of local existence and the following bootstrap

result involving a Z-norm of the solution, which we define for a function f € H*(R)
by

171z = ||agr +1ermfe)] (20)

Lg
where 7, and 7, are defined in (18). This definition of the Z-norm comes from
the B2~*2%% norm in the energy estimates and the linear dispersive estimate (21)
below. In the definition, we choose |§|" as a weight for low frequencies and [£|""
for high frequencies.

Proposition 4.2 (Bootstrap). Let T > 1 and suppose that ¢ € C([0,T]; H*(R)) is
a solution of (4), where the initial data satisfies

lpollms + [[20z0llmr < €0

for some 0 < egg < 1. If there exists g K €1 < 6(1)/3

E+ 17" (le®)llms + I1Se@lar) + e®)]z < e

for every t € [0,T], then the solution satisfies an improved bound

E+ D)7 (le@®)llas + ISe@ ) + lle®)z < o

such that the solution satisfies
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We call the assumptions in Proposition 4.2 the bootstrap assumptions. To prove
Proposition 4.2, we need the following lemmas, most of whose proofs are deferred
to the next sections.

Lemma 4.3 (Sharp pointwise decay). Under the bootstrap assumptions,
le(®)l|p2-azes Ser(t+1)""2  for0<t<T.
Lemma 4.4 (Scaling vector field estimate). Under the bootstrap assumptions,
t+1)7PSe)|ur Seo for0<t<T.

Lemma 4.5 (Nonlinear dispersive estimate). Under the bootstrap assumptions, the
solutions of (11) satisfies

le()llz Seo  for0<t<T.
Proposition 4.2 then follows by combining the energy estimate (17) and Lemmas

4.3-4.5.

5. Sharp dispersive estimate. In this section, we prove Lemma 4.3. We first
state a dispersive estimate for the linearized evolution operator eAt0:10:1""" | Thjs
estimate is similar to ones in [11, 27] and we omit the proof. We recall that Py is
the frequency-localization operator with symbol ¢y defined in (6).

Lemma 5.1. Lett >0 and f € L*(R). Then
[P0 P fl e S (84 1) 7222 B ”
(8 1) AOR P00, £) 2 + | P e 2
Using this lemma, we are able to complete the proof of Lemma 4.3.

Proof of Lemma /4.3. We observe that it suffices to bound the terms

2" | and YO [2FEHO Py
k<0 k>0

We also introduce the notation
— 1-o 7 —q ~
h(z,t) = e MO0 g 1), h(E,t) = e AR (g 1) (22)

for the function h obtained by removing the action of the linearized evolution group
on ¢. By (11),

Flaoah)(&,t) = —h(&, 1) — €0eh(E, 1),
€0:h(E, 1) = £ AT (—i(2 — ) AL|E[ TP, 1) + Dep(€, 1))
— AT (2 — )t (€, 1) — (2 = )ItEN (€ 1) + €0 (6, 1))
= T (Sp(e ) — (6 1) — (2 - )itEN(6,1))

|1—o<

(23)
where S is defined in (19), and
N (x,t)

oo

Cp, . R R . )
— E / [n(nn)@(nl; t)gﬁ(ng, t) . 90(772n+1, t)e (m+m2+-+n2n41) dnn
n—1 R2n+1

2n +
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denotes the nonlinear term of (11). It follows from (23) that

Falatuh)(€,1) = —e I (Sp(e,) + (2 - a)iteN(B(6,1)) )
We observe that in view of Proposition B.1, the nonlinear term N satisfies
110217 0:N | 12 S Cnys)llpllpo-an el ol oer  for j=0,...,r. (24)
n=1

Since eAt%19:1""" and P, commute, and z9,h = 0, (20zh) — Ozh, by Lemma 5.1
we have that

1P|0: = pll e S (¢4 1)~/ 22@7E 08| F (P9, o) | e
()08 P + [P . (25)
It follows from (23) that
[ Pe(z0zh) L2 S 1Pellze + |1 PuSellrz + ¢ PN || 2.

We first observe that k& < 0 automatically implies (£ +1)~%/4+tPo2(1=%)k <1 and
then we have

1Peldo ol e S(t+1) 7227 [ (€)1€" $(€) | e
+ (t+ 1720 Prgpll e + | PeSeel 2+t PN 2]

Thus, summing over k < 0, using (24) and the bootstrap assumption, we find that

> 0P Prep| oo SE1(t+1)7 12
k<0

Now we turn to || Py|0.|?T¢||L~ when k > 0. It follows from Lemma 5.1 that
1Pe10: P00 e S (¢4 1) 7227 K| F (PO ) | e
+ (t+ 1) 720N Py (20, 1) | 2 + || Pa() ]
If k € N and (t + 1) 1/4+pog(+d+3a/k <1 then
1Pl 0l e S (4 1) 7227 K[y ()16 9 (E) | e
+ (1) Pegll e + (| PeSellrz + PN 2].

Finally, if & € N and (¢ + 1)~ 1/4trog(i+d+3a/dk > 1 then 2= (1+d+3a/9k < (1 4
1)~Y/4+po_ In this case, we have

1Pe]02 220 e S 1€ 8By S NEPT"Un(E)ll 2 | Prsell s
S 2775k Pl e S (8 4+ 1) | Pogl| e,

(26)

where we have used the fact that 1_?_;573;5/4(% —po) > % + po, which can be verified
from (18).

Using the bootstrap assumptions, the estimate (24), and summing (26) and (27)
in the corresponding ranges of k, we obtain that

3 Pl ]| S erlt+ 1)V,
k>0

which concludes the proof. O
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6. Scaling vector field estimate. In this section, we prove the scaling vector
field estimate in Lemma 4.4. A direct calculation gives the following commutator
identities.

Lemma 6.1. Let o(z,t) be a Schwartz distribution on R? such that |0,|*~“p(x,t)
is a Schwartz distribution and S the vector field (19). Then

[S,0:)p = =0up,  [S5,10:]" "0l = —(2 — )| 0u] 'O,
S.00p=—2-a)dp, (S0 — Al 0]p = —(2 - ) (@ — Al.]*"0, ).
We now prove the scaling vector field estimate.
Proof of Lemma 4.4. Act S to equation (11), by Lemma 6.1,
S — Al0s|'"*0:8¢0 + 0. SN () — N () = (2 — @) (0; — Al0|'*0x)p
=—(2-0a)0N(p).
To estimate ||S¢l||g-, we need to estimate
[+ ey Fwe 0 Fisa-6 0 d
and
[+ gy FSN € DFISP-¢ 1) de.

By the symbol estimates Proposition B.1, we obtain the estimate of the first integral:

Ja+ 1y FoN e OIS (-¢ 1) de

o 2n+1
SR 11822~y | o 1020j: Lo | [l zrr+2 1Sl Er-
J J
n=1 ji €Z 1=3

i=2,--,2n+1
(28)

To estimate the second integral, we notice
[ Py AN e IS¢ 1) de
= [ig+ €Y (2 - @) - Be(eNN)FISPl(~ 1)
= [ig+ 6Pz - )0 - 0N FIS e (-6, 0 de
- [Py RFISA-€ D .

Denote the operator S := (2 — a)td, — £0¢. Notice that the Fourier transform of S¢
is

FSp = (2~ a)tdup +i0e(i6p) = (2 — a)tdep — 0(€0) = (S — 1)
So the integral to be estimated is written as

/ €1+ €2 FISN (9)] (6, ) FIS¢] (€, 1) de
= [ie+16Py SR (1891-€) - (-9)) dé — [ i1+ Py NFISel(-¢) de,
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where the second term satisfies the same estimate as (28). Then we estimate the
first term.

Since
58&/R2n To(mu, - m2n, & —m — -+ = m2n)@(m) -+ @(M2n) (€ —m — -+ — m2n) dm,
=[], 0Tl € = = = )l )
GE—m —-—mn)dn,
+/R2n Tty Mons € — 11 — - — 120)@(101) - @(M2n) (€ — 71 — -+ — 12m)
S0P —m — -+ —m2n)dm,
+/R2n T, 20, € —m =+ = 12) My, P(m) - - $(12n)
SE—m — - —n2n)dn, +
"'/ E0eTn(mu, -+ s M2n, & =M — - = N2n)P(N1) -+ N2nOny,, B (112n)
G —m — - —mm)dn,
f M= —n2n)dn,,

then we have

SNan+1(9)(€)
= 2:7:_1/]1%2" To(n1, -+, M2n, € — M1 — - — 120)[SE(M)]@(02) - - G(2n)
G —m —--—nen)dn, +
+3, i T /R% To(n, -y n2n,§ —m — -+ = N2n)P(m)S(n2) - - - S(n2n)
(S@(E—m — - —m2n)]dn,
™ 11 //IRM M2n+102n1Tn] (M1, s 20, E = — -+ — N20) @ ()P (12) - - - §(M2n)
GE—m —---—mnen)dn,
=cn //R‘m T, M2 & =M — - — 120) [SP()]E(02) - - G (112n)
GE—m —---—mnen)dn, (29)
Cn ~ ~ ~
+ 11 //R% M2nt102n+1Tr](M1, - s M2n, E— M — -+ — M2n)P(m)@(1n2) - - - P (n2n)
GE—m — - —nen)dn,,

where the last equality is from the symmetry of T,,.
Then we estimate

/ G+ 1€12) S Namir (0)(©)[SE)(~) de,

which can be written as two parts by (29). The first part is similar as the estimate
of (13). We split the symbol T,, as T (01, ,M2ns1) + T (01, s M2ns1)-
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The lower-order term satisfies

|// P TE (e, € == )
[SEn)]@(02) -+ @(12n) (€ — M — -+ - — 12n) [SE(—E) dm,, A€
(e’ 2n+1
SUSl5 Y | en > 1020511z T 10wt lloe
n=1 ji €L =3
2‘227“. ,2n+1

By symmetrization of TL~® and the fact that TL™® is even with respect to its
highest frequency, the integral related to the first part of (29) can be written as

//R%H O 1 B e G )
[Sem)]em2) -+ @(n2n) P(E —m — -+ — 120) [SP] (=€) dmy, A€
= - //RMI i (L4 [ P) T (=€ o on € = — =+ = 120)
[SAI=8)@(n2) -+ P(M2n)P(§ — 1 — -+ — 020 ) [SP] (1) dmy, A€
=5 [ [0 T e € = = =)
— (L) T (s E = nzn)]
[SEn)@(m2) -+ S(n2n) (€ —m — -+ — M2y [SP)(—E) dmp,, dE.

After taking dyadic decomposition and using the symbol estimate (16), we obtain

| // AL+ [E°) Th (s Mans =1 — =+ — Ty)
R2n+1

[S8e)]@(n2) -+ P(n2)P(E — 1 — -+ — 124) [SP)(—€) dm, dE
%) 2n+1
SUSEIF D | en > 110212 @jalle [T 10s0s. Il
n=1 ji €EZ =3
=2, ,2n+1

Then we estimate the second part of (29). By Proposition B.1, the integral
related to the second part of (29) is bounded by

| //Rz o €1+ 1€1) 2ns102n41Tn) (M, -+ s 02n, E— 11 — -+ — T2y)

- @) @(m2) - P(1an)P(E — M1 — - - — 1120 ) [SP)(—€) dm,, A€
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2n+1
S (L+Inn)[S@larllll e > 10:~ @il [T 10251l
ji €L =3
i=2,---,2n+1
Combining the above estimate, we obtain
d o0
EH&PII% S (8@l + llell ) 182l D (enllellpz-asrelollF) -
n=1

By Gronwall’s inequality, under the bootstrap assumption, this leads to Lemma
4.4. O

7. Nonlinear dispersive estimate. In this section, we prove the estimate

(P +lermleE, ol seo forall £ €R, (30)

which establishes Lemma 4.5 for the Z-norm ||¢||z defined in (20). We recall that
we use the parameter values given in (18).

This section is organized as follows. Using Lemma 2.1, we first prove in Sec-
tion 7.1 that the estimate (30) holds for sufficiently large and small |¢|. In Sec-
tion 7.2, we introduce a logarithmic phase shift into the solution which is used later
to absorb the effects of the space-time resonances. The main part of the section is
a detailed analysis of the nonresonant and resonant interactions between different
Fourier components of the solution, which is carried out in Sections 7.3-7.6.

To classify the cubic resonances between frequencies & — 11 — 12, 71, 172 into &,
where &,71,712 € R, we introduce the phase

(& m,m2) = (E—m —m)E—m —na| ™% + | + mama| T = €JE[T. (31)

The space resonances satisfy 0,, ® = 0,,® = 0, which implies that the frequencies
& —m — m2, M, M2 have the same linearized group velocity. It is straightforward to
check that the only space resonances are

(5 —m— 7727771,772) = (_Eagvé.)a (67 _575)7 or (§7£’ _E)? (32)
(E—m —m2,m,m2) = <§,§,§> (33)

The time resonances satisfy & = 0, which implies that the time-frequencies of
& —mn1 — 12, n1, M2 are in resonance with the time-frequency of £&. This condition
is satisfied by the resonances (32), which are space-time resonances, but not by
(33), which is a space resonance. There are additional time resonances of the form
& = £—n—+n, but they are not space resonances for £ # 7, so they require no further
analysis.

7.1. Large and small frequencies. When [£| < (¢ + 1)_%, Lemma 2.1, the
bootstrap assumptions, Lemma 4.4, and the conservation of the L?-norm of ¢ give

€+ 1EPm)@E, D S (€ + 162 1E1 121z (1€19ehll 2 + 121 2)
S e ellzz(ISell e + Il ce)

2
< €
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Let p; = S+f§°2%. When [¢] > (¢t + 1)P*, Lemma 2.1 and the bootstrap assump-

tions give

" Yh)2
(P + [eP)e(e, DI < ('fgs'i')wm(

S P T e (t + 1)

S €6-

ISollze + llellz2)

Thus, we only need to consider the frequency range
(E+1)77 < ¢ < (t+ 1) (34)

In the following, we fix £ in this range and denote by 9(&, t) a smooth cut-off function
such that

&) =Ton {(&1) |+ 1) < ¢ < (t+ 1P,
0(&,t) is supported on a small neighborhood of (35)

{eole+n™<lg<E+n).

7.2. Modified scattering. In this subsection, we introduce a phase shift to ac-
count for the modified scattering of the solution and carry out a dyadic decompo-
sition of the cubic term. Taking the Fourier transform of (11), we obtain that

@i(E,t) +iA’E //R2 Ty (71, m2,6 — 1 — 12)P(E — m — 2, 1) @01, t)P(n2, t) dny dn

+ Nos (@) (E,1) = iAEE) B (6 1),

(36)
where A’ = —A/(6(3 — «)) and
2—a)(3—«
T (11,12, 13) = %Tl(m»ﬂza%)
T R R S Y e o R U T Y e L
— |n2 + s>, (37)

N>5(0)(2, 1)
e} c ]
- Z Tj-].am /]R2n+1 Tn (/r'n)@(nla t)@(’l% t) e @("7271-1-1’ t)el(n1+772+“'+7]2n+1)1 dnn'
n=2
Here
[T, (1 —emi) o
Ta(momom) = [ G s
:/ 4| |i (1 — eimC _ gim2C _ ginsG o pilmAn2)C y pi(mtns)C 4 pi(nz+ns)¢
R G4
_ ei(n1+nz+ns)é> d¢ (38)
1 . . ) .
:/ Ed [(1 —MC) (1 — ") 4 (1 — €'18C) 4 (eHmFn2)C _q)
R

4 (ei(n1+ns)< — 1) + (e!lmtna)s _ D+ (11— ei(m+n2+ns)4)] dc.
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To evaluate these integrals, we consider

1 i _o [ 1—cos(
[ ety =pppe [ 1o (39)
r [¢] R [C]
The integral on the right-hand side of (39) is given by
1- 2 *°
[ et 2y [ aeosgae
R [C[* 3 Jo

o —

Since « € (1,2), an integration by parts and use of the expression in (5) for A gives

l—cos¢ . 2 * a3
i e AT

_ _%r(a — 2)sin (%w(a ~2))

2 /1
= —(a (0= 2)F(a —1)sin (§Wa>
A
MCEECED) 0

where the second step follows from the formula ([43] Chapter 5, equation (5.9.7))

> 1
/ t*"tsintdt = I'(z) sin (571'2), 1< Rz< 1L
0

Then (37) follows from (38)—(40).
From (36), we find that h(&,t) = e A% "3(¢, ) defined in (22) satisfies

ha(€,t)+
iA'E //2 T (11,712, € — 1 — 2) "M PEM M (& — iy — o )h(n1, ) (12, ) dipy dn
R

e AT AL () (6 1) = 0,
(41)
where ® is defined in (31).
We define the following phase correction
O(¢&,1)
2 A'Ele]” 'l I
:—TI Sy T T/ [N TI_77 /%d7
(Ot—l)(Q—Ot)A[ 1(66 €)+ 1(6 €£)+ 1( 655)] 0 7__|_1 T
(42)
which accounts for a cumulative frequency shift from the nonlinearity in the long-
time behavior of the Fourier components of the solution due to space-time reso-
nances of the form £ = £ + & — £. This phase correction is generic in cubically non-
linear dispersive equations and grows logarithmically in time (¢f. [11, 30, 31, 35]).
We then let
0(&,1) = e Ih(E 1),
Using this expression in (41) and (42), we obtain that

{)t(ga t)
= ei@(f,t) [iLt (5, t) + ZGt (ga t)il(f, t)] = 0(57 t) - e—iAt€|§|17aei@(£,t)N;@) (5; t)?
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where
U(¢ 1) (44)
=ei@(5’t){ — iA'gem AT // T (1,72, & =m0 = m2) 2§ — 1 — m2, ) ()
R2
P(n2,t) dmy dna+
27TiA/§|§| / ’ ’ 7 27
(Oé . 1)(2 o Oé)A(t + 1) [Tl(gvé-? _g) + T1(§7 _575) + Tl(_gvgag)] |h(€7t)| h(é-vt)}

Then we get from (43) that

letolz = 1ol + | | () dr

[ Moste.myar (45)

"
Z

Z

We estimate U in Sections 7.3-7.5 and take care of the term involving N@) in
Section 7.6.

Suppressing the dependence of ¢ and h on the time variable ¢, we write the first
integral in U in terms of h as

emiALElel e //R2 T (71, m2,€ — 1 — 12)@(E —m — n2)@(n1)P(n2) dny dne

= //RQ T (01,12, € — 1 — )M EM o6y — ) a() (n2) digy o

To carry out the dyadic decomposition, we let h; = P;h and ¢; = Pjp, where
P; is the projection onto frequencies of order 2/ with symbol 1; defined in (6), and
rewrite the integral in each dyadic block as

//RQ T} (1,02, € — 1 — m2)e X&MoY, (1) gy (€ — 1y — 12) dapy o
(46)

Without loss of generality, we assume j; > jo > j3. Denote the set P as all the
indices j1, j2,J3 € Z, such that j; > jo > j3 with possible repetition. We split the
index set P into P; |J P2, where P includes the indices satisfying ji; > jo > Js
and j; — 73 > 1, which correspond to nonresonant frequencies. P includes indices
satisfying j1 > jo > j3 and j; — j3 < 1, which contains the resonant frequencies.

In the following subsections, we estimate this integral in various regions of
frequency-space. In Section 7.3, we estimate the non-resonant frequencies by in-
tegrating by part with respect to time variable. In Section 7.4, we use oscillatory
integral estimates to estimate the integral for near-resonant frequencies. In Sec-
tion 7.5, we estimate resonant frequencies, and, finally, in Section 7.6 we estimate
the higher-degree remainder term in (41).

7.3. Non-resonant frequencies. The frequencies are non-resonant if |j; —jz| > 1.
We recall that h is defined in (22) and the symbol vy, is defined in (6). We will

estimate

t
](ﬂw +lePe / / / T (1,72, € = — 7o) ATREMI (Vo ()
0 2

ﬁjs (& —m —m2)dny dna dr (47)

Le

when |j; — j3| > 1.
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Since

. 1 _

TAT®(Em1,m2) _ [3 ”‘P(E,mmz)]

e - e ,
iAD(E, m,m2)

we can integrate by parts with respect to 7,

t
/ / T (1,12, € — . — 02)e TS Ry (1) by, (n2)hys (€ — m1 — 12) d dia dr
0

1 iT®(E,n1,m2) | 7 7
— T - k) ) . .
/ // 1(77177]2a£ m — )ZA(I)(f ,'71’772) [8 € :| h]l (nl)hj2(n2)
“hjs (§ —m —m2) dm dna dr

1 . ~ ~
= T _ _ “"I)(Eymvnz)h, Iy
/\R2 1(7713 7727§ it 772)214@(&, m, 772) € J1 (771) J2 (772)

t

Ry (€ —m — n2) i dne

T=0
1

' . ~ ~
- /O /]R2 Tll (7717 72, 5 —m — n2)me”¢<£’"l‘"2>& [hj1 (nl)hjz (772)
) ilj?, (& —m —m2)]dny dn2 dr.
Since
1

H D(m + n2 + 3,11, 12)

< 9la=1)ji9—j2 ,
Soo

wjl (771 )wjz (772)%‘3 (773)

we have

(e 1670 [ T = m = m) gt

i""b(&ﬂlﬂh)ﬁ,
. e X
)ZA<I>(€7171,772) 5 (m)

“hgy ()b, (€ — M — n2) Ay dipe

LOO
€
< (209 4 )2 H =i bis| o) || o], || oo |0, Il 22
@™+ 20m3)2% || L2 12320, || Lo l4ps 2
and

y ’Yh T etT®(§,m1,m2)
H(|£ + €] 5/ // T, m2, & —m — ”2)2/@(5 )

Or (I, (m)hj, (n2) sy (€ = m1 — )] dpy dTHLm
3

t
< / (279 2 d) 2t U= I 5 (19, by, || 2 g | oo 10 [ 2
0

+ @i l22l10-hj, | 2 lless o + i 2@l 10y, [l 2) dr
Notice that for any j € Z,

)
10:h5l12 S 15 (D)BN 2 S Y lelfe-am 127012 S €2+ 1) 712705 2
n=1

Therefore

(1 +1¢

t
1 )
Yh T M2, & — _ : T2 (Em,n2)
)6/0 //]1{2 1(771 od — M 772)214@(57771,7]2)
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Or [, (1) (12)hso (€ = 1 = )] dy i e[|
3

t
S / e (r + 1)1 (2 4+ 209209 (|12 0 || 12120720 | oo [l | 2
0

i 22122792 05 1221127 0 L + s ll22 11257720, | e 1272 055 [ 2 ) A

Taking a summation with respect to all non-resonant frequencies (ji,j2,73), we
obtain

> (47 S llellise -

P1

t
50||L§°B(2—”v1>+/ er(r+ D)7 o)l lle(r) | pe-an dr
0

3
S el S eo-

7.4. Near-resonant frequencies. The remaining dyadic blocks to consider are
when (jl,jg,jg) € Po, i.e.
lj3 = jo| <1, 3 — 1l < 1. (48)

In this case, the integration region is divided into four disjoint sets in the (1, 72)-
plane. We define cut-off functions vy (n) by

o 1 itn=0 o {0 itn=0
v = v_ =
=0 ity <o, U= g <o.

The set of discontinuities of vy (n1)vs(n2), which is {(n1,m2) | 71 = 0 or 72 = 0}, is
disjoint from the integration region. Thus, the functions vy (n1)v4 (n2) are equal to 1
on each connected branch of the support of the integrand in (46). Therefore, for each
j1, j2, and 73, we only need to estimate four integrals with different combinations
of + and — signs

//RQ T1(n1,m2,€ —m — n2)€it¢(n1’n2’§)hi (nl)hjiz (12)hjs (€ = m1 — 112) i s,
(49)
where izji(n) = }Alj (mv+(n).

In the following, we assume that £ > 0. The case when £ < 0 can be discussed
in the similar way.

The case of (—, —). Whenn; < 0,12 < 0,§ > 0, we have |{—n1 —n2| = E—n1—n2 >
0, thus
|®| > 9(2—a)jr

This is the case away from resonances, whose estimate can be achieved in the same
way as in Section 7.3.

The case of (+,+). The space-time resonance (11,72) = (£,£) and the space reso-
nance (11, 72) = (£/3,£/3) are both in the support of the integrand. By introducing
an additional cut-off function v, _s(m + n2 — 2¢), we write the integral into two
parts:

//]Rz T (1, 12,6 — 1 — 772)€iAt¢)(£’m’n2)iL;r1 (m)%t (772)ilj3 (& —m —n2)
P, —3(m 4+ n2 — 28) dny dne,

//]Rz T (1,72, € — m = m2) e A @Rt (n) B (n2) gy (€ = m — m2)



GSQG FRONT EQUATIONS 2619

(1 — by, —3(m + m2 — 26)] dny dne,

where the first integral contains the space-time resonance (n1,12) = (£,£) and the
second integral contains the space resonance (11, 72) = (£/3,£/3). Then we estimate
these two integrals in the following.

We consider the partition of unity

Z w’ﬁ (771 _f)wkz (772_5) =1 and Z w]% (771 _§>,¢)k4 (772_3) =1

(kl,k‘g)GZz (kg,k4)€Zz
Then we write the integrals with a finer dyadic decomposition as
//Rz T (01,72, § =m0 — m2) e M@ IRt ()R (n2) gy (€ = m — )
Vjy—3(m + 02 = 28) ¥k, (M — &)Yk, (12 — &) dipy dipa,

(50)

//Rz T} (1,712, =1 = m2)e P EIIDNE ()R, (2) B (6 = 1 = m2)

§

(1 — by, —3(m +m2 — 28) 2w, (771 5)1% <712 3

In this subsection, we introduce a decay function
or(t) = (t+1)7"%, (52)
and restrict our attention to the following two near-resonant cases:

(i) max{ki, k2} > logy[o1(t)];
(if) max{ks, ka} > logy[er (1))

The cases of max{ki,ka} < logy[e1(t)] or max{ks, ks} < logy[e1(t)], which in-
clude the resonant frequencies, will be discussed in Section 7.5.
Near space-time resonance.

We first estimate (50). Since the integrals are symmetric in 77 and 72, we can
assume without loss of generality that ko > k1. Using integration by parts, we write
the integral as

T (11,7m2,§ — 1 — 12) iALD > 2
ML 0, e AL(Emm2) p+ LT
//]Rz 2(2 — a)iAt(|m = — | —m —n2t7) ne 11(771) j2(n2)

By (€ —m — m2)j,—3(m + 2 — 2€) {lﬁgkg (M — &) Yry (2 — &) | dny dna,

Vi+Vo+V5+Vy
2i(2 — a)At

) d771 d772

where
T (m1m2,§ —m —m2) } i At (€,m1,m2) 1+ 7+
, ) e’ Nz pt h
e //R e = sl )
hjs (6 —m — m2)Yj,—3(m + 02 — 28)V<iy, (M — §) Yk, (02 — &) dipy dna,
T (m,m2,§ —m — n2) ] LALD(Emm2) Bt (o Vit
) A Em ) g, fit ()i
f //JRZ [|7711 « |§ m — 772\1 & " jl(m) j2(772)
hjs (& —m — m2)¥j, —3(m + M2 — 2§)V<i, (M — )k, (12 — &) dmy dna,
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2 [ImP = =& —m —m2|t7e ]

v = [ Tl &~ =) | piarsemm ot ()i ()0,
By (€ = — o), —s (1 + 12 — 26) <y (M — )iy (02 — €) dipy dpa,

J3

[T (e, E = —m2) ] a > 2
AR :// IR MEY AL (&) fy+ ht
a9 re LIm |t =& —m —me[t 7 32 ()3, (12)

“hjy (€ =1 — n2)0y, [1/13‘13(771 + M2 = 28)V<iy (M — &)Yk, (2 — &) | dny dipa.
Then we estimate V; to V. We first denote the symbol of V; by

m(n1,m2,€ = —n2)
_ T (71,12,§ — M — 12)
_87]1 1— 1—
I =& —m — |t
_ Oy Ty (01, M2, € — M1 — 12)
I [t= — [ —m1 — ma|te

|~ = 1§ —m —me| 7
(I = 1€ = m — ot 7)?’
where we used the fact that 7, > 0,m72 > 0 and & — 11 —n2 < 0.

Noticing the cancellation of the factor (Jm1| — |€ — m1 — 12|) in the fraction

[m |~ —[§=m—m2| "
(Im' = =]g—m1—mn2[17)2>

— Ty (1, m2. & —m —n2)(1 — )

we have the symbol estimate

|~ I~

7 — |03
(= — |na|t =

E Vi, (M) Vo (12)Yj5 (n3) v+ (M) V4 (02)

<y (=12 — M3) Yy (=11 — M3)

S
9(—a—1)j19ks

~ [2*04]'12162]2 =20 Dk,

By Proposition B.1, we have

m (11,02, 13) V5, (1) 5, (12) V45 (03) 0+ (M1) V4 (N2)Y<key (=12 — 13)Pky (=11 — 113)

< 2(3—a)j1[2—aj12kz]—l 4+ 9B=a)jigla—1)j1—k o
= 27k (2% 4 9%in),
Therefore,
Villzge S (257 +2%)27 % lgj 122 1@l 2 sl e (53)

Similarly we obtain the estimates for VoV, by using the above symbol estimates.
IVellzg < 2% 721100 Ay ll22 02l 2 00l e
Vallze < 2% %210 [l 1050l 2 19 Fogsl 2,
IVallzge S 2777275 4277 <y (m — €5 ()l 2z, 1
Nk (2 = €)@ (n2) 22

n2

< 28 7k2 (2782 1 9791)2%2 19y, || Lo 1Dl go 0ol e

e Mgl o
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S[2277%2 + 2270105, llpge g e loga ll o

Finally, we take the summation over log,[o1(t)] < ko < j1 + 5 to get

t
‘f(l&l“ 16 [ ] T~ = ) it ) )
0

hjs (€ = n1 — m2)j, —3(m + n2 — 2€)
J1+5
S bk, (m = bk, (n2 — 5)] dny dng dr

ka=log,[01(T)]

' (54)

t
1 . ~
e / lmax{2]1+5a o1 (7)Yl e + 19ehyy 122l [ L2115 | a-era
0 T+ 1 ¢

+maX{2j1+5791(7')}”%‘1||Z||90jz||Z||<Pj3||B2—a=2+6] dr.

Notice that ||o(t)|| g2-a.2s < e1(t+1)7'/2 from Lemma 4.3, so the right-hand-side
of above inequality is integrable. It is also summable with respect to j1, jo, j3 under
|73 — j2| <1 and |j3 — j1| < 1. By using the bootstrap assumption, we get

Z (54) S et S eo-
P2

Near space resonance. Next we estimate (51). Since the integrals are symmetric in
11 and 72, we can assume without loss of generality that k4 > k3. Using integration
by parts, we write the integral as

T (01,12, — M — 12) A 5 5
ML 9. At (&mnum2) j+ ht
e = e 52 (g, (m2)

By (€ —m — m2)[1 — ¥y, —3(m + 12 — 26)] {1/194 <T}1 — ?:)1/)1@4 (772 - g)} dny dna,

Wi+ We+ W3+ W,
2i(2 — a) At ’

where

Wl ga
Tl 771777275 m — 772) P AtD 24 24
//R { 1o =5 | O (m)h, (ne)

Im — & —m — |t

hjs (6 —m — m2)[L — by, —3(m +m2 — 25)W<k4< g)iﬁm <772 - g) dny dng,

W2 fa
T 771777275 m — 772) i ~ N
/ /[ e o | @A, Rk () kT, (12)

Im — 6 —m — |t

ilja (5 - — 772)[1 - 7%&—3(771 + 12— 25)]¢§k4 <771 - g)i/fm <772 - f) dny dna,

3
W3(£a t)
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T (m1,m2, € — M1 — 2) ] LALD(Emm2) i (0 Vit
el [ h h 8
//W [ml1 o — € —my — |t o), (72)0m,

s (6 —m — m2)[L — by, —3(m + m2 — 28)]V<r, (m 5)% <772 - g) dny dng,

W4 Ea

Tl ”71777275 m — 772) :| At‘b(ﬁ m 772) +
e , h h
//Rz [mI1 =& —m =l (), (12)

hiy (€ = m1 — 12) 0, [(1 — Y5, —3(m +n2 — 28))h<p, (771 - §>¢k4 (772 - Eﬂ

3
d771 d772

Then we estimate Wi to W4. We first denote the symbol of W7 by

(1, M2, € —1m — 12)
-9 Ty (n1,m2,§ —m —n2)
It — & —m —ma|t7e
= O T 0m,m2, € —m — n2)
N e T

) I~ 4+ 1€ —m — 2|~

7T/(7717772a€*771*772)(17 )
! (Imt=o =& —n1 — no|t7)?

where we used the fact that 71 > 0,72 > 0 and £ —n; — 12 > 0.
By Proposition B.1, we have

(s M2, m3)05, (1) V5, (12)Y55 (03) V4 (01) v+ (M2) V<, (Th

N+ 72+ N3
'wkz; 772_#

_mﬂzﬂs)
3

SOO
< 9(3=a)jr [2—aj1 2k4}—1 + 9B=a)jig—aj [2—aj1 2"04]—2

— 93j1—Fa 4 93J1—2ke _ 23j1—k4(1 4 2—k4).
Therefore,

[Willoe S 2575 (1 4+ 275)2%)|@), | oo | B ll el ll ooe
S22 (14277185, g Dzl pge s Nl ooe

Wallpge S 2% 7%10¢hy, |22 15l 2 s lloe

Wallzge < 2577 %10ghy, | 2 1072l 2 s lloe

[Wallpge S 2% F0(27% 27928 |05, | Lo 1650 Nl oo 10 | e
S @R 4 22185 e 18 | e sl oo
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Finally, we take the summation over log,[01(t)] < k4 < j1 + 5 to get

t
R N A B T e PR UR A S
0 R

his (€ = n1 — m2)[1 — ¥j,—s(n1 + 2 — 2)]

J1+5
. { Z Vs (771 - §)¢k4 (7]2 - g)] dmy drne dr

ka=log,[01(7)]

e (55)

t
1 . .
= lmaX{Wi o1 (™)}l e + 10y l122) 522 s | e
o T+1 €

+max{2j1+5,91(7)}”%||z||wj2||z||<pj3||Bza,w] dr.

From Lemma 4.3, ||p(t)|| g2-a2ts < e1(t 4 1)7/2, so the right-hand-side of above
inequality is integrable. It is also summable with respect to ji, j2, j3 under |jz3—7ja| <
1 and |j3 — j1| < 1. By using the bootstrap assumption, we get

> (55) S & S eo-

P2

The case of (+,—) or (—,+). If n; > 0,72 < 0, in the support of the integrand,
then there is space-time resonance (£, —£). We use the unit decomposition

Z ¢k1 (771 - 5)7/%2 (772 + g) = ]-7

(k1,k2)€Z?

and estimate

//R2 T (n1,m2,6 —m — nz)emt@(&’m’"z)ﬁz (771)?1;2 (ng)ﬁjB (& —m —no)

> k(= Ok, (n2 + &) Ay dna.

(k1,ko)€Z2

If 71 < 0,72 > 0, in the support of the integrand, then there is space-time resonance
(—&,£). We use the unit decomposition

> Wk + vk, (2 — &) = 1,

(kl,kz)eZZ

and estimate

//RQ T} (1,72, § —m — m2)e AP Em ) b ()R (02) gy (€ = 1 — m2)

> ks (e + &)k, (2 — &) d .

(kl,k‘Q)EZZ

We can integrate by parts and estimate each integral in the same way as above,
and get the same estimate as in (54).
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7.5. Resonant frequencies. In this section, we estimate the integral

// T (1,72, € — 1 — n2)e™ M EMm Dy ()b (n2) by, (€ — 1 — 12)
Py (M — &)k, (2 — §2) A dme - (56)

under the conditions that

lj1 —js| < 1, ljo — js| <1, k1 < logy[o1(t)], ko < logy[o1(1)],

where o1 (t) is defined in (52), then sum the result over ki, ky < logs(01(t)). Notice

that when ¢ is large enough, ¥k, (N1 — &1)¥r, (n2 — &) will be supported on the set

where ¢, _3(m + 12 — 2) = 1 when (§1,&2) = (§,€); and Yy, (m — &1)Yw, (02 — &2)

will be supported on the set where 1—1;, _3(m +n2—2¢) = 1 when (&1, &) = (%, %)

So we can ignore the cut-off function 1, _3(m + 12 — 2§) in the above integral.
If m < logy 01(t) <m+1 for m € Z, then —oo < k; < m for i = 1,2, and

Z ¥y, (§) is supported in {§ eER| < % . 2’”} )

Z:—OO

Thus, after summing over (ki,ks), we only need to consider (56) with a cutoff
function in the integrand of the form

“f”“”DJ)::w(nZ@fl>'¢<n2@fz)’ (57)

where the function o(t) is defined by
o(t) = 2™ if 2™ < oy (t) < 2™HL

To make the expressions shorter, we write b(§,n1,72,t) as b when there is no am-
biguity.
From (52), we have

%(t +1)7%% < o(t) < (t+1)704, (58)

The points (£1,&2) € {(5/3 £/3),(&,8),(&,=€),(—¢,&)} are the space and space-
time resonances in (32)—(33). We therefore need to estimate

//R2 T} (1,02, € — m1 — n2)e P Emm2 s (), (1) gy (€ — 1 — 12)

5(577717772715) d771 d7727

with the cutoff function (57) replacing g, (m — &1)¥k, (N2 — &2), in which case the
integral is taken over one of the following four disjoint sets

A1={(n1,n2) n1—§<§9(t), 772—* (t)}
Ay {(7717772) |m—£!<§@(t), \n2—€\< —olt }
Aa={ () | on - 0] < $a0, e (-9)] < Zot0)}
A= { o) | I = 0] < a0 |6 < Fo}.
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The regions A, Ag, As, Ay are discs centered at (£/3,£/3), (£,€), (§,—€), and
(=¢&,€), respectively. The region A; corresponds to space resonances £ = £/3 +
&/3 +¢/3, while Ay, A3, A4 correspond to space-time resonances £ = £ + & — €.

7.5.1. Space resonances. When (n1,12) € A, we can expand T;/® around (&,&/3,

§/3) as
2). (59)

T (12,6 —m —mp) 327 =237 +1
(I)(§7’r]13772) 3— 3%«

For m € Z, let t,, = 2~™/949 _1 denote the time such that log, o1 (t,,) = m, and
for t € [0,00), let M(¢t) € Z be the negative integer such that M (t) < log, 01 (t) <
M (t)+ 1. Then p(t) and the cut-off function b(&, 71, 72,t) in (57) are discontinuous
at t = t,,. After writing

2

€

m— -

,7_§
! 3

3

e+ of

. 1 ,

PATD(E,m1,m2) [3 iT®(E,m1,m2)

€ = - e ,
ZA(I)(§7 m, 772)

and integrating by parts with respect to 7 in each time interval between the time
discontinuities, we obtain

t
/ i€ //2 T} (1,72, € — 1 — m2)e™ A7 P&y, (g 7 by, (02, )b, (€ — 1 — 12, 7)
1 R
bdn; dnedr

= ;<J1 - /ltJQ(T)dT)

where
Ji
T (12,6 —m —m2) 5 » - Ard
= 12 b (1, 7)h, (02, TR, (€ — m1 — 12, 7)eAT (&m1,m2)
[ e ) o (€ 1 )
T=t
- b(7) dny dno .
T=UM(t)
T (m,m2,€ —m —n2) 5 5 >
+ Z // S z 1) 2)hj1 (nlﬂT)th (nQaT)hj:s (6 - - 77277—)
=M ()41 R2 M, 72
. T=tm—
FATE(Em.m2) b(7) dny dy 1’

// T (m,m2,§ —m — n2) AT (E,m1,712)
R2 6 7715772)

- 07 |:hj1 (nla T)th (7727 T)hjg (5 =N — 12, 7—)} b(T) dnl d772'

For Jy, we have from (59) that

" ) 771777275 m—n2); . B (€ — 1y —
e 1) [ o) T ) (g s, s = = )

. tATR(Em1,m2) dn dgz
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‘IEI”HEI”” / / b(r)E2 g, (11, 7y (12, 7)oy (€ — 11 — 12, 7)€ ™ EM) Ay gy

(€ +167) [ 6t s 0,7 7 (€ =1 = )]
<MW”+W“)HMMMMW+MW)nthM”+KW)nhwﬂdﬂf+va%

If (n1,7m2) € Ay, then the number of terms in the sum over j1, jo, j3 is of the order
log(t + 1), so the right-hand side of this inequality is uniformly bounded for 7 > 0

after summing over ji, ja, Jjs.
After taking the time derivative 0., the term Jy can be written as a sum of three
terms:

T/ ) 'S T - iAT 7 2 >
f/R2 1(m 72 fh :21) "2) giAr® (€ mna) [3rhj1 (1, T)hjy (N2, T)hjs (€ — m *772,7)}

& m,m2, ) dm dn,

// Tl 7717 2,8 = M 772) lATq)(gmlm2) |:ilj1 (7717 T)afﬁh (12, T)iljs ('£ —m =72, T)}
R2 5 7717172)

- b(&,m1,m2, 7) dmr dne,

T1(n1,12,€ =M = 02) iara(emon) [ ; ;
¢ f[, Pt (s (7 (2, )0y (€ =m0 — 2, 7))

b(&,m,n2, 7) dni dne.
Using equation (41), the bootstrap assumptions, and Lemma 4.3, we have

105

SIIE// T (1,712, § = m1 — ma) e AT EMRI (& — iy — ) (1 ) a(n2) dipy dngo| e
+ N5 (0 )|z

Slell - Z el

el + 1>2p°—f.

Therefore, using this estimate in the Jy-terms and the fact that € < &g, we get
that

(€ + 16™) o ()] £ D Ihe |10 hey | e | 2 [o(r)]?
Seo(m+ 1772 o(m)* Y llhe, | 2 ey 2,

where the summation is taken over permutations {1, £a, ¢5 of j1, j2, js for (n1,m2)
in the space-resonance region A;. Again, since the number of summations is of the
order log(7 + 1), the resulting sum is integrable over 7 € (1, c0).

7.5.2. Space-time resonances. We now use modified scattering to control U in (44).
We need to estimate

A // G€6(E, 11, 12, )T (11,12, € — 1 — 1) P EMT (g — gy — )
AxU Az U Ag

- h(m)h(n2) dm dne

o s [THE.6 -0 + Thl6,—6.8 + TA(-6,6.] (60 (e.0).
(60)
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The estimates for Ay, Az, and A, are similar, so we only present the details for
the Ay integral. The corresponding integral for A, in (60) can be decomposed into

Alig // b(E,m, M2, t)e HHE ) [Ti(mﬂhé —m —m2)h(€ —m — n2)h(m)h(n2)
Ag

— T (.6, ~O)IR(E, P&, 6)] d dipa

(61)
and
AVET (€, €6, —€) | (&, t)]*h(E, L)
ot (Em1.7m2) m—§ ] n2—§& _ 2m|€|”
[/%; w(ga>) w<gu>>dmdm <a—1xz—wAa+1J@m

The estimates for (61) are achieved by a Taylor expansion

A'|(lE]r + |€]™)ig //A eHPEmm)p (& ny n,t) - [T’l(m,nz@ — i —n2)hj, ()

’ hjz (772);"1'3 (f - — 772) - Tll (fa 3 —f)m(fa t)|2i7‘(£’ t)] d771 d772

smw+mmm[@

iljs (E—m — 772)}

a771 [Tll (nla 77275 - — 7]2>Bj1 (771)?13'2 (772)

(€= m)|

m= 7]1

|0, [T € == ), 00y () (€ = = )] | (€= m)

d771 d772
S IAEP +1€1)@5 e llUEP + 1€z [l Lge 1UEN + €17 ys I Lo [0 ()]

+ NP + 1€ @en g 1IE + €7 e | e 1S e Nl [0(2)]72
Seo(t+1)7H

/
2

where (1], n5) in the first inequality is some point on the line segment connecting
(&,€) and (n1,m2), and the summation in the second inequality is over permutations
(01,02, 23) of (j1,72,73). Taking a summation over ji, ja, j3 and using the estimates
in the above subsections together with the time-decay of o(t) in (58), we see that
this term is integrable in time and is bounded by a constant multiple of 3.

As for (62), it suffices to estimate

‘Amm+wWﬂT@s,>wan2aw

] ememme () o

_ omfge
)“ﬂw m—U@—MMH
S €T+ €2 e €1 e 1 (1€] + 1E17)(E) | e
2m|¢]®
)d’“ dns = (a—1)(2— a)At|,

o) oo
I, ””égnlm)w<nl<>§> oY) am o

< llell%
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2m (€]~
(@ —1)(2— a)At

LOO
€
Writing (n1,12) = (€ + (1,€ + (2), we find from (31) that

3 3
e = (0 12— o ES)

= (0= 12 0) g6 + 0 ([P ¢+ )+

By the assumption of pg in (18) and o(t) satisfies (58), the error term is integrable
in time, so we now only need to estimate

iAt(a—l)(2—o¢)ﬁ(1C2 i . 472
/] () () e

Js =

27 || (63)
S (a—-1D)(2-a)At L
Making the change of variables
_ €l _ €l
G = Il\/(a “De—aar 27 xz\/(a 12— At
in (63) and using the fact that || < (¢ + 1)P1, we find that
J3 S i+ 1)™
t
ix1Ta |£|a Z1 ) |§|Ué &
' H K ¢<\/(a e a)Atm) w(\/w “DE- A g<t>> dondes
— 27
Le
(64)

The integral identity
2
/ ema b gy = \/?e?m for all a,b € C with a >0
R a

gives that
BZ

22 22 22 2
// elxlfze_Elfe_EZf dxl de = \/7?3/6_32267 4*2 dx2 = 27T+O(B71)
R? R

as B — oo, and therefore

// eizlmw 1 0 L2 dxy dze = 27 + 0(371/2) as B — oo. (65)
R2 B B
Using (65) with

B= @oﬁ - ”éT DA _ o0

in (64) then yields

Js 5 (t + 1)o¢p1—1(t+ 1)—%[0.01—%].
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By (18), the right-hand side decays faster in time than 1/¢, which implies that (62)
is integrable in time and bounded by a constant multiple of &.
Putting all the above estimates together, we conclude that

|10+ lermonie ol de s =0 (66)
0
7.6. Higher-degree terms. In this subsection, we prove ||(|£]+|¢|7 )/\gg,(\go) [l
is integrable in time.

By Lemma 2.2 and Proposition B.1, we have

oo
[P+ 16N ()| S llellEr - NellZah o
£ n=2

Using the dispersive estimate in Lemma 4.3, we see the right-hand side is integrable
in ¢, and

/0 IIEP + 1€z (2) e dE S eo. (67)

Finally, the use of (66) and (67) in (45) completes the proof of Lemma 4.5, and
therefore the proof of Theorem 4.1.

Appendix A. Contour dynamics derivation for the GSQG front equation
(1 < a < 2). In this appendix, we derive the GSQG front equation (4) for 1 < a < 2
by the method used in [29] for SQG fronts.

The front-solutions considered here have unbounded velocity fields as |y| — oo,
and we interpret (2) in a distributional sense. Let LL(R™) denote the space of
measurable functions f: R™ — R such that

/R G gy < e

n 1+ |x|nte
and let D’(R"™) denote the usual space of Schwartz distributions. Then the fractional
Laplacian
(—2)*%: Ly(R") — D'(R")
can be defined by [6]

(ar2ro)= [ f00- (A1 Folxax  forall 6 € C(RY).

Here, (—A)*/2¢ is defined as a Fourier multiplier or singular integral [39]. For
1 < a < 2, the only a-harmonic solutions f € L (R"™) of (=A)*/2f = 0 are the
affine functions [7, 16], so if we require that u(x) has sublinear growth in x, then
(2) determines u uniquely up to a spatially uniform constant. This constant can be
removed by a transformation into a suitable reference frame, and for definiteness
we set it equal to zero.

To start with, we consider the shear flow solutions @(y) = (U(y),0) associated

with a planar front
= 0+ if y > O7
O(y) = 68
) {9_ if y < 0. (68)
In that case, (2) reduces to the equation
o S)
10,*U(y) = *;5(11), (69)

[e%



2630 JOHN K. HUNTER, JINGYANG SHU AND QINGTIAN ZHANG

where § is the delta-distribution and O, g, are defined in (5). Equation (69) has
the sublinear solution

Uy) =0C,ly*~",  a(y)=(U(y),0), (70)

1 Qo 1—a a
= ——=sin (5T (520 (5)-
Ca ﬁsm(z) (2> 2
We now derive contour dynamics equations for GSQG (1 < « < 2) front solutions

(3) whose velocity field has the asymptotic behavior
u(x,t) = (0C,|y[*™,0) +o(1) as |yl — o0

where

by decomposing the solutions into a planar shear flow and a perturbation whose
velocity field approaches zero as |y| — oco.

We denote the front y = ¢(z,t) by I'(t) = 0€Q(t), and consider its motion on a
time interval 0 < ¢ < T for some T > 0. We assume that:

(i) ¢(-,t) € C*(R) and o(z,t) is bounded on R x [0, T7;
(i) @p(z,t) = O(Jz| @71+ as |z| — oo for some S > 0.

In that case, all of the integrals in the following converge.
We choose h > 0 such that —h < inf{ep(z,t) : (z,t) € R x [0,T]}, and let

~ 0+ lf Yy > —h, - _

O(y) = ", = (0C" |y +hr|*t0), 71

W) {9 N G A T U N
be the planar front solution (68), (70) translated to y = —h. This front is an

artificial front which does not intersect the actual front. We introduce it to obtain
absolutely convergent potential representations, and the final solution is smooth
across y = —h.

We decompose the front solution (3) as

0(x.t) = 0y) + 0" (x. 1),
where 6 is defined in (71), and

9*(X,t) — {@/ga if —h < y < Sﬁ(wat),

0 otherwise.

We denote the support of 8*(-,t) by Q2*(¢). The corresponding decomposition of the
velocity field is

u(x,t) = u(y) +u*(x, 1),

where 1 is defined in (71). By use of a Riesz potential representation [42], we find
that u* = V+(—A)~%/20* is given by

1
u*(x,t) = @p.v./ \Viw

— _ dx'.
o) T lx— x> *

Writing x’ = (2/,y'), we see that the integrand is O (|2'|~3~)) as |2/| — oo and
compactly supported in g, so this principal value integral converges absolutely at
infinity for a < 2.

Applying Green’s theorem on a truncated region with |z — /| < A, and taking
the limit A — oo (as in [29]), we get that

U*(Xv t) = (u*(xa Y, t), 1)*(1’7 Y1),
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(z,y,t) = —@/ ! = — ! S da’,
[(z —a) —p@, 1)) 7 ((w—a2)2+(y+h)?) =
’l)*(flj,y,t) — 79/ x/(x ,t) — dx/.
=)+ (y— o', )] 7

The integral for u* converges since the integrand is O(|2/[37%) as |2/| — oo, while
the integral for v* converges since we assume that @,/ (2/,t) = O(|a’|~(@~1+5)) as
|#’| = oo for some 8 > 0.

Let x = (x, p(z,t)) be a point on the front and denote by

1
nx,t) = —————(— x,t),1
(08) = s (nlet) 1)
the unit upward normal to I'(¢) at x. The motion of the front is determined by
the normal velocity u - n, so the front y = p(z,t) moves with the upward normal
velocity
Pt

VIt o2

Using the previous expressions for u, we therefore get that

u-n-=

wi(x,t)
_@/ %xw polat) pu(®1) —do
+y =@, 1))?] 7 [(z—a)?+ (pla,t) + h)?] 7
- @c; \go(;v,t) + 1" (b
= O (x,t) + Ix(x,t) + I3(z, 1)),

where
We can express Is as a Fourier multiplier. Note that I = 0 if ¢ = 1, and if
o(z) = " with £ # 0, then

) 1— i&(z' —x) 1
Ir(x) = ife’gm/ c Tr — | da’
R| lz—2P7  ((@)2+1)7"

0 CE (s2+1)="
Using the identity

/OOO L — L a] ds = Vi (55°) (1= le|*), (72)

(2 4+ 1) (s2+¢2)*3" ol (1-9)
with ¢ = 1/[¢|, the change of variable s’ = |{|s, and identities for generalized
hypergeometric functions, we get that
IF (1 a)
T-3)
where A is given in (5). It follows that

VL (55%)
(- 5)

Iy(z) = XA 2 JjeettT iA§|§|1_aei5$,

I, = — Pz — A|ax|17a¢r
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For I5, we find after some algebra and the use of(72) that
\FI‘ (1 a)
r(1-%)

Putting everything together, we get the contour dynamics equation for GSQG
(1 < a < 2) fronts

pe(w,t) + OA0, | pa(x, 1)

xt) P (', 1) %@,t)—soz/(xat)} .
-0 - O dz’ =0,
/ { (@ =o'+ —e@.n)?) ™ =2

which is equivalent to (4). This equation also agrees with the result obtained in
[25] by a regularization method.

IS S oy Pz

Appendix B. Symbol estimates. The symbol T,, is defined in (12).

Proposition B.1. Assumen > 1, ji,j2, - ,jan+1 € Z, and j1 = -+ 2 jon1-
||Tn(7]1a 2, 7T]2n+1)¢j1 (771)%'2 (772) o 7/’j2n+1 (772n+1)||8°°
< 2(2—(1)4j2+j3+"'+j27L+1 (]_ + ln n) (73)

Ham Tn (7717 N2,y 772n+1)'l/}j1 (771)%'2 (772) T wj2n+1 (772n+1) ||S°°
9(2—a)ja+is++iznt1 (1 +1In Tl), =1,
< 9(2—a)jz+jat-+jant1 (1+1Inn), =2, (74)
9(2—a)jz+js+-+iznt1—it (I1+1Inn), 1=3,---,2n+1.
When ji1 > j2 > -+ > jony1, and j1 > 0,

IHTn(m1,m2, s M2ns1) — T + -+ N2nt1,m2, s M2ng1)]

: wjl (771)%‘2 (772) T ¢j2n+l (772n+1) ||S°°
‘ 2n+1 )
Sn27 [ 201+ 205952), (75)
i=2
where § > 0 is a small constant.

Proof. To prove (73), we have

‘F71 [T (7717 e 77I2n+1)¢j1 (771) o ¢j2n+1 (772714-1)]
21’L+1 7,7“4)

= l( ooty n H — a—1
—// e [/ <2n+1 <l sgn<d<]

Yy, (771) T wj2n+1 (772n+1) dmy -+ dnanygr
(eiylm —e'm (C+y1)) .. (eiy2n+1?72n+1 _ einzn+1(C+y2n+1)) 4
- J e ]

1/}11 771) ¢J2n+1 (772n+1)d771 d'r]2n+1
-/ |<|2n+2 2 P alln) = F 7 Wal )] (77 Wil n)

[¢j2n+1](< + y2n+1)] d¢.
We observe that for any [ =1, -+ ,2n + 1,

|7 i) (y) = F i )¢+ y)| = 27 [ F ol (27y) — F ol (27 (¢ + )|
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and
J1F ) = F )0 ¢ )] d S ming2 i 1) (70)
Taking the L'-norm, we obtain
H]:_I[Tn(ﬁh Mg 1)V (M) - Vs (M2ng1)] HL1
S [ e min{2"[¢], 1)+ min{2 2 1} ¢
R [¢[PH2e

2n

1 ) ‘
S 7(2]l+1|<|)...(2]2n+1‘<|)d€
;/2_'jl<c<2jl+1 |C|2"+2—a
+/ #(231|C|)...(2]2n+1‘<~|)d<+/ ¥d§
[¢|<2—01 |¢|2n+2-a I¢|>2-d2n+1 [EEERC
2n
N 12(1 @)z 37 gttt l j a(z(l—am _ gti-ctmn)
1=2
¥2J‘2n+1(2n+170‘)
2n+1—a

< 9=zt Hiznti (1 | Inp),

where Inn comes from the estimate of Zl 21— a, which grows as the same rate as
harmonic series.
To prove (74), we have

00 T, M2 1)y, (1) - Vs (M2n41)]
[0 —emt) o
= // Wit Ay2nt1m2n41) l/ J JC2n+1 (—iCe nzC)|<| 1Sgn§d<
R2n+1

%1 771 %zn+1 (772n+1) dny -+ dnap4

// / wWim 6“71 (C‘Hﬂ)) im((+yz) . (eiy2n+1n2n+1 _ ei772n+1(C+y2n+1))
R2n+1

Wdc Vi (M) Vg M2nt1) Ay - -+ dnanga

/ ‘C|2n+1 @ 71[1/)1'1](3/1) - ‘Fﬁl[wjl}(c + yl)} T (]_-71[1%](( + yl)) T
[¢j27L+1](y2n+1) _1 [1/)3‘27L+1](C + 92n+1)] dC
Observe that
| F i) (e + Q)| = 27 [ F~ ol (27 (wi + Q)] »
and
/|]—‘ 1@ ¢+ u))| du S 1.
Therefore, by using (76), we obtain

| F = 0 T (1, -+ s M2 1) 5 (1) - g (M2 1)] || s
2n+1

/|<|2n+1 P H min{27*[¢|, 1} d¢

k=1,k#l
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2(2=)jattiant1(1 4 Inn), =1,
< 9(2—a)jz+-+jant1 (1+1nn), =2,
9(2—a)ja+-+jant1—0 (1 +1n n), l#£1,2

which leads to (74).
To prove (75), we have

F o U(Tnlm, - m2ng1) = Tu(r 4+ M2ng1, o T2ng1)) W50 (M) -+ Vi pr (T2n41)]

_ // ei(y1771+-~-+y2n+1712n+1)
R2n+1

H2”+1 _ anC)(eiC(n1+'-'+n2n+1) _ 6“71() .
[ / I¢|*"sgn¢d¢

¢antl

P (M) Yigppr (M2ng1) dmy - -+ dnanga
//2 N [/ K‘Qn%&fa (eiy2772 _ einz(C-‘ryz)) L. (eiy2n+17lzn+1 _ ein2n+1(4+yzn+1))
R27m R

. (eiC(W2+-<-+ﬂ2n+1) _ 1)ein1(<+y1) dC] gy (1) - - ¢j27l+1 (772n+1) dni -+ dngnsa
. . . ) 1

(ely2”72 _ e”lz(C-‘ryz)) L (ely2n+1772n+1 _ emzn+1(C+y2n+1))

/.y G

i 1 i
. (e Cmz2+-+n2nt1) _ 1)Wa<6 1 (¢C+y1) d(} oy, (771) .. 1/,].2”“ (772n+1) dni - -+ dneni1
1

1 . . . )
p) (ely2772 _ e”lz(C-‘ryz)) . (elyzn+1n2n+1 _ 6”12n+1(C+y2n+1))
//R?n+1 [/uza C<|C|2”+2a

. (e C(nzt-+n2n+1) _ 1)6 1 (C+y1) dC] w];fnl) . 'wj2n+1 (772n+1) dny -+ dnons1,

where

(€22 — eim2(CHy2)) L (eWant1mznts _ giant1(Chyantn))(gi(n2t-+n2nt1) _ )

¢ [EGERC

2n+1
= Z | |2 — ety2nz _ ein2(<+yz)) .. (_imez’m(g.t,_yl)) o
C n-+ oc
. (ezy2n+17lzn+1 _ 6"72"“(C+y2"+1))(eiC(Ti2+"'+ﬂ2n+1) _

1
+ ‘<|2n+27o¢

(il +--- n2n+1)ei(7(772+"'+772n+1))

(eiyznz _ einz(C+yz)) . (eiy2n+1nzn+1 _ ein2n+1(c+yzn+1))

1 %
C‘C|2n+2fa (6 Y212

. (eiy2n+1712n+1 _ ein2n+1(<+y2n+l))(eic("'l2+"‘+772n+1) _ 1)

—(2n+2—-a) in2(<+yz))

— €

2n-+1

Z I, + 11 + IIL
=2

Then we estimate each term separately. We split each term into the large || part
and the small || part. For [ =2,--- 2n+ 1,

i 15, (0
// [/ Letm(ctu) dC] W (n) 1)%2 (M2) = Wiy (M2ng1) dnr - -+ dnj2ng1
R2n+1 R m
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= //Rzn+1 |:/]R Il?/](<)eiﬁl(c+yl) dC:| %717(’71)%2 (772) wjszrl (772n+1) dny ---

d772n+1
+//R?"+1 {/R (1 —w(g))eim@ﬂn)dc] Z¢gl(771)wj2( )

’(/}J2n+1 (n2n+1) d771 e d772n+1-

For the large || part, when the integral is on the support of 1 —1(¢), we don’t need
to use the cancellation in the numerator of I; to estimate the symbol. So, we have

//RM+1 /R L(1 ¢(g))6im(c+y1)dc] Z%l(m)wh( )

’ wj2n+1 (772"-1-1) dnl to d772n+1

1 i ) )
— = (mWat) _ gim2(2CHy2) ) . L (g etm (20U L
//]RZ"+1 _/R |C|2n+27a( )+ (—im )

(ein2n+l(y2n+1+<) _ eiﬂ2n+1(2C+y2n+1)) (1 - "/J(C))@im (C+y1) dC] g, (m)

m
’ w]é (772) e ¢j2n+1 (7I2n+1) d771 t d772n+1

1 . , . ,
_ 7(6”’2"‘*1"2"‘” _ e”]zn-H(<+y2n+1))(61y2?72 _ 81772(C+y2))
o i
.. (_imeim(4+yl)) .. (eiy2n+1n2n+1 _ ein2n+1(4+y2n+1)) . (1 _ w(o)eim(c-&-yl) dc}

z%;’(m)wh( 2) Dy (Tnr) gy -+ Aoy
= / %;ﬂi(i)]_——1[%17](1771)]@ + 1) (F ) (2 + €) — F ) (y2 +2¢)) -+

F = s, (m))(2¢ + 1) -+
(‘F_l[z/}j27L+1](y2n+1 + C) - ‘F_l[,(/)j27L+l](y2n+1 + 2C)) dC

_ / U W))f—l[‘”ﬁn ﬁ””](c 1) (F7H 3] (2) = F ) + ) -+

|<|2n+27a
F_l[’?lel (771)}(( + yl) T (F_l[wj2n+1}(y2n+1) - F_1[¢j2n+1](y2n+1 + C)) dC

By (76),
| / / [ / L1 = p(Q)erm ) dc} ’W‘”%z( )
: wj2n+1 (772n+1) dny - d772n+1’ I
2n+1
Sz | ( [T minf2' |, 1}) ERE L
1=2,i#l
< ittt
Similarly,

H//Rzm {/Rll(l—¢(<))eim(<+y1)d<} wm(m)%( -
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) ¢jzn,+1 (N2n1) dnr -+ dnapyr

Lt
< 9—jitjzttiantr

H JL [ fma v ac] BBy, )

' ¢j2n+1 (n2n+1) dfh t d772n+1

1
< 27j1+2j2+j3+“‘+j2n+1
N .

For the small |{] part,

im ¢ty g0 Wan(m)
‘//R URWO” ' dé} L0 )

! ¢j2n+1 (772n+1) d771 e d772n+1

1 i(x 1932 e 231
— ¢ 161+ Fzontr1€2n41) 1— 612 &¢y .. Y i29gcy |
H//R%“ [/R |¢|]2n+2-a ( ) ( e )

) (1 . €i2j2n+1 §2n+14)(eiC(2j2§2+"'+2j2”+1 Eant1) 1)w(<)612j151< dC]

i (61)
2116,

Po(&2) -+ - Yo (€ant1) d&r - - - déanyr

Ly
// ll ‘2 1 _ ei(z2§2+...+x2n+1£2n+1)(1 . ei2j2£24) . (72-21':,&61%“) o
R27 C n+2—a

(11— eizﬂ‘n“£2n+1<)(eiC(21252+"'+2h"+152"“) - 1)¢(C)]

— 971

']:5_11 [%(51)} (21 +27¢) - Yo(&2) - Yo(&ons1) AC A& -+ - déonya

&1 o
Denote the cone K; as {(z1, - ,@2nt1 | || > |(z1, - @i—1,0, 2141, -, T2ny1)|}
2n+1
Then R*"*! = |J K;. For L' norm of the function f(z1,---,%2,41), we have the
=1
following bound.
£ = [ 1fene s mma)lder - doann
]R‘ n+
2““ \/ + 951 (1+ x2n+1) |9Cl|6
/ |f($1,"' ,$2n+1)|d$1"' dwon 1
=1 YKy (L4 a) - (14 23,,) - o]d
2n+1
< Z (1 + I%) e (1 + I%n+1) : |Il|6|f(zla T 7x2n+1)|

=1 oo
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1
/ day - -- d$2n+1
KiyJ(L+a3) - (L4 ad, ) - [l
2n+1
S WA+ (a3, ) el zap)l|
=1 Lo

where 6 > 0 is a small constant. Therefore,

‘//Rzn+1 [/R Izw(C)eim(Cﬂl)dC] - Wj;#%z(m) “ WYigiq (N2ngr) dmy - -+ dn2ngr

L1
2n+1 . | N
< 27 J1 Z / 82 1/2 (1 _ 8522,L+1)1/2|8Ek|§ |:(1 N ei2J2§ZC) o (*'L'2JL€1612”51<)

i272n 1 i¢(27 y292n )
(1—e 272 Jrl52"+1<)|C|2nﬁ (e C(292€0+- 427204160, 1 1) D)ho(&2) - - -
Yollnra) || Hf»il [M} (@ +270)|  $(0)d¢

Ll & L,
E/

where £ = (&2, ,€2n41). Since L. norm is translation invariant,

H {% &)

@20

1
LI1

is bounded by a constant independent of ¢ and j;. Considering the support of ({),
we have

(L= 2) % (1=, )10, 1° {(1 — 280y (Lihig ety L

i272n 1 ic(29 ...q9i2n
(1—e 2d2 +1£2n+16) REREes (e C(292&+-+272n+1gy, 1) Dvo(&2) - - ¢0(§2n+1)}
Lé,
2n+1 ) ) )
S I 2+ 2@+ 272)(¢1* 2 + 1),
=2
Thus we obtain
i 1 )5
[ [uw@emcomac] - 2y ) - s
r2n+1 |JR m 1
2n+1
5 91 H 2]‘1(1 + 2(1+5)J'2).
i=2

Similarly,

H//1R+ URIIuJ(g)eimcwl)dC} 'W%(%)m

: wj2n+1 (7727L+1) d771 T d772n+1

2
2n+1

< 9—J1 H 2ji(1 + 2(1-&-5)]}1)’

=2
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H // [/ III¢(<)ein1(C+y1) d¢| - M¢j2 (no) - -
R2n+1 LJR m

' wj2n+1 (n2n+1) dTh to d772n+1
I
2n+1
5 9=J1 H 2ji(1+2(1+6)ji)'
1=2
This leads to (75).

Lemma B.2. If |j; — j3| > 1 and m € N, then

1 P
X . . < 2m(a71)m1n{]1,]3}'
(Im[t=o— |7’]3|1—04)me (M), (02)1b55 (n3) oo

Proof. Notice that on the support of ¥, (1)1, (12), (n3),
e U e P

By the definition of the S*°-norm (9) and the definition of ¢y, (6), we have that
‘ wjl (771 sz (772)%‘3 (773)

(Ima=e = [n3]t=>)™ || goo

_ H/ w;l M 1/’32(772)1%3(773) et Wim+y2na+ysns)
R3

(I [*=e = [ [T=)
- /L.

/ Yo (277 )0 (2772 n2) 0 (27 m3)
R3
< 2m a—1) m1n{]17j3}

dmy dnz dnz

ns

e (Wim+yana+ysns) dmy dn dns| dy

(Im [t~ = [ng|t =)™

where the last inequality comes from using oscillatory integral estimates, together
with the facts that the support of v is (—8/5,—5/8) U (5/8,8/5) and |j1 — j3| >
1. O
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