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Graphs of Joint Types, Noninteractive Simulation,
and Stronger Hypercontractivity
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Abstract— In this paper, we study the type graph, namely,
a bipartite graph induced by a joint type. We investigate
the maximum edge density of induced bipartite subgraphs of
this graph having a number of vertices on each side on an
exponential scale in the length n of the type. This can be seen
as an isoperimetric problem. We provide asymptotically sharp
bounds for the exponent of the maximum edge density as the
length of the type goes to infinity. We also study the biclique
rate region of the type graph, which is defined as the set of
(R1, R2) such that there exists a biclique of the type graph
which has respectively 2nR1 and 2nR2 vertices on the two sides.
We provide asymptotically sharp bounds for the biclique rate
region as well. We then discuss the connections of these results
to noninteractive simulation and hypercontractivity inequalities.
Furthermore, as an application of our results, a new outer bound
for the zero-error capacity region of the binary adder channel
is provided, which improves the previously best known bound,
due to Austrin, Kaski, Koivisto, and Nederlof. Our proofs in this
paper are based on the method of types and linear algebra.

Index Terms— Graphs of joint types, noninteractive simulation,
small-set expansion, isoperimetric inequalities, hypercontractiv-
ity, binary adder channel.

I. INTRODUCTION

LET X and Y be two finite sets. Let TX be an n-type on
X , i.e., an empirical distribution of sequences from Xn.
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Let T (n)
TX

, or TTX
for short, be the n-type class with respect

to TX , i.e., the set of sequences of length n having the type
TX . Similarly, let TXY be a joint n-type1 on X × Y and
T (n)

TXY
, or TTXY

for short, the joint n-type class with respect
to TXY . Note that TTXY

⊆ TTX
×TTY

, where TX , TY are the
marginal types corresponding to the joint type TXY . In this
paper, we consider the undirected bipartite graph GTXY

whose
vertex set is TTX

∪ TTY
and whose edge set can be identified

with TTXY
, defined as follows. Consider x ∈ TTX

and y ∈
TTY

as vertices of GTXY
. Two vertices x,y are joined by an

edge if and only if (x,y) ∈ TTXY
. The graph GTXY

is termed
the graph of TXY or, more succinctly, a type graph [2]. For
brevity, when there is no ambiguity, we use the abbreviated
notation G for GTXY

.
For subsets A ⊆ TTX

,B ⊆ TTY
, we obtain an induced

subgraph G[A,B] of G, whose vertex set is the union of A
and B, and where x,y are joined by an edge if and only if
they are joined by an edge in G. For the induced subgraph
G[A,B], the (edge) density ρ(G[A,B]) is defined as

ρ(G[A,B]) := # of edges in G[A,B]
|A||B|

.

Thus we have ρ(G[A,B]) = |(A×B)∩TTXY
|

|A||B| . Since2 |T
T

(n)
X

| .=

2nH
T (n) (X) [3], it follows that ρ(G) =

|T
T

(n)
XY

|

|T
T

(n)
X

||T
T

(n)
Y

|
.=

2−nI
T (n) (X;Y ) for any sequence of joint types {T (n)

XY }, where
IT (n)(X;Y ) denotes the mutual information of the pair (X,Y )
having the joint distribution T

(n)
XY , taken to the base 2.

Moreover, if we only fix TX , TY , A, and B, then TXY ∈
Cn(TX , TY ) 7→ ρ(GTXY

[A,B]) forms a probability mass
function, i.e.,

ρ(GTXY
[A,B]) ≥ 0,∑

TXY ∈Cn(TX ,TY )

ρ(GTXY
[A,B]) = 1,

where Cn(TX , TY ) denotes the set of joint types TXY with
marginals TX , TY . We term this distribution a type dis-
tribution, which roughly speaking can be considered as a
generalization from binary alphabets to arbitrary finite alpha-
bets of the classic distance distribution in coding theory; please
refer to [4] for the distance distribution of a single code,
and [5] for the distance distribution between two codes.

1We attribute the parameter n to TXY .
2Throughout this paper, we write an

.
= bn to denote an = bn2o(n).
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Given 1 ≤ M1 ≤ |TTX
|, 1 ≤ M2 ≤ |TTY

|, define the
maximal density of subgraphs with size (M1,M2) as

Γn(M1,M2) := max
A⊆TTX

,B⊆TTY
:

|A|=M1,|B|=M2

ρ(G[A,B]). (1)

Recall that TX|Y and TY |X denote the conditional types
corresponding to the joint type TXY . For a sequence x ∈ TTX

,
let

TTY |X (x) := {y ∈ Yn : (x,y) ∈ TTXY
}

denote the corresponding conditional type class. Since N1 :=
|TTY |X (x)| is independent of x ∈ TTX

, the degrees of the
vertices x ∈ TTX

are all equal to the constant N1. Similarly,
the degrees of the vertices y ∈ TTY

are all equal to the constant
N2 := |TTX|Y (y)|. Hence we have

|B|ρ(G[A,B]) + |Bc|ρ(G[A,Bc])

=
|(A× TTY

) ∩ TTXY
|

|A|

=

∑
x∈A |TTY |X (x)|
|A|

= N1,

where Bc := TTY
\B. Thus, over A,B with fixed sizes, max-

imizing ρ(G[A,B]) is equivalent to minimizing ρ(G[A,Bc])
(or ρ(G[Ac,B])). In other words, determining the maximal
density is in fact an edge-isoperimetric problem which con-
cerns minimizing the number of or weighted sum of edges
between a set of vertices and its complement. Furthermore,
given A ⊆ TTX

and M2, we see that

max
B⊆TTY

:|B|=M2

ρ(G[A,B])

=
1

|A|M2
max

B⊆TTY
:|B|=M2

∑
y∈B
|A ∩ TTX|Y (y)|,

and the maximum is attained by B∗ such that3 |A ∩
TTX|Y (y)| ≥ |A∩TTX|Y (y

′)| for any y ∈ B∗,y′ /∈ B∗. Hence,
M2 7→ maxB⊆TTY

:|B|=M2 ρ(G[A,B]) is nonincreasing, which
implies that Γn(M1,M2) is nonincreasing in one parameter
given the other parameter.

Let4

R(n)
X := { 1

n
logM1 :M1 ∈ [|TTX

|]}, (2)

R(n)
Y := { 1

n
logM2 :M2 ∈ [|TTY

|]}, (3)

where the logarithm is taken to the base 2. Given a joint n-
type TXY , define the exponent of maximal density for a pair
(R1, R2) ∈ R(n)

X ×R(n)
Y as

En(R1, R2) := −
1
n
log Γn(2nR1 , 2nR2). (4)

3This condition is closely related to a classic concept, the η-image of a
set, which was exploited in the context of the image size characterization
in [6] and [7].

4We use the notation [m : n] := {m,m+ 1, . . . , n} and [n] := [1 : n].

If the edge density of a subgraph in a bipartite graph G is
equal to 1, then this subgraph is called a biclique of G. Along
these lines, we define the biclique rate region of TXY as

Rn(TXY ) := {(R1, R2) ∈ R(n)
X ×R(n)

Y :

Γn(2nR1 , 2nR2) = 1}. (5)

Observe that any n-type TXY can also be viewed as a kn-type
for k ≥ 1. With an abuse of notation, we continue to use TXY

to denote the corresponding kn-type. With this in mind, for
an n-type TXY define the asymptotic exponent of maximal
density for a pair (R1, R2) ∈ R(n)

X ×R(n)
Y as5

E(R1, R2) := lim
k→∞

− 1
kn

log Γkn(2knR1 , 2knR2), (6)

and the asymptotic biclique rate region as6

R(TXY ) := closure
⋃
k≥1

Rkn(TXY ). (7)

The blocklengths considered here are taken as multiples of n,
since the limit and union above are taken for fixed TXY , but
TXY is not always an m-type for an arbitrary integer m.

In this paper we are interested in characterizing the limits
E(R1, R2) and R(TXY ), and in bounding the corresponding
convergence rates.

A. Motivations

Our motivations for studying the type graph have the
following three aspects.

1) The method of types is a classic and powerful tool in
information theory. In this method, the basic unit is
the (joint) type or (joint) type class. To the authors’
knowledge, it is not well understood how the sequence
pairs are distributed in a joint type class. The maximal
density (as well as the biclique rate region) measures
how concentrated are the joint-type sequence pairs by
counting the number of joint-type sequence pairs in each
“local” rectangular subset. Hence, our study of the type
graph deepens the understanding of the distribution (or
structure) of sequence pairs in a joint type class. The
first study on this topic can be traced back to Han
and Kobayashi’s work [8], and it was also investigated
in [2], [9], and [10] recently. In all these works, either
a typicality graph (an approximate version of the type
graph) or an approximate version of a biclique of the
type graph was considered. In contrast, we consider the
exact version of a biclique of the type graph, which
results in a rate region different from theirs.

2) Observe that if one starts with a pair sequence (x,y) in
the joint type class TTXY

, then the type graph can be
constructed from the set of all pair sequences resulting

5The limit exists because log Γkn(2
knR1 , 2knR2 ) is subadditive in k for

a given n-type TXY . Further, given TXY , the limit does not depend on the
value of n that we attribute to TXY .

6Using a product construction, we see that kRkn(TXY ) is “superadditive”
in k, i.e., k1Rk1n(TXY )+k2Rk2n(TXY ) ⊆ (k1+k2)R(k1+k2)n(TXY ).
Hence R(TXY ) = closure limk→∞ Rkn(TXY ) and, moreover, R(TXY )
is only dependent on TXY and independent of the value of n that we attribute
to TXY .

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 13,2024 at 14:19:11 UTC from IEEE Xplore.  Restrictions apply. 



YU et al.: GRAPHS OF JOINT TYPES, NONINTERACTIVE SIMULATION, AND STRONGER HYPERCONTRACTIVITY 2289

from permutations of this pair sequence. Thus, unlike
other well-studied large graphs, the type graph is deter-
ministic rather than stochastic. There are relatively few
works focusing on deterministic large graphs. Hence,
as a purely combinatorial problem, studying the type
graph is of independent interest.

3) The maximal and minimal density problems for type
graphs are closely related to noninteractive simulation
problems (or noise stability problems) and hypercontrac-
tivity inequalities. Hence, studying the type graph could
provide more insights to these related topics.

B. Related Works

Han and Kobayashi [8] introduced a concept similar to
the asymptotic biclique rate region defined in this paper.
However, roughly speaking, their definition is an approxi-
mate version of our definition, in the sense that in their
definition, for a distribution PXY (not necessarily a type),
type classes are replaced with typical sets with respect to
PXY , and the constraint Γn(2nR1 , 2nR2) = 1 is replaced with
Γn(2nR

(n)
1 , 2nR

(n)
2 ) → 1 as n → ∞ for a sequence of types

T
(n)
XY converging to PXY and a sequence of pairs (R(n)

1 , R
(n)
2 )

converging to (R1, R2). This approximate version was also
investigated in [2], [9], and [10].

In fact, the maximal and minimal density problems on a type
graph are equivalent to the noninteractive simulation problem
in some sense. Given a joint distribution Pn

XY , the noninterac-
tive simulation problem concerns estimating the maximal and
minimal joint probability Pn

XY (A × B) when the marginal
probabilities Pn

X(A) and Pn
Y (B) are given. The study of the

noninteractive simulation problem dates back to Gács and
Körner’s and Witsenhausen’s seminal papers [11], [12]. Most
of the existing works on this topic focus on doubly symmetric
binary sources (DSBSes). For the DSBS, by utilizing the
tensorization property of maximal correlation, Witsenhausen
proved sharp bounds on Pn

XY (A×B) for the case Pn
X(A) =

Pn
Y (B) = 1

2 , where the upper and lower bounds are respec-
tively attained by symmetric (n−1)-subcubes (e.g., A = B =
{x : x1 = 1}) and anti-symmetric (n − 1)-subcubes (e.g.,
A = −B = {x : x1 = 1}). Recently, by combining Fourier
analysis with a coding-theoretic result, the first author and
Tan [5] derived the sharp upper bound for the case Pn

X(A) =
Pn

Y (B) = 1
4 , where the upper bound is attained by symmetric

(n − 2)-subcubes (e.g., A = B = {x : x1 = x2 = 1}).
Kahn et al. [13] first applied the single-function version of (for-
ward) hypercontractivity inequalities to obtain bounds for the
noninteractive simulation problem, by replacing nonnegative
functions in the hypercontractivity inequalities with Boolean
functions. Mossel and O’Donnell [14], [15] applied the two-
function version of hypercontractivity inequalities to obtain
bounds in a similar way. Kamath and the second author [16]
improved the use of hypercontractivity inequalities in a slightly
different way, specifically by replacing nonnegative functions
with two-valued functions (not restricted to be {0, 1}-valued).
Furthermore, as mentioned previously, Ordentlich et al. [17]
studied the regime in which Pn

X(An), Pn
Y (Bn) vanish expo-

nentially fast, and they solved the limiting cases ρ → 0, 1.

The symmetric case Pn
X(An) = Pn

Y (Bn) in this exponential
regime was solved by Kirshner and Samorodnitsky [18]. Fur-
thermore, the noninteractive simulation problem for Gaussian
sources was investigated in [19] and [20], and the ones with
Markov chain noise models and multi-terminal versions of
noninteractive simulation problems have also been studied in
the literature; e.g., [14] and [21]. We refer readers to the
monograph [22] for a comprehensive introduction to this topic.

Brascamp–Lieb (BL) inequalities constitute a class of
inequalities that generalize the families of Hölder inequali-
ties. Hypercontractivity inequalities are special cases of BL
inequalities. Hypercontractivity inequalities were investigated
in [23], [24], [25], [26], [27], [28], [29], [30], [31], and [32]
among others. Information-theoretic characterizations of the
BL (and hypercontractivity) inequalities can be traced back to
Ahlswede and Gács’s seminal work [29], where a related quan-
tity, known as the hypercontractivity constant, was expressed
in terms of relative entropies. The information-theoretic char-
acterization for the forward BL inequalities on Euclidean
spaces was given in [33]; this was independently discovered
later [34] in the case of finite alphabets. An information-
theoretic characterization of the reverse BL inequalities for
finite alphabets was provided in [35], [36], and [37]. By using
Fenchel duality, the extension of the characterization for
forward inequalities to arbitrary measurable spaces and the
extension of the characterization for reverse inequalities to
Polish spaces under certain compactness conditions were done
in [38]. These compactness conditions were removed in [39]
by using large deviations theory.

C. Main Contributions

Out main contribution in this paper is the complete charac-
terization of the asymptotic biclique rate region for any joint
type defined on finite alphabets. We observe that, in general,
the asymptotic biclique rate region defined by us is a subset (in
general, a strict subset) of the approximate one defined by Han
and Kobayashi [8]. In fact, their definition for a distribution
PXY is equal to the asymptotic rate region of a sequence of
n-types {T (n)

XY } approaching PXY , which satisfy the condition
En(R

(n)
1 , R

(n)
2 )→ 0 as n→∞. Our proof for the character-

ization of biclique rate region combines information-theoretic
techniques and linear algebra; similar techniques were also
used in [40] and [41].

We also characterize the asymptotic exponent of maximal
density, and interpret it in terms of noninteractive simula-
tion, for which the marginal probabilities are exponentially
small. Note that this regime was first explicitly studied by
Ordentlich et al. [17], who solved limiting cases for DSBSes.
In fact, a complete characterization (involving time-sharing
random variables) of this problem exists in the literature,
which is a direct consequence of the existing information-
theoretic characterization of Brascamp–Lieb inequalities.
Applying this result to zero-error coding for the binary adder
channel yields a new bound on the zero-error capacity.

Finally, we relax Boolean functions in noninteractive simu-
lation problems to any nonnegative functions, but still restrict
their suppports to be exponentially small. We obtain stronger
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(forward and reverse) Brascamp–Lieb and hypercontractivity
inequalities, which, in asymptotic cases, reduce to the common
ones when the exponents of the sizes of the supports are
zero. (Note that these stronger inequalities can be also derived
from the existing information-theoretic characterization of the
classic Brascamp–Lieb inequalities.) Similar inequalities were
previously derived by Polyanskiy and Samorodnitsky [42] and
by Kirshner and Samorodnitsky [18] by different methods.

D. Notation

We write := and occasionally =: for equality by definition.
Throughout this paper, for two sequences of reals, we use
an

.= bn to denote an = bn2o(n). We use C(QX , QY ) to
denote the set of couplings QXY with marginals QX , QY .
Given QX|UW and QY |V W , we use C(QX|UW , QY |V W ) to
denote the set of conditional couplings QXY |UV W with con-
ditional marginals QX|UW , QY |V W . Note that, given QX|UW

and QY |V W , for any QXY |UV W ∈ C(QX|UW , QY |V W ) and
any QUV W , the joint law QXY UV W = QXY |UV WQUV W is
such that X ↔ (U,W ) ↔ V and Y ↔ (V,W ) ↔ U , where
the notation X ↔ Y ↔ Z for a triple of random variables
(X,Y, Z) denotes that X and Z are conditionally independent
given Y . For a length-n sequence x, we use Tx to denote the
type of x. For an m × n matrix B = (bi,j) and two subsets
H ⊆ [m],L ⊆ [n], we use BH,L to denote (bi,j)i∈H,j∈L,
i.e., the submatrix of B consisting of the elements with
indices in H × L. For a length-n vector or sequence x and
a subset J ⊆ [n], xJ := (xj)j∈J is defined similarly. For a
distribution PX , we use Pn

X to denote the n-fold product of
PX . We will also use notations HQ(X) or H(QX) to denote
the entropy of X ∼ QX . If the distribution is denoted by PX ,
we sometimes write the entropy as H(X) for brevity. We use
supp(PX) to denote the support of PX . The logarithm log is
taken to the base 2, and ln is taken to the natural base. Note
that, as is the case for many other information-theoretic results,
the results in this paper can be viewed as independent of the
choice of the base of the logarithm as long as exponentiation
is interpreted as being with respect to the same base.

For a joint distribution PXY and for functions f : X →
[0,∞) and g : Y → [0,∞), define their inner product

⟨f, g⟩ := E[f(X)g(Y )] =
∑

(x,y)∈X×Y

PXY (x, y)f(x)g(y).

(8)

The Lp-norm of f for p ∈ [1,∞) and the pseudo Lp-norm of
f for p ∈ (0, 1) are defined as

∥f∥p :=
(
E[f(X)p]

)1/p =
( ∑

x∈X
PX(x)f(x)p

)1/p

. (9)

II. TYPE GRAPHS

In this section, we completely characterize the asymptotic
exponent of maximal density and the asymptotic biclique rate
region.

A. Exponents

The asymptotic behavior of the exponent of maximal density
is characterized in the following theorem, whose proof is
provided in Appendix B. For all nonnegative pairs (R1, R2),
define

F ∗(R1, R2) := max
PXY W :PXY =TXY ,

H(X|W )≤R1,H(Y |W )≤R2

H(X,Y |W ), (10)

and

E∗(R1, R2) := R1 +R2 − F ∗(R1, R2). (11)

Theorem 1: Given a joint n-type TXY with n ≥ 2(|X ||Y|+
2)|X ||Y|, for (R1, R2) ∈ R(n)

X ×R(n)
Y , we have

E∗(R1, R2) ≤ En(R1, R2) ≤ E∗(R1, R2) + εn, (12)

where εn := (|X ||Y|+2)|X ||Y|
n log (n+1)n6

|X |4|Y|4 . As a consequence,
for any n ≥ 1 and any joint n-type TXY , we have

E(R1, R2) = E∗(R1, R2). (13)

Without loss of optimality, the alphabet size of W in the
definition of F ∗(R1, R2) can be assumed to be no larger than
|X ||Y|+ 2.

Remark 1: E∗(R1, R2) can be also expressed as

E∗(R1, R2) = R1 +R2 −HT (XY ) +G∗(R1, R2),

with

G∗(R1, R2) := min
PXY W :PXY =TXY ,

H(X|W )≤R1,H(Y |W )≤R2

I(X,Y ;W ) (14)

corresponding to the minimum common rate given marginal
rates (R1, R2) in the Gray–Wyner source coding network
[43, Theorem 14.3].

Remark 2: The explicit expression of E∗ for the doubly
symmetric binary source was given in Section III-C.

Remark 3: A slightly weaker statement, En(R1, R2) =
E∗(R1, R2) + O( log n

n ), can be recovered from a more gen-
eral result given in [44, (6) and (7)] via the noninteractive
simulation interpretation of the maximal density problem; see
Section III-A.

Before proving Theorem 1, we first list several properties
of F ∗(R1, R2) in the following lemma. The proof is provided
in Appendix A.

Lemma 1: For any joint n-type TXY and R1, R2 ≥ 0, the
following properties of F ∗(R1, R2) hold.

1) Given R1, F ∗(R1, R2) is nondecreasing in R2 and, given
R2, F ∗(R1, R2) is nondecreasing in R1.

2) F ∗(R1, R2) ≤ min{HT (X,Y ), R1 +
R2, R1 + HT (Y |X), R2 + HT (X|Y )}. Moreover,
F ∗(HT (X), HT (Y )) = HT (X,Y ).

3) F ∗(0, R2) = min{R2, HT (Y |X)} and, similarly,
F ∗(R1, 0) = min{R1, HT (X|Y )}.

4) F ∗(R1, R2) is concave in (R1, R2) on {(R1, R2) : R1 ≥
0, R2 ≥ 0}.

5) For δ1, δ2 ≥ 0, we have 0 ≤ F ∗(R1 + δ1, R2 + δ2) −
F ∗(R1, R2) ≤ δ1 + δ2 for all R1 ≥ 0, R2 ≥ 0.

Theorem 1 is an edge-isoperimetric result for the bipartite
graph induced by a joint n-type TXY . For the case in which
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X = Y and TX = TY , the bipartite graph of TXY can be
replaced by a non-bipartite one. Consider a directed graph7

(allowing self-loops if X = Y under TXY ) in which the
vertices consist of x ∈ TTX

and there is a directed edge from8

x to y if and only if (x,y) ∈ TTXY
. Hence, for this case,

Theorem 1 can be also considered as an edge-isoperimetric
result for a directed graph induced by TXY . Specifically, for
a subset A ⊆ TTX

, let G[A] be the induced subgraph of the
directed graph of TXY . The (edge) density ρ(G[A]) is defined
as

ρ(G[A]) := # of directed edges in G[A]
|A|2

=
|(A×A) ∩ TTXY

|
|A|2

.

Given 1 ≤ M ≤ |TTX
|, define the maximal density of

subgraphs with size M as9

Γn(M) := max
A⊆TTX

:|A|=M
ρ(G[A]).

Given a joint n-type TXY , for R ∈ R(n)
X as defined in (2),

define the exponent of maximal density as

En(R) := −
1
n
log Γn(2nR). (15)

For any subsets A,B of Xn, we have

|A||B|ρ(G[A,B]) ≤ |A ∪ B|2ρ(G[A ∪ B]).

On the other hand,

Γn(M) ≤ Γn(M,M).

Hence
1
4
Γn(

M

2
,
M

2
) ≤ Γn(M) ≤ Γn(M,M).

Combining the inequalities above with Theorem 1 yields the
following result.

Corollary 1: For any joint n-type TXY , and R ∈ R(n)
X ,

we have

En(R) = E∗(R,R) +O(
log n
n

), (16)

where the asymptotic constant in the O( log n
n ) term on the right

hand side depends only on |X |, and E∗(R1, R2) is defined in
Theorem 1.

For the case of X = Y and TX = TY , the bipartite
graph of TXY can be also considered as an undirected graph
(allowing self-loops if X = Y under TXY ) in which the
vertices consist of x ∈ TTX

and (x,y) is an edge if and
only if (x,y) or (y,x) ∈ TTXY

. By a similar argument to the

7When we extend the bipartite graph to a non-bipartite one, we assume the
graph to be directed, in order to ensure that the pairs of sequences (x,y) and
the edges in the graph are mapped to each other in a one-to-one way.

8Without of loss generality, we consider the edges from x to y, since we
can obtain a graph with edges from y to x if we consider the type TY X

(instead of TXY ).
9We use the same notation as the one in (1) for the bipartite graph case, but

here the edge density has only one parameter. The difference between these
two maximal densities is that in (1) the maximization is taken over a pair
of sets (A,B), but here only over one set (equivalently, under the restriction
A = B).

above, Corollary 1 still holds for this case, which hence can
be considered as a generalization of [18, Theorem 1.6] from
binary alphabets to arbitrary finite alphabets.

B. Biclique Rate Region

The asymptotic behavior of the biclique rate region is char-
acterized in the following theorem, whose proof is provided
in Appendix C. Define

R∗(TXY ) :=
⋃

0≤α≤1,PXY ,QXY :
αPXY +(1−α)QXY =TXY

{(R1, R2) :

R1 ≤ αHP (X|Y ),
R2 ≤ (1− α)HQ(Y |X)}. (17)

Theorem 2: For any n ≥ 8(|X ||Y|)7/5 and any TXY ,

(R∗(TXY )− [0, ε1,n]× [0, ε2,n]) ∩ (R(n)
X ×R(n)

Y )
⊆ Rn(TXY )

⊆ R∗(TXY ) ∩ (R(n)
X ×R(n)

Y ) (18)

where Rn(TXY ) is defined in (5), “−” is the Minkowski
difference (i.e., for A,B ⊆ Rm, A − B :=

⋂
b∈B(A − b)),

ε1,n := |X ||Y|
n log n4(n+1)

16|X | , and ε2,n := |X ||Y|
n log n4(n+1)

16|Y|2 .
In particular,

R(TXY ) = R∗(TXY ), (19)

where R(TXY ) is the asymptotic biclique rate region, defined
in (7).

Remark 4: Theorem 2 can be easily generalized to the k-
variables case with k ≥ 3. For this case, let TX1,...,Xk

be a
joint n-type. Then the graph G induced by TX1,...,Xk

is in fact
a k-partite hypergraph. The (edge) density of the subgraph of
G with vertex sets (A1, . . . ,Ak) is defined as

ρ(G[A1, . . . ,Ak]) :=
|(
∏k

i=1Ai) ∩ TTX1,...,Xk
|∏k

i=1 |Ai|
.

It is interesting to observe that ρ(G) .= 2−nI
T (n) (X1;...;Xk)

for a sequence of joint types {T (n)
X1,...,Xk

},
where IT (n)(X1; . . . ;Xk) :=

∑k
i=1HT (n)(Xi) −

HT (n)(X1, . . . , Xk). Given a joint n-type TX1,...,Xk
,

we define the k-clique rate region as

Rn(TX1,...,Xk
) := {( 1

n
log |A1|, . . . ,

1
n
log |Ak|) :

ρ(G[A1, . . . ,Ak]) = 1}.

Following similar steps to our proof of Theorem 2, for this
case we have

(R∗(TX1,...,Xk
)− [0, O(

log n
n

)]k) ∩ (
k∏

i=1

R(n)
Xi

)

⊆ Rn(TX1,...,Xk
)

⊆ R∗(TX1,...,Xk
) ∩ (

k∏
i=1

R(n)
Xi

),
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where

R∗(TX1,...,Xk
) :=

⋃
αi≥0,P

(i)
X1,...,Xk

,i∈[k]:
∑k

i=1 αi=1∑k
i=1 αiP

(i)
X1,...,Xk

=TX1,...,Xk

{(R1, . . . , Rk) : Ri ≤ αiHP (i)(Xi|X\i)},

with X\i := (X1, . . . , Xi−1, Xi+1, . . . , Xk).
Proposition 1: Given TXY , R∗(TXY ) is a closed convex

set.
Proof: Using the continuity of HP (X|Y ) in PXY it can be

established that R∗(TXY ) is closed. Convexity follows by the
following argument. For any (R1, R2), (R̂1, R̂2) ∈ R∗(TXY ),
there exist (α, PXY , QXY ) and (α̂, P̂XY , Q̂XY ) such that

αPXY + (1− α)QXY = TXY ,

α̂P̂XY + (1− α̂)Q̂XY = TXY ,

R1 ≤ αHP (X|Y ), R2 ≤ (1− α)HQ(Y |X),

R̂1 ≤ α̂HP̂ (X|Y ), R̂2 ≤ (1− α̂)HQ̂(Y |X).

Then for any λ ∈ [0, 1],

λR1 + (1− λ)R̂1

≤ λαHP (X|Y ) + (1− λ)α̂HP̂ (X|Y ) (20)
≤ βHP (θ)(X|Y ), (21)

where β = λα+(1−λ)α̂, and P (θ)
XY := θPXY +(1− θ)P̂XY

with θ = λα
λα+(1−λ)α̂ if β > 0; P (θ)

XY is chosen as an arbitrary
distribution if β = 0. Here (21) follows since HP (X|Y ) is
concave in PXY . By symmetry, λR2 + (1 − λ)R̂2 ≤ (1 −
β)HQ(θ̂)(Y |X), where Q(θ̂)

XY := θ̂PXY +(1−θ̂)P̂XY with θ̂ =
λ(1−α)

λ(1−α)+(1−λ)(1−α̂) if β < 1; Q(θ̂)
XY is chosen as an arbitrary

distribution if β = 1. Since βP (θ)
XY + (1− β)Q(θ̂)

XY = TXY , it
follows that λ(R1, R2) + (1 − λ)(R̂1, R̂2) ∈ R∗(TXY ), i.e.,
R∗(TXY ) is convex.

Since R∗(TXY ) is convex, an extreme case of R∗(TXY ) is
a triangle region. We next study when the asymptotic biclique
rate region is a triangle region. We obtain the following
necessary and sufficient condition. The proof is provided in
Appendix E.

Proposition 2: Let TXY be a joint n-type such that
HT (X|Y ), HT (Y |X) > 0. Then the asymptotic biclique rate
region R(TXY ) is a triangle region, i.e.,

R(TXY ) = R△(TXY )

:=
⋃

0≤α≤1

{(R1, R2) : R1 ≤ αHT (X|Y ),

R2 ≤ (1− α)HT (Y |X)},

if and only if TXY satisfies that TX|Y (x|y)1/HT (X|Y ) =
TY |X(y|x)1/HT (Y |X) for all x, y.

The condition in Proposition 2 is satisfied by the joint n-
types TXY which have marginals TX = Unif(X ), TY =
Unif(Y) and satisfy at least one of the following two con-
ditions:

1) |X | = |Y|;
2) X,Y are independent under the distribution TXY .

TABLE I
THE DISTRIBUTION OF A DSBS WITH CORRELATIONCOEFFICIENT ρ

Example (DSBS): A typical example that satisfies these
conditions is the DSBS, whose distribution is given in Table I.
Hence, the asymptotic biclique rate region is the triangle
region {(R1, R2) : R1 + R2 ≤ h( 1−ρ

2 )} if the joint n-type
TXY is a DSBS with correlation coefficient ρ ∈ [0, 1]. Here,
h : t 7→ −t log t−(1− t) log(1− t) denotes the binary entropy
function.

For a joint type TXY the Han and Kobayashi region (which
is of course defined for any joint distribution, not necessarily
a type) is given by [8]

R∗∗(TXY ) :=
⋃

PXY W :PXY =TXY ,
X↔W↔Y

{(R1, R2) :

R1 ≤ H(X|W ), R2 ≤ H(Y |W )}.
(22)

By Theorem 1, R∗∗(TXY ) also coincides with the region
{(R1, R2) : E∗(R1, R2) = 0}. This implies that R∗(TXY ) ⊆
R∗∗(TXY ), i.e., that for any joint type TXY the asymptotic
biclique rate region defined in this paper is a subset of Han
and Kobayashi’s approximate version. This can also be seen
by directly comparing the definition ofR∗(TXY ) in (17) to the
definition of R∗∗(TXY ) in (22). This can be seen as follows.
For a joint type TXY , let Q(0)

XY , Q(1)
XY , and 0 ≤ α ≤ 1 be

such that αQ(0)
XY + (1 − α)Q(1)

XY = TXY , and let (R1, R2)
be a rate pair such that R1 ≤ αHQ(0)(X|Y ) and R2 ≤
(1 − α)HQ(1)(Y |X). Without loss of generality, we assume
that X and Y are disjoint, i.e., X ∩ Y = ∅, since otherwise,
we can respectively map them to another two sets satisfying
this requirement by bijections. Let (X,Y,W ) be a tuple of
random variables such that W takes values in X ∪ Y , and
W ∈ Y with probability α and W ∈ X with probability
1 − α. Moreover, under the condition W ∈ Y , it holds that
W = Y and (X,Y ) ∼ Q

(0)
XY ; under the condition W ∈ X , it

holds that W = X and (X,Y ) ∼ Q(1)
XY . It can be checked that

(X,Y ) ∼ TXY and we have X ↔W ↔ Y , R1 ≤ H(X|W ),
and R2 ≤ H(Y |W ). This inclusion can be strict. For example,
when the joint n-type TXY is a DSBS with a positive crossover
probability, the region R∗∗(TXY ), which is computed in
[8, Section 4], strictly contains the asymptotic biclique region
R∗(TXY ), which, by Proposition 2, is a triangle region.
Another family of examples where the asymptotic biclique
region is strictly contained in the region of Han and Kobayashi
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is when the joint n-type TXY is Unif(X×Y). HereR∗∗(TXY )
equals the rectangle region [0, H(X)] × [0, H(Y )], while
Proposition 2 implies that R∗(TXY ) is a triangle region.

The difference between the exact and approximate ver-
sions of asymptotic biclique rate regions is caused by the
“type overflow” effect, which was crystallized by the first
author and Tan in [45]. Let (R1, R2) be a pair such that
E∗(R1, R2) = 0. Let (A,B) be an optimal pair of subsets
attaining E∗(R1, R2). All the sequences in A have type TX ,
and all the sequences in B have type TY . However, in general,
the joint types of (x,y) ∈ A × B might “overflow” from
the target joint type TXY . The number of non-overflowed
sequence pairs (i.e., |(A×B)∩TTXY

|) has exponent R1+R2,
since E∗(R1, R2) = 0. This means that not too many sequence
pairs have overflowed. However, if type overflow is forbidden,
then we must reduce the rates of A and B to satisfy this
requirement. This leads to the exact version of the asymptotic
biclique rate region being strictly smaller than the approximate
version. In other words, the exact asymptotic biclique rate
region is more sensitive to the type overflow effect than the
approximate version. A similar conclusion was previously
drawn by the first author and Tan in [45] for the common
information problem. Technically speaking, the type overflow
effect corresponds to the fact that optimization over couplings
is involved in our expressions. Intuitively, it is caused by the
Markov chain constraints in the problem. We believe that the
type overflow effect usually accompanies problems involving
Markov chains.

III. NONINTERACTIVE SIMULATION

In this section, we connect the maximal density problem on
type graphs to the noninteractive simulation (or noise stability)
problem. We focus on two noninteractive simulation problems,
one with sources uniformly distributed over a joint n-type and
the other with memoryless sources.

A. Sources Unif(TTXY
)

In this subsection, we assume (X,Y) ∼ PX,Y :=
Unif(TTXY

). Given two marginal probabilities PX(A) and
PY(B), what are the possible maximal and minimal values
of the joint probability PX,Y(A×B)? This problem is termed
the noninteractive binary simulation problem or the (two-set
version of) noise stability problem.

Define E(n)
X := { 1

n log |TTX
| − R1 : R1 ∈ R(n)

X } and
E(n)

Y := { 1
n log |TTY

| − R2 : R2 ∈ R(n)
Y }, where R(n)

X

and R(n)
Y are defined in (2). Given a joint n-type TXY , for

(E1, E2) ∈ E(n)
X × E(n)

Y , define the exponents of the maximal
and minimal noise stability as

Υn(E1, E2) := −
1
n
log max

A⊆TTX
,B⊆TTY

:

PX(A)=2−nE1 ,

PY(B)=2−nE2

PX,Y(A× B), (23)

Υn(E1, E2) := −
1
n
log min

A⊆TTX
,B⊆TTY

:

PX(A)=2−nE1 ,

PY(B)=2−nE2

PX,Y(A× B). (24)

The noninteractive binary simulation problem is to determine
these two quantities. This problem originates from Gács and
Körner’s and Witsenhausen’s seminal works [11], [12] in
the study of the Gács–Körner–Witsenhausen common infor-
mation. This topic has also attracted independent interest
from the computer science community, due to the connection
with the analysis of Boolean functions [46]. We refer readers to
the related works mentioned in Section I-B or the monograph
[22] for more information on this problem.

We determine the asymptotic behavior of Υn in the fol-
lowing theorem. However, the asymptotic behavior of Υn

is currently unclear; see the discussion in Section V. For
0 ≤ s ≤ H(X), 0 ≤ t ≤ H(Y ), define

Υ∗(s, t) := min
PXY W :PXY =TXY ,

I(X;W )≥s,I(Y ;W )≥t

I(XY ;W ).

Theorem 3: For any TXY and (E1, E2) ∈ E(n)
X × E(n)

Y , we
have

Υn(E1, E2) = Υ∗(E1, E2) +O(
log n
n

), (25)

where the asymptotic constant in the O( log n
n ) bound depends

only on |X |, |Y|.
In fact, this result can be recovered from a more general

result given in [44, (6) and (7)]. The latter generalizes the
Υn for the uniform distribution over a type class to the
infimum of Υn over all distributions not too far from a product
distribution.

Proof: Observe that

PX(A) = |A|
/
|TTX
|, (26)

PY(B) = |B|
/
|TTY
|, (27)

PX,Y(A× B) = ρ(G[A,B])|A||B|
/
|TTXY

|. (28)

So, Theorem 3 is implied by Theorem 1.

B. Sources Pn
XY

In this subsection, we consider the noninteractive simulation
problem with (X,Y) ∼ Pn

XY , where PXY is a joint distribu-
tion defined on X×Y . We still assume that X ,Y are finite sets
of cardinality at least 2 and that PX(x) > 0, PY (y) > 0 for
all (x, y) ∈ X × Y , where PX , PY denote the marginal
distributions of PXY . Ordentlich et al. [17] focused on binary
symmetric distributions PXY , and studied the exponent of
Pn

XY (A× B) given that Pn
X(A), Pn

Y (B) vanish exponentially
fast with exponents E1, E2, respectively. Let

E1,max := − logPX,min, E2,max := − logPY,min,

where PX,min := minx PX(x), PY,min := miny PY (y). In this
subsection, we consider an arbitrary distribution PX,Y satis-
fying PX(x) > 0, PY (y) > 0 for all (x, y) ∈ X ×Y and, for
E1 ∈ [0, E1,max], E2 ∈ [0, E2,max], we aim at characterizing10

Θ(E1, E2) := lim
n→∞

Θn(E1, E2), (29)

10By time-sharing arguments, given (E1, E2), {nΘn(E1, E2)}n≥1 is
subadditive. Hence, by Fekete’s Subadditive Lemma, the first limit in (29)
exists and equals infn≥1 Θn(E1, E2). Similar observations serve to define
the second limit in (29).
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Θ(E1, E2) := lim
n→∞

Θn(E1, E2), (30)

where the exponents of the maximal and minimal noise
stability are defined by

Θn(E1, E2) := −
1
n
log max

A⊆Xn,B⊆Yn:

P n
X(A)≤2−nE1 ,

P n
Y (B)≤2−nE2

Pn
XY (A× B), (31)

Θn(E1, E2) := −
1
n
log min

A⊆Xn,B⊆Yn:

P n
X(A)≥2−nE1 ,

P n
Y (B)≥2−nE2

Pn
XY (A× B). (32)

For E1 ∈ [0, E1,max], E2 ∈ [0, E2,max], define

Θ∗(E1, E2) (33)
:= min

QXY W :D(QX|W ∥PX |QW )≥E1,

D(QY |W ∥PY |QW )≥E2

D(QXY |W ∥PXY |QW )

(34)
= min

QW ,QX|W ,QY |W :

D(QX|W ∥PX |QW )≥E1,

D(QY |W ∥PY |QW )≥E2

D(QX|W , QY |W ∥PXY |QW ), (35)

Θ
∗
(E1, E2) (36)

:= max
QW ,QX|W ,QY |W :

D(QX|W ∥PX |QW )≤E1,

D(QY |W ∥PY |QW )≤E2

D(QX|W , QY |W ∥PXY |QW ), (37)

where

D(QX|W , QY |W ∥PXY |QW )
:= min

QXY |W ∈C(QX|W ,QY |W )
D(QXY |W ∥PXY |QW )

and the notation C(QX|W , QY |W ) is defined in
Subsection I-D. Without loss of optimality, the alphabet
size of W in either (33) or (36) can be assumed to be no
larger than 3. This is a consequence of the support lemma
in [43].

The asymptotic exponents Θ and Θ are characterized in
the following theorem. Note that the following theorem is
not new, since it is a direct consequence of the information-
theoretic characterization of Brascamp–Lieb inequalities given
in [29], [33], [34], and [47] for the forward part and [35],
[36], [37], [39], [47] for the reverse part. For more details see
[22, Section 10.3].

Theorem 4 (Strong Small-Set Expansion Theorem): For
E1 ∈ [0, E1,max], E2 ∈ [0, E2,max], the following hold.

1) Θ(E1, E2) = Θ∗(E1, E2). Moreover, Θn(E1, E2) ≥
Θ∗(E1, E2) for any n ≥ 1.

2)

Θ(E1, E2) = Θ
∗∗
(E1, E2)

:=


Θ

∗
(E1, E2), E1, E2 > 0,

E1, E2 = 0,
E2, E1 = 0.

Moreover, Θn(E1, E2) ≤ Θ
∗∗
(E1, E2) for any n ≥ 1.

Remark 5: We interpret Θ
∗
(E1, E2) as ∞ if PXY (x, y) =

0 for some (x, y). It can be checked that this interpretation is

consistent with the definition in (33) because QW , QX|W , and
QY |W in the outer maximum can be chosen so that QW (w) >
0, QX|W (x|w) > 0, and QY |W (y|w) > 0 for some w.

Remark 6: By the convexity of Θ∗ and concavity of Θ
∗
,

Theorem 4 implies Θn(E1, E2) ≥ limt↓0
1
tΘ

∗(tE1, tE2) and
Θn(E1, E2) ≤ limt↓0

1
tΘ

∗∗
(tE1, tE2). In particular, for the

DSBS with correlation coefficient ρ > 0, these inequalities
reduce to that

Θn(E1, E2) ≥


E1+E2−2ρ

√
E1E2

1−ρ2 , ρ2E1 ≤ E2 ≤ E1/ρ
2,

E1, E2 < ρ2E1,

E2, E2 > E1/ρ
2,

(38)

Θn(E1, E2) ≤
E1 + E2 + 2ρ

√
E1E2

1− ρ2
. (39)

These inequalities correspond to the small-set expansion
theorem given in [29, Lemma 1] [13, Lemma 3.4] [14,
Theorem 3.4] [15, Generalized Small-Set Expansion Theorem
on p. 285].

Remark 7: We must have lim infn→∞− 1
n logPn

X(An) ≥
E1 for any sequence (An,Bn) attaining the asymptotic expo-
nent Θ(E1, E2). If lim supn→∞− 1

n logPn
X(An) > E1 then

it must be the case that E1 < E1,max. So in this case, we can
add sequences in Xn to An to get a new sequence (An,Bn)
such that limn→∞− 1

n logPn
X(An) = E1. This is possible

since for each E1 ∈ [0, E1,max) there is a sequence Ãn ⊆ Xn

such that (1) each Ãn is a type class (the type can change
with n), (2) Pn

X(Ãn) ≤ 2−nE1 , (3) limn→∞ |Ãn| = ∞,
and (4) limn→∞− 1

n logPn
X(Ãn) = E1. We can then simply

replace An by An∪Ân where Ân is a maximal subset of Ãn

among those that continue to satisfy Pn
X(An ∪ Ân) ≤ 2−nE1 .

Now, the resulting new sequence (An,Bn) continues to attain
the asymptotic exponent Θ(E1, E2) (by the converse part in
the theorem above). Similarly, if needed, we can also add
sequences to Bn such that limn→∞− 1

n logPn
Y (Bn) = E2.

This implies that there exists a sequence (An,Bn) such that
limn→∞− 1

n logPn
X(An) = E1, limn→∞− 1

n logPn
Y (Bn) =

E2, and limn→∞− 1
n logPn

XY (An × Bn) = Θ(E1, E2).
Remark 8: We define the effective region of Θ

∗
as the

set of (E1, E2) for which Θ
∗
(E1, E2) = “ψ(E1, E2), i.e.,

there exists an optimal tuple (QW , QX|W , QY |W ) attaining
the maximum in the definition of Θ

∗
(E1, E2) such that

D(QX|W ∥PX |QW ) = E1, D(QY |W ∥PY |QW ) = E2. Note
that D(QX|W ∥PX |QW ) is the asymptotic exponent of the
probability of a conditional type class with type QX|W
given QW , and D(QX|W , QY |W ∥PXY |QW ) is the asymptotic
exponent of the probability of TQX|W (w) × TQY |W (w) with
w having type QW . Hence, for (E1, E2) in the effective
region of Θ

∗
, there exists a sequence of (An,Bn) such that

limn→∞− 1
n logPn

X(An) = E1, limn→∞− 1
n logPn

Y (Bn) =
E2, and limn→∞− 1

n logPn
XY (An×Bn) = Θ

∗
(E1, E2). The

strong small-set expansion theorem is improved in [39] by
proving asymptotically sharp bounds for equality constraints
in (31) and (32).

Remark 9: The discrepancy between the noninteractive
simulation problem with a uniform source defined on a joint
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type and the one with a product source was noted in [44],
and similar discrepancies were also noted and exploited in
some classic works on strong converses in network infor-
mation theory, e.g., [6] and [7]. Specifically, for any joint
distribution PXY and 0 ≤ E1 ≤ H(X), 0 ≤ E2 ≤ H(Y ),
we have Υ∗(E1, E2) ≥ Θ∗(E1, E2) (the inequality is strict
in general), where Υ∗ and Θ∗ are both defined for PXY .
This observation follows since for any distribution QXY W

with marginal QXY = PXY , it holds that IQ(XY ;W ) =
D(QXY |W ∥PXY |QW ) = EQW

D(QXY |W ∥PXY ). Similar
equalities hold for IQ(X;W ) and IQ(Y ;W ). If we drop the
condition QXY = PXY in the definition of Υ∗, then we
obtain Θ∗. So, we have the observation. Another observation is
limt↓0

1
tΥ

∗(tE1, tE2) = limt↓0
1
tΘ

∗(tE1, tE2). This follows
by the two equivalent information-theoretic characterizations
of hypercontractivity inequalities: one expressed in terms of
relative entropies and the other expressed in terms of mutual
information [34].

Since the alphabet size of W in the definition of Θ∗(E1, E2)
or Θ

∗
(E1, E2) can be taken to be at most 3, both Θ(E1, E2)

and Θ(E1, E2) are achieved by a sequence of the time-sharing
of at most three type codes (or equivalently, a conditional
type class with conditional random variable W taking at most
three values). Here a type code refers to a code of the form
(A,B) := (TTX

, TTY
) for a pair of types (TX , TY ).

Define the optimal transport divergence11 (or the minimum
relative entropy) of (QX , QY ) with respect to PXY , as

D(QX , QY ∥PXY ) := min
QXY ∈C(QX ,QY )

D(QXY ∥PXY ).

For s ∈ [0, E1,max], t ∈ [0, E2,max], define

φ(s, t) := min
QXY :D(QX∥PX)=s,

D(QY ∥PY )=t

D(QXY ∥PXY ) (40)

= min
QX ,QY :D(QX∥PX)=s,

D(QY ∥PY )=t

D(QX , QY ∥PXY ), (41)

and

ψ(s, t) := max
QX ,QY :D(QX∥PX)=s,

D(QY ∥PY )=t

D(QX , QY ∥PXY ). (42)

Define f̆ as the lower convex envelope of a function f , and “f
as its upper concave envelope. Then, by definition, we have

Θ∗(E1, E2)

= min
(qi,si,ti)i∈[3]:∑

i qi=1, qi≥0,∀i∈[3]∑
i qisi≥E1,

∑
i qiti≥E2

∑
i

qiφ(si, ti) (43)

= min
s≥E1,t≥E2

min
(qi,si,ti)i∈[3]:∑

i qi=1, qi≥0,∀i∈[3]∑
i qisi=s,

∑
i qiti=t

∑
i

qiφ(si, ti)

= min
s≥E1,t≥E2

φ̆(s, t), (44)

and similarly,

Θ
∗
(E1, E2) = max

s≤E1,t≤E2

“ψ(s, t). (45)

11The reason for this name is due to its resemblance to the optimal transport
cost [48]. In the latter, the objective function is the expected cost, instead of
the relative entropy.

Hence Θ∗(E1, E2) is convex in (E1, E2), and Θ
∗
(E1, E2)

is concave in (E1, E2). By definition, it holds that for s ∈
[0, E1,max], t ∈ [0, E2,max],

Θ∗(s, t) ≤ φ̆(s, t) ≤ φ(s, t)
≤ ψ(s, t) ≤ “ψ(s, t) ≤ Θ

∗
(s, t). (46)

Proposition 3: Both Θ∗(E1, E2) and Θ
∗
(E1, E2) are con-

tinuous over E1 ∈ [0, E1,max], E2 ∈ [0, E2,max].
Proof: By the convexity and concavity, Θ∗(E1, E2) and

Θ
∗
(E1, E2) are continuous over E1 ∈ (0, E1,max), E2 ∈

(0, E2,max). On the boundary, the continuity of these two
functions follows by the continuity of the constraint func-
tions and the continuity of the objective function, i.e.,
the continuity of D(QX|W ∥PX |QW ), D(QY |W ∥PY |QW ) and
D(QX|W , QY |W ∥PXY |QW ) in (QW , QX|W , QY |W ).

The continuity of D(QX|W ∥PX |QW ), D(QY |W ∥PY |QW )
in (QW , QX|W , QY |W ) is obvious, since as assumed, PX and
PY have full support. We claim that

f(QW , QX|W , QY |W ) := D(QX|W , QY |W ∥PXY |QW ) (47)

is continuous in (QW , QX|W , QY |W ), which follows by the
following lemma.

Lemma 2 [49, Lemma 13]: Let PX , QX be distributions
on X , and PY , QY distributions on Y . Then for any QXY ∈
C(QX , QY ), there exists PXY ∈ C(PX , PY ) such that

∥PXY −QXY ∥ ≤ ∥PX −QX∥+ ∥PY −QY ∥, (48)

where ∥P − Q∥ := supA P (A) − Q(A) denotes the total
variation distance between P and Q.

By Lemma 2, given (QW , QX|W , QY |W , PW , PX|W , PY |W ),
for any QXY |W ∈ C(QX|W , QY |W ), there exists
PXY |W ∈ C(PX|W , PY |W ) such that

∥PWXY −QWXY ∥
≤ ∥PW −QW ∥+max

w
∥PX|W=w −QX|W=w∥

+max
w
∥PY |W=w −QY |W=w∥.

Hence, for any sequence (P (k)
W , P

(k)
X|W , P

(k)
Y |W ) convergent to

(QW , QX|W , QY |W ), lim supk→∞ f(P (k)
W , P

(k)
X|W , P

(k)
Y |W ) ≤

f(QW , QX|W , QY |W ), and f(QW , QX|W , QY |W ) ≤
lim infk→∞ f(P (k)

W , P
(k)
X|W , P

(k)
Y |W ). Hence f(QW , QX|W ,

QY |W ) is continuous in (QW , QX|W , QY |W ).

C. Example: DSBS

Consider a DSBS with correlation coefficient ρ, whose dis-
tribution PXY is given in Table I. We assume that 0 < ρ < 1.
Denote by h : t 7→ −t log t − (1 − t) log(1 − t) the binary
entropy function, and h−1 as the inverse of the restriction of
h to the set [0, 1

2 ].
The following explicit expression for Υ∗ (or E∗ given

in (11), or equivalently, the Gray–Wyner coding region or the
mutual information region [50]) for the DSBS was conjec-
tured by Gray and Wyner [50], [51], and recently confirmed
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Fig. 1. Illustration of Υ∗ for ρ = 0.9.

positively by the first author [52]. For (s, t) ∈ [0, 1]2, it holds
that

Υ∗(s, t) =



1− (1− q)h( a+b−q
2(1−q) )

−qh(a−b+q
2q ), (s, t) ∈ D1,

1 + h(q)− h(a)− h(b), (s, t) ∈ D2,

1− h(a), (s, t) ∈ D3,

1− h(b), (s, t) ∈ D4,

(49)

where q = 1−ρ
2 , a = h−1(1− s), b = h−1(1− t), and

D1 := {(s, t) ∈ [0, 1]2 : a ∗ q ≥ b,
b ∗ q ≥ a, a ∗ b ≥ q},

D2 := {(s, t) ∈ [0, 1]2 : a ∗ b < q},
D3 := {(s, t) ∈ [0, 1]2 : a ∗ q < b},
D4 := {(s, t) ∈ [0, 1]2 : b ∗ q < a}.

The function Υ∗ is plotted in Fig. 1.
We next provide explicit expressions for Θ∗ and Θ

∗
. Sup-

pose QX = (a, 1 − a) and QY = (b, 1 − b). For the DSBS,
we have D(QX∥PX) = 1−h(a). Hence, if D(QX∥PX) = s,
then we have a = h−1(1 − s) or 1 − h−1(1 − s). Similarly,
for QY such that D(QY ∥PY ) = t, we have b = h−1(1 − t)
or 1− h−1(1− t).

Define κ := ( 1+ρ
1−ρ )

2. For max{0, a + b − 1} ≤ p ≤
min{a, b}, define

Da,b(p) := D((p, a− p, b− p, 1 + p− a− b)∥

(
1 + ρ

4
,
1− ρ
4

,
1− ρ
4

,
1 + ρ

4
)), (50)

D(a, b) := min
0,a+b−1≤p≤a,b

Da,b(p) (51)

= Da,b(p∗), (52)

where

p∗ =
1

2(κ− 1)

(
(κ− 1)(a+ b) + 1

−
√
((κ− 1)(a+ b) + 1)2 − 4κ(κ− 1)ab

)
.

Equation (52) follows from the facts that p 7→ Da,b(p)
is convex (due to the convexity of the relative entropy),

Fig. 2. Illustration of φ(s, t), ψ(s, t), Θ∗(E1, E2), and Θ
∗
(E1, E2) for the

DSBS for ρ = 0.9. Note that Θ∗(E1, E2) and Θ
∗
(E1, E2) are expressed

in terms of φ(s, t) and ψ(s, t) in (44) and (45). All the bases of logarithms
are 2 for these figures.

max{0, a+ b− 1} ≤ p∗ ≤ min{a, b}, and the extreme value
is taken at p∗. Furthermore, we have the following lemma,
whose proof is provided in Appendix F.

Lemma 3: For 0 ≤ a, b ≤ 1
2 , it holds that

D(a, b) = D(1− a, 1− b)
≤ D(a, 1− b) = D(1− a, b). (53)

By Lemma 3, we have

φ(s, t) = D(h−1(1− s), h−1(1− t)),
ψ(s, t) = D(h−1(1− s), 1− h−1(1− t)),

Then Θ∗(E1, E2) and Θ
∗
(E1, E2) are determined by

φ(s, t) and ψ(s, t) via (44) and (45). Moreover, by Theo-
rem 4, Θ(E1, E2) is attained by a sequence involving the
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time-sharing of at most three pairs of concentric12 Hamming
spheres, and Θ(E1, E2) is attained by a sequence involving the
time-sharing of at most three pairs of anti-concentric Hamming
spheres.

Proposition 4 (DSBS): For the DSBS, the following hold.
1) Θ(E1, E2) is achieved by a sequence of pairs of concentric
Hamming spheres if φ̃(E1, E2) := mins≥E1,t≥E2 φ(s, t) is
convex in (E1, E2).
2) Θ(E1, E2) is achieved by a sequence of pairs of
anti-concentric Hamming spheres if ψ(s, t) is concave in (s, t).

Proof: We prove Proposition 4. For a function f : R≥0×
R≥0 → R≥0, we use f̃ to denote (x, y) 7→ infs≥x,t≥y f(s, t).
Then, by assumption, φ̃ is convex. We now prove that φ̃ =
Θ∗, where by definition, Θ∗ = ˜̆φ. On one hand, ˜̆φ ≤ φ̃.
On the other hand, ˜̆φ ≥ ˜̃̆

φ = ˜̃φ = φ̃. Hence, φ̃ = Θ∗.
This implies that the time-sharing random variable W can be
removed. By Theorem 4, time-sharing is not needed to attain
Θ, completing the proof of Statement 1).

Statement 2) follows similarly, but we need to prove that
ψ(s, t) = maxs≤E1,t≤E2 ψ(s, t). This equality is equivalent to
that maxQX ,QY :D(QX∥PX)≤s,D(QY ∥PY )≤t D(QX , QY ∥PXY )
is always attained by some QX , QY satisfying that both
the equalities in the constraints hold. Observe that in this
maximization both the objective function and the constraint
functions are convex and, moreover, the set of feasible solu-
tions is compact. By the Krein–Milman theorem, the set of
feasible solutions is the closed convex hull of its extreme
points. Hence, the maximization is attained by an extreme
point. An extreme point here is a pair (QX , QY ) such that
QX is either a Dirac distribution or a distribution satisfying
D(QX∥PX) = s, and so is QY . For the DSBS considered
here, when s < 1, there is no Dirac distribution in the
set of feasible solutions, which means any extreme points
must satisfy D(QX∥PX) = s. Similarly, they must also
satisfy D(QY ∥PY ) = t. These are the desired, which imply
Statement 2).

Ordentlich et al. [17] conjectured that Θ(E1, E2) is achieved
by a sequence of pairs of concentric Hamming spheres,
and Θ(E1, E2) is achieved by a sequence of pairs of
anti-concentric Hamming spheres. Hence their conjecture is
true under the assumptions in Proposition 4. Given Theorem 4,
Ordentlich–Polyanskiy–Shayevitz’s conjecture boils down to
proving the convexity of φ̃ and concavity of ψ. In other words,
the essence is to remove the time-sharing random variable W
in both Θ∗ and Θ

∗
. Subsequent to the completion of this paper,

the first author proved this point, and hence confirmed pos-
itively the Ordentlich–Polyanskiy–Shayevitz conjecture [39],
[53]. Furthermore, noninteractive simulation in the exponential
regime was also studied by Kirshner and Samorodnitsky [18]
who solved the symmetric case E1 = E2.

The functions φ,ψ,Θ∗ and Θ
∗

for ρ = 0.9 are plotted
in Fig. 2. This figure numerically verifies the assumptions in
Proposition 4.

12Here we call two Hamming spheres concentric if they have the same
center and the radiuses are both not larger than or both not smaller than n/2.
Similarly, two spheres are called anti-concentric if they have the same center
and one of the two radiuses is not larger than n/2 while the other one is not
smaller than n/2.

D. Applications to Zero-Error Coding

As mentioned in [17], the minimization part of the conjec-
ture of Ordentlich, Polyanskiy, and Shayevitz implies a sharper
outer bound for the zero-error capacity region of the binary
adder channel.

Consider the two-user binary adder channel (BAC) (a,b) ∈
{0, 1}2n 7→ a + b ∈ {0, 1, 2}n and a code (An,Bn) with
An,Bn ⊆ {0, 1}n for this channel. Here a+b denotes addition
over Zn. When the code (An,Bn) is used to transmit messages
over the BAC, the receiver is able to decode the messages
without any error if and only if any pair (a,b) ∈ An ×Bn is
mapped to a unique sequence in {0, 1, 2}n, i.e., |An +Bn| =
|An| · |Bn|, where An + Bn denotes the sumset {a + b :
a ∈ An,b ∈ Bn}. The zero-error capacity region C of the
BAC (or the rate region of uniquely decodable code pairs) is
defined as the set of (R1, R2) for which there is a sequence
of pairs An,Bn ⊆ {0, 1}n with |An| = 2n(R1+o(1)), |Bn| =
2n(R2+o(1)) such that |An + Bn| = |An| · |Bn| for every n.

Finding the capacity region of the BAC is a long standing
open problem; refer to [17], [54], [55], [56], [57], [58], [59],
[60], [61], and [62] for details. The current progress on this
topic is rather unsatisfactory. The upper bound on the sum rate
R1 +R2 is still the simple bound 3/2, which corresponds to
the maximum sum rate in the Shannon capacity. However,
Urbanke and Li [59] broke through the 3/2 bound in the
unbalanced case, in which it is assumed that R1 = 1 (note that
it does not mean An = {0, 1}n) and they showed that R2 ≤
0.4921. Later, this result was improved to R2 ≤ 0.4798 in [61]
and R2 ≤ 0.4228 respectively in [62]. The latter is the best
known upper bound until now. The best known lower bound
for this case is R2 ≥ 1/4 given in [58].

In particular, the reverse small-set expansion inequality
given in (39) for the DSBS was used by Austrin, Kaski,
Koivisto, and Nederlof [62] to prove the best known upper
bound. As mentioned by Ordentlich et al. [17], repeating
the arguments in [62] with improved bounds on Θ(E1, E2)
will yield tighter bounds on R2 when R1 = 1. Replacing
the reverse small-set expansion inequality in the proof given
in [62] with the characterization of Θ(E1, E2) in Theorem 4,
we obtain the following result.

Theorem 5: If (1−ϵ, R2) ∈ C, then for any ρ ∈ (0, 1) there

exists some λ ∈ 1
2 ±

√
ln(2)ϵ

2 such that

λΘ
∗
(
ϵ

λ
,
λ+ ϵ−R2

λ
)

≥ λ(5
2
− log(3− ρ))− 1

2
− ϵ−

√
ln(2)ϵ

2
,

where Θ
∗

is defined for the DSBS with correlation coefficient
ρ. In particular, if ϵ = 0, we obtain for any ρ ∈ (0, 1),

1
2
Θ

∗
(0, 1− 2R2) ≥

1
2
(
3
2
− log(3− ρ)). (54)

Numerical results show that if R1 = 1 (i.e., ϵ = 0),
by choosing the almost best ρ = 0.6933, (54) implies R2 ≤
0.4177, which improves the previously best known bound
R2 ≤ 0.4228 established in [62]. Note that the upper bound
R2 ≤ 0.4177 was first calculated in [17]. Subsequent to the
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completion of this paper, Θ
∗
= ψ was proven by the first

author [39], [53], which further simplifies the inequalities in
Theorem 5.

IV. BRASCAMP–LIEB AND HYPERCONTRACTIVITY
INEQUALITIES

In this section, we relax Boolean functions in noninterac-
tive simulation problems to any nonnegative functions, but
still restrict their supports to be exponentially small. Let
(X,Y) ∼ Pn

XY , where PXY is a joint distribution defined
on X × Y . Recall the notation ⟨f, g⟩ = E[f(X)g(Y)] and
∥f∥p =

(
E[f(X)p]

)1/p
. We continue to assume that X ,Y

are finite sets, each with cardinality at least 2, and with
PX(x) > 0, PY (y) > 0 for all (x, y) ∈ X ×Y . We next derive
strengthened versions of (forward and reverse) Brascamp–Lieb
and hypercontractivity inequalities by using Theorem 4. Our
inequalities reduce to the usual ones when α = β = 0. For
α ∈ [0, E1,max], β ∈ [0, E2,max] and p, q ∈ (0,∞), define

Λ∗
p,q(α, β) := min

α≤s≤E1,max
β≤t≤E2,max

(Θ∗(s, t)− s

p
− t

q
),

and

Λ
∗
p,q(α, β) := min

α≤s≤E1,max
β≤t≤E2,max

(
s

p
+
t

q
−Θ

∗
(s, t)).

Remark 10: Subsequent to the completion of this paper, the
first author proved that Θ∗ = φ̃ and Θ

∗
= ψ for the DSBS

in [53].
The strengthened (forward and reverse) Brascamp–Lieb

inequalities are given in the following theorem, whose proof
is provided in Appendix G.

Theorem 6: Let p, q > 0 and α ∈ [0, E1,max], β ∈
[0, E2,max]. Let f, g be nonnegative functions on Xn and Yn

respectively such that Pn
X(supp(f)) ≤ 2−nα, Pn

Y (supp(g)) ≤
2−nβ . Then

⟨f, g⟩ ≤ 2−nΛ∗
p,q(α,β)∥f∥p∥g∥q, (55)

⟨f, g⟩ ≥ 2nΛ
∗
p,q(α,β)∥f∥p∥g∥q. (56)

Remark 11: Given α ∈ [0, E1,max], β ∈ [0, E2,max] and
p, q > 0, the inequality (55) is exponentially sharp, in the sense
that the exponents on the two sides of (55) are asymptotically
equal as n → ∞, for a sequence of Boolean functions
fn = 1An

, gn = 1Bn
with (An,Bn) denoting the sets given

in Remark 7 but with (E1, E2) there replaced by the optimal
(s∗, t∗) attaining the minimum in the definition of Λ∗

p,q(α, β).
Note that if (α, β) is in the effective region of Θ

∗
, then the

optimal (s∗, t∗) attaining the minimum in the definition of
Λ
∗
p,q(α, β) is still in the effective region of Θ

∗
. Given (α, β)

in the effective region of Θ
∗

and p, q > 0, the inequality (56)
is exponentially sharp, in the sense that the exponents on the
two sides of (56) are asymptotically equal as n → ∞, for
a sequence of Boolean functions fn = 1An

, gn = 1Bn
with

some sequence (An,Bn); see Remark 8.
Remark 12: A special case of Theorem 6 with p ≥ p0, q ≥

q0 for (55) and p ≤ p1, q ≤ q1 for (55) can be recov-
ered by the information-theoretic characterization of classic

Brascamp–Lieb inequalities, where ( 1
p0
, 1

q0
) is a subgradient of

Θ∗ and ( 1
p1
, 1

q1
) is a subgradient of Θ

∗
. See Corollary 3 in [39]

which is a consequence of Theorem 2 therein, and also the
simple proof of Theorem 2 therein given in Appendix C
in [39].

For α ∈ [0, E1,max], β ∈ [0, E2,max], define the forward and
reverse (α, β)-hypercontractivity regions as

R+
α,β(PXY ) := {(p, q) ∈ (0,∞)2 :

Θ∗(E1, E2) ≥
1
p
E1 +

1
q
E2,

∀E1 ∈ [α,E1,max], E2 ∈ [β,E2,max]},
R−

α,β(PXY ) := {(p, q) ∈ (0,∞)2 :

Θ
∗
(E1, E2) ≤

1
p
E1 +

1
q
E2,

∀E1 ∈ [α,E1,max], E2 ∈ [β,E2,max]}.

For α = β = 0, R+
0,0(PXY ) and R−

0,0(PXY ) correspond to
the classic hypercontractivity regions in [29], [33], [34], and
[47] for the forward one and [35], [36], [37], [39], [47] for
the reverse one.

As a consequence of Theorem 6, we obtain the following
new version of hypercontractivity.

Theorem 7: Under the assumption in Theorem 6, it holds
that

⟨f, g⟩ ≤ ∥f∥p∥g∥q, ∀(p, q) ∈ R+
α,β(PXY ), (57)

⟨f, g⟩ ≥ ∥f∥p∥g∥q, ∀(p, q) ∈ R−
α,β(PXY ). (58)

Remark 13: These two inequalities are exponentially sharp
in the same sense as (55) and (56); see Remark 11. That
is, given α ∈ [0, E1,max], β ∈ [0, E2,max] and (p, q) in the
boundary of R+

α,β(PXY ), the inequality (55) is exponentially
sharp, in the sense that the exponents on the two sides of (55)
are asymptotically equal as n→∞, for a sequence of Boolean
functions fn = 1An , gn = 1Bn with some sequence (An,Bn).
Given (α, β) in the effective region of Θ

∗
and (p, q) in the

boundary of R−
α,β(PXY ), the inequality (56) is exponentially

sharp, in the sense that the exponents on the two sides of (56)
are asymptotically equal as n→∞, for a sequence of Boolean
functions fn = 1An

, gn = 1Bn
with some sequence (An,Bn).

Note that the hypercontractivity inequalities in Theorem 6
differ from the common ones in the factors 2−nΛ∗

p,q(α,β) and
2nΛ

∗
p,q(α,β); while the ones in Theorem 7 differ from the

common ones in the region of parameters p, q. Strengthening
the forward hypercontractivity was previously studied in [18]
and [42]. Polyanskiy and Samorodnitsky [42] strengthened the
hypercontractivity inequalities in a similar sense to Theorem 6;
while Kirshner and Samorodnitsky [18] strengthened the
hypercontractivity inequalities in a similar sense to Theorem 7.
However, both works in [18] and [42] focused on strengthen-
ing the single-function version of forward hypercontractivity.
Moreover, the hypercontractivity inequalities in [42] are only
sharp at extreme cases, and only DSBSes were considered
in [18]. A systematic investigation of the exponentially sharp
version of Brascamp–Lieb and hypercontractivity inequalities
in Polish spaces and under a general measure of the “sizes”
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of functions (termed the two-parameter entropy) was done by
the first author in [39].

V. CONCLUDING REMARKS

The maximal density of subgraphs of a type graph and the
biclique rate region have been studied in this paper. One may
be also interested in their counterparts—the minimal density of
subgraphs of a type graph and the independent-set rate region.
Here, given a joint n-type TXY , 1 ≤ M1 ≤ |TTX

|, and 1 ≤
M2 ≤ |TTY

|, we define the minimal density of subgraphs of
the type graph of TXY with size (M1,M2) as

Γn(M1,M2) := min
A⊆TTX

,B⊆TTY
:

|A|=M1,|B|=M2

ρ(G[A,B]).

Similar to the biclique rate region, we define the independent-
set rate region as

Rn(TXY ) := {(R1, R2) ∈ R(n)
X ×R(n)

Y :

Γn(2
nR1 , 2nR2) = 0}.

Then one can easily obtain the following inner bound and
outer bound on Rn(TXY ).

Proposition 5: For any n and TXY ,

(R(i)(TXY )− [0, ε1,n]× [0, ε2,n]) ∩ (R(n)
X ×R(n)

Y )
⊆ Rn(TXY )

⊆ R(o)(TXY ) ∩ (R(n)
X ×R(n)

Y )

for some positive sequences {ε1,n} and {ε2,n} which both
vanish as n→∞, where

R(o)(TXY ) := {(R1, R2) : R1 ≤ H(X), R2 ≤ H(Y )},

R(i)(TXY ) :=
⋃

PW ,PX|W ,PY |W :
PW PX|W ,PW PY |W are n-types,

PX=TX ,PY =TY ,
QXY ̸=TXY ,∀QXY |W ∈C(PX|W ,PY |W )

{(R1, R2) : R1 ≤ H(X|W ), R2 ≤ H(Y |W )}.

The inner bound above can be proven by using the codes
used in proving the achievability part of Theorem 1. The
outer bound above is trivial. Determining the asymptotics of
Rn(TXY ) could be of interest. However, currently, we have
no idea how to tackle it. In addition, if Rn(TXY ) is not
asymptotically equal to R(o)(TXY ), then determining the
exponent of the minimal density is also interesting.

Furthermore, many other fundamental properties of type
graphs remain to be investigated, including graph coloring,
graph circuits, graph embedding, graph connectivity, covering
and packing, etc. [63]. Thanks to good structures enjoyed by
type graphs, it seems not hopeless to characterize them.

APPENDIX A
PROOF OF LEMMA 1

Statements 1) and 2) follow directly from the definition
of F ∗(R1, R2). Note that in Statement 2), the maximum
HT (X,Y ) is attained by PXY W = TXY PW (or set W to
constant) when R1 = HT (X), R2 = HT (Y ).

Statement 3): By symmetry, it suffices to only con-
sider the case R1 = 0. By Statement 2), F ∗(0, R2) ≤
min{R2, HT (Y |X)}. On the other hand, if R2 ≥ HT (Y |X),
then we choose W = X , which leads to H(X|W ) = 0 and
H(Y |W ) = H(X,Y |W ) = HT (Y |X). Hence we have
F ∗(0, R2) = HT (Y |X) for R2 ≥ HT (Y |X). If R2 ≤
HT (Y |X), then one can find a random variable U such that
H(Y |X,U) = R2. For example, we choose U = (V, J)
with V defined on X ∪ Y and J defined on {0, 1} such
that V = X if J = 0 and V = Y if J = 1, where
J ∼ Bern(α) for α := R2/HT (Y |X) is independent of
(X,Y ). Set W = (X,U). We have H(X|W ) = 0 and
H(Y |W ) = H(X,Y |W ) = H(X,Y |W,J) = R2. Hence
we have F ∗(0, R2) = R2 for R2 ≤ HT (Y |X).

Statement 4): Let PXY W0 attain F ∗(R1, R2), and PXY W1

attain F ∗(R̂1, R̂2). For 0 < α < 1, define J ∼ Bern(α)
independent of (X,Y,W0,W1) and let W := WJ , taking
values in W0 ∪ W1, where Wj denotes the alphabet of Wj

for j = 0, 1. Note that J is a deterministic function of W .
Then PXY W induces

H(X,Y |W ) = αH(X,Y |W0) + (1− α)H(X,Y |W1),
H(X|W ) = αH(X|W0) + (1− α)H(X|W1),
H(Y |W ) = αH(Y |W0) + (1− α)H(Y |W1).

Therefore,

F ∗(αR1 + (1− α)R̂1, αR2 + (1− α)R̂2)

≥ αF ∗(R1, R2) + (1− α)F ∗(R̂1, R̂2).

Statement 5): If δ1 = δ2 = 0, there is nothing to prove. If
δ2 > δ1 = 0, then, for t ≥ 0,

f(t) := F ∗(R1, t)

is nondecreasing and concave, by Statements 1) and 4). Hence,
for fixed δ2,

f(t+ δ2)− f(t)
δ2

is nonincreasing in t. Combining this with Statements 2) and
3) yields

f(t+ δ2)− f(t)
δ2

≤ f(δ2)− f(0)
δ2

≤ δ2 +min{R1, HT (X|Y )} −min{R1, HT (X|Y )}
δ2

= 1.

Setting t = R2, we obtain F ∗(R1, R2 + δ2)− F ∗(R1, R2) ≤
δ2, as desired.

By symmetry, the claim also holds in the case δ1 > δ2 = 0.
Now we consider the case δ1, δ2 > 0. Without loss of
generality, we assume R1

δ1
≥ R2

δ2
. For t ≥ −R2

δ2
, define

g(t) := F ∗(R1 + δ1t, R2 + δ2t).

By Statements 1) and 4), g(t) is nondecreasing and concave.
Hence, for fixed δ2,

g(t+ 1)− g(t)
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is nonincreasing in t. Combining this with Statements 2) and
3) yields that for t ≥ −R2

δ2
we have

g(t+ 1)− g(t) ≤ g(−R2

δ2
+ 1)− g(−R2

δ2
)

= F ∗(R1 −
δ1R2

δ2
+ δ1, δ2)− F ∗(R1 −

δ1R2

δ2
, 0)

≤ min{R1 −
δ1R2

δ2
+ δ1, HT (X|Y )}+ δ2

−min{R1 −
δ1R2

δ2
, HT (X|Y )}

≤ δ1 + δ2.

Setting t = 0, we obtain F ∗(R1+δ1, R2+δ2)−F ∗(R1, R2) ≤
δ1 + δ2, as desired.

APPENDIX B
PROOF OF THEOREM 1

The claim that we can restrict attention to the case |W| ≤
|X ||Y| + 2 in the definition of F ∗(R1, R2) comes from the
support lemma in [43]. We next prove (12).

Lower bound: Let C := (A× B) ∩ TTXY
for some optimal

(A,B) attaining Γn(2nR1 , 2nR2). Let (X,Y) ∼ Unif(C).
Then,

Γn(2nR1 , 2nR2) =
|C|
|A||B|

=
2H(X,Y)

2nR12nR2
,

1
n
H(X) ≤ R1,

1
n
H(Y) ≤ R2,

which follow by the fact that the entropy of a random variable
is no larger than the logarithm of its support size, and they
are equal if the random variable is uniformly distributed over
its support. Therefore,

En(R1, R2) = R1 +R2 −
1
n
H(X,Y)

= R1 +R2 −
1
n

n∑
i=1

H(Xi, Yi|Xi−1, Y i−1)

= R1 +R2 −H(XJ , YJ |XJ−1, Y J−1, J),

where J ∼ Unif[n] is a random time index independent of
(Xn, Y n) and XJ−1 denotes a “random vector”13 induced by
(J,Xn). On the other hand,

H(XJ |XJ−1, Y J−1, J) ≤ H(XJ |XJ−1J) =
1
n
H(X) ≤ R1,

H(YJ |XJ−1, Y J−1, J) ≤ R2.

Using the notation

X := XJ , Y := YJ ,W := (XJ−1, Y J−1, J),

13Rigorously speaking, the “random vector”XJ−1 is not well defined since
for different i, the random vectors Xi−1 are defined on different spaces. (The
space of Xi−1 is X i−1 for each i.) One way to address this issue is to map
Xi−1 to a common (measurable) space via one-to-one functions. Another
simpler way is to concatenate Xi−1 with a length-(n − i + 1) of constant
symbols, e.g., X̂n

(i−1)
:= (Xi−1, x0, . . . , x0) where x0 is a fixed symbol

and appears n− i+1 times here. In this case, XJ−1 denotes X̂n
(J−1)

. This
convention applies throughout this paper.

we obtain (X,Y ) ∼ TXY , and

En(R1, R2) ≥ inf
PXY W :PXY =TXY ,

H(X|W )≤R1,
H(Y |W )≤R2

R1 +R2 −H(X,Y |W )

= E∗(R1, R2).

Upper bound: In this part, we assume that W is a ran-
dom variable defined on an alphabet W such that |W| ≤
|X ||Y| + 2. For a joint n-type PXY W such that PXY =
TXY , H(X|W ) ≤ R1, H(Y |W ) ≤ R2 and for a fixed
sequence w with type PW , we choose A as the union of
TPX|W (w) and 2nR1 − |TPX|W (w)| of arbitrary sequences
outside TPX|W (w), which is possible because TPX|W (w) ≤
2nH(X|W ), see [3, Lemma 2.5], and choose B in a similar way,
but with TPX|W (w) replaced by TPY |W (w). Then |A| = 2nR1

and |B| = 2nR2 . Observe that

|(A× B) ∩ TTXY
| ≥ |TPXY |W (w)|

≥ 2n(H(X,Y |W )− |W||X||Y| log(n+1)
n ),

where
• the first inequality follows since for any pair (x,y) ∈
TPXY |W (w), the tuple (w,x,y) must have joint type
PWXY , and hence, (w,x) has joint type PWX , (w,y)
has joint type PWY , and (x,y) has joint type TXY ;

• the second inequality follows from [3, Lemma 2.5].
Thus we have

ρ(G[A,B]) = |(A× B) ∩ TTXY
|

2nR12nR2

≥ 2−n(R1+R2−H(X,Y |W )+
|W||X||Y| log(n+1)

n ).

(59)

Optimizing the exponent in (59) over all joint n-types PXY W

such that PXY = TXY , H(X|W ) ≤ R1, H(Y |W ) ≤ R2

yields the upper bound

En(R1, R2) ≤ R1 +R2 − Fn(R1, R2)

+
|W||X ||Y| log(n+ 1)

n
, (60)

where Fn(R1, R2) is defined similarly as F ∗(R1, R2) in (10)
but with the PXY W in (10) restricted to be a joint n-type and
W assumed to satisfy |W| ≤ |X ||Y|+ 2.

We next show that the values of Fn(R1, R2) and
F ∗(R1, R2) do not differ too much. For a joint n-type TXY

and a distribution PXY W with PXY = TXY , one can find
a n-type QXY W with QXY = TXY such that ∥PXY W −
QXY W ∥ ≤ |W||X ||Y|

2n , where ∥ · ∥ denotes the TV distance,
see [64, Lemma 3]. Combining this with [3, Lemma 2.7]
(i.e., if ∥PX − QX∥ ≤ Θ ≤ 1

4 , then |HP (X) − HQ(X)| ≤
−2Θ log 2Θ

|X | ), we have for |W||X ||Y|
2n ≤ 1

4 that

|HP (X|W )−HQ(X|W )|
≤ |HP (X,W )−HQ(X,W )|+ |HP (W )−HQ(W )|

≤ −2 |W||X ||Y|
2n

log
2 |W||X ||Y|

2n

|X ||W|

− 2
|W||X ||Y|

2n
log

2 |W||X ||Y|
2n

|W|
(61)
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= −|W||X ||Y|
n

log
|X ||Y|2

n2
, (62)

and similarly,

|HP (Y |W )−HQ(Y |W )| ≤ −|W||X ||Y|
n

log
|X |2|Y|
n2

,

(63)

|HP (XY |W )−HQ(XY |W )| ≤ −|W||X ||Y|
n

log
|X ||Y|
n2

.

(64)

Combining (62)-(64) yields that

Fn(R1, R2) ≥ F ∗(R1 +
|W||X ||Y|

n
log
|X ||Y|2

n2
,

R2 +
|W||X ||Y|

n
log
|X |2|Y|
n2

)

+
|W||X ||Y|

n
log
|X ||Y|
n2

.

Applying Statement 5) of Lemma 1, we obtain

Fn(R1, R2) ≥ F ∗(R1, R2) +
|W||X ||Y|

n
log
|X |4|Y|4

n6
.

Substituting this into the upper bound in (60) and combining
with the assumption |W| ≤ |X ||Y|+2 yields the desired upper
bound.

APPENDIX C
PROOF OF THEOREM 2

We now prove Theorem 2. Since (19) follows from (18),
it suffices to prove (18).

Inner Bound: The inner bound proof here uses a standard
time-sharing argument. Let d be an integer such that 1 ≤
d ≤ n − 1. Let (PXY , QXY ) be a pair comprised of a
d-joint type and an (n − d)-joint type on X × Y such
that d

nPXY + (1 − d
n )QXY = TXY . For a fixed length-

d sequence y with type PY an a fixed length-(n − d)
sequence x with type QX , we choose A = TPX|Y (y) × {x}
and B = {y} × TQY |X (x). Then, from [3, Lemma 2.5],
we have |A| ≥ 2d(HP (X|Y )− |X||Y| log(d+1)

d ) and similarly |B| ≥
2(n−d)(HQ(Y |X)− |X||Y| log(n−d+1)

n−d ). On the other hand, for this
code we have A×B ⊆ TTXY

. Hence any rate pair (R1, R2) ∈
(R(n)

X ×R(n)
Y ) with

R1 ≤
d

n
(HP (X|Y )− |X ||Y| log(d+ 1)

d
),

R2 ≤ (1− d

n
)(HQ(Y |X)− |X ||Y| log(n− d+ 1)

n− d
),

is achievable (i.e., it is in Rn(TXY )), which in turn implies
that a pair of smaller rates (R1, R2) ∈ (R(n)

X ×R(n)
Y ) with

R1 ≤
d

n
HP (X|Y )− |X ||Y| log(n+ 1)

n
, (65)

R2 ≤ (1− d

n
)HQ(Y |X)− |X ||Y| log(n+ 1)

n
, (66)

is achievable.
We next remove the constraint that (PXY , QXY ) are joint

types. For 0 ≤ α ≤ 1, let (P̂XY , Q̂XY ) be a pair of

distributions such that αP̂XY + (1− α)Q̂XY = TXY . Define
d := ∥⌊nαP̂XY ⌋∥1. Note that we have

nα− |X ||Y| ≤ d ≤ nα. (67)

We first consider the case

4|X ||Y| ≤ d ≤ n− 4|X ||Y|. (68)

Define PXY := ⌊nαP̂XY ⌋
d . Then PXY is a joint d-type and

∥PXY − P̂XY ∥ ≤ |X ||Y|
d ≤ 1

4 . Define QXY := nTXY −dPXY

n−d ,
which is a joint (n− d)-type and satisfies ∥QXY − Q̂XY ∥ ≤
|X ||Y|
n−d ≤ 1

4 . Combining [3, Lemma 2.7] with the equality
H(X|Y ) = H(X,Y )−H(Y ), we have

HP (X|Y ) ≥ HP̂ (X|Y ) +
2|X ||Y|

d
log

4|X |
d2

,

HQ(Y |X) ≥ HQ̂(Y |X) +
2|X ||Y|
n− d

log
4|Y|

(n− d)2
.

These inequalities, together with (65) and (66), imply that

RHS of (65) ≥ d

n
HP̂ (X|Y )− 2|X ||Y|

n
log

n2

4|X |

− |X ||Y| log(n+ 1)
n

(69)

≥ αHP̂ (X|Y )− |X ||Y|
n

log |X |

− 2|X ||Y|
n

log
n2

4|X |

− |X ||Y| log(n+ 1)
n

(70)

= αHP̂ (X|Y )− ϵ1,n; (71)

RHS of (66) ≥ (1− d

n
)HQ̂(Y |X)− 2|X ||Y|

n
log

n2

4|Y|

− |X ||Y| log(n+ 1)
n

(72)

≥ (1− α)HQ̂(Y |X)− 2|X ||Y|
n

log
n2

4|Y|

− |X ||Y| log(n+ 1)
n

(73)

= (1− α)HQ̂(Y |X)− ϵ2,n. (74)

Recall the definitions of ϵ1,n and ϵ2,n in Theorem 2.
Combining (65), (66), (71), and (74) yields that any rate

pair (R1, R2) ∈ (R(n)
X ×R(n)

Y ) with R1 ≤ αHP̂ (X|Y )− ϵ1,n

and R2 ≤ (1 − α)HQ̂(Y |X) − ϵ2,n, for any 0 ≤ α ≤ 1 and
(P̂XY , Q̂XY ) a pair of distributions such that αP̂XY + (1 −
α)Q̂XY = TXY , is achievable as long as the condition in (68)
holds.

We next consider the case 0 ≤ d < 4|X ||Y|. For this case,
we have

αHP̂ (X|Y ) ≤ d+ |X ||Y|
n

log |X |

≤ 5|X ||Y|
n

log |X | ≤ ε1,n,
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where the first inequality follows by (67) and the fact that
HP̂ (X|Y ) ≤ log |X |. Hence

{(R1, R2) : R1 ≤ αHP̂ (X|Y ), R2 ≤ (1− α)HQ̂(Y |X)}
− [0, ε1,n]× [0, ε2,n]

is empty, and so its intersection with (R(n)
X × R(n)

Y ) is also
empty. Therefore, there is nothing to prove in this case. The
case when n − 4|X ||Y| < d ≤ n can be handled similarly.
This completes the proof for the inner bound.

Outer Bound: We next prove the outer bound by combining
information-theoretic methods and linear algebra. Observe that
the biclique rate region only depends on the probability values
of TXY , rather than the alphabets X ,Y . With this in mind,
we observe that we can identify X and Y with subsets of R by
one-to-one mappings such that, for any probability distribution
PXY , if (X,Y ) ∈ X × Y satisfies (X,Y ) ∼ PXY we can
talk about the expectations EP [X], EP [Y ], the covariance
CovP (X,Y ), and the correlation EP [XY ]. Translating the
choices of X and/or Y (as subsets of R) does not change
CovP (X,Y ), so we can ensure that we make these choices in
such a way that EP [XY ] = CovP (X,Y )+EP [X]EP [Y ] = 0.

Let us now choose X ,Y ⊆ R in this way, such that for
the given joint n-type TXY we have ET [XY ] = 0. Then,
for A × B ⊆ TTXY

, we will have ⟨x,y⟩ = 0 for any
(x,y) ∈ A×B, where x,y are now viewed as row vectors in
Rn. Let A denote the linear space spanned by all the vectors in
A, and let B denote the linear space spanned by all the vectors
in B. Hence B ⊆ A⊥

, where A⊥
denotes the orthogonal

complement of a subspace A. As an important property of
the orthogonal complement, dim(A) + dim(A⊥

) = n. Hence
dim(A) + dim(B) ≤ n.

We next establish the following exchange lemma. The proof
is provided in Appendix D, and is based on the well-known
exchange lemma in linear algebra.

Lemma 4: Let V1,V2 be mutually orthogonal linear sub-
spaces of Rn with dimensions, denoted as n1, n2, satisfying
n1 + n2 = n. Then there always exists a partition {J1,J2}
of [n] such that |Ji| = ni and x = fi(xJi

), ∀x ∈ Vi, i = 1, 2
for some deterministic linear functions fi : Rni → Rn, where
xJi := (xj)j∈Ji .

Remark 14: The natural generalization of this lemma also
holds for k mutually orthogonal linear subspaces of Rn

with total dimensions equal to n, and can be proved using
Lemma 5 in Appendix D. Furthermore, the condition “mutu-
ally orthogonal linear subspaces of Rn” can be replaced
by “mutually (linearly) independent linear subspaces of Rn”
(i.e., such that the dimension of the span of the subspaces
equals the sum of the dimensions of the subspaces), or, more
generally, affine subspaces each of which is a translate of
one of a mutually independent family of linear subspaces
of Rn.

Remark 15: In other words, under the assumption in this
lemma there always exists a permutation σ of [n] such that
x(σ) = f1(x

(σ)
[1:n1]

), ∀x ∈ V1 and x(σ) = f2(x
(σ)
[n1+1:n]), ∀x ∈

V2 for some deterministic functions fi : Rni → Rn, where
x(σ) is obtained by permuting the components of x using σ.

Let d denote dim(A), so we have dim(A⊥
) = n − d. Let

X ∼ Unif(A),Y ∼ Unif(B) be two independent random
vectors, i.e., (X,Y) ∼ PX,Y := Unif(A)Unif(B). Now we
choose V1 = A, V2 = A⊥

,X1 = X,X2 = Y in Lemma 4.
Then there exists a partition {J ,J c} of [n] such that |J | =
d and X = f1(XJ ),Y = f2(YJ c) for some deterministic
functions f1 : Rd → Rn, f2 : Rn−d → Rn. By this property,
on the one hand we have

R1 =
1
n
H(X) =

1
n
H(X|Y) =

1
n
H(XJ |Y)

≤ 1
n
H(XJ |YJ ) ≤ 1

n

∑
j∈J

H(Xj |Yj)

=
d

n
H(XJ |YJ , J) ≤

d

n
H(XJ |YJ) =

d

n
H(X̃|Ỹ ),

where J ∼ Unif(J ), X̃ := XJ , Ỹ := YJ , with J being
independent of (X,Y). Similarly, we have

R2 =
1
n
H(Y) =

1
n
H(Y|X) =

1
n
H(YJ c |X)

≤ 1
n
H(YJ c |XJ c) ≤ 1

n

∑
j∈J c

H(Yj |Xj)

= (1− d

n
)H(YĴ |XĴ , Ĵ)

≤ (1− d

n
)H(YĴ |XĴ) = (1− d

n
)H(Ŷ |X̂),

where Ĵ ∼ Unif(J c), X̂ := XĴ , Ŷ := YĴ , with Ĵ being
independent of (X,Y, J). On the other hand,

d

n
PX̃Ỹ + (1− d

n
)PX̂Ŷ

=
1
n

∑
j∈J

PXjYj
+

1
n

∑
j∈J c

PXjYj

=
1
n

n∑
j=1

PXjYj
= E(X,Y)[TXY] = TXY ,

where TXY denotes the joint type of a random pair (X,Y)
which is hence also random (but equals TXY pointwise). This
completes the proof of the outer bound.

APPENDIX D
PROOF OF LEMMA 4

For a pair of orthogonal subspaces (V ,V⊥) with dimensions
respectively n1, n−n1, let {uj : 1 ≤ j ≤ n1} be an orthogonal
basis of V , and {uj : n1 +1 ≤ j ≤ n} be an orthogonal basis
of V⊥. Then {uj : 1 ≤ j ≤ n} forms an orthogonal basis of
Rn. Denote by U the n × n matrix with j-th row being uj .
Then U is orthogonal. We now express x ∈ V and y ∈ V⊥,
thought of as row vectors, in terms of this orthogonal basis,
i.e.,

x = x̂U, y = ŷU, (75)

where x̂ := xU⊤, ŷ := yU⊤, and U⊤ is the transpose of U.
Since for any x ∈ V we have ⟨x,uj⟩ = 0 for all n1+1 ≤ j ≤
n, we obtain that x̂j = 0 for all n1 + 1 ≤ j ≤ n. Similarly,
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ŷj = 0 for all 1 ≤ j ≤ n1. Hence we can rewrite x̂ =

(x̂1,0), ŷ = (0, ŷ2). We write U in a block form: U =
[
U1

U2

]
where U1,U2 are respectively of size n1 × n, (n− n1)× n.
Then

x = x̂1U1, y = ŷ2U2. (76)

We now need the following well-known exchange lemma.
Lemma 5 (Exchange Lemma): [65, Theorem 3.2] Let k ≥

2 be an integer. Let B be an n × n nonsingular matrix, and
{Hl, 1 ≤ l ≤ k} be a partition of [n]. Then there always exists
another partition {Ll, 1 ≤ l ≤ k} of [n] with |Ll| = |Hl| such
that all the sub-matrices BHl,Ll

, 1 ≤ l ≤ k are nonsingular.
The proof of this lemma follows easily from repeated use of

the Laplace expansion for determinants. A short proof in the
case k = 2, which is the only case we use, goes as follows.
Let B = (bi,j) be an n × n matrix and H a subset of [n].
Then the determinant of B can be expanded as follows:

det(B) =
∑

L⊆[n]:|L|=|H|

εH,L det(BH,L) det(BHc,Lc)

where εH,L is the sign of the permutation determined by H
and L, equal to (−1)(

∑
h∈H h)+(

∑
ℓ∈L ℓ). Since B is nonsingu-

lar, there must be at least one choice of |L|, with |L| = |H|,
such that both BH,L and BHc,Lc are nonsingular, which is
what is being claimed.

Substituting B ← U,H1 ← [n1],H2 ← [n1 + 1 : n] in
this lemma, we obtain that there exists a partition {J ,J c}
of [n] with |J | = n1 such that both the sub-matrices
U[n1],J ,U[n1+1:n],J c are nonsingular. Denote U1,J as the
submatrix of U1 consisting of J - indexed columns of U1,
and define U1,J c ,U2,J ,U2,J c similarly. Then, by defini-
tion, U1,J = U[n1],J ,U2,J c = U[n1+1:n],J c . Therefore,
from (76), we have

x̂1 = xJU−1
1,J , ŷ2 = yJ cU−1

2,J c .

Substituting these back into (76), we obtain that

(xJ ,xJ c) = xJU−1
1,J (U1,J ,U1,J c)

= (xJ ,xJU−1
1,JU1,J c)

and
(yJ ,yJ c) = (yJ cU−1

2,J cU2,J ,yJ c).

Hence the proof is completed.

APPENDIX E
PROOF OF PROPOSITION 2

From Theorem 2, we know that R(TXY ) = R∗(TXY ),
where R(TXY ) is the asymptotic biclique rate region, defined
in (7) and R∗(TXY ) is defined in Theorem 2. Furthermore,
R∗(TXY ) is a closed convex set (see Proposition 1). Hence

R(TXY ) = R△(TXY )

if and only if

max
0≤α≤1,PXY ,QXY :

αPXY +(1−α)QXY =TXY

φα(PXY , QXY ) ≤ 1, (77)

where φα(PXY , QXY ) := α
β1
HP (X|Y )+ 1−α

β2
HQ(Y |X) with

β1 := HT (X|Y ), β2 := HT (Y |X). Here the domain of φα

can be taken to be the set of pairs of probability distribu-
tions (PXY , QXY ) such that supp(PXY ) = supp(QXY ) ⊆
supp(TXY ). Moreover, (77) can be rewritten as that for any
0 ≤ α ≤ 1,

max
PXY ,QXY :αPXY +(1−α)QXY =TXY

φα(PXY , QXY ) ≤ 1. (78)

Observe that φα(TXY , TXY ) = 1. Hence (78) can be rewritten
as that for any 0 < α < 1, PXY = QXY = TXY is an optimal
solution to the LHS of (78). Next we study for what kind of
TXY it holds for all 0 < α < 1 that PXY = QXY = TXY is
an optimal solution to the LHS of (78).

Given 0 < α < 1, observe that αPXY + (1 − α)QXY

is linear in (PXY , QXY ), and φα(PXY , QXY ) is concave in
(PXY , QXY ) (which can be shown by the log sum inequality
[66, Theorem 2.7.1]). Hence the LHS of (78) is a linearly-
constrained convex optimization problem. This means that
showing that the pair (TXY , TXY ) is an extremum for this
convex optimization problem iff TXY satisfies the condi-
tions given in Corollary 2, is equivalent to establishing that
(TXY , TXY ) is an optimum for the convex optimization prob-
lem (thus establishing (78) for 0 < α < 1) iff TXY satisfies the
conditions given in Corollary 2. Since the notion of extremality
is local, to show this it suffices to consider the modified version
of this convex optimization problem where the domain of
φα is taken to be the set of pairs of probability distribu-
tions (PXY , QXY ) such that supp(PXY ) = supp(QXY ) =
supp(TXY ).

We are thus led to consider the Lagrangian

L = φα(PXY , QXY )

+
∑

(x,y)∈supp(TXY )

η(x, y)
(
αP (x, y)

+ (1− α)Q(x, y)− T (x, y)
)

+ µ1(
∑

(x,y)∈supp(TXY )

P (x, y)− 1)

+ µ2(
∑

(x,y)∈supp(TXY )

Q(x, y)− 1).

By checking the feasible solution (PXY , QXY ) with PXY =
QXY = TXY , one can find that Slater’s condition for
the modified version of the convex optimization problem
in (78) (described above) is satisfied, which implies that
extrema of the modified version of the optimization prob-
lem in (78) are given by the Karush–Kuhn–Tucker (KKT)
conditions:

∂L

∂P (x, y)
= − α

β1
logP (x|y) + αη(x, y) + µ1

= 0, ∀(x, y) ∈ supp(TXY ), (79)

∂L

∂Q(x, y)
= −1− α

β2
logQ(y|x) + (1− α)η(x, y) + µ2

= 0, ∀(x, y) ∈ supp(TXY ), (80)
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αP (x, y) + (1− α)Q(x, y) = T (x, y),

∀(x, y) ∈ supp(TXY ), (81)∑
(x,y)∈supp(TXY )

P (x, y) = 1, (82)

∑
(x,y)∈supp(TXY )

Q(x, y) = 1, (83)

P (x, y), Q(x, y) > 0, ∀(x, y) ∈ supp(TXY ),

(84)

for some reals η(x, y), µ1, µ2 with (x, y) ∈ supp(TXY ). Here
the conditions in (84) come from the restriction we have
imposed on the domain of φα.

We first prove “if” part. That is, for TXY satisfying the
conditions given in Corollary 2, given any 0 < α < 1,
PXY = QXY = TXY together with some reals η(x, y), µ1, µ2

must satisfy (79)-(84). To this end, we choose η(x, y) =
1
β1

log T (x|y) = 1
β2

log T (y|x), µ1 = µ2 = 0, which
satisfy (79) and (80).

We next consider the “only if” part. Substituting P = Q =
T and taking expectations with respect to the type TXY for
the both sides of (79) and (80), we obtain that

µ1

α
=

µ2

1− α
. (85)

Substituting this back to (79) and (80) yields that
TX|Y (x|y)1/HT (X|Y ) = TY |X(y|x)1/HT (Y |X) for all x, y.

APPENDIX F
PROOF OF LEMMA 3

The two equalities above can be verified easily. Here we
only prove the inequality above. Without loss of generality,
we assume 0 ≤ β ≤ α ≤ 1

2 . Then, in the definition of D(α, β),
we minimize Dα,β(p) over 0 ≤ p ≤ β. Furthermore,

Dα,β(p) = −H(p, α− p, β − p, 1 + p− α− β)
− (1 + 2p− α− β) log(1 + ρ)
− (α+ β − 2p) log(1− ρ) + log 4.

Let s := α+ β − 2p. Then we have

Dα,β(p) = −H(p, α− p, β − p, 1 + p− α− β)|p= α+β−s
2

− (1− s) log(1 + ρ)− s log(1− ρ) + log 4.

By definition, D(α, β) can be rewritten as the minimum of
Dα,β(p) over α − β ≤ s ≤ α + β. Given (α, β), Dα,β(p) is
convex in s which follows by the convexity of the relative
entropy. Moreover, H(p, α − p, β − p, 1 + p − α − β) is
maximized at p = αβ , i.e., at s = α + β − 2αβ. Hence,
the derivative of Dα,β(p) w.r.t. s at s = α + β − 2αβ is
log 1+ρ

1−ρ , which is nonnegative. This implies that the minimum
of Dα,β(p) is attained at some point s such that α−β ≤ s ≤
α+ β − 2αβ (or equivalently, at some p ∈ (αβ, β]). In other
words, without changing the value of D(α, β), one can replace
H(p, α− p, β − p, 1 + p− α− β) above with

H̃(p, α− p, β − p, 1 + p− α− β)

:=


H(p, α− p, β − p,

1 + p− α− β), p ∈ (αβ, β],
h(α) + h(β), p ∈ (−∞, αβ].

That is, D(α, β) is equal to the minimum of

− H̃(p, α− p, β − p, 1 + p− α− β)|p= α+β−s
2

− (1− s) log(1 + ρ)− s log(1− ρ) + log 4

over s ≥ α− β.
We next deal with D(1− α, β). In the definition of D(1−

α, β), we minimize D1−α,β(p) over the same range 0 ≤ p ≤
β. Furthermore,

D1−α,β(p) = −H(p, 1− α− p, β − p, α+ p− β)
− (α+ 2p− β) log(1 + ρ)
− (1− α+ β − 2p) log(1− ρ) + log 4.

Let t := 1−α+β−2p. Then, similarly to the above, we have

D1−α,β(p) = −H(p, α− p, β − p,
1 + p− α− β)|

p=
α+β−(1−t)

2

− (1− t) log(1 + ρ)− t log(1− ρ) + log 4,

which can be seen by verifying that

−H(p, α− p, β − p, 1 + p− α− β)|
p=

α+β−(1−t)
2

= −H(p, 1− α− p, β − p, α+ p− β)|p= 1−α+β−t
2

.

Hence, D(1−α, β) is equal to the minimum of D1−α,β(p) over
1−α−β ≤ t ≤ 1−α+β. Given (α, β), D1−α,β(p) is convex
in t. Moreover, H(p, α−p, β−p, 1+p−α−β) is maximized
at p = αβ, i.e., at t = 1−α−β+2αβ. Hence the derivative of
D1−α,β(p) w.r.t. t at t = 1−α−β+2αβ is still log 1+ρ

1−ρ which
is nonnegative. Hence D(1 − α, β) is equal to the minimum
of D1−α,β(p) over 1− α− β ≤ t ≤ 1− α− β + 2αβ.

To prove D(1− α, β) ≥ D(α, β), it suffices to show that

−H(p, α− p, β − p, 1 + p− α− β)|
p=

α+β−(1−s)
2

≥ −H̃(p, α− p, β − p, 1 + p− α− β)|p= α+β−s
2

(86)

for all 1− α − β ≤ s ≤ 1− α − β + 2αβ. By the definition
of H̃ , we only need to check

g(s) := H(p, α− p, β − p, 1 + p− α− β)|p= α+β−s
2

−H(p, α− p, β − p,
1 + p− α− β)|

p=
α+β−(1−s)

2
(87)

≥ 0

for 1 − α − β ≤ s ≤ α + β − 2αβ. If α + β − 2αβ <
1−α−β there is nothing to show. We may therefore assume
that 1− α− β ≤ α+ β − 2αβ.

Computing the derivative of g, we see that g is nonincreas-
ing on [1−α−β, α+β−2αβ]. On the other hand, observe that
g(α + β − 2αβ) ≥ 0 since the maximum of the first entropy
in (87) is attained at s = α + β − 2αβ. Hence, we have
g ≥ 0 on [1−α−β, α+β− 2αβ]. This completes the proof.

Remark 16: Although the proof above seems complicated,
the intuition behind it is simple. Observe that D(α, β) is
equal to the asymptotic exponent of Pn

XY (An × Bn) where
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An,Bn are type classes with types asymptotically converging
to (α, 1−α) and (β, 1−β) respectively. In other words,An,Bn

are the concentric Hamming spheres with common center
(0, 0, . . . , 0) with radii rn, sn satisfying rn/n→ α, sn/n→ β
as n→∞. Similarly, D(1− α, β) is equal to the asymptotic
exponent of Pn

XY (Ân × Bn) where Ân is the anti-concentric
Hamming sphere of An. Hence, the type of Ân converges to
(1−α, α) asymptotically. On the other hand, we can write for
y ∈ Bn,

Pn
X|Y (An|y) = (

1 + ρ

2
)n

∑
x∈An

(
1− ρ
1 + ρ

)d(x,y).

By permutation, one can observe that the expression above
remains the same for all y ∈ Bn. Hence,

Pn
XY (An × Bn) = Pn

Y (Bn)(
1 + ρ

2
)n

∑
x∈An

(
1− ρ
1 + ρ

)d(x,y).

Denote η := 1−ρ
1+ρ and denote F as the CDF of the distance

d(X,y) with X ∼ Unif(An). Then, we have

1
|An|

∑
x∈An

ηd(x,y) = EX∼Unif(An)η
d(X,y)

=
∞∑

d=0

(F (d)− F (d− 1))ηd

=
∞∑

d=0

F (d)(ηd − ηd+1). (88)

Similarly,

1
|Ân|

∑
x∈Ân

ηd(x,y) =
∞∑

d=0

G(d)(ηd − ηd+1), (89)

where G is the CDF of the distance d(X,y) with X ∼
Unif(Ân). Since the sphere An is “closer” to y ∈ Bn than
the sphere Ân, intuitively, F (d) ≥ G(d) for all d ≥ 0 which
implies Pn

XY (An×Bn) ≥ Pn
XY (Ân×Bn). This further implies

D(1 − α, β) ≥ D(α, β). In the proof above, we showed that
the asymptotic exponent of (88) is not larger than that of (89),
with ns, nt denoting the distances. This is a weaker version
of Pn

XY (An × Bn) ≥ Pn
XY (Ân × Bn), but it still implies

D(1− α, β) ≥ D(α, β).

APPENDIX G
PROOF OF THEOREM 6

Our proof combines Theorem 4 with ideas from [18, Proof
of Theorem 1.8]. Observe that by the product construction, the
optimal exponents

Λ(n)
p,q (α, β) := −

1
n
log sup

f,g:P n
X(supp(f))≤2−nα,

P n
Y (supp(g))≤2−nβ

⟨f, g⟩
∥f∥p∥g∥q

, (90)

Λ
(n)

p,q (α, β) := −
1
n
log inf

f,g:P n
X(supp(f))≤2−nα,

P n
Y (supp(g))≤2−nβ

⟨f, g⟩
∥f∥p∥g∥q

, (91)

satisfy that nΛ(n)
p,q (α, β) is subadditive and nΛ

(n)

p,q (α, β)
is superadditive in n. So, by Fekete’s lemma,
infn≥1 Λ(n)

p,q (α, β) = limn→∞ Λ(n)
p,q (α, β) and

supn≥1 Λ
(n)

p,q (α, β) = limn→∞ Λ
(n)

p,q (α, β), which means
that we only need to focus on the asymptotic case.

We may assume, by homogeneity, that ∥f∥1 = ∥g∥1 = 1.
This means that f ≤ 1/Pn

X,min, g ≤ 1/Pn
Y,min, and moreover,

1
n log ∥f∥p and 1

n log ∥g∥q are uniformly bounded for all n ≥
1. This is because given ∥f∥1 = 1, for p ≥ 1, we have

1 = ∥f∥1 ≤ ∥f∥p ≤ ∥f∥∞ ≤ 1/Pn
X,min, (92)

and for 0 < p ≤ 1, we have

P
n(1−p)/p
X,min ≤ ∥f∥p ≤ ∥f∥1 = 1. (93)

For sufficiently large a > 0, the points at which f or g <
2−na contribute little to ∥f∥p, ∥g∥q , and ⟨f, g⟩, in the sense
that if we set f, g to be zero at these points (the resulting
functions denoted as fa, ga), then 1

n log ∥f∥p, 1
n log ∥g∥q , and

1
n log⟨f, g⟩ only change by amounts of the order of on(1),
where on(1) denotes a term vanishing as n → ∞ uniformly
over all f and g with ∥f∥1 = ∥g∥1 = 1. This is because,

∥fa∥pp ≤ ∥f∥pp ≤ ∥fa∥pp + 2−npa,

and
E[faga] ≤ E[fg] ≤ E[faga] + 3 · 2−an.

All the remaining points of Xn can be partitioned into
r = r(a, b) level sets A1, . . . ,Ar such that f varies by a factor
of at most 2nb in each level set, where b > 0. Similarly, all
the remaining points of Yn can be partitioned into s = s(a, b)
level sets B1, . . . ,Bs such that g varies by a factor of at
most 2nb in each level set. Let αi := − 1

n logPn
X(Ai), βi :=

− 1
n logPn

Y (Bi), and let µi = 1
n log(ui), νi = 1

n log(vi), where
ui, vi are respectively the median value of f on Ai and the
median value of g on Bi. (If Ai is empty then ui can be
chosen to be any value within the level set defining Ai, and
similarly for Bi and vi.) Note that f(x) ∈ [ui2−nb, ui2nb] on
the set Ai and g(y) ∈ [vi2−nb, vi2nb] on the set Bi. Moreover,
αi ≥ α, βj ≥ β, ∀i, j. Then,

1
n
log ∥f∥p ≥

1
n
log ∥fa∥p

≥ 1
np

log[
r∑

i=1

Pn
X(Ai)u

p
i ]− b

≥ NX(p)− b,

where NX(p) := max1≤i≤r{−αi

p + µi}. Similarly,

1
n
log ∥g∥q ≥ NY (q)− b,

where NY (q) := max1≤i≤s{−βi

q + νi}.
Utilizing these equations, we obtain

1
n
log⟨f, g⟩

≤ 1
n
log[⟨fa, ga⟩+ 3 · 2−an]

≤ 1
n
log[

r∑
i=1

s∑
j=1

Pn
XY (Ai × Bj)uivj · 22nb + 3 · 2−an]

≤ 1
n
log[rs · 2n(max1≤i≤r,1≤j≤s{−Θ∗(αi,βj)+µi+νj}+2b)
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+ 3 · 2−an]

≤ 1
n
log[rs · 2n max1≤i≤r,1≤j≤s{−Θ∗(αi,βj)+

αi
p +

βj
q }

· 2n(NX(p)+NY (q)+2b) + 3 · 2−an].

Combining the inequalities above, we have

1
n
log

⟨f, g⟩
∥f∥p∥g∥q

≤ 1
n
log[rs · 2n(−Λ∗

p,q(α,β)+NX(p)+NY (q)+2b)

· 2− log(∥f∥p∥g∥q) +
3 · 2−an

∥f∥p∥g∥q
]

≤ 1
n
log[rs · 2n(−Λ∗

p,q(α,β)+4b) +
3 · 2−an

∥f∥p∥g∥q
]. (94)

From (92), we know that if we choose a sufficiently large, the
(negative) exponent of the second term in the last line above
can be arbitrarily large. On the other hand, if a, b are fixed,
then r, s are also fixed. Hence, (94) is upper bounded by

−Λ∗
p,q(α, β) + 4b+ on(1).

Letting n→∞ and then b→ 0, we obtain (55).
We next prove (56). First, observe that

1
n
log ∥f∥p ≤

1
n
log ∥fa∥p +

1
np

log[1 +
2−npa

∥fa∥pp
]

≤ 1
np

log[
r∑

i=1

Pn
X(Ai)u

p
i ] + b

+
1
np

log[1 +
2−npa

∥fa∥pp
]

≤ NX(p) + b+ ϵn,

where ϵn := 1
np log r+ 1

np log[1+ 2−npa

∥fa∥p
p
], which tends to zero

as n→∞ for large enough a and any fixed b
Similarly, we have

1
n
log ∥g∥q ≤ NY (q) + b+ ϵ̂n,

where ϵ̂n := 1
nq log s+

1
nq log[1+

2−nqa

∥ga∥q
q
], which tends to zero

as n→∞ for large enough a and any fixed b.
On the other hand,

1
n
log⟨f, g⟩

≥ 1
n
log⟨fa, ga⟩

≥ 1
n
logE[

r∑
i=1

s∑
j=1

Pn
XY (Ai × Bj)uivj · 2−2nb]

≥ max
1≤i≤r,1≤j≤s

{−Θ∗
(αi, βj) + µi + νj} − 2b (95)

≥ −Θ∗
(αi∗ , βj∗) + µi∗ + νj∗ − 2b (96)

= −Θ∗
(αi∗ , βj∗) +

αi∗

p
+
βj∗

q

+NX(p) +NY (q)− 2b

≥ Λ
∗
p,q(α, β) +NX(p) +NY (q)− 2b,

where (95) follows from Theorem 4, with the maximum being
taken only over those pairs (i, j) for which Pn

X(Ai) > 0
and Pn

Y (Bj) > 0, since Θ
∗
(αi, βj) is defined only for αi ∈

[0, E1,max], βj ∈ [0, E2,max]; also, in (96), i∗ is defined as the
optimal i attaining NX(p) and j∗ as the optimal j attaining
NY (q). Combining the inequalities above, we have

1
n
log

⟨f, g⟩
∥f∥p∥g∥q

≥ Λ
∗
p,q(α, β)− 4b− ϵn − ϵ̂n. (97)

We first choose a sufficiently large, fix a, b, and let n→∞.
We have both ϵn, ϵ̂n → 0. We then let b → 0, and hence we
obtain (56).
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