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Abstract. We prove the global existence of solutions with small and smooth

initial data of a nonlinear dispersive equation for the motion of generalized
surface quasi-geostrophic (GSQG) fronts in a parameter regime 1 < α < 2,

where α = 1 corresponds to the SQG equation and α = 2 corresponds to the

incompressible Euler equations. This result completes previous global well-
posedness results for 0 < α ≤ 1. We also use contour dynamics to derive the

GSQG front equations for 1 < α < 2.

1. Introduction. The inviscid generalized surface quasi-geostrophic (GSQG) equa-
tion is a two-dimensional transport equation for an active scalar

θt(x, t) + u(x, t) · ∇θ(x, t) = 0, (1)

(−∆)α/2u(x, t) = ∇⊥θ(x, t), (2)

where 0 < α ≤ 2 is a parameter. Here, the scalar field θ : R2 × R+ → R is
transported by the divergence-free velocity u : R2 ×R+ → R2, which is determined
nonlocally from θ by (2), x = (x, y) is the spatial variable, ∇⊥ = (−∂y, ∂x), and
(−∆)α/2 is a fractional Laplacian. When α = 2, equations (1)–(2) correspond to
the streamfunction-vorticity formulation of the two-dimensional incompressible Eu-
ler equations [41]. When α = 1, these equations are the surface quasi-geostrophic
(SQG) equation, which arises from oceanic and atmospheric science [40, 44] and has
mathematical similarities with the three-dimensional incompressible Euler equa-
tions [8, 9].

The transport equation (1) is compatible with piecewise-constant solutions for
θ, and the simplest class of such solutions is obtained when θ takes on two distinct
values. As in [28], we distinguish between different geometries. We refer to patch
solutions when one of the values is 0 and the support of θ is a simply connected,
bounded set whose boundary is a simple closed curve; we refer to front solutions
when the two different values of θ are taken on in half-spaces whose common bound-
ary is a curve, or front, with infinite length. In this paper we consider front solutions.
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The advantage of these solutions over patch solutions is that their boundary geome-
try is simpler, especially when the front can be represented as a graph, although the
lack of compact support in θ introduces additional complications in the formulation
of front equations.

Smooth and analytic solutions for spatially periodic SQG fronts are proved to be
locally well-posed in [18, 45], and almost-sharp SQG fronts are studied in [10, 17,
19, 20]. Global C1,ε regularity of the spatially periodic Euler fronts is proved in [4].
Contour dynamics equations for GSQG fronts with 0 < α < 1 are straightforward
to derive because the standard potential representation for u converges even though
θ does not have compact support, and Cordoba et. al. [11] prove that flat planar
fronts are asymptotically stable in that case. However, the same derivation does not
work when 1 ≤ α ≤ 2 because the Riesz potential [46, 47] for (−∆)−α/2 decays too
slowly at infinity for the straightforward potential representation of u to converge.

A derivation of front contour dynamics equations for 1 ≤ α ≤ 2 by a regular-
ization procedure is given in [25], and the same equations are derived in [29] for
SQG fronts with α = 1 by decomposing the velocity field into a planar shear flow
and a perturbation due to the front motion with an absolutely convergent poten-
tial representation. We provide a similar derivation of GSQG front equations with
1 < α < 2 in the appendix of the present paper. A derivation for Euler fronts with
α = 2 is given in [24]. The local well-posedness of a cubically nonlinear approxi-
mation for SQG fronts is proved in [26], and flat planar SQG fronts are shown to
be globally asymptotically stable in [1, 27]. A similar idea is also used in proving
globally asymptotically stability of the quasi-geostrophic shallow water front [48].
A related two-front GSQG problem is studied in [28].

This paper is concerned with the regime 1 < α < 2. We assume that the front
is a graph y = φ(x, t) and study piecewise-constant distributional solutions of the
GSQG equations (1)–(2) with

θ(x, t) =

{
θ+ if y > φ(x, t),

θ− if y < φ(x, t),
(3)

where θ+, θ− are distinct constants. The graph assumption greatly simplifies the
evolution equation for the front, but it does not describe wave-breaking or filamen-
tation of the front. However, for the small-slope fronts we study in this paper, we
will prove that wave-breaking never occurs.

In Appendix A, we show that for 1 < α < 2 the front location satisfies the
evolution equation

φt(x, t) + ΘA|∂x|1−αφx(x, t) =

−Θ

∫
R
[φx(x, t)− φx(x+ ζ, t)]

{
1

|ζ|2−α
− 1

(ζ2 + [φ(x, t)− φ(x+ ζ, t)]2)(2−α)/2

}
dζ,

(4)

where |∂x|1−α denotes the Fourier multiplier with symbol |ξ|1−α, and

Θ = gα(θ+ − θ−), A = 2 sin
(πα

2

)
Γ(α− 1), gα =

Γ(1− α/2)

2απΓ(α/2)
. (5)

Our main result, stated in Theorem 4.1, is that the Cauchy problem on R for the
GSQG front equation (4) with sufficiently small and smooth initial data has smooth
solutions globally in time. Together with [11] for 0 < α < 1 and [27] for α = 1,
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this completes the proof of asymptotic stability of planar GSQG fronts in the entire
range 0 < α < 2.

Our proof follows the ones in [11, 27] with improvements on the regularity re-
quirement of the initial data by means of a more detailed analysis of the nonreso-
nant and resonant interactions of the high-frequency components in Section 7.3 and
Section 7.5. These high-frequency components were previously controlled using a
cruder high-order Sobolev energy estimate, which required a large value of s.

A similar reduction in s could be made to our previous result for SQG fronts [27],
where we took s = 1200. These results are still not optimal, and Ai and Avadanei
have recently proved low-regularity results for the SQG [2] and GSQG [3] front
equations.

The GSQG front equation is of order 2 − α for α ̸= 1, and in making standard
Sobolev energy estimates we can gain one derivative by use of a Kato-Ponce com-
mutator estimate [38]. For α ∈ (0, 1) the fractional derivative loss is greater than
1, and for the SQG case α = 1 there is a logarithmic loss of derivatives. To control
this loss, we need to use a weighted energy, which can be constructed by means of
para-differential calculus. In the current case, when α ∈ (1, 2), the order of deriva-
tive loss is less than one, and standard Sobolev energy estimates suffice. Thus, in
contrast to [11, 27] with α ∈ (0, 1], we do not need to construct a weighted energy,
and para-differential calculus is not required.

The linear part of the equation provides t−1/2 decay for the L∞-norm of the
solution, but this is not sufficient to close the global energy estimates for the full
equation, since the O(t−1) contribution from the cubically nonlinear term is not
integrable in time. We therefore use the method of space-time resonances introduced
by Germain, Masmoudi and Shatah [21, 22, 23], together with estimates for weighted
L∞
ξ -norms — the so-called Z-norms — developed by Ionescu and his collaborators

[11, 12, 13, 33, 34, 35, 36].
We remark that the Euler front equations with α = 2 are nondispersive [5, 25],

and — in the absence of dispersive decay — one cannot expect to get global smooth
solutions. In that case, numerical solutions of the full contour dynamics equations
[14] indicate that the graphical description of the front may fail in finite time, after
which the front breaks and forms extremely thin filaments, similar to the ones that
are observed in patches [15].

The rest of the paper is organized as follows. In Section 2, we review results from
Fourier analysis and state some estimates for multilinear Fourier integral operators.
In Section 3, we carry out a multilinear expansion of the nonlinearity in (4) and
discuss the structure of the equation, which enables us to derive improved energy
estimates. In Section 4, we state the main global theorem and outline the steps in
the proof of the theorem. Finally, in Sections 5–7 we provide the proofs of each
step.

2. Preliminaries. In this section, we summarize some notations and lemmas that
we will use below.

We denote the Fourier transform of f : R → C by f̂ : R → C, where f̂ = Ff is
given by

f(x) =

∫
R
f̂(ξ)eiξx dξ, f̂(ξ) =

1

2π

∫
R
f(x)e−iξx dx.

For s ∈ R, we denote by Hs(R) the space of Schwartz distributions f with ∥f∥Hs <
∞, where
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∥f∥Hs =

[∫
R
(1 + ξ2)s|f̂(ξ)|2 dξ

]1/2
.

Throughout this paper, we use A ≲ B to mean there is a constant C such that
A ≤ CB, and A ≳ B to mean there is a constant C such that A ≥ CB. We remark
that the constant C may depend on α. We use A ≈ B to mean that A ≲ B and
B ≲ A. The notation Ø(f) denotes a term satisfying

∥Ø(f)∥Hs ≲ ∥f∥Hs

whenever there exists s ∈ R such that f ∈ Hs. We also use O(f) to denote a term
satisfying |O(f)| ≲ |f | pointwise.

Let ψ : R → [0, 1] be a smooth function supported in [−8/5, 8/5] and equal to 1
in [−5/4, 5/4]. For any k ∈ Z, we define

ψk(ξ) = ψ(ξ/2k)− ψ(ξ/2k−1), ψ≤k(ξ) = ψ(ξ/2k), ψ≥k(ξ) = 1− ψ(ξ/2k−1),

ψ̃k(ξ) = ψk−1(ξ) + ψk(ξ) + ψk+1(ξ),

(6)

and denote by Pk, P≤k, P≥k, and P̃k the Fourier multiplier operators with sym-

bols ψk, ψ≤k, ψ≥k, and ψ̃k, respectively. Notice that ψk(ξ) = ψ0(ξ/2
k), ψ̃k(ξ) =

ψ̃0(ξ/2
k), and

∥ψk∥L2 ≈ 2k/2, ∥ψ′
k∥L2 ≈ 2−k/2. (7)

Using this notation, we define the dyadic components of a function φ by

φk = Pkφ, φ̂k = ψkφ̂. (8)

The proof of the following interpolation lemma can be found in [36].

Lemma 2.1. For any k ∈ Z and f ∈ L2(R), we have

∥P̂kf∥2L∞ ≲ ∥Pkf∥2L1 ≲ 2−k∥f̂∥L2
ξ

[
2k∥∂ξ f̂∥L2

ξ
+ ∥f̂∥L2

ξ

]
.

Next, we state an estimate for multilinear Fourier multipliers proved in [35].
Define a class S∞ of symbols by

S∞ = {κ : Rm → C | κ is continuous and ∥κ∥S∞ <∞} ∥κ∥S∞ = ∥F−1(κ)∥L1 ,
(9)

and given κ ∈ S∞, define a multilinear operator Mκ acting on Schwartz functions
f1, . . . , fm ∈ S(R) by

Mκ(f1, . . . , fm)(x) =

∫
Rm

eix(ξ1+···+ξm)κ(ξ1, . . . , ξm)f̂1(ξ1) · · · f̂m(ξm) dξ1 · · · dξm.

Lemma 2.2. (i) If κ1, κ2 ∈ S∞, then κ1κ2 ∈ S∞.
(ii) Suppose that 1 ≤ p1, . . . , pm ≤ ∞, 1 ≤ p ≤ ∞, satisfy

1

p1
+

1

p2
+ · · ·+ 1

pm
=

1

p
.

If κ ∈ S∞, then

∥Mκ∥Lp1×···×Lpm→Lp ≲ ∥κ∥S∞ .

(iii) Assume p, q, r ∈ [1,∞] satisfy 1/p + 1/q + 1/r = 1, and m ∈ S∞
η1,η2

L∞
ξ .

Then, for any f ∈ Lp(R), g ∈ Lq(R), and h ∈ Lr(R),
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R2

m(η1, η2, ξ)f̂(η1)ĝ(η2)ĥ(ξ − η1 − η2) dη1 dη2

∥∥∥∥
L∞

ξ

≲ ∥m∥S∞
η1,η2

L∞
ξ
∥f∥Lp∥g∥Lq∥h∥Lr .

We define a Ba,b semi-norm by

∥f∥Ba,b =
∑
j∈Z

(2aj + 2bj)∥Pjf∥L∞ . (10)

Here 0 ≤ a ≤ b and a, b are indices of higher and lower frequencies. Compared with
the L∞ norm, Ba,b satisfies one property not shared with the L∞ norm, that is

∥f∥Ba,b ≈
∑
j∈Z

∥Pjf∥Ba,b .

When a = b, we write the semi-norm as Ba := Ba,a for short.

3. Structure of the equation and energy estimate. In this section, we derive
an a priori energy estimate for the GSQG front equation. Local well-posedness
then follows by standard arguments for quasi-linear evolution equations [32, 37],
similar to the ones in [27] for local solutions of the SQG front equation.

When 1 < α < 2, standard SobolevHs-energy estimates for (4) follow in a similar
way to the ones proved in [28] for the two-front GSQG equations. The result is that

d

dt
∥φ(t)∥2Hs ≲ P (∥φ(t)∥2Hs)

for s ≥ 4, where P is a smooth, nonnegative, increasing function.
In this section, we use a dyadic frequency decomposition to prove an improved

energy estimate:

d

dt
∥φ(t)∥2Hs ≲ ∥φ(t)∥2Hs

∞∑
n=1

(
cn∥φ∥2nB2−α,2+δ

)
,

where s > 5/2 and 0 < δ < s − 5/2, in which case Hs is continuously embedded
in B2−α,2+δ. We will prove the time decay of the B2−α,2+δ-norm in the following
sections, and use it to prove global existence.

Without loss of generality, we fix Θ = −1 in the following.
Assuming that |φx| ≪ 1, we first carry out a multilinear expansion of the non-

linear term, in a similar way to [11, 27]. Omitting the details, we find by a Taylor
expansion that (4) can be written as

φt(x, t)−A|∂x|1−αφx(x, t) + ∂xN (φ) = 0, (11)

where N (φ) =
∞∑

n=1
N2n+1(φ), with

FN2n+1(φ)(ξ) =
cn

2n+ 1

∫∫
R2n

Tn(η1, · · · , η2n, ξ − η1 − · · · − η2n)φ̂(η1) · · · φ̂(η2n)

φ̂(ξ − η1 − · · · − η2n) dηn.

Here ηn = (η1, η2, . . . , η2n), and the symbol Tn is given by

Tn(η1, · · · , η2n+1) =

∫
R

∏2n+1
j=1

(
1− eiηjζ

)
ζ2n+1

|ζ|α−1sgn ζ dζ, cn =
Γ
(
α
2

)
Γ(n+ 1)Γ

(
α
2 − n

) .
(12)
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We have suppressed the dependence of φ̂(ξ, t) on t in the expression for FN2n+1 in
order to save space. We will use this convention in the whole paper.

By taking the dyadic decomposition of φ in (8) we get

FN2n+1(φ)(ξ) =
cn

2n+ 1

∑
j1,··· ,j2n+1∈Z

∫∫
R2n

Tn(η1, · · · , η2n, ξ − η1 − · · · − η2n)

· φ̂j1(η1) · · · φ̂j2n(η2n)φ̂j2n+1(ξ − η1 − · · · − η2n) dη1 · · · dη2n.

Since the symbolTn is a symmetric function, we can assume by a change of variables
that j1 ≥ j2 ≥ · · · ≥ j2n+1. We denote the summation over these ordered indices
by
∑
Q

, so that

FN2n+1(φ)(ξ) =
cn

(2n+ 1)

∑
Q

∫∫
R2n

Tn(η1, · · · , η2n, ξ − η1 − · · · − η2n)

· φ̂j1(η1) · · · φ̂j2n(η2n)φ̂j2n+1
(ξ − η1 − · · · − η2n) dη1 · · · dη2n.

For the higher-order energy estimate, we multiply the Fourier transform of (11)
by (1 + |ξ|2)s ¯̂φ(ξ, t), take the real part, and integrate with respect to ξ, to get

d

dt

∫
R

1

2
(1 + |ξ|2)s|φ̂(ξ, t)|2 dξ

=−
∞∑

n=1

cn
2n+ 1

i
∑
Q

∫∫
R2n+1

ξ(1 + |ξ|2)sTn(η1, · · · , η2n, ξ − η1 − · · · − η2n)

· φ̂j1(η1)φ̂j2(η2) · · · φ̂j2n(η2n)φ̂j2n+1(ξ − η1 − · · · − η2n)φ̂(−ξ) dη1 · · · dη2n dξ.

Furthermore, making the change of variables η2n+1 = η2n+1(η1) = ξ−η1−· · ·−η2n,
we get

d

dt

∫
R

1

2
(1 + |ξ|2)s|φ̂(ξ, t)|2 dξ

=−
∞∑

n=1

cn
2n+ 1

i
∑
Q

∫∫
R2n+1

ξ(1 + |ξ|2)s Tn(ξ − η2 − · · · − η2n+1, η2n, · · · , η2n+1)

φ̂j1(ξ − η2 − · · · − η2n+1)φ̂j2(η2) · · · φ̂j2n+1
(η2n+1)φ̂(−ξ) dη2 · · · dη2n+1 dξ. (13)

When j1 ≤ 0, all the frequencies are bounded. By Proposition B.1, the nonlinear
terms satisfy∣∣∣∣∣

∫∫
R2n+1

ξ(1 + |ξ|2)s Tn(ξ − η2 − · · · − η2n+1, η2n, · · · , η2n+1)

φ̂j1(ξ − η2 − · · · − η2n+1)φ̂j2(η2) · · · φ̂j2n+1
(η2n+1)φ̂(−ξ) dη2 · · · dη2n+1 dξ

∣∣∣∣∣
≲ 2j1+(2−α)j2+j3+···+j2n+1(1 + lnn)∥φj1∥L2∥φ∥L2∥φj2∥L∞ · · · ∥φj2n+1∥L∞ . (14)

When j1 > 0, we rewrite the symbol as

Tn(η1, · · · , η2n+1)

=−
∫
R
|ζ|α−1sgn ζ

∫
[0,1]2n+1

2n+1∏
j=1

iηje
iηjsjζ dsn dζ
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=− 2iΓ(α) sin

(
πα

2

) 2n+1∏
j=1

(iηj)

∫
[0,1]2n+1

∣∣∣∣ 2n+1∑
j=1

ηjsj

∣∣∣∣−α

sgn

( 2n+1∑
j=1

ηjsj

)
dsn

=− 2Γ(α− 1) sin

(
πα

2

)
|η1|1−α

2n+1∏
j=2

(iηj)

∫
[0,1]2n

∣∣∣∣1 + 2n+1∑
j=2

ηj
η1
sj

∣∣∣∣1−α

−
∣∣∣∣ 2n+1∑

j=2

ηj
η1
sj

∣∣∣∣1−α

dŝn

=T1−α
n (η1, · · · , η2n+1) +T≤−1

n (η1, · · · , η2n+1)

where sn = (s1, ŝn) = (s1, s2, . . . , s2n+1),

T1−α
n (η1, · · · , η2n+1) = −2Γ(α− 1) sin

(
πα

2

)
|η1|1−α

2n+1∏
j=2

(iηj),

T≤−1
n (η1, · · · , η2n+1) =− 2Γ(α− 1) sin

(
πα

2

)
|η1|1−α

2n+1∏
j=2

(iηj)

·
∫
[0,1]2n

∣∣∣∣1 + 2n+1∑
j=2

ηj
η1
sj

∣∣∣∣1−α

− 1−
∣∣∣∣ 2n+1∑

j=2

ηj
η1
sj

∣∣∣∣1−α

dŝn.

Here T≤−1
n (η1, · · · , η2n+1) is the lower-order symbol satisfying

∥T≤−1
n (η1, · · · , η2n+1)ψj1(η1) · · ·ψj2n+1(η2n+1)∥S∞ ≲ 2(−α)j1+2j2+j3+···+j2n+1 ,

and T1−α
n (η1, · · · , η2n+1) is a symbol of order (1 − α) with respect the highest

frequency

∥T1−α
n (η1, · · · , η2n+1)ψj1(η1) · · ·ψj2n+1(η2n+1)∥S∞ ≲ 2(1−α)j1+j2+j3+···+j2n+1 .

(15)

Therefore∣∣∣∣∣
∫∫

R2n+1

ξ(1 + |ξ|2)s T≤−1
n (ξ − η2 − · · · − η2n+1, η2n, · · · , η2n+1)

φ̂j1(ξ − η2 − · · · − η2n+1)φ̂j2(η2) · · · φ̂j2n+1
(η2n+1)φ̂(−ξ) dη2 · · · dη2n+1 dξ

∣∣∣∣∣
≲ 2(2s+1−α)j1+2j2+j3+···+j2n+1∥φj1∥L2∥φ∥L2∥φj2∥L∞ · · · ∥φj2n+1∥L∞ .

To estimate∣∣∣∣∣
∫∫

R2n+1

ξ(1 + |ξ|2)s T1−α
n (ξ − η2 − · · · − η2n+1, η2n, · · · , η2n+1)

φ̂j1(ξ − η2 − · · · − η2n+1)φ̂j2(η2) · · · φ̂j2n+1
(η2n+1)φ̂(−ξ) dη2 · · · dη2n+1 dξ

∣∣∣∣∣,
we use a symmetry argument, which is equivalent to a Kato-Ponce commutator
estimate carried out in frequency space. Interchanging the variables −ξ and ξ −
η2 − · · · − η2n+1, and then taking the average, we have∫∫

R2n+1

ξ(1 + |ξ|2)s T1−α
n (ξ − η2 − · · · − η2n+1, η2, · · · , η2n+1)
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φ̂j1(ξ − η2 − · · · − η2n+1)φ̂j2(η2) · · · φ̂j2n+1(η2n+1)φ̂(−ξ) dη2 · · · dη2n+1 dξ

=

∫∫
R2n+1

−(ξ − η2 − · · · − η2n+1)(1 + |ξ − η2 − · · · − η2n+1|2)s

·T1−α
n (−ξ, η2, · · · , η2n+1)

· φ̂j1(−ξ)φ̂j2(η2) · · · φ̂j2n+1(η2n+1)φ̂(ξ − η2 − · · · − η2n+1) dη2 · · · dη2n+1 dξ

=
1

2

∫∫
R2n+1

[
ξ(1 + |ξ|2)sT1−α

n (ξ − η2 − · · · − η2n+1, η2, · · · , η2n+1)

· ψj1(ξ − η2 − · · · − η2n+1)− (ξ − η2 − · · · − η2n+1)(1 + |ξ − η2 − · · · − η2n+1|2)s

·T1−α
n (−ξ, η2, · · · , η2n+1)ψj1(−ξ)

]
· φ̂j2(η2) · · · φ̂j2n+1

(η2n+1)φ̂(−ξ)φ̂(ξ − η2 − · · · − η2n+1) dη2 · · · dη2n+1 dξ.

We can split the symbol into three parts[
ξ(1 + |ξ|2)sT1−α

n (ξ − η2 − · · · − η2n+1, η2, · · · , η2n+1)ψj1(ξ − η2 − · · · − η2n+1)

− (ξ − η2 − · · · − η2n+1)(1 + |ξ − η2 − · · · − η2n+1|2)sT1−α
n (−ξ, η2, · · · , η2n+1)

ψj1(−ξ)
]

=
(
ξ(1 + |ξ|2)s − (ξ − η2 − · · · − η2n+1)(1 + |ξ − η2 − · · · − η2n+1|2)s

)
·T1−α

n (ξ − η2 − · · · − η2n+1, η2, · · · , η2n+1)ψj1(ξ − η2 − · · · − η2n+1)

+ (ξ − η2 − · · · − η2n+1)(1 + |ξ − η2 − · · · − η2n+1|2)sψj1(ξ − η2 − · · · − η2n+1)

·
(
T1−α

n (ξ − η2 − · · · − η2n+1, η2, · · · , η2n+1)−T1−α
n (−ξ, η2, · · · , η2n+1)

)
+ (ξ − η2 − · · · − η2n+1)(1 + |ξ − η2 − · · · − η2n+1|2)sT1−α

n (−ξ, η2, · · · , η2n+1)

·
(
ψj1(ξ − η2 − · · · − η2n+1)− ψj1(−ξ)

)
.

When writing it as the symbol of a multilinear Fourier integral operator, we use η1
to replace ξ − η2 − · · · − η2n+1. By (15) and the algebraic property of S∞ norm,∥∥∥∥∥

(2n+1∑
i=1

ηi

)1 +

∣∣∣∣∣
2n+1∑
i=1

ηi

∣∣∣∣∣
2
s

− η1
(
1 + |η1|2

)s ·T1−α
n (η1, · · · , η2n, η2n+1)

ψj1(η1) · · ·ψj2n(η2n)ψj2n+1
(η2n+1)

∥∥∥∥∥
S∞

≲ (1 + 22sj1)2j22(2−α)j2+j3+···+j2n+1(1 + lnn).

Since the symbol T1−α
n is real, and it is an even function with η1, i.e.

T1−α
n (η1, η2, · · · , η2n+1) = T1−α

n (−η1, η2, · · · , η2n+1),

we have∥∥∥∥∥η1 (1 + |η1|2
)s · (T1−α

n (η1, η2, · · · , η2n+1)−T1−α
n (−

2n+1∑
i=1

ηi, η2, · · · , η2n+1)
)

· ψj1(η1) · · ·ψj2n(η2n)ψj2n+1
(η2n+1)

∥∥∥∥∥
S∞
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=
∥∥∥η1(1 + |η1|2)s ·

(
T1−α

n (η1, η2, · · · , η2n+1)−T1−α
n (

2n+1∑
i=1

ηi, η2, · · · , η2n+1)
)

· ψj1(η1) · · ·ψj2n(η2n)ψj2n+1
(η2n+1)

∥∥∥
S∞

≲ n(1 + 22sj1)

2n+1∏
i=2

2ji(1 + 2(1+δ)j2),

where δ > 0 is arbitrarily small. Also, using ψ′
j1
(ξ) = 1

2j1
ψ′(ξ/2j1) and Proposition

B.1 we get∥∥∥η1(1 + |η1|2)sT1−α
n (−

2n+1∑
i=1

ηi, η2 · · · , η2n+1)ψj2(η2) · · ·ψj2n+1
(η2n+1)

·
(
ψj1(η1)− ψj1(−

2n+1∑
i=1

ηi)
)∥∥∥

S∞

≲ 22sj1+((2−α)j2+j3+···+j2n+1)(1 + lnn).

Combining the above estimates, we have∥∥∥∥∥∥
(

2n+1∑
i=1

ηi

)1 +

∣∣∣∣∣
2n+1∑
i=1

ηi

∣∣∣∣∣
2
s

Tn(η1, η2, · · · , η2n+1)ψj1(η1)

−(η1)(1 + |η1|2)sTn

(
−

2n+1∑
i=1

ηi, η2, · · · , η2n+1

)
ψj1

(
−

2n+1∑
i=1

ηi

)∥∥∥∥∥
S∞

≲ (1 + 22sj1)(2(2−α)j2 + 2(2+δ)j2)2(j3+···+j2n+1)n.

(16)
Therefore,∣∣∣∣ ∫∫

R2n+1

ξ(1 + |ξ|2)sTn(η1, · · · , η2n, ξ − η1 − · · · − η2n)

φ̂j1(η1)φ̂j2(η2) · · · φ̂j2n(η2n)φ̂j2n+1
(ξ − η1 − · · · − η2n)φ̂(−ξ) dη1 · · · dη2n dξ

∣∣∣∣
≲ n∥φj1∥2Hs∥(|∂x|2−α + |∂x|2+δ)φj2∥L∞

2n+1∏
i=3

∥∂xφji∥L∞ .

After taking the summation for integers j1 ≥ · · · ≥ j2n+1, we obtain

d

dt
∥φ(t)∥2Hs

≲ ∥φ(t)∥2Hs

∞∑
n=1

cn ∑
ji ∈ Z

i = 2, · · · , 2n + 1

∥(|∂x|2−α + |∂x|2+δ)φj2∥L∞

2n+1∏
i=3

∥∂xφji∥L∞


≲ ∥φ(t)∥2Hs

∞∑
n=1

(
cn∥φ∥2nB2−α,2+δ

)
, (17)

where δ > 0 is arbitrarily small.
Based on this improved energy estimate, we can summarize the theorem of local

well-posedness as following.
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Theorem 3.1. Let α ∈ (1, 2). Assume the initial data φ0 ∈ Hs(R) with s > 5
2 ,

and ∥φ0∥B2−α,2+δ < 1 for any 0 < δ < s− 5/2. Then there exists a positive number
T , such that the Cauchy problem (4) with the initial data φ0 has a unique solution
φ(x, t) in C([0, T );Hs(R)).

4. Global solution for small initial data. From now on, we choose the following
parameter values

1 < α < 2, s >
7

2
+

3

2
α, s− 1 ≥ r ≥ 0,

positive numbers p0 and δ satisfying:

0 < δ ≤ 1

3
(s− 7

2
− 3

2
α)− 4

3
p0(s+

3

4
α− 1

2
), p0 <

0.005
2α
s−5 + α

4(α−1)

, and p0 <
1

3

α− 1

α+ 1
,

γl =
α

2
, γh = 2 +

α

2
+ 2δ.

(18)
One possible choice, for example, is s = 7, r = 0, δ = 10−4, p0 = 10−4(α− 1).

We denote by

S = (2− α)t∂t + x∂x (19)

the scaling vector field that commutes with the linearization of the GSQG front
equation (11), φt = A∂x|∂x|1−αφ.

Theorem 4.1 (Main theorem). Let s, r, p0 be defined as in (18). There exists
0 < ε≪ 1 such that if 0 < ε0 ≤ ε and φ0 ∈ Hs(R) satisfies

∥φ0∥Hs + ∥x∂xφ0∥Hr ≤ ε0,

then there exists a unique global solution φ ∈ C([0,∞);Hs(R)) of (4) with initial
condition φ|t=0 = φ0. Moreover, this solution satisfies

∥φ(t)∥Hs + ∥Sφ(t)∥Hr ≲ ε0(t+ 1)p0 ,

where S is the vector field in (19).

This theorem is a consequence of local existence and the following bootstrap
result involving a Z-norm of the solution, which we define for a function f ∈ Hs(R)
by

∥f∥Z =
∥∥∥(|ξ|γl + |ξ|γh)f̂(ξ)

∥∥∥
L∞

ξ

, (20)

where γl and γh are defined in (18). This definition of the Z-norm comes from
the B2−α,2+δ norm in the energy estimates and the linear dispersive estimate (21)
below. In the definition, we choose |ξ|γl as a weight for low frequencies and |ξ|γh

for high frequencies.

Proposition 4.2 (Bootstrap). Let T > 1 and suppose that φ ∈ C([0, T ];Hs(R)) is
a solution of (4), where the initial data satisfies

∥φ0∥Hs + ∥x∂xφ0∥Hr ≤ ε0

for some 0 < ε0 ≪ 1. If there exists ε0 ≪ ε1 ≲ ε
1/3
0 such that the solution satisfies

(t+ 1)−p0 (∥φ(t)∥Hs + ∥Sφ(t)∥Hr ) + ∥φ(t)∥Z ≤ ε1

for every t ∈ [0, T ], then the solution satisfies an improved bound

(t+ 1)−p0 (∥φ(t)∥Hs + ∥Sφ(t)∥Hr ) + ∥φ(t)∥Z ≤ ε0.
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We call the assumptions in Proposition 4.2 the bootstrap assumptions. To prove
Proposition 4.2, we need the following lemmas, most of whose proofs are deferred
to the next sections.

Lemma 4.3 (Sharp pointwise decay). Under the bootstrap assumptions,

∥φ(t)∥B2−α,2+δ ≲ ε1(t+ 1)−1/2 for 0 ≤ t ≤ T .

Lemma 4.4 (Scaling vector field estimate). Under the bootstrap assumptions,

(t+ 1)−p0∥Sφ(t)∥Hr ≲ ε0 for 0 ≤ t ≤ T .

Lemma 4.5 (Nonlinear dispersive estimate). Under the bootstrap assumptions, the
solutions of (11) satisfies

∥φ(t)∥Z ≲ ε0 for 0 ≤ t ≤ T .

Proposition 4.2 then follows by combining the energy estimate (17) and Lemmas
4.3–4.5.

5. Sharp dispersive estimate. In this section, we prove Lemma 4.3. We first

state a dispersive estimate for the linearized evolution operator eAt∂x|∂x|1−α

. This
estimate is similar to ones in [11, 27] and we omit the proof. We recall that Pk is
the frequency-localization operator with symbol ψk defined in (6).

Lemma 5.1. Let t > 0 and f ∈ L2(R). Then

∥eAt∂x|∂x|1−α

Pkf∥L∞ ≲ (t+ 1)−1/22αk/2∥P̂kf∥L∞
ξ

+ (t+ 1)−3/42(3α/4−1)k
[
∥Pk(x∂xf)∥L2 + ∥P̃kf∥L2

]
.

(21)

Using this lemma, we are able to complete the proof of Lemma 4.3.

Proof of Lemma 4.3. We observe that it suffices to bound the terms∑
k≤0

∥∥2k(2−α)Pkφ
∥∥
L∞ and

∑
k>0

∥∥2k(2+δ)Pkφ
∥∥
L∞ .

We also introduce the notation

h(x, t) = e−At∂x|∂x|1−α

φ(x, t), ĥ(ξ, t) = e−iAtξ|ξ|1−α

φ̂(ξ, t) (22)

for the function h obtained by removing the action of the linearized evolution group
on φ. By (11),

F [x∂xh](ξ, t) = −ĥ(ξ, t)− ξ∂ξĥ(ξ, t),

ξ∂ξĥ(ξ, t) = ξe−iAtξ|ξ|1−α (
−i(2− α)At|ξ|1−αφ̂(ξ, t) + ∂ξφ̂(ξ, t)

)
= e−iAtξ|ξ|1−α

(
−(2− α)tφ̂t(ξ, t)− (2− α)itξN̂ (ξ, t) + ξ∂ξφ̂(ξ, t)

)
= e−iAtξ|ξ|1−α

(
−Ŝφ(ξ, t)− φ̂(ξ, t)− (2− α)itξN̂ (ξ, t)

)
,

(23)

where S is defined in (19), and

N (x, t)

=

∞∑
n=1

cn
2n+ 1

∫
R2n+1

Tn(ηn)φ̂(η1, t)φ̂(η2, t) · · · φ̂(η2n+1, t)e
i(η1+η2+···+η2n+1)x dηn
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denotes the nonlinear term of (11). It follows from (23) that

Fx[x∂xh](ξ, t) = −e−iAtξ|ξ|1−α
(
Ŝφ(ξ, t) + (2− α)itξN (φ̂(ξ, t))

)
.

We observe that in view of Proposition B.1, the nonlinear term N satisfies∥∥|∂x|j∂xN∥∥L2 ≲
∞∑

n=1

C(n, s)∥φ∥B2−α,1∥φ∥2n−1
B1 ∥φ∥Hj+1 for j = 0, . . . , r. (24)

Since eAt∂x|∂x|1−α

and Pk commute, and x∂xh = ∂x(x∂xh)− ∂xh, by Lemma 5.1
we have that

∥Pk|∂x|2−αφ∥L∞ ≲ (t+ 1)−1/22(2−
α
2 −γl)k∥F(Pk|∂x|γlφ)∥L∞

ξ

+ (t+ 1)−3/42(1−
α
4 )k
[
∥Pk(x∂xh)∥L2 + ∥P̃k(φ)∥L2

]
. (25)

It follows from (23) that

∥Pk(x∂xh)∥L2 ≲ ∥Pkφ∥L2 + ∥PkSφ∥L2 + t∥PkN∥L2 .

We first observe that k ≤ 0 automatically implies (t+1)−1/4+p02(1−
α
4 )k ≲ 1, and

then we have

∥Pk|∂x|2−αφ∥L∞ ≲(t+ 1)−1/22δk∥ψk(ξ)|ξ|γl φ̂(ξ)∥L∞
ξ

+ (t+ 1)−1/2−p0 [∥P̃kφ∥L2 + ∥PkSφ∥L2 + t∥PkN∥L2 ].

Thus, summing over k ≤ 0, using (24) and the bootstrap assumption, we find that∑
k≤0

∥∥|∂x|2−αPkφ
∥∥
L∞ ≲ ε1(t+ 1)−1/2.

Now we turn to ∥Pk|∂x|2+δφ∥L∞ when k > 0. It follows from Lemma 5.1 that

∥Pk|∂x|2+δφ∥L∞ ≲ (t+ 1)−1/22−δk∥F(Pk|∂x|γhφ)∥L∞
ξ

+ (t+ 1)−3/42(1+δ+3α/4)k[∥Pk(x∂xh)∥L2 + ∥Pk(φ)∥].

If k ∈ N and (t+ 1)−1/4+p02(1+δ+3α/4)k ≲ 1, then

∥Pk|∂x|2+δφ∥L∞ ≲ (t+ 1)−1/22−δk∥ψk(ξ)|ξ|γh φ̂(ξ)∥L∞
ξ

+ (t+ 1)−1/2−p0 [∥P̃kφ∥L2 + ∥PkSφ∥L2 + t∥PkN∥L2 ].
(26)

Finally, if k ∈ N and (t + 1)−1/4+p02(1+δ+3α/4)k ≳ 1, then 2−(1+δ+3α/4)k ≲ (t +
1)−1/4+p0 . In this case, we have

∥Pk|∂x|2+δφ∥L∞ ≲ ∥|ξ|2+δψk(ξ)φ̂(ξ)∥L1
ξ
≲ ∥|ξ|2+δ−sψk(ξ)∥L2∥Pkφ∥Hs

≲ 2−(s− 3
2−δ)k∥Pkφ∥Hs ≲ (t+ 1)−

1
2−p0∥Pkφ∥Hs ,

(27)

where we have used the fact that
s− 3

2−δ

1+δ+3α/4 (
1
4 − p0) ≥ 1

2 + p0, which can be verified

from (18).
Using the bootstrap assumptions, the estimate (24), and summing (26) and (27)

in the corresponding ranges of k, we obtain that∑
k>0

∥∥Pk|∂x|2+δφ
∥∥
L∞ ≲ ε1(t+ 1)−1/2,

which concludes the proof.
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6. Scaling vector field estimate. In this section, we prove the scaling vector
field estimate in Lemma 4.4. A direct calculation gives the following commutator
identities.

Lemma 6.1. Let φ(x, t) be a Schwartz distribution on R2 such that |∂x|1−αφ(x, t)
is a Schwartz distribution and S the vector field (19). Then

[S, ∂x]φ = −∂xφ, [S, |∂x|1−α∂x]φ = −(2− α)|∂x|1−α∂xφ,

[S, ∂t]φ = −(2− α)∂tφ, [S, ∂t −A|∂x|1−α∂x]φ = −(2− α)(∂t −A|∂x|1−α∂x)φ.

We now prove the scaling vector field estimate.

Proof of Lemma 4.4. Act S to equation (11), by Lemma 6.1,

∂tSφ−A|∂x|1−α∂xSφ+ ∂xSN (φ)− ∂xN (φ) = (2− α)(∂t −A|∂x|1−α∂x)φ

= −(2− α)∂xN (φ).

To estimate ∥Sφ∥Hr , we need to estimate∫
iξ(1 + |ξ|2)rF [N (φ)](ξ, t)F [Sφ](−ξ, t) dξ

and ∫
iξ(1 + |ξ|2)rF [SN (φ)](ξ, t)F [Sφ](−ξ, t) dξ.

By the symbol estimates Proposition B.1, we obtain the estimate of the first integral:∣∣∣∣∫ (1 + |ξ|2)rF [∂xN (φ)](ξ, t)F [Sφ](−ξ, t) dξ
∣∣∣∣

≲
∞∑

n=1

cn

 ∑
ji ∈ Z

i = 2, · · · , 2n + 1

∥|∂x|2−αφj2∥L∞

2n+1∏
i=3

∥∂xφji∥L∞

 ∥φ∥Hr+1∥Sφ∥Hr .

(28)

To estimate the second integral, we notice∫
iξ(1 + |ξ|2)rF [SN (φ)](ξ, t)F [Sφ](−ξ, t) dξ

=

∫
iξ(1 + |ξ|2)r[(2− α)t∂tN̂ − ∂ξ(ξN̂ )]F [Sφ](−ξ, t) dξ

=

∫
iξ(1 + |ξ|2)r[(2− α)t∂tN̂ − ξ∂ξN̂ ]F [Sφ](−ξ, t) dξ

−
∫
iξ(1 + |ξ|2)rN̂F [Sφ](−ξ, t) dξ.

Denote the operator Ŝ := (2−α)t∂t− ξ∂ξ. Notice that the Fourier transform of Sφ
is

FSφ = (2− α)t∂tφ̂+ i∂ξ(iξφ̂) = (2− α)t∂tφ̂− ∂ξ(ξφ̂) = (Ŝ − 1)φ̂.

So the integral to be estimated is written as∫
iξ(1 + |ξ|2)rF [SN (φ)](ξ, t)F [Sφ](−ξ, t) dξ

=

∫
iξ(1 + |ξ|2)rŜN̂ (ξ)

(
[Ŝφ̂](−ξ)− φ̂(−ξ)

)
dξ −

∫
iξ(1 + |ξ|2)rN̂F [Sφ](−ξ) dξ,
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where the second term satisfies the same estimate as (28). Then we estimate the
first term.

Since

ξ∂ξ

∫∫
R2n

Tn(η1, · · · , η2n, ξ − η1 − · · · − η2n)φ̂(η1) · · · φ̂(η2n)φ̂(ξ − η1 − · · · − η2n) dηn

=

∫∫
R2n

ξ∂ξTn(η1, · · · , η2n, ξ − η1 − · · · − η2n)φ̂(η1) · · · φ̂(η2n)

· φ̂(ξ − η1 − · · · − η2n) dηn

+

∫∫
R2n

Tn(η1, · · · , η2n, ξ − η1 − · · · − η2n)φ̂(η1) · · · φ̂(η2n)(ξ − η1 − · · · − η2n)

· ∂ξφ̂(ξ − η1 − · · · − η2n) dηn

+

∫∫
R2n

Tn(η1, · · · , η2n, ξ − η1 − · · · − η2n)η1∂η1 φ̂(η1) · · · φ̂(η2n)

φ̂(ξ − η1 − · · · − η2n) dηn + · · ·

+

∫∫
R2n

ξ∂ξTn(η1, · · · , η2n, ξ − η1 − · · · − η2n)φ̂(η1) · · · η2n∂η2n φ̂(η2n)

· φ̂(ξ − η1 − · · · − η2n) dηn

+

∫∫
R2n

(η1∂η1 + · · ·+ η2n∂η2n)Tn(η1, · · · , η2n, ξ − η1 − · · · − η2n)φ̂(η1) · · · φ̂(η2n)

· φ̂(ξ − η1 − · · · − η2n) dηn,

then we have

ŜN̂2n+1(φ)(ξ)

=
cn

2n+ 1

∫∫
R2n

Tn(η1, · · · , η2n, ξ − η1 − · · · − η2n)[Ŝφ̂(η1)]φ̂(η2) · · · φ̂(η2n)

· φ̂(ξ − η1 − · · · − η2n) dηn + · · ·

+
cn

2n+ 1

∫∫
R2n

Tn(η1, · · · , η2n, ξ − η1 − · · · − η2n)φ̂(η1)φ̂(η2) · · · φ̂(η2n)

· [Ŝφ̂(ξ − η1 − · · · − η2n)] dηn

+
cn

2n+ 1

∫∫
R2n

[η2n+1∂2n+1Tn](η1, · · · , η2n, ξ − η1 − · · · − η2n)φ̂(η1)φ̂(η2) · · · φ̂(η2n)

· φ̂(ξ − η1 − · · · − η2n) dηn

= cn

∫∫
R2n

Tn(η1, · · · , η2n, ξ − η1 − · · · − η2n)[Ŝφ̂(η1)]φ̂(η2) · · · φ̂(η2n)

· φ̂(ξ − η1 − · · · − η2n) dηn (29)

+
cn

2n+ 1

∫∫
R2n

[η2n+1∂2n+1Tn](η1, · · · , η2n, ξ − η1 − · · · − η2n)φ̂(η1)φ̂(η2) · · · φ̂(η2n)

· φ̂(ξ − η1 − · · · − η2n) dηn,

where the last equality is from the symmetry of Tn.
Then we estimate∫

iξ(1 + |ξ|2)rŜN̂2n+1(φ)(ξ)[Ŝφ̂](−ξ) dξ,

which can be written as two parts by (29). The first part is similar as the estimate
of (13). We split the symbol Tn as T1−α

n (η1, · · · , η2n+1) + T≤−1
n (η1, · · · , η2n+1).



2612 JOHN K. HUNTER, JINGYANG SHU AND QINGTIAN ZHANG

The lower-order term satisfies∣∣∣∣∣
∫∫

R2n+1

iξ(1 + |ξ|2)rT≤−1
n (η1, · · · , η2n, ξ − η1 − · · · − η2n)

· [Ŝφ̂(η1)]φ̂(η2) · · · φ̂(η2n)φ̂(ξ − η1 − · · · − η2n)[Ŝφ̂](−ξ) dηn dξ

∣∣∣∣∣
≲ ∥Ŝφ̂∥2Hr

∞∑
n=1

cn ∑
ji ∈ Z

i = 2, · · · , 2n + 1

∥∂2xφj2∥L∞

2n+1∏
i=3

∥∂xφji∥L∞

 .

By symmetrization of T1−α
n and the fact that T1−α

n is even with respect to its
highest frequency, the integral related to the first part of (29) can be written as∫∫

R2n+1

iξ(1 + |ξ|2)rT1−α
n (η1, · · · , η2n, ξ − η1 − · · · − η2n)

· [Ŝφ̂(η1)]φ̂(η2) · · · φ̂(η2n)φ̂(ξ − η1 − · · · − η2n)[Ŝφ̂](−ξ) dηn dξ

= −
∫∫

R2n+1

iη1(1 + |η1|2)rT1−α
n (−ξ, · · · , η2n, ξ − η1 − · · · − η2n)

· [Ŝφ̂](−ξ)φ̂(η2) · · · φ̂(η2n)φ̂(ξ − η1 − · · · − η2n)[Ŝφ̂](η1) dηn dξ

=
i

2

∫∫
R2n+1

[
ξ(1 + |ξ|2)rT1−α

n (η1, · · · , η2n, ξ − η1 − · · · − η2n)

− η1(1 + |η1|2)rT1−α
n (ξ, · · · , η2n, ξ − η1 − · · · − η2n)

]
· [Ŝφ̂(η1)]φ̂(η2) · · · φ̂(η2n)φ̂(ξ − η1 − · · · − η2n)[Ŝφ̂](−ξ) dηn dξ.

After taking dyadic decomposition and using the symbol estimate (16), we obtain∣∣∣∣∣
∫∫

R2n+1

iξ(1 + |ξ|2)rT1−α
n (η1, · · · , η2n, ξ − η1 − · · · − η2n)

· [Ŝφ̂(η1)]φ̂(η2) · · · φ̂(η2n)φ̂(ξ − η1 − · · · − η2n)[Ŝφ̂](−ξ) dηn dξ

∣∣∣∣∣
≲ ∥Ŝφ̂∥2Hr

∞∑
n=1

cn ∑
ji ∈ Z

i = 2, · · · , 2n + 1

∥|∂x|2−αφj2∥L∞

2n+1∏
i=3

∥∂xφji∥L∞

 .

Then we estimate the second part of (29). By Proposition B.1, the integral
related to the second part of (29) is bounded by∣∣∣∣∣

∫∫
R2n+1

iξ(1 + |ξ|2)r[η2n+1∂2n+1Tn](η1, · · · , η2n, ξ − η1 − · · · − η2n)

· φ̂(η1)φ̂(η2) · · · φ̂(η2n)φ̂(ξ − η1 − · · · − η2n)[Ŝφ̂](−ξ) dηn dξ

∣∣∣∣∣
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≲ (1 + lnn)∥Ŝφ̂∥Hr∥φ∥Hr+2

 ∑
ji ∈ Z

i = 2, · · · , 2n + 1

∥|∂x|2−αφj2∥L∞

2n+1∏
i=3

∥∂xφji∥L∞

 .

Combining the above estimate, we obtain

d

dt
∥Sφ∥2Hr ≲ (∥Ŝφ̂∥Hr + ∥φ∥Hr+1)∥Sφ∥Hr

∞∑
n=1

(
cn∥φ∥B2−α,2+δ∥φ∥2n−1

B1

)
.

By Gronwall’s inequality, under the bootstrap assumption, this leads to Lemma
4.4.

7. Nonlinear dispersive estimate. In this section, we prove the estimate

(|ξ|γl + |ξ|γh)|φ̂(ξ, t)| ≲ ε0 for all ξ ∈ R, (30)

which establishes Lemma 4.5 for the Z-norm ∥φ∥Z defined in (20). We recall that
we use the parameter values given in (18).

This section is organized as follows. Using Lemma 2.1, we first prove in Sec-
tion 7.1 that the estimate (30) holds for sufficiently large and small |ξ|. In Sec-
tion 7.2, we introduce a logarithmic phase shift into the solution which is used later
to absorb the effects of the space-time resonances. The main part of the section is
a detailed analysis of the nonresonant and resonant interactions between different
Fourier components of the solution, which is carried out in Sections 7.3–7.6.

To classify the cubic resonances between frequencies ξ − η1 − η2, η1, η2 into ξ,
where ξ, η1, η2 ∈ R, we introduce the phase

Φ(ξ, η1, η2) = (ξ − η1 − η2)|ξ − η1 − η2|1−α + η1|η1|1−α + η2|η2|1−α − ξ|ξ|1−α. (31)

The space resonances satisfy ∂η1
Φ = ∂η2

Φ = 0, which implies that the frequencies
ξ − η1 − η2, η1, η2 have the same linearized group velocity. It is straightforward to
check that the only space resonances are

(ξ − η1 − η2, η1, η2) = (−ξ, ξ, ξ), (ξ,−ξ, ξ), or (ξ, ξ,−ξ), (32)

(ξ − η1 − η2, η1, η2) =

(
ξ

3
,
ξ

3
,
ξ

3

)
. (33)

The time resonances satisfy Φ = 0, which implies that the time-frequencies of
ξ − η1 − η2, η1, η2 are in resonance with the time-frequency of ξ. This condition
is satisfied by the resonances (32), which are space-time resonances, but not by
(33), which is a space resonance. There are additional time resonances of the form
ξ = ξ−η+η, but they are not space resonances for ξ ̸= η, so they require no further
analysis.

7.1. Large and small frequencies. When |ξ| < (t + 1)−
p0

α−1 , Lemma 2.1, the
bootstrap assumptions, Lemma 4.4, and the conservation of the L2-norm of φ give

|(|ξ|γl + |ξ|γh)φ̂(ξ, t)|2 ≲ (|ξ|γl + |ξ|γh)2|ξ|−1∥φ̂∥L2
ξ
(∥|ξ|∂ξĥ∥L2

ξ
+ ∥φ̂∥L2

ξ
)

≲ |ξ|α−1∥φ∥L2(∥Sφ∥L2 + ∥φ∥L2)

≲ ε20.
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Let p1 = 2p0

s+1−2γh
. When |ξ| > (t+ 1)p1 , Lemma 2.1 and the bootstrap assump-

tions give

|(|ξ|γl + |ξ|γh)φ̂(ξ, t)|2 ≲
(|ξ|γl + |ξ|γh)2

|ξ|s+1
∥φ∥Hs(∥Sφ∥L2 + ∥φ∥L2)

≲ |ξ|2γh−s−1ε20(t+ 1)2p0

≲ ε20.

Thus, we only need to consider the frequency range

(t+ 1)−p0 ≤ |ξ| ≤ (t+ 1)p1 . (34)

In the following, we fix ξ in this range and denote by d(ξ, t) a smooth cut-off function
such that

d(ξ, t) = 1 on
{
(ξ, t) | (t+ 1)−p0 ≤ |ξ| ≤ (t+ 1)p1

}
,

d(ξ, t) is supported on a small neighborhood of{
(ξ, t) | (t+ 1)−p0 ≤ |ξ| ≤ (t+ 1)p1

}
.

(35)

7.2. Modified scattering. In this subsection, we introduce a phase shift to ac-
count for the modified scattering of the solution and carry out a dyadic decompo-
sition of the cubic term. Taking the Fourier transform of (11), we obtain that

φ̂t(ξ, t) + iA′ξ

∫∫
R2

T′
1(η1, η2, ξ − η1 − η2)φ̂(ξ − η1 − η2, t)φ̂(η1, t)φ̂(η2, t) dη1 dη2

+ N̂≥5(φ)(ξ, t) = iAξ|ξ|1−αφ̂(ξ, t),

(36)

where A′ = −A/(6(3− α)) and

T′
1(η1, η2, η3) =

(2− α)(3− α)

A
T1(η1, η2, η3)

=|η1|3−α + |η2|3−α + |η3|3−α + |η1 + η2 + η3|3−α − |η1 + η2|3−α − |η1 + η3|3−α

− |η2 + η3|3−α, (37)

N≥5(φ)(x, t)

=

∞∑
n=2

cn
2n+ 1

∂x

∫
R2n+1

Tn(ηn)φ̂(η1, t)φ̂(η2, t) · · · φ̂(η2n+1, t)e
i(η1+η2+···+η2n+1)x dηn.

Here

T1(η1, η2, η3) =

∫
R

∏3
j=1

(
1− eiηjζ

)
ζ3

|ζ|α−1sgn ζ dζ

=

∫
R

1

|ζ|4−α

(
1− eiη1ζ − eiη2ζ − eiη3ζ + ei(η1+η2)ζ + ei(η1+η3)ζ + ei(η2+η3)ζ

− ei(η1+η2+η3)ζ
)
dζ

=

∫
R

1

|ζ|4−α

[
(1− eiη1ζ) + (1− eiη2ζ) + (1− eiη3ζ) + (ei(η1+η2)ζ − 1)

+ (ei(η1+η3)ζ − 1) + (ei(η2+η3)ζ − 1) + (1− ei(η1+η2+η3)ζ)
]
dζ.

(38)
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To evaluate these integrals, we consider∫
R

1

|ζ|4−α
(1− eibζ) dζ = |b|3−α

∫
R

1− cos ζ

|ζ|4−α
dζ. (39)

The integral on the right-hand side of (39) is given by∫
R

1− cos ζ

|ζ|4−α
dζ =

2

α− 3

∫ ∞

0

(1− cos ζ) dζα−3.

Since α ∈ (1, 2), an integration by parts and use of the expression in (5) for A gives∫
R

1− cos ζ

|ζ|4−α
dζ = − 2

α− 3

∫ ∞

0

ζα−3 sin ζ dζ

= − 2

α− 3
Γ(α− 2) sin

(1
2
π(α− 2)

)
=

2

(α− 3)(α− 2)
Γ(α− 1) sin

(1
2
πα
)

=
A

(α− 3)(α− 2)
, (40)

where the second step follows from the formula ([43] Chapter 5, equation (5.9.7))∫ ∞

0

tz−1 sin tdt = Γ(z) sin
(1
2
πz
)
, −1 < ℜz < 1.

Then (37) follows from (38)–(40).

From (36), we find that ĥ(ξ, t) = e−iAtξ|ξ|1−α

φ̂(ξ, t) defined in (22) satisfies

ĥt(ξ, t)+

iA′ξ

∫∫
R2

T′
1(η1, η2, ξ − η1 − η2)e

iAtΦ(ξ,η1,η2)ĥ(ξ − η1 − η2, t)ĥ(η1, t)ĥ(η2, t) dη1 dη2

+ e−iAtξ|ξ|1−α

N̂≥5(φ)(ξ, t) = 0,

(41)

where Φ is defined in (31).
We define the following phase correction

Θ(ξ, t)

=
2πA′ξ|ξ|α

(α− 1)(2− α)A
[T′

1(ξ, ξ,−ξ) +T′
1(ξ,−ξ, ξ) +T′

1(−ξ, ξ, ξ)]
∫ t

0

|φ̂(ξ, τ)|2

τ + 1
dτ,

(42)

which accounts for a cumulative frequency shift from the nonlinearity in the long-
time behavior of the Fourier components of the solution due to space-time reso-
nances of the form ξ = ξ + ξ − ξ. This phase correction is generic in cubically non-
linear dispersive equations and grows logarithmically in time (cf. [11, 30, 31, 35]).
We then let

v̂(ξ, t) = eiΘ(ξ,t)ĥ(ξ, t).

Using this expression in (41) and (42), we obtain that

v̂t(ξ, t)

= eiΘ(ξ,t)[ĥt(ξ, t) + iΘt(ξ, t)ĥ(ξ, t)] = Û(ξ, t)− e−iAtξ|ξ|1−α

eiΘ(ξ,t)N̂≥5(φ)(ξ, t),

(43)
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where

Û(ξ, t) (44)

=eiΘ(ξ,t)

{
− iA′ξe−iAtξ|ξ|1−α

∫∫
R2

T′
1(η1, η2, ξ − η1 − η2)φ̂(ξ − η1 − η2, t)φ̂(η1, t)

φ̂(η2, t) dη1 dη2+

2πiA′ξ|ξ|
(α− 1)(2− α)A(t+ 1)

[T′
1(ξ, ξ,−ξ) +T′

1(ξ,−ξ, ξ) +T′
1(−ξ, ξ, ξ)] |ĥ(ξ, t)|2ĥ(ξ, t)

}
.

Then we get from (43) that

∥φ(t)∥Z = ∥v(0)∥Z +

∥∥∥∥∫ t

0

U(ξ, τ) dτ

∥∥∥∥
Z

+

∥∥∥∥∫ t

0

N≥5(ξ, τ) dτ

∥∥∥∥
Z

. (45)

We estimate U in Sections 7.3–7.5 and take care of the term involving N̂≥5(φ) in
Section 7.6.

Suppressing the dependence of φ and h on the time variable t, we write the first
integral in U in terms of h as

e−iAtξ|ξ|1−α

∫∫
R2

T′
1(η1, η2, ξ − η1 − η2)φ̂(ξ − η1 − η2)φ̂(η1)φ̂(η2) dη1 dη2

=

∫∫
R2

T′
1(η1, η2, ξ − η1 − η2)e

iAtΦ(ξ,η1,η2)ĥ(ξ − η1 − η2)ĥ(η1)ĥ(η2) dη1 dη2.

To carry out the dyadic decomposition, we let hj = Pjh and φj = Pjφ, where
Pj is the projection onto frequencies of order 2j with symbol ψj defined in (6), and
rewrite the integral in each dyadic block as∫∫

R2

T′
1(η1, η2, ξ − η1 − η2)e

iAtΦ(ξ,η1,η2)ĥj1(η1)ĥj2(η2)ĥj3(ξ − η1 − η2) dη1 dη2.

(46)

Without loss of generality, we assume j1 ≥ j2 ≥ j3. Denote the set P as all the
indices j1, j2, j3 ∈ Z, such that j1 ≥ j2 ≥ j3 with possible repetition. We split the
index set P into P1

⋃
P2, where P1 includes the indices satisfying j1 ≥ j2 ≥ j3

and j1 − j3 > 1, which correspond to nonresonant frequencies. P2 includes indices
satisfying j1 ≥ j2 ≥ j3 and j1 − j3 ≤ 1, which contains the resonant frequencies.

In the following subsections, we estimate this integral in various regions of
frequency-space. In Section 7.3, we estimate the non-resonant frequencies by in-
tegrating by part with respect to time variable. In Section 7.4, we use oscillatory
integral estimates to estimate the integral for near-resonant frequencies. In Sec-
tion 7.5, we estimate resonant frequencies, and, finally, in Section 7.6 we estimate
the higher-degree remainder term in (41).

7.3. Non-resonant frequencies. The frequencies are non-resonant if |j1−j3| > 1.

We recall that h is defined in (22) and the symbol ψ̃k is defined in (6). We will
estimate∥∥∥∥(|ξ|γl + |ξ|γh)ξ

∫ t

0

∫∫
R2

T′
1(η1, η2, ξ − η1 − η2)e

iAτΦ(ξ,η1,η2)ĥj1(η1)ĥj2(η2)

ĥj3(ξ − η1 − η2) dη1 dη2 dτ

∥∥∥∥
L∞

ξ

(47)

when |j1 − j3| > 1.
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Since

eiAτΦ(ξ,η1,η2) =
1

iAΦ(ξ, η1, η2)

[
∂τe

iτΦ(ξ,η1,η2)
]
,

we can integrate by parts with respect to τ ,∫ t

0

∫∫
R2

T′
1(η1, η2, ξ − η1 − η2)e

iAτΦ(ξ,η1,η2)ĥj1(η1)ĥj2(η2)ĥj3(ξ − η1 − η2) dη1 dη2 dτ

=

∫ t

0

∫∫
R2

T′
1(η1, η2, ξ − η1 − η2)

1

iAΦ(ξ, η1, η2)

[
∂τe

iτΦ(ξ,η1,η2)
]
ĥj1(η1)ĥj2(η2)

· ĥj3(ξ − η1 − η2) dη1 dη2 dτ

=

∫∫
R2

T′
1(η1, η2, ξ − η1 − η2)

1

iAΦ(ξ, η1, η2)
eiτΦ(ξ,η1,η2)ĥj1(η1)ĥj2(η2)

· ĥj3(ξ − η1 − η2) dη1 dη2

∣∣∣∣∣
t

τ=0

−
∫ t

0

∫∫
R2

T′
1(η1, η2, ξ − η1 − η2)

1

iAΦ(ξ, η1, η2)
eiτΦ(ξ,η1,η2)∂τ [ĥj1(η1)ĥj2(η2)

· ĥj3(ξ − η1 − η2)] dη1 dη2 dτ.

Since ∥∥∥∥ 1

Φ(η1 + η2 + η3, η1, η2)
ψj1(η1)ψj2(η2)ψj3(η3)

∥∥∥∥
S∞

≲ 2(α−1)j12−j2 ,

we have∥∥∥∥∥(|ξ|γl + |ξ|γh)ξ

∫∫
R2

T′
1(η1, η2, ξ − η1 − η2)

1

iAΦ(ξ, η1, η2)
eiτΦ(ξ,η1,η2)ĥj1(η1)

· ĥj2(η2)ĥj3(ξ − η1 − η2) dη1 dη2

∥∥∥∥∥
L∞

ξ

≲ (2γlj1 + 2γhj1)2αj1+(1−α)j2+j3∥φj1∥L2∥φj2∥L∞∥φj3∥L2

≲ ∥(2γlj1 + 2γhj1)2αj1φj1∥L2∥2(2−α)j2φj2∥L∞∥φj3∥L2 ,

and ∥∥∥∥(|ξ|γl + |ξ|γh)ξ

∫ t

0

∫∫
R2

T′
1(η1, η2, ξ − η1 − η2)

eiτΦ(ξ,η1,η2)

iAΦ(ξ, η1, η2)

∂τ [ĥj1(η1)ĥj2(η2)ĥj3(ξ − η1 − η2)] dη1 dη2 dτ
∥∥∥
L∞

ξ

≲
∫ t

0

(2γlj1 + 2γhj1)2αj1+(1−α)j2+j3
(
∥∂τhj1∥L2∥φj2∥L∞∥φj3∥L2

+ ∥φj1∥L2∥∂τhj2∥L2∥φj3∥L∞ + ∥φj1∥L2∥φj2∥L∞∥∂τhj3∥L2

)
dτ.

Notice that for any j ∈ Z,

∥∂thj∥L2 ≲ ∥ψj(D)∂xN∥L2 ≲
∞∑

n=1

∥φ∥2nB(2−α,1)∥2jφj∥L2 ≲ ε21(t+ 1)−1∥2jφj∥L2 .

Therefore∥∥∥∥(|ξ|γl + |ξ|γh)ξ

∫ t

0

∫∫
R2

T′
1(η1, η2, ξ − η1 − η2)

1

iAΦ(ξ, η1, η2)
eiτΦ(ξ,η1,η2)
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∂τ [ĥj1(η1)ĥj2(η2)ĥj3(ξ − η1 − η2)] dη1 dη2 dτ
∥∥∥
L∞

ξ

≲
∫ t

0

ε21(τ + 1)−1(2γlj1 + 2γhj1)2αj1
(
∥2j1φj1∥L2∥2(2−α)j2φj2∥L∞∥φj3∥L2

+ ∥φj1∥L2∥2(2−α)j2φj2∥L2∥2j3φj3∥L∞ + ∥φj1∥L2∥2(2−α)j2φj2∥L∞∥2j3φj3∥L2

)
dτ.

Taking a summation with respect to all non-resonant frequencies (j1, j2, j3), we
obtain∑

P1

(47) ≲ ∥φ∥2L∞
t Hs∥φ∥L∞

t B(2−α,1) +

∫ t

0

ε31(τ + 1)−1∥φ(τ)∥2Hs∥φ(τ)∥B(2−α,1) dτ

≲ ε31 ≲ ε0.

7.4. Near-resonant frequencies. The remaining dyadic blocks to consider are
when (j1, j2, j3) ∈ P2, i.e.

|j3 − j2| ≤ 1, |j3 − j1| ≤ 1. (48)

In this case, the integration region is divided into four disjoint sets in the (η1, η2)-
plane. We define cut-off functions υ±(η) by

υ+(η) =

{
1 if η ≥ 0,

0 if η < 0,
υ−(η) =

{
0 if η ≥ 0,

1 if η < 0.

The set of discontinuities of υ±(η1)υ±(η2), which is {(η1, η2) | η1 = 0 or η2 = 0}, is
disjoint from the integration region. Thus, the functions υ±(η1)υ±(η2) are equal to 1
on each connected branch of the support of the integrand in (46). Therefore, for each
j1, j2, and j3, we only need to estimate four integrals with different combinations
of + and − signs∫∫

R2

T1(η1, η2, ξ − η1 − η2)e
itΦ(η1,η2,ξ)ĥ±j1(η1)ĥ

±
j2
(η2)ĥj3(ξ − η1 − η2) dη1 dη2,

(49)

where ĥ±j (η) = ĥj(η)υ±(η).
In the following, we assume that ξ > 0. The case when ξ < 0 can be discussed

in the similar way.

The case of (−,−). When η1 < 0, η2 < 0, ξ > 0, we have |ξ−η1−η2| = ξ−η1−η2 >
0, thus

|Φ| ≳ 2(2−α)j1 .

This is the case away from resonances, whose estimate can be achieved in the same
way as in Section 7.3.

The case of (+,+). The space-time resonance (η1, η2) = (ξ, ξ) and the space reso-
nance (η1, η2) = (ξ/3, ξ/3) are both in the support of the integrand. By introducing
an additional cut-off function ψj1−3(η1 + η2 − 2ξ), we write the integral into two
parts: ∫∫

R2

T′
1(η1, η2, ξ − η1 − η2)e

iAtΦ(ξ,η1,η2)ĥ+j1(η1)ĥ
+
j2
(η2)ĥj3(ξ − η1 − η2)

ψj1−3(η1 + η2 − 2ξ) dη1 dη2,∫∫
R2

T′
1(η1, η2, ξ − η1 − η2)e

iAtΦ(ξ,η1,η2)ĥ+j1(η1)ĥ
+
j2
(η2)ĥj3(ξ − η1 − η2)
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[1− ψj1−3(η1 + η2 − 2ξ)] dη1 dη2,

where the first integral contains the space-time resonance (η1, η2) = (ξ, ξ) and the
second integral contains the space resonance (η1, η2) = (ξ/3, ξ/3). Then we estimate
these two integrals in the following.

We consider the partition of unity∑
(k1,k2)∈Z2

ψk1
(η1−ξ)ψk2

(η2−ξ) = 1 and
∑

(k3,k4)∈Z2

ψk3

(
η1−

ξ

3

)
ψk4

(
η2−

ξ

3

)
= 1.

Then we write the integrals with a finer dyadic decomposition as∫∫
R2

T′
1(η1, η2, ξ − η1 − η2)e

iAtΦ(ξ,η1,η2)ĥ+j1(η1)ĥ
+
j2
(η2)ĥj3(ξ − η1 − η2)

ψj1−3(η1 + η2 − 2ξ)ψk1
(η1 − ξ)ψk2

(η2 − ξ) dη1 dη2,

(50)

∫∫
R2

T′
1(η1, η2, ξ − η1 − η2)e

iAtΦ(ξ,η1,η2)ĥ+j1(η1)ĥ
+
j2
(η2)ĥj3(ξ − η1 − η2)

[1− ψj1−3(η1 + η2 − 2ξ)]ψk3

(
η1 −

ξ

3

)
ψk4

(
η2 −

ξ

3

)
dη1 dη2.

(51)

In this subsection, we introduce a decay function

ϱ1(t) = (t+ 1)−0.49, (52)

and restrict our attention to the following two near-resonant cases:

(i) max{k1, k2} ≥ log2[ϱ1(t)];

(ii) max{k3, k4} ≥ log2[ϱ1(t)].

The cases of max{k1, k2} < log2[ϱ1(t)] or max{k3, k4} < log2[ϱ1(t)], which in-
clude the resonant frequencies, will be discussed in Section 7.5.
Near space-time resonance.

We first estimate (50). Since the integrals are symmetric in η1 and η2, we can
assume without loss of generality that k2 ≥ k1. Using integration by parts, we write
the integral as∫∫

R2

T′
1(η1, η2, ξ − η1 − η2)

2(2− α)iAt(|η1|1−α − |ξ − η1 − η2|1−α)
∂η1

eiAtΦ(ξ,η1,η2)ĥ+j1(η1)ĥ
+
j2
(η2)

· ĥj3(ξ − η1 − η2)ψj1−3(η1 + η2 − 2ξ)

[
ψ≤k2(η1 − ξ)ψk2(η2 − ξ)

]
dη1 dη2,

= − V1 + V2 + V3 + V4
2i(2− α)At

,

where

V1(ξ, t) =

∫∫
R2

∂η1

[
T′

1(η1, η2, ξ − η1 − η2)

|η1|1−α − |ξ − η1 − η2|1−α

]
eiAtΦ(ξ,η1,η2)ĥ+j1(η1)ĥ

+
j2
(η2)

· ĥj3(ξ − η1 − η2)ψj1−3(η1 + η2 − 2ξ)ψ≤k2(η1 − ξ)ψk2(η2 − ξ) dη1 dη2,

V2(ξ, t) =

∫∫
R2

[
T′

1(η1, η2, ξ − η1 − η2)

|η1|1−α − |ξ − η1 − η2|1−α

]
eiAtΦ(ξ,η1,η2)∂η1 ĥ

+
j1
(η1)ĥ

+
j2
(η2)

· ĥj3(ξ − η1 − η2)ψj1−3(η1 + η2 − 2ξ)ψ≤k2
(η1 − ξ)ψk2

(η2 − ξ) dη1 dη2,
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V3(ξ, t) =

∫∫
R2

[
T′

1(η1, η2, ξ − η1 − η2)

|η1|1−α − |ξ − η1 − η2|1−α

]
eiAtΦ(ξ,η1,η2)ĥ+j1(η1)ĥ

+
j2
(η2)∂η1

· ĥj3(ξ − η1 − η2)ψj1−3(η1 + η2 − 2ξ)ψ≤k2
(η1 − ξ)ψk2

(η2 − ξ) dη1 dη2,

V4(ξ, t) =

∫∫
R2

[
T′

1(η1, η2, ξ − η1 − η2)

|η1|1−α − |ξ − η1 − η2|1−α

]
eiAtΦ(ξ,η1,η2)ĥ+j1(η1)ĥ

+
j2
(η2)

· ĥj3(ξ − η1 − η2)∂η1

[
ψj1−3(η1 + η2 − 2ξ)ψ≤k2(η1 − ξ)ψk2(η2 − ξ)

]
dη1 dη2.

Then we estimate V1 to V4. We first denote the symbol of V1 by

m(η1, η2, ξ − η1 − η2)

= ∂η1

[
T′

1(η1, η2, ξ − η1 − η2)

|η1|1−α − |ξ − η1 − η2|1−α

]
=

∂η1T
′
1(η1, η2, ξ − η1 − η2)

|η1|1−α − |ξ − η1 − η2|1−α

−T′
1(η1, η2, ξ − η1 − η2)(1− α)

|η1|−α − |ξ − η1 − η2|−α

(|η1|1−α − |ξ − η1 − η2|1−α)2
,

where we used the fact that η1 > 0, η2 > 0 and ξ − η1 − η2 < 0.
Noticing the cancellation of the factor (|η1| − |ξ − η1 − η2|) in the fraction
|η1|−α−|ξ−η1−η2|−α

(|η1|1−α−|ξ−η1−η2|1−α)2 , we have the symbol estimate∥∥∥∥∥ |η1|−α − |η3|−α

(|η1|1−α − |η3|1−α)2
ψj1(η1)ψj2(η2)ψj3(η3)υ+(η1)υ+(η2)

· ψ≤k2
(−η2 − η3)ψk2

(−η1 − η3)

∥∥∥∥∥
S∞

≲
2(−α−1)j12k2

[2−αj12k2 ]2
= 2(α−1)j1−k2 .

By Proposition B.1, we have∥∥∥∥∥m(η1, η2, η3)ψj1(η1)ψj2(η2)ψj3(η3)υ+(η1)υ+(η2)ψ≤k2
(−η2 − η3)ψk2

(−η1 − η3)

∥∥∥∥∥
S∞

≲ 2(3−α)j1 [2−αj12k2 ]−1 + 2(3−α)j12(α−1)j1−k2

= 2−k2(23j1 + 22j1).

Therefore,

∥V1∥L∞
ξ

≲ (23j1 + 22j1)2−k2∥φj1∥L2 ∥φj2∥L2 ∥φj3∥L∞ . (53)

Similarly we obtain the estimates for V2–V4 by using the above symbol estimates.

∥V2∥L∞
ξ

≲ 23j1−k2∥∂η1
ĥj1∥L2 ∥φj2∥L2 ∥φj3∥L∞ ,

∥V3∥L∞
ξ

≲ 23j1−k2∥φj1∥L∞ ∥φj2∥L2 ∥∂η3
ĥj3∥L2 ,

∥V4∥L∞
ξ

≲ 23j1−k2(2−k2 + 2−j1)∥ψ≤k2
(η1 − ξ)φ̂j1(η1)∥L2

η1
L∞

ξ

· ∥ψk2(η2 − ξ)φ̂j2(η2)∥L2
η2

L∞
ξ
∥φj3∥L∞

≲ 23j1−k2(2−k2 + 2−j1)2k2∥φ̂j1∥L∞
ξ
∥φ̂j2∥L∞

ξ
∥φj3∥L∞
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≲ [23j1−k2 + 22j1 ]∥φ̂j1∥L∞
ξ
∥φ̂j2∥L∞

ξ
∥φj3∥L∞ .

Finally, we take the summation over log2[ϱ1(t)] ≤ k2 ≤ j1 + 5 to get∥∥∥∥∥ξ(|ξ|γl + |ξ|γh)

∫ t

0

∫∫
R2

T′
1(η1, η2, ξ − η1 − η2)e

iAtΦ(ξ,η1,η2)ĥ+j1(η1)ĥ
+
j2
(η2)

· ĥj3(ξ − η1 − η2)ψj1−3(η1 + η2 − 2ξ)[ j1+5∑
k2=log2[ϱ1(τ)]

ψ≤k2(η1 − ξ)ψk2(η2 − ξ)

]
dη1 dη2 dτ

∥∥∥∥∥
L∞

ξ

≲
∫ t

0

1

τ + 1

[
max{2j1+5, ϱ1(τ)}(∥φj1∥Hs + ∥∂ξĥj1∥L2

ξ
)∥φj2∥L2∥φj3∥B(2−α),1

+max{2j1+5, ϱ1(τ)}∥φj1∥Z∥φj2∥Z∥φj3∥B2−α,2+δ

]
dτ.

(54)

Notice that ∥φ(t)∥B2−α,2+δ ≲ ε1(t+ 1)−1/2 from Lemma 4.3, so the right-hand-side
of above inequality is integrable. It is also summable with respect to j1, j2, j3 under
|j3 − j2| ≤ 1 and |j3 − j1| ≤ 1. By using the bootstrap assumption, we get∑

P2

(54) ≲ ε31 ≲ ε0.

Near space resonance. Next we estimate (51). Since the integrals are symmetric in
η1 and η2, we can assume without loss of generality that k4 ≥ k3. Using integration
by parts, we write the integral as∫∫

R2

T′
1(η1, η2, ξ − η1 − η2)

2(2− α)iAt(|η1|1−α − |ξ − η1 − η2|1−α)
∂η1

eiAtΦ(ξ,η1,η2)ĥ+j1(η1)ĥ
+
j2
(η2)

· ĥj3(ξ − η1 − η2)[1− ψj1−3(η1 + η2 − 2ξ)]

[
ψ≤k4

(
η1 −

ξ

3

)
ψk4

(
η2 −

ξ

3

)]
dη1 dη2,

= − W1 +W2 +W3 +W4

2i(2− α)At
,

where

W1(ξ, t)

=

∫∫
R2

∂η1

[
T′

1(η1, η2, ξ − η1 − η2)

|η1|1−α − |ξ − η1 − η2|1−α

]
eiAtΦ(ξ,η1,η2)ĥ+j1(η1)ĥ

+
j2
(η2)

· ĥj3(ξ − η1 − η2)[1− ψj1−3(η1 + η2 − 2ξ)]ψ≤k4

(
η1 −

ξ

3

)
ψk4

(
η2 −

ξ

3

)
dη1 dη2,

W2(ξ, t)

=

∫∫
R2

[
T′

1(η1, η2, ξ − η1 − η2)

|η1|1−α − |ξ − η1 − η2|1−α

]
eiAtΦ(ξ,η1,η2)∂η1

ĥ+j1(η1)ĥ
+
j2
(η2)

· ĥj3(ξ − η1 − η2)[1− ψj1−3(η1 + η2 − 2ξ)]ψ≤k4

(
η1 −

ξ

3

)
ψk4

(
η2 −

ξ

3

)
dη1 dη2,

W3(ξ, t)
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=

∫∫
R2

[
T′

1(η1, η2, ξ − η1 − η2)

|η1|1−α − |ξ − η1 − η2|1−α

]
eiAtΦ(ξ,η1,η2)ĥ+j1(η1)ĥ

+
j2
(η2)∂η1

· ĥj3(ξ − η1 − η2)[1− ψj1−3(η1 + η2 − 2ξ)]ψ≤k4

(
η1 −

ξ

3

)
ψk4

(
η2 −

ξ

3

)
dη1 dη2,

W4(ξ, t)

=

∫∫
R2

[
T′

1(η1, η2, ξ − η1 − η2)

|η1|1−α − |ξ − η1 − η2|1−α

]
eiAtΦ(ξ,η1,η2)ĥ+j1(η1)ĥ

+
j2
(η2)

· ĥj3(ξ − η1 − η2)∂η1

[
(1− ψj1−3(η1 + η2 − 2ξ))ψ≤k4

(
η1 −

ξ

3

)
ψk4

(
η2 −

ξ

3

)]
dη1 dη2.

Then we estimate W1 to W4. We first denote the symbol of W1 by

µ(η1, η2, ξ − η1 − η2)

=∂η1

[
T′

1(η1, η2, ξ − η1 − η2)

|η1|1−α − |ξ − η1 − η2|1−α

]
=
∂η1T

′
1(η1, η2, ξ − η1 − η2)

|η1|1−α − |ξ − η1 − η2|1−α

−T′
1(η1, η2, ξ − η1 − η2)(1− α)

|η1|−α + |ξ − η1 − η2|−α

(|η1|1−α − |ξ − η1 − η2|1−α)2
,

where we used the fact that η1 > 0, η2 > 0 and ξ − η1 − η2 > 0.
By Proposition B.1, we have

∥∥∥∥∥µ(η1, η2, η3)ψj1(η1)ψj2(η2)ψj3(η3)υ+(η1)υ+(η2)ψ≤k4

(
η1 −

η1 + η2 + η3
3

)

· ψk4

(
η2 −

η1 + η2 + η3
3

)∥∥∥∥∥
S∞

≲ 2(3−α)j1 [2−αj12k4 ]−1 + 2(3−α)j12−αj1 [2−αj12k4 ]−2

= 23j1−k4 + 23j1−2k4 = 23j1−k4(1 + 2−k4).

Therefore,

∥W1∥L∞
ξ

≲ 23j1−k4(1 + 2−k4)2k4∥φ̂j1∥L∞
ξ
∥φ̂j2∥L∞

ξ
∥φj3∥L∞

≲ 23j1(1 + 2−k4)∥φ̂j1∥L∞
ξ
∥φ̂j2∥L∞

ξ
∥φj3∥L∞ ,

∥W2∥L∞
ξ

≲ 23j1−k4∥∂ξĥj1∥L2 ∥φj2∥L2 ∥φj3∥L∞ ,

∥W3∥L∞
ξ

≲ 23j1−k4∥∂ξĥj3∥L2 ∥φj2∥L2 ∥φj1∥L∞ ,

∥W4∥L∞
ξ

≲ 23j1−k4(2−k4 + 2−j1)2k4∥φ̂j1∥L∞
ξ
∥φ̂j2∥L∞

ξ
∥φj3∥L∞

≲ (23j1−k4 + 22j1)∥φ̂j1∥L∞
ξ
∥φ̂j2∥L∞

ξ
∥φj3∥L∞ .



GSQG FRONT EQUATIONS 2623

Finally, we take the summation over log2[ϱ1(t)] ≤ k4 ≤ j1 + 5 to get∥∥∥∥∥ξ(|ξ|γl + |ξ|γh)

∫ t

0

∫∫
R2

T′
1(η1, η2, ξ − η1 − η2)e

iAtΦ(ξ,η1,η2)ĥ+j1(η1)ĥ
+
j2
(η2)

ĥj3(ξ − η1 − η2)[1− ψj1−3(η1 + η2 − 2ξ)]

·
[ j1+5∑
k4=log2[ϱ1(τ)]

ψk3

(
η1 −

ξ

3

)
ψk4

(
η2 −

ξ

3

)]
dη1 dη2 dτ

∥∥∥∥∥
L∞

ξ

≲
∫ t

0

1

τ + 1

[
max{2j1+5, ϱ1(τ)}(∥φj1∥Hs + ∥∂ξĥj1∥L2

ξ
)∥φj2∥L2∥φj3∥B(2−α),1

+max{2j1+5, ϱ1(τ)}∥φj1∥Z∥φj2∥Z∥φj3∥B2−α,2+δ

]
dτ.

(55)

From Lemma 4.3, ∥φ(t)∥B2−α,2+δ ≲ ε1(t + 1)−1/2, so the right-hand-side of above
inequality is integrable. It is also summable with respect to j1, j2, j3 under |j3−j2| ≤
1 and |j3 − j1| ≤ 1. By using the bootstrap assumption, we get∑

P2

(55) ≲ ε31 ≲ ε0.

The case of (+,−) or (−,+). If η1 > 0, η2 < 0, in the support of the integrand,
then there is space-time resonance (ξ,−ξ). We use the unit decomposition∑

(k1,k2)∈Z2

ψk1(η1 − ξ)ψk2(η2 + ξ) = 1,

and estimate∫∫
R2

T′
1(η1, η2, ξ − η1 − η2)e

iAtΦ(ξ,η1,η2)ĥ+j1(η1)ĥ
−
j2
(η2)ĥj3(ξ − η1 − η2)∑

(k1,k2)∈Z2

ψk1(η1 − ξ)ψk2(η2 + ξ) dη1 dη2.

If η1 < 0, η2 > 0, in the support of the integrand, then there is space-time resonance
(−ξ, ξ). We use the unit decomposition∑

(k1,k2)∈Z2

ψk1
(η1 + ξ)ψk2

(η2 − ξ) = 1,

and estimate∫∫
R2

T′
1(η1, η2, ξ − η1 − η2)e

iAtΦ(ξ,η1,η2)ĥ−j1(η1)ĥ
+
j2
(η2)ĥj3(ξ − η1 − η2)∑

(k1,k2)∈Z2

ψk1(η1 + ξ)ψk2(η2 − ξ) dη1 dη2.

We can integrate by parts and estimate each integral in the same way as above,
and get the same estimate as in (54).
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7.5. Resonant frequencies. In this section, we estimate the integral∫∫
R2

T′
1(η1, η2, ξ − η1 − η2)e

iAtΦ(ξ,η1,η2)ĥj1(η1)ĥj2(η2)ĥj3(ξ − η1 − η2)

·ψk1
(η1 − ξ1)ψk2

(η2 − ξ2) dη1 dη2 (56)

under the conditions that

|j1 − j3| ≤ 1, |j2 − j3| ≤ 1, k1 < log2[ϱ1(t)], k2 < log2[ϱ1(t)],

where ϱ1(t) is defined in (52), then sum the result over k1, k2 < log2(ϱ1(t)). Notice
that when t is large enough, ψk1

(η1 − ξ1)ψk2
(η2 − ξ2) will be supported on the set

where ψj1−3(η1 + η2 − 2ξ) = 1 when (ξ1, ξ2) = (ξ, ξ); and ψk1
(η1 − ξ1)ψk2

(η2 − ξ2)

will be supported on the set where 1−ψj1−3(η1+η2−2ξ) = 1 when (ξ1, ξ2) = ( ξ3 ,
ξ
3 ).

So we can ignore the cut-off function ψj1−3(η1 + η2 − 2ξ) in the above integral.
If m < log2 ϱ1(t) ≤ m+ 1 for m ∈ Z, then −∞ < ki ≤ m for i = 1, 2, and

m∑
ki=−∞

ψki
(ξ) is supported in

{
ξ ∈ R | |ξ| < 8

5
· 2m

}
.

Thus, after summing over (k1, k2), we only need to consider (56) with a cutoff
function in the integrand of the form

b(ξ, η1, η2, t) := ψ

(
η1 − ξ1
ϱ(t)

)
· ψ
(
η2 − ξ2
ϱ(t)

)
, (57)

where the function ϱ(t) is defined by

ϱ(t) = 2m if 2m < ϱ1(t) ≤ 2m+1.

To make the expressions shorter, we write b(ξ, η1, η2, t) as b when there is no am-
biguity.

From (52), we have

1

2
(t+ 1)−0.49 ≤ ϱ(t) < (t+ 1)−0.49. (58)

The points (ξ1, ξ2) ∈ {(ξ/3, ξ/3), (ξ, ξ), (ξ,−ξ), (−ξ, ξ)} are the space and space-
time resonances in (32)–(33). We therefore need to estimate∫∫

R2

T′
1(η1, η2, ξ − η1 − η2)e

iAtΦ(ξ,η1,η2)ĥj1(η1)ĥj2(η2)ĥj3(ξ − η1 − η2)

b(ξ, η1, η2, t) dη1 dη2,

with the cutoff function (57) replacing ψk1
(η1 − ξ1)ψk2

(η2 − ξ2), in which case the
integral is taken over one of the following four disjoint sets

A1 =

{
(η1, η2)

∣∣∣∣ ∣∣∣∣η1 − ξ

3

∣∣∣∣ < 8

5
ϱ(t),

∣∣∣∣η2 − ξ

3

∣∣∣∣ < 8

5
ϱ(t)

}
,

A2 =

{
(η1, η2)

∣∣∣∣ ∣∣η1 − ξ
∣∣ < 8

5
ϱ(t),

∣∣η2 − ξ
∣∣ < 8

5
ϱ(t)

}
,

A3 =

{
(η1, η2)

∣∣∣∣ ∣∣(η1 − ξ)
∣∣ < 8

5
ϱ(t),

∣∣η2 − (−ξ)
∣∣ < 8

5
ϱ(t)

}
,

A4 =

{
(η1, η2)

∣∣∣∣ ∣∣η1 − (−ξ)
∣∣ < 8

5
ϱ(t),

∣∣η2 − ξ
∣∣ < 8

5
ϱ(t)

}
.



GSQG FRONT EQUATIONS 2625

The regions A1, A2, A3, A4 are discs centered at (ξ/3, ξ/3), (ξ, ξ), (ξ,−ξ), and
(−ξ, ξ), respectively. The region A1 corresponds to space resonances ξ = ξ/3 +
ξ/3 + ξ/3, while A2, A3, A4 correspond to space-time resonances ξ = ξ + ξ − ξ.

7.5.1. Space resonances. When (η1, η2) ∈ A1, we can expand T1/Φ around (ξ, ξ/3,
ξ/3) as

T′
1(η1, η2, ξ − η1 − η2)

Φ(ξ, η1, η2)
=

32−α − 23−α + 1

3− 32−α
ξ +O

( ∣∣∣∣η1 − ξ

3

∣∣∣∣2 + ∣∣∣∣η2 − ξ

3

∣∣∣∣2). (59)

For m ∈ Z, let tm = 2−m/0.49−1 denote the time such that log2 ϱ1(tm) = m, and
for t ∈ [0,∞), let M(t) ∈ Z be the negative integer such that M(t) < log2 ϱ1(t) ≤
M(t)+ 1. Then ϱ(t) and the cut-off function b(ξ, η1, η2, t) in (57) are discontinuous
at t = tm. After writing

eiAτΦ(ξ,η1,η2) =
1

iAΦ(ξ, η1, η2)

[
∂τe

iτΦ(ξ,η1,η2)
]
,

and integrating by parts with respect to τ in each time interval between the time
discontinuities, we obtain∫ t

1

iξ

∫∫
R2

T′
1(η1, η2, ξ − η1 − η2)e

iAτΦ(ξ,η1,η2)ĥj1(η1, τ)ĥj2(η2, τ)ĥj3(ξ − η1 − η2, τ)

bdη1 dη2 dτ

=
1

A

(
J1 −

∫ t

1

J2(τ) dτ

)
,

where

J1

=

∫∫
R2

ξ
T′

1(η1, η2, ξ − η1 − η2)

Φ(ξ, η1, η2)
ĥj1(η1, τ)ĥj2(η2, τ)ĥj3(ξ − η1 − η2, τ)e

iAτΦ(ξ,η1,η2)

· b(τ) dη1 dη2
∣∣∣τ=t

τ=tM(t)

+

0∑
m=M(t)+1

∫∫
R2

ξ
T′

1(η1, η2, ξ − η1 − η2)

Φ(ξ, η1, η2)
ĥj1(η1, τ)ĥj2(η2, τ)ĥj3(ξ − η1 − η2, τ)

eiAτΦ(ξ,η1,η2)b(τ) dη1 dη2

∣∣∣τ=tm−1

τ=tm
,

J2(τ)

=ξ

∫∫
R2

T′
1(η1, η2, ξ − η1 − η2)

Φ(ξ, η1, η2)
eiAτΦ(ξ,η1,η2)

· ∂τ
[
ĥj1(η1, τ)ĥj2(η2, τ)ĥj3(ξ − η1 − η2, τ)

]
b(τ) dη1 dη2.

For J1, we have from (59) that∣∣∣∣(|ξ|γl + |ξ|γh)

∫∫
R2

b(τ)ξ
T′

1(η1, η2, ξ − η1 − η2)

Φ(ξ, η1, η2)
ĥj1(η1, τ)ĥj2(η2, τ)ĥj3(ξ − η1 − η2, τ)

· eiAτΦ(ξ,η1,η2) dη1 dη2

∣∣∣∣
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≲

∣∣∣∣(|ξ|γl + |ξ|γh)

∫∫
R2

b(τ)ξ2ĥj1(η1, τ)ĥj2(η2, τ)ĥj3(ξ − η1 − η2, τ)e
iτΦ(ξ,η1,η2) dη1 dη2

∣∣∣∣
+ (|ξ|γl + |ξ|γh)

∫∫
R2

b(τ)[ϱ(τ)]2
∣∣∣ĥj1(η1, τ)ĥj2(η2, τ)ĥj3(ξ − η1 − η2, τ)

∣∣∣ dη1 dη2
≲ ∥(|ξ|γl + |ξ|γh)ĥj1∥L∞

ξ
∥(|ξ|γl + |ξ|γh)ĥj2∥L∞

ξ
∥(|ξ|γl + |ξ|γh)ĥj3∥L∞

ξ

(
[ϱ(τ)]2 + [ϱ(τ)]4

)
.

If (η1, η2) ∈ A1, then the number of terms in the sum over j1, j2, j3 is of the order
log(t+ 1), so the right-hand side of this inequality is uniformly bounded for τ ≥ 0
after summing over j1, j2, j3.

After taking the time derivative ∂τ , the term J2 can be written as a sum of three
terms:

ξ

∫∫
R2

T′
1(η1, η2, ξ − η1 − η2)

Φ(ξ, η1, η2)
eiAτΦ(ξ,η1,η2)

[
∂τ ĥj1(η1, τ)ĥj2(η2, τ)ĥj3(ξ − η1 − η2, τ)

]
· b(ξ, η1, η2, τ) dη1 dη2,

ξ

∫∫
R2

T′
1(η1, η2, ξ − η1 − η2)

Φ(ξ, η1, η2)
eiAτΦ(ξ,η1,η2)

[
ĥj1(η1, τ)∂τ ĥj2(η2, τ)ĥj3(ξ − η1 − η2, τ)

]
· b(ξ, η1, η2, τ) dη1 dη2,

ξ

∫∫
R2

T′
1(η1, η2, ξ − η1 − η2)

Φ(ξ, η1, η2)
eiAτΦ(ξ,η1,η2)

[
ĥj1(η1, τ)ĥj2(η2, τ)∂τ ĥj3(ξ − η1 − η2, τ)

]
· b(ξ, η1, η2, τ) dη1 dη2.

Using equation (41), the bootstrap assumptions, and Lemma 4.3, we have

∥∂τ ĥ∥L∞
ξ

≲∥ξ
∫∫

R2

T′
1(η1, η2, ξ − η1 − η2)e

iAτΦ(ξ,η1,η2)ĥ(ξ − η1 − η2)ĥ(η1)ĥ(η2) dη1 dη2∥L∞
ξ

+ ∥N̂≥5(φ)∥L∞
ξ

≲∥φ∥2H1 ·
∞∑
j=0

∥φ∥2j+1
B1

≲ε31(τ + 1)2p0− 1
2 .

Therefore, using this estimate in the J2-terms and the fact that ε31 ≲ ε0, we get
that

|(|ξ|γl + |ξ|γh)J2(τ)| ≲
∑

∥hℓ1∥Z∥∂τ ĥℓ2∥L∞
ξ
∥hℓ3∥Z [ϱ(τ)]2

≲ ε0(τ + 1)p0− 1
2 [ϱ(τ)]2

∑
∥hℓ1∥Z∥hℓ3∥Z ,

where the summation is taken over permutations ℓ1, ℓ2, ℓ3 of j1, j2, j3 for (η1, η2)
in the space-resonance region A1. Again, since the number of summations is of the
order log(τ + 1), the resulting sum is integrable over τ ∈ (1,∞).

7.5.2. Space-time resonances. We now use modified scattering to control U in (44).
We need to estimate

A′
∫∫

A2
⋃

A3
⋃

A4

iξb(ξ, η1, η2, t)T
′
1(η1, η2, ξ − η1 − η2)e

iAtΦ(ξ,η1,η2)ĥ(ξ − η1 − η2)

· ĥ(η1)ĥ(η2) dη1 dη2

− 2πiA′ξ|ξ|α

(α− 1)(2− α)A(t+ 1)

[
T′

1(ξ, ξ,−ξ) +T′
1(ξ,−ξ, ξ) +T′

1(−ξ, ξ, ξ)
]
|ĥ(ξ, t)|2ĥ(ξ, t).

(60)
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The estimates for A2, A3, and A4 are similar, so we only present the details for
the A2 integral. The corresponding integral for A2 in (60) can be decomposed into

A′iξ

∫∫
A2

b(ξ, η1, η2, t)e
iAtΦ(ξ,η1,η2) ·

[
T′

1(η1, η2, ξ − η1 − η2)ĥ(ξ − η1 − η2)ĥ(η1)ĥ(η2)

−T′
1(ξ, ξ,−ξ)|ĥ(ξ, t)|2ĥ(ξ, t)

]
dη1 dη2

(61)

and

A′iξT′
1(ξ, ξ,−ξ)|ĥ(ξ, t)|2ĥ(ξ, t)[ ∫∫

A2

eitΦ(ξ,η1,η2)ψ

(
η1 − ξ

ϱ(t)

)
· ψ
(
η2 − ξ

ϱ(t)

)
dη1 dη2 −

2π|ξ|α

(α− 1)(2− α)A(t+ 1)

]
.

(62)

The estimates for (61) are achieved by a Taylor expansion

A′
∣∣∣∣(|ξ|γl + |ξ|γh)iξ

∫∫
A2

eitΦ(ξ,η1,η2)b(ξ, η1, η2, t) ·
[
T′

1(η1, η2, ξ − η1 − η2)ĥj1(η1)

· ĥj2(η2)ĥj3(ξ − η1 − η2)−T′
1(ξ, ξ,−ξ)|ĥ(ξ, t)|2ĥ(ξ, t)

]
dη1 dη2

∣∣∣∣
≲ (|ξ|γl + |ξ|γh)|ξ|

∫∫
A2

∣∣∣∂η1

[
T′

1(η1, η2, ξ − η1 − η2)ĥj1(η1)ĥj2(η2)

ĥj3(ξ − η1 − η2)
]∣∣∣

η1=η′
1

· (ξ − η1)
∣∣∣

+

∣∣∣∣∂η2

[
T′

1(η1, η2, ξ − η1 − η2)ĥj1(η1)ĥj2(η2)ĥj3(ξ − η1 − η2)
] ∣∣∣

η2=η′
2

(ξ − η2)

∣∣∣∣
dη1 dη2

≲ ∥(|ξ|γl + |ξ|γh)φ̂j1∥L∞
ξ
∥(|ξ|γl + |ξ|γh)φ̂j2∥L∞

ξ
∥(|ξ|γl + |ξ|γh)φ̂j3∥L∞

ξ
[ϱ(t)]3

+
∑

∥(|ξ|γl + |ξ|γh)φ̂ℓ1∥L∞
ξ
∥(|ξ|γl + |ξ|γh)φ̂ℓ2∥L∞

ξ
∥Sφℓ3∥Hr [ϱ(t)]5/2

≲ ε0(t+ 1)−1.1,

where (η′1, η
′
2) in the first inequality is some point on the line segment connecting

(ξ, ξ) and (η1, η2), and the summation in the second inequality is over permutations
(ℓ1, ℓ2, ℓ3) of (j1, j2, j3). Taking a summation over j1, j2, j3 and using the estimates
in the above subsections together with the time-decay of ϱ(t) in (58), we see that
this term is integrable in time and is bounded by a constant multiple of ε20.

As for (62), it suffices to estimate∣∣∣∣A′iξ(|ξ|+ |ξ|r+4)T′
1(ξ, ξ,−ξ)|ĥ(ξ, t)|2ĥ(ξ, t)

·
[ ∫∫

A2

eiAtΦ(ξ,η1,η2)ψ

(
η1 − ξ

ϱ(t)

)
· ψ
(
η2 − ξ

ϱ(t)

)
dη1 dη2 −

2π|ξ|α

(α− 1)(2− α)At

]∣∣∣∣
≲ ∥(|ξ|+ |ξ|r+4)φ̂(ξ)∥L∞

ξ
∥|ξ|φ̂(ξ)∥L∞

ξ
∥(|ξ|+ |ξ|3)φ̂(ξ)∥L∞

ξ

·
∥∥∥∥∫∫

A2

eiAtΦ(ξ,η1,η2)ψ

(
η1 − ξ

ϱ(t)

)
· ψ
(
η2 − ξ

ϱ(t)

)
dη1 dη2 −

2π|ξ|α

(α− 1)(2− α)At

∥∥∥∥
L∞

ξ

≲ ∥φ∥3Z
∥∥∥∥∫∫

A2

eiAtΦ(ξ,η1,η2)ψ

(
η1 − ξ

ϱ(t)

)
· ψ
(
η2 − ξ

ϱ(t)

)
dη1 dη2
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− 2π|ξ|α

(α− 1)(2− α)At

∥∥∥∥
L∞

ξ

.

Writing (η1, η2) = (ξ + ζ1, ξ + ζ2), we find from (31) that

Φ(ξ, η1, η2) = (α− 1)(2− α)
ξ

|ξ|1+α
ζ1ζ2 +O

(
ζ31 + ζ32
|ξ|1+α

)
= (α− 1)(2− α)

ξ

|ξ|1+α
ζ1ζ2 +O

(
[ϱ(t)]3(t+ 1)(1+α)p0

)
.

By the assumption of p0 in (18) and ϱ(t) satisfies (58), the error term is integrable
in time, so we now only need to estimate

J3 =

∥∥∥∥∫∫
R2

e
iAt(α−1)(2−α) ξ

|ξ|1+α ζ1ζ2ψ

(
ζ1
ϱ(t)

)
· ψ
(
ζ2
ϱ(t)

)
dζ1 dζ2

− 2π|ξ|α

(α− 1)(2− α)At

∥∥∥∥
L∞

ξ

.
(63)

Making the change of variables

ζ1 = x1

√
|ξ|α

(α− 1)(2− α)At
, ζ2 = x2

√
|ξ|α

(α− 1)(2− α)At
,

in (63) and using the fact that |ξ| ≤ (t+ 1)p1 , we find that

J3 ≲
(t+ 1)αp1

t

·
∥∥∥∥ ∫∫

R2

eix1x2ψ

(√
|ξ|α

(α− 1)(2− α)At

x1
ϱ(t)

)
· ψ
(√

|ξ|α
(α− 1)(2− α)At

x2
ϱ(t)

)
dx1 dx2

− 2π

∥∥∥∥
L∞

ξ

.

(64)

The integral identity∫
R
e−ax2−bx dx =

√
π

a
e

b2

4a for all a, b ∈ C with ℜa > 0

gives that∫∫
R2

eix1x2e−
x2
1

B2 e−
x2
2

B2 dx1 dx2 =
√
πB

∫
R
e−

x2
2

B2 e−
B2x2

2
4 dx2 = 2π +O(B−1)

as B → ∞, and therefore∫∫
R2

eix1x2ψ

(
x1
B

)
ψ

(
x2
B

)
dx1 dx2 = 2π +O(B−1/2) as B → ∞. (65)

Using (65) with

B = ϱ(t)

√
(α− 1)(2− α)At

|ξ|α
= O(t0.01−

αp0
2(α−1) )

in (64) then yields

J3 ≲ (t+ 1)αp1−1(t+ 1)−
1
2 [0.01−

αp0
2(α−1)

].
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By (18), the right-hand side decays faster in time than 1/t, which implies that (62)
is integrable in time and bounded by a constant multiple of ε30.

Putting all the above estimates together, we conclude that∫ ∞

0

∥(|ξ|γl + |ξ|γh)U1(ξ, t)∥L∞
ξ
dt ≲ ε0. (66)

7.6. Higher-degree terms. In this subsection, we prove ∥(|ξ|γl+|ξ|γh)N̂≥5(φ)∥L∞
ξ

is integrable in time.
By Lemma 2.2 and Proposition B.1, we have∥∥∥(|ξ|γl + |ξ|γh)N̂≥5(φ)

∥∥∥
L∞

ξ

≲ ∥φ∥2Hs

∞∑
n=2

∥φ∥2n−1
B2−α,2+δ .

Using the dispersive estimate in Lemma 4.3, we see the right-hand side is integrable
in t, and ∫ ∞

0

∥(|ξ|γl + |ξ|γh)N̂≥5(φ)∥L∞
ξ
dt ≲ ε0. (67)

Finally, the use of (66) and (67) in (45) completes the proof of Lemma 4.5, and
therefore the proof of Theorem 4.1.

Appendix A. Contour dynamics derivation for the GSQG front equation
(1 < α < 2). In this appendix, we derive the GSQG front equation (4) for 1 < α < 2
by the method used in [29] for SQG fronts.

The front-solutions considered here have unbounded velocity fields as |y| → ∞,
and we interpret (2) in a distributional sense. Let L1

α(Rn) denote the space of
measurable functions f : Rn → R such that∫

Rn

|f(x)|
1 + |x|n+α

dx <∞,

and let D′(Rn) denote the usual space of Schwartz distributions. Then the fractional
Laplacian

(−∆)α/2 : L1
α(Rn) → D′(Rn)

can be defined by [6]〈
(−∆)α/2f, ϕ

〉
=

∫
Rn

f(x) · (−∆)α/2ϕ(x) dx for all ϕ ∈ C∞
c (Rn).

Here, (−∆)α/2ϕ is defined as a Fourier multiplier or singular integral [39]. For
1 < α < 2, the only α-harmonic solutions f ∈ L1

α(Rn) of (−∆)α/2f = 0 are the
affine functions [7, 16], so if we require that u(x) has sublinear growth in x, then
(2) determines u uniquely up to a spatially uniform constant. This constant can be
removed by a transformation into a suitable reference frame, and for definiteness
we set it equal to zero.

To start with, we consider the shear flow solutions ū(y) = (U(y), 0) associated
with a planar front

θ̄(y) =

{
θ+ if y > 0,

θ− if y < 0.
(68)

In that case, (2) reduces to the equation

|∂y|αU(y) = − Θ

gα
δ(y), (69)
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where δ is the delta-distribution and Θ, gα are defined in (5). Equation (69) has
the sublinear solution

U(y) = ΘC ′
α|y|α−1, ū(y) = (U(y), 0), (70)

where

C ′
α = − 1√

π
sin
(πα

2

)
Γ

(
1− a

2

)
Γ
(a
2

)
.

We now derive contour dynamics equations for GSQG (1 < α < 2) front solutions
(3) whose velocity field has the asymptotic behavior

u(x, t) = (ΘC ′
α|y|α−1, 0) + o(1) as |y| → ∞

by decomposing the solutions into a planar shear flow and a perturbation whose
velocity field approaches zero as |y| → ∞.

We denote the front y = φ(x, t) by Γ(t) = ∂Ω(t), and consider its motion on a
time interval 0 ≤ t ≤ T for some T > 0. We assume that:

(i) φ(·, t) ∈ C1(R) and φ(x, t) is bounded on R× [0, T ];

(ii) φx(x, t) = O(|x|−(α−1+β)) as |x| → ∞ for some β > 0.

In that case, all of the integrals in the following converge.
We choose h > 0 such that −h < inf{φ(x, t) : (x, t) ∈ R× [0, T ]}, and let

θ̃(y) =

{
θ+ if y > −h,
θ− if y < −h,

, ũ(y) =
(
ΘC ′

α|y + h|α−1, 0
)
, (71)

be the planar front solution (68), (70) translated to y = −h. This front is an
artificial front which does not intersect the actual front. We introduce it to obtain
absolutely convergent potential representations, and the final solution is smooth
across y = −h.

We decompose the front solution (3) as

θ(x, t) = θ̃(y) + θ∗(x, t),

where θ̃ is defined in (71), and

θ∗(x, t) =

{
−Θ/gα if −h < y < φ(x, t),

0 otherwise.

We denote the support of θ∗(·, t) by Ω∗(t). The corresponding decomposition of the
velocity field is

u(x, t) = ũ(y) + u∗(x, t),

where ũ is defined in (71). By use of a Riesz potential representation [42], we find
that u∗ = ∇⊥(−∆)−α/2θ∗ is given by

u∗(x, t) = Θp.v.

∫
Ω∗(t)

∇⊥
x′

1

|x− x′|2−α
dx′.

Writing x′ = (x′, y′), we see that the integrand is O
(
|x′|−(3−α)

)
as |x′| → ∞ and

compactly supported in y′, so this principal value integral converges absolutely at
infinity for α < 2.

Applying Green’s theorem on a truncated region with |x − x′| < λ, and taking
the limit λ→ ∞ (as in [29]), we get that

u∗(x, t) = (u∗(x, y, t), v∗(x, y, t)) ,
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u∗(x, y, t) = −Θ

∫
R

1[
(x− x′)2 + (y − φ(x′, t))2

] 2−α
2

− 1(
(x− x′)2 + (y + h)2

) 2−α
2

dx′,

v∗(x, y, t) = −Θ

∫
R

φx′(x′, t)[
(x− x′)2 + (y − φ(x′, t))2

] 2−α
2

dx′.

The integral for u∗ converges since the integrand is O(|x′|3−α) as |x′| → ∞, while
the integral for v∗ converges since we assume that φx′(x′, t) = O(|x′|−(α−1+β)) as
|x′| → ∞ for some β > 0.

Let x = (x, φ(x, t)) be a point on the front and denote by

n(x, t) =
1√

1 + φ2
x(x, t)

(−φx(x, t), 1)

the unit upward normal to Γ(t) at x. The motion of the front is determined by
the normal velocity u · n, so the front y = φ(x, t) moves with the upward normal
velocity

u · n =
φt√
1 + φ2

x

.

Using the previous expressions for u, we therefore get that

φt(x, t)

= Θ

∫
R

φx(x, t)− φx′(x′, t)[
(x− x′)2 + (y − φ(x′, t))2

] 2−α
2

− φx(x, t)[
(x− x′)2 + (φ(x, t) + h)2

] 2−α
2

dx′

−ΘC ′
α |φ(x, t) + h|α−1

φx(x, t)

= Θ(I1(x, t) + I2(x, t) + I3(x, t)),

where
We can express I2 as a Fourier multiplier. Note that I2 = 0 if φ = 1, and if

φ(x) = eiξx with ξ ̸= 0, then

I2(x) = iξeiξx
∫
R

[
1− eiξ(x

′−x)

|x− x′|2−α
− 1

((x′)2 + 1)
2−α
2

]
dx′

= 2iξeiξx
∫ ∞

0

[
1− cos ξs

s2−α
− 1

(s2 + 1)
2−α
2

]
ds.

Using the identity∫ ∞

0

[
1

(s2 + 1)
2−α
2

− 1

(s2 + c2)
2−α
2

]
ds =

√
πΓ
(
1−α
2

)
2Γ
(
1− α

2

) (1− |c|α−1
)
, (72)

with c = 1/|ξ|, the change of variable s′ = |ξ|s, and identities for generalized
hypergeometric functions, we get that

I2(x) = −
√
πΓ
(
1−α
2

)
Γ
(
1− α

2

) iξeiξx − iAξ|ξ|1−αeiξx,

where A is given in (5). It follows that

I2 = −
√
πΓ
(
1−α
2

)
2Γ
(
1− α

2

) φx −A|∂x|1−αφx.
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For I3, we find after some algebra and the use of(72) that

I3 =

√
πΓ
(
1−α
2

)
Γ
(
1− α

2

) φx.

Putting everything together, we get the contour dynamics equation for GSQG
(1 < α < 2) fronts

φt(x, t) + ΘA|∂x|1−αφx(x, t)

−Θ

∫
R

{
φx(x, t)− φx′(x′, t)[

(x− x′)2 + (y − φ(x′, t))2
]1−α/2

− φx(x, t)− φx′(x′, t)

|x− x′|2−α

}
dx′ = 0,

which is equivalent to (4). This equation also agrees with the result obtained in
[25] by a regularization method.

Appendix B. Symbol estimates. The symbol Tn is defined in (12).

Proposition B.1. Assume n ≥ 1, j1, j2, · · · , j2n+1 ∈ Z, and j1 ≥ · · · ≥ j2n+1.

∥Tn(η1, η2, · · · , η2n+1)ψj1(η1)ψj2(η2) · · ·ψj2n+1(η2n+1)∥S∞

≲ 2(2−α)j2+j3+···+j2n+1(1 + lnn). (73)

∥∂ηl
Tn(η1, η2, · · · , η2n+1)ψj1(η1)ψj2(η2) · · ·ψj2n+1

(η2n+1)∥S∞

≲


2(2−α)j2+j3+···+j2n+1(1 + lnn), l = 1,
2(2−α)j3+j4+···+j2n+1(1 + lnn), l = 2,
2(2−α)j2+j3+···+j2n+1−jl(1 + lnn), l = 3, · · · , 2n+ 1.

(74)

When j1 ≥ j2 ≥ · · · ≥ j2n+1, and j1 > 0,

∥[Tn(η1, η2, · · · , η2n+1)−Tn(η1 + · · ·+ η2n+1, η2, · · · , η2n+1)]

· ψj1(η1)ψj2(η2) · · ·ψj2n+1
(η2n+1)∥S∞

≲ n2−j1

2n+1∏
i=2

2ji(1 + 2(1+δ)j2), (75)

where δ > 0 is a small constant.

Proof. To prove (73), we have

F−1
[
Tn(η1, · · · , η2n+1)ψj1(η1) · · ·ψj2n+1

(η2n+1)
]

=

∫∫
R2n+1

ei(y1η1+···+y2n+1η2n+1)

[∫
R

∏2n+1
j=1 (1− eiηjζ)

ζ2n+1
|ζ|α−1sgn ζ dζ

]
· ψj1(η1) · · ·ψj2n+1(η2n+1) dη1 · · · dη2n+1

=

∫∫
R2n+1

[∫
R

(eiy1η1 − eiη1(ζ+y1)) · · · (eiy2n+1η2n+1 − eiη2n+1(ζ+y2n+1))

|ζ|2n+2−α
dζ

]
· ψj1(η1) · · ·ψj2n+1(η2n+1) dη1 · · · dη2n+1

=

∫
R

1

|ζ|2n+2−α

[
F−1[ψj1 ](y1)−F−1[ψj1 ](ζ + y1)

]
· · ·
[
F−1[ψj2n+1 ](y2n+1)

−F−1[ψj2n+1
](ζ + y2n+1)

]
dζ.

We observe that for any l = 1, · · · , 2n+ 1,∣∣F−1[ψjl ](y)−F−1[ψjl ](ζ + y)
∣∣ = 2jl

∣∣F−1[ψ0](2
jly)−F−1[ψ0](2

jl(ζ + y))
∣∣ ,
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and ∫
R

∣∣F−1[ψjl ](2
jlyl)−F−1[ψjl ](2

jl(ζ + yl))
∣∣ dyl ≲ min{2jl |ζ|, 1}. (76)

Taking the L1-norm, we obtain∥∥F−1[Tn(η1, · · · , η2n+1)ψj1(η1) · · ·ψj2n+1(η2n+1)]
∥∥
L1

≲
∫
R

1

|ζ|2n+2−α
min{2j1 |ζ|, 1} · · ·min{2j2n+1 |ζ|, 1} dζ

≲
2n∑
l=1

∫
2−jl<|ζ|<2−jl+1

1

|ζ|2n+2−α
(2jl+1 |ζ|) · · · (2j2n+1 |ζ|) dζ

+

∫
|ζ|<2−j1

1

|ζ|2n+2−α
(2j1 |ζ|) · · · (2j2n+1 |ζ|) dζ +

∫
|ζ|>2−j2n+1

1

|ζ|2n+2−α
dζ

≲ 2j2+···+j2n+1
1

α− 1
2(1−α)j2 +

2n∑
l=2

2jl+1+···+j2n+1
1

l − α
(2(l−α)jl − 2(l−α)jl+1)

+
1

2n+ 1− α
2j2n+1(2n+1−α)

≲ 2(2−α)j2+···+j2n+1(1 + lnn),

where lnn comes from the estimate of
∑2n

l=2
1

l−α , which grows as the same rate as
harmonic series.

To prove (74), we have

F−1
[
∂ηl

Tn(η1, · · · , η2n+1)ψj1(η1) · · ·ψj2n+1
(η2n+1)

]
=

∫∫
R2n+1

ei(y1η1+···+y2n+1η2n+1)

[∫
R

∏2n+1
j=1,j ̸=l(1− eiηjζ)

ζ2n+1
(−iζeiηlζ)|ζ|α−1sgn ζ dζ

]
· ψj1(η1) · · ·ψj2n+1

(η2n+1) dη1 · · · dη2n+1

=− i

∫∫
R2n+1

∫
R
(eiy1η1 − eiη1(ζ+y1)) · · · eiηl(ζ+yl) · · · (eiy2n+1η2n+1 − eiη2n+1(ζ+y2n+1))

1

|ζ|2n+1−α
dζ · ψj1(η1) · · ·ψj2n+1(η2n+1) dη1 · · · dη2n+1

=

∫
R

1

|ζ|2n+1−α

[
F−1[ψj1 ](y1)−F−1[ψj1 ](ζ + y1)

]
· · ·
(
F−1[ψl](ζ + yl)

)
· · ·

·
[
F−1[ψj2n+1 ](y2n+1)−F−1[ψj2n+1 ](ζ + y2n+1)

]
dζ.

Observe that ∣∣F−1[ψjl ](yl + ζ)
∣∣ = 2jl

∣∣F−1[ψ0](2
jl(yl + ζ))

∣∣ ,
and ∫

R

∣∣F−1[ψjl ](2
jl(ζ + yl))

∣∣ dyl ≲ 1.

Therefore, by using (76), we obtain∥∥F−1[∂ηl
Tn(η1, · · · , η2n+1)ψj1(η1) · · ·ψj2n+1

(η2n+1)]
∥∥
L1

≲
∫
R

1

|ζ|2n+1−α

2n+1∏
k=1,k ̸=l

min{2jk |ζ|, 1} dζ
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≲


2(2−α)j2+···+j2n+1(1 + lnn), l = 1,
2(2−α)j3+···+j2n+1(1 + lnn), l = 2,
2(2−α)j2+···+j2n+1−jl(1 + lnn), l ̸= 1, 2,

which leads to (74).
To prove (75), we have

F−1 [(Tn(η1, · · · , η2n+1)−Tn(η1 + · · ·+ η2n+1, · · · , η2n+1))ψj1(η1) · · ·ψj2n+1(η2n+1)
]

=

∫∫
R2n+1

ei(y1η1+···+y2n+1η2n+1)

·

[∫
R

∏2n+1
j=2 (1− eiηjζ)(eiζ(η1+···+η2n+1) − eiη1ζ)

ζ2n+1
|ζ|α−1sgn ζ dζ

]
· ψj1(η1) · · ·ψj2n+1(η2n+1) dη1 · · · dη2n+1

=

∫∫
R2n+1

[ ∫
R

1

|ζ|2n+2−α
(eiy2η2 − eiη2(ζ+y2)) · · · (eiy2n+1η2n+1 − eiη2n+1(ζ+y2n+1))

· (eiζ(η2+···+η2n+1) − 1)eiη1(ζ+y1) dζ
]
· ψj1(η1) · · ·ψj2n+1(η2n+1) dη1 · · · dη2n+1

=

∫∫
R2n+1

[ ∫
R
(eiy2η2 − eiη2(ζ+y2)) · · · (eiy2n+1η2n+1 − eiη2n+1(ζ+y2n+1))

1

|ζ|2n+2−α

· (eiζ(η2+···+η2n+1) − 1)
1

iη1
∂ζe

iη1(ζ+y1) dζ
]
ψj1(η1) · · ·ψj2n+1(η2n+1) dη1 · · · dη2n+1

=

∫∫
R2n+1

[ ∫
R
∂ζ

(
1

|ζ|2n+2−α
(eiy2η2 − eiη2(ζ+y2)) · · · (eiy2n+1η2n+1 − eiη2n+1(ζ+y2n+1))

)

· (eiζ(η2+···+η2n+1) − 1)eiη1(ζ+y1) dζ
] iψj1(η1)

η1
· · ·ψj2n+1(η2n+1) dη1 · · · dη2n+1,

where

∂ζ
(eiy2η2 − eiη2(ζ+y2)) · · · (eiy2n+1η2n+1 − eiη2n+1(ζ+y2n+1))(eiζ(η2+···+η2n+1) − 1)

|ζ|2n+2−α

=

2n+1∑
l=2

1

|ζ|2n+2−α
(eiy2η2 − eiη2(ζ+y2)) · · · (−iηleiηl(ζ+yl)) · · ·

· (eiy2n+1η2n+1 − eiη2n+1(ζ+y2n+1))(eiζ(η2+···+η2n+1) − 1)

+
1

|ζ|2n+2−α
(eiy2η2 − eiη2(ζ+y2)) · · · (eiy2n+1η2n+1 − eiη2n+1(ζ+y2n+1))

· (i(η2 + · · ·+ η2n+1)e
iζ(η2+···+η2n+1))

− (2n+ 2− α)
1

ζ|ζ|2n+2−α
(eiy2η2 − eiη2(ζ+y2))

· · · · (eiy2n+1η2n+1 − eiη2n+1(ζ+y2n+1))(eiζ(η2+···+η2n+1) − 1)

=

2n+1∑
l=2

Il + II + III.

Then we estimate each term separately. We split each term into the large |ζ| part
and the small |ζ| part. For l = 2, · · · , 2n+ 1,∫∫

R2n+1

[∫
R
Ile

iη1(ζ+y1) dζ

]
· iψj1(η1)

η1
ψj2(η2) · · ·ψj2n+1

(η2n+1) dη1 · · · dη2n+1
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=

∫∫
R2n+1

[∫
R
Ilψ(ζ)e

iη1(ζ+y1) dζ

]
· iψj1(η1)

η1
ψj2(η2) · · ·ψj2n+1

(η2n+1) dη1 · · ·

dη2n+1

+

∫∫
R2n+1

[∫
R
Il(1− ψ(ζ))eiη1(ζ+y1) dζ

]
· iψj1(η1)

η1
ψj2(η2)

· · ·ψj2n+1
(η2n+1) dη1 · · · dη2n+1.

For the large |ζ| part, when the integral is on the support of 1−ψ(ζ), we don’t need
to use the cancellation in the numerator of Il to estimate the symbol. So, we have∫∫

R2n+1

[∫
R
Il(1− ψ(ζ))eiη1(ζ+y1) dζ

]
· iψj1(η1)

η1
ψj2(η2) · · ·

· ψj2n+1
(η2n+1) dη1 · · · dη2n+1

=

∫∫
R2n+1

[∫
R

1

|ζ|2n+2−α
(eiη2(y2+ζ) − eiη2(2ζ+y2)) · · · (−iηleiηl(2ζ+yl)) · · ·

(eiη2n+1(y2n+1+ζ) − eiη2n+1(2ζ+y2n+1)) · (1− ψ(ζ))eiη1(ζ+y1) dζ

]
iψj1(η1)

η1

· ψj2(η2) · · ·ψj2n+1(η2n+1) dη1 · · · dη2n+1

−
∫∫

R2n+1

[ ∫
R

1

|ζ|2n+2−α
(eiy2n+1η2n+1 − eiη2n+1(ζ+y2n+1))(eiy2η2 − eiη2(ζ+y2))

· · · (−iηleiηl(ζ+yl)) · · · (eiy2n+1η2n+1 − eiη2n+1(ζ+y2n+1)) · (1− ψ(ζ))eiη1(ζ+y1) dζ
]

· iψj1(η1)

η1
ψj2(η2) · · ·ψj2n+1

(η2n+1) dη1 · · · dη2n+1

=

∫
(1− ψ(ζ))

|ζ|2n+2−α
F−1[

ψj1(η1)

η1
](ζ + y1)

(
F−1[ψj2 ](y2 + ζ)−F−1[ψj2 ](y2 + 2ζ)

)
· · ·

F−1[ηlψjl(ηl)](2ζ + yl) · · ·(
F−1[ψj2n+1

](y2n+1 + ζ)−F−1[ψj2n+1
](y2n+1 + 2ζ)

)
dζ

−
∫

(1− ψ(ζ))

|ζ|2n+2−α
F−1[

ψj1(η1)

η1
](ζ + y1)

(
F−1[ψj2 ](y2)−F−1[ψj2 ](y2 + ζ)

)
· · ·

F−1[ηlψjl(ηl)](ζ + yl) · · ·
(
F−1[ψj2n+1 ](y2n+1)−F−1[ψj2n+1 ](y2n+1 + ζ)

)
dζ.

By (76), ∥∥∥∫∫
R2n+1

[∫
R
Il(1− ψ(ζ))eiη1(ζ+y1) dζ

]
· iψj1(η1)

η1
ψj2(η2) · · ·

· ψj2n+1
(η2n+1) dη1 · · · dη2n+1

∥∥∥
L1

≲ 2−j1+jl

∫  2n+1∏
i=2,i̸=l

min{2ji |ζ|, 1}

 · (1− ψ(ζ))

|ζ|2n+2−α
dζ

≲ 2−j1+j2+···+j2n+1 .

Similarly, ∥∥∥∥∥
∫∫

R2n+1

[∫
R
II(1− ψ(ζ))eiη1(ζ+y1) dζ

]
· iψj1(η1)

η1
ψj2(η2) · · ·
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· ψj2n+1(η2n+1) dη1 · · · dη2n+1

∥∥∥∥∥
L1

≲ 2−j1+j2+···+j2n+1 .∥∥∥∥∥
∫∫

R2n+1

[∫
R
III(1− ψ(ζ))eiη1(ζ+y1) dζ

]
· iψj1(η1)

η1
ψj2(η2) · · ·

· ψj2n+1
(η2n+1) dη1 · · · dη2n+1

∥∥∥∥∥
L1

≲ 2−j1+2j2+j3+···+j2n+1 .

For the small |ζ| part,∥∥∥∥∥
∫∫

R2n+1

[∫
R
Ilψ(ζ)e

iη1(ζ+y1) dζ

]
· iψj1(η1)

η1
ψj2(η2) · · ·

· ψj2n+1(η2n+1) dη1 · · · dη2n+1

∥∥∥∥∥
L1

=

∥∥∥∥∥
∫∫

R2n+1

[∫
R

1

|ζ|2n+2−α
ei(x1ξ1+···+x2n+1ξ2n+1)(1− ei2

j2ξ2ζ) · · · (−i2jlξlei2
jlξlζ) · · ·

· (1− ei2
j2n+1ξ2n+1ζ)(eiζ(2

j2ξ2+···+2j2n+1ξ2n+1) − 1)ψ(ζ)ei2
j1ξ1ζ dζ

]
iψ0(ξ1)

2j1ξ1
ψ0(ξ2) · · · · ψ0(ξ2n+1) dξ1 · · · dξ2n+1

∥∥∥∥∥
L1

x

= 2−j1

∥∥∥∥∥
∫∫

R2n

[
1

|ζ|2n+2−α
ei(x2ξ2+···+x2n+1ξ2n+1)(1− ei2

j2ξ2ζ) · · · (−i2jlξlei2
jlξlζ) · · ·

· (1− ei2
j2n+1ξ2n+1ζ)(eiζ(2

j2ξ2+···+2j2n+1ξ2n+1) − 1)ψ(ζ)

]

· F−1
ξ1

[
ψ0(ξ1)

ξ1

]
(x1 + 2j1ζ) · ψ0(ξ2) · · ·ψ0(ξ2n+1) dζ dξ2 · · · dξ2n+1

∥∥∥∥∥
L1

x

.

Denote the cone Kl as {(x1, · · · , x2n+1 | |xl| ≥ |(x1, · · · , xl−1, 0, xl+1, · · · , x2n+1)|}.

Then R2n+1 =
2n+1⋃
l=1

Kl. For L1 norm of the function f(x1, · · · , x2n+1), we have the

following bound.

∥f∥L1 =

∫
R2n+1

|f(x1, · · · , x2n+1)|dx1 · · · dx2n+1

=

2n+1∑
l=1

∫
Kl

√
(1 + x21) · · · (1 + x22n+1) · |xl|δ√
(1 + x21) · · · (1 + x22n+1) · |xl|δ

|f(x1, · · · , x2n+1)|dx1 · · · dx2n+1

≤
2n+1∑
l=1

∥∥∥∥√(1 + x21) · · · (1 + x22n+1) · |xl|δ|f(x1, · · · , x2n+1)|
∥∥∥∥
L∞
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·
∫
Kl

1√
(1 + x21) · · · (1 + x22n+1) · |xl|δ

dx1 · · · dx2n+1

≲
2n+1∑
l=1

∥∥∥∥√(1 + x21) · · · (1 + x22n+1) · |xl|δ|f(x1, · · · , x2n+1)|
∥∥∥∥
L∞

,

where δ > 0 is a small constant. Therefore,∥∥∥∥∫∫
R2n+1

[∫
R
Ilψ(ζ)e

iη1(ζ+y1) dζ

]
· iψj1(η1)

η1
ψj2(η2) · · ·ψj2n+1(η2n+1) dη1 · · · dη2n+1

∥∥∥∥
L1

≲ 2−j1

2n+1∑
k=2

∫
R

∥∥∥∥∥(1− ∂2
ξ2)

1/2 · · · (1− ∂2
ξ2n+1

)1/2|∂ξk |
δ

[
(1− ei2

j2ξ2ζ) · · · (−i2jlξlei2
jlξlζ)

· · · (1− ei2
j2n+1ξ2n+1ζ)

1

|ζ|2n+2−α
· (eiζ(2

j2ξ2+···+2
j2n+1ξ2n+1) − 1)ψ0(ξ2) · · ·

· ψ0(ξ2n+1)

]∥∥∥∥∥
L1

ξ′

·
∥∥∥∥F−1

ξ1

[
ψ0(ξ1)

ξ1

]
(x1 + 2j1ζ)

∥∥∥∥
L1

x1

ψ(ζ) dζ

where ξ′ = (ξ2, · · · , ξ2n+1). Since L
1
x1

norm is translation invariant,∥∥∥∥F−1
ξ1

[
ψ0(ξ1)

ξ1

]
(x1 + 2j1ζ)

∥∥∥∥
L1

x1

is bounded by a constant independent of ζ and j1. Considering the support of ψ(ζ),
we have∥∥∥∥∥(1− ∂2

ξ2)
1/2 · · · (1− ∂2

ξ2n+1
)1/2|∂ξk |

δ

[
(1− ei2

j2ξ2ζ) · · · (−i2jlξlei2
jlξlζ) · · ·

· (1− ei2
j2n+1ξ2n+1ζ)

1

|ζ|2n+2−α
(eiζ(2

j2ξ2+···+2
j2n+1ξ2n+1) − 1)ψ0(ξ2) · · ·ψ0(ξ2n+1)

]∥∥∥∥∥
L1

ξ′

≲
2n+1∏
i=2

2ji(1 + 2jl)(1 + 2δj2)(|ζ|α−2 + 1).

Thus we obtain∥∥∥∥∫∫
R2n+1

[∫
R
Ilψ(ζ)e

iη1(ζ+y1) dζ

]
· iψj1(η1)

η1
ψj2(η2) · · ·ψj2n+1(η2n+1) dη1 · · · dη2n+1

∥∥∥∥
L1

≲ 2−j1

2n+1∏
i=2

2ji(1 + 2(1+δ)j2).

Similarly, ∥∥∥∥∥
∫∫

R2n+1

[∫
R
IIψ(ζ)eiη1(ζ+y1) dζ

]
· iψj1(η1)

η1
ψj2(η2) · · ·

· ψj2n+1
(η2n+1) dη1 · · · dη2n+1

∥∥∥∥∥
L1

≲ 2−j1

2n+1∏
i=2

2ji(1 + 2(1+δ)ji),
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∫∫

R2n+1

[∫
R
IIIψ(ζ)eiη1(ζ+y1) dζ

]
· iψj1(η1)

η1
ψj2(η2) · · ·

· ψj2n+1
(η2n+1) dη1 · · · dη2n+1

∥∥∥∥∥
L1

≲ 2−j1

2n+1∏
i=2

2ji(1 + 2(1+δ)ji).

This leads to (75).

Lemma B.2. If |j1 − j3| > 1 and m ∈ N, then∥∥∥∥ 1

(|η1|1−α − |η3|1−α)m
ψj1(η1)ψj2(η2)ψj3(η3)

∥∥∥∥
S∞

≲ 2m(α−1)min{j1,j3}.

Proof. Notice that on the support of ψj1(η1)ψj2(η2)ψj3(η3),∣∣|η1|1−α − |η3|1−α
∣∣ ≳ 2(1−α)min{j1,j3}.

By the definition of the S∞-norm (9) and the definition of ψk (6), we have that∥∥∥∥ψj1(η1)ψj2(η2)ψj3(η3)

(|η1|1−α − |η3|1−α)m

∥∥∥∥
S∞

=

∥∥∥∥∫∫
R3

ψj1(η1)ψj2(η2)ψj3(η3)

(|η1|1−α − |η3|1−α)m
ei(y1η1+y2η2+y3η3) dη1 dη2 dη3

∥∥∥∥
L1

=

∫∫
R3

∣∣∣∣∫∫
R3

ψ0(2
−j1η1)ψ0(2

−j2η2)ψ0(2
−j3η3)

(|η1|1−α − |η3|1−α)m
ei(y1η1+y2η2+y3η3) dη1 dη2 dη3

∣∣∣∣ dy
≲ 2m(α−1)min{j1,j3},

where the last inequality comes from using oscillatory integral estimates, together
with the facts that the support of ψ0 is (−8/5,−5/8) ∪ (5/8, 8/5) and |j1 − j3| >
1.
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