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Abstract—As earables gain popularity, there emerges a need
for intuitive user interfaces that adapt to diverse daily scenarios.
Traditional methods like touchscreens and voice control often
fall short in environments like movie theatres, where silence and
darkness are required, or on busy streets where visual distraction
introduces extra risk. We propose an innovative earable-based
system utilizing unique acoustic friction generated by fingers for
alphanumeric input. Our approach digs into the acoustic friction
theory, applying this knowledge to better understand the trans-
formation from 2D handwriting into a 1D acoustic time series.
This theoretical foundation guides our system design and feature
extraction. Specifically, we have redesigned certain characters
to enhance their acoustic distinctiveness without compromising
the natural handwriting style of users, ensuring the system user-
friendly. Our system combines DenseNet and GRU architectures
in a multimodal model, refined through transfer learning to adapt
to diverse user behaviors. Tested in real-world scenarios with 10
participants, our system achieves a 95% accuracy in recognizing
both letters and numbers.

Index Terms—Earable, Face and Ear Interaction, Gestures
Recognition, Acoustic Sensing

I. INTRODUCTION

The new generation of in-ear wearables (earables) integrates
various sensors in order to provide a better user experience
and support a wide range of emerging applications. A total of
34.6% of all wearables shipped were earable devices, which
saw the largest growth of 135.1% year over 2022 [1]. A
number of research efforts have also been made to leverage
earables to provide a better user experience, for instance,
AR and VR [2], [3], healthcare monitoring [4], [5], user
authentication [6], motion and activity tracking [7]-[9].
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Fig. 1: FaceTyping’s core idea.
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Traditional earables often rely on buttons or touch sensors
for user interaction, offering a limited predefined input ges-
tures like single or double touches/presses and sliding. Al-
though Apple Airpods and Samsung Galaxy Buds incorporate
these features, the small interaction area and unintentional
touch remain issues [3], [10]. Moreover, these sensors occupy
crucial hardware space, supporting only a limited number of
gestures.

Voice control is another common interaction method in
earables, enabling alphanumeric input through a broader range
of voice commands. However, speaking in public may be
deemed intrusive or inconvenient, particularly in quiet or
formal environments such as libraries or banquet. Despite
the popularity of voice input, the exploration of alternative
interaction methods holds potential value.

A few recent studies have explored earable face-touching
interaction methods. For example, using the face as an input
pad for touch gestures such as single touch and zoom-in with
two fingers [11]. However, similar to buttons and touch-based
interaction techniques, these existing solutions are still limited
to a small number of predefined gestures. This paper intro-
duces FaceTyping, an interaction system that enables alphanu-
meric handwriting on the face using passive acoustic sensing in
earables. As shown in Fig. 1, the fundamental understanding
behind our system is the exploration of domain knowledge
regarding the conversion of 2D handwriting patterns into 1D
acoustic sequences, improving feature recognition process in
our system. Compared to existing methods, FaceTyping offers
better security, privacy, and less obtrusion, presenting itself
as a viable supplementary interaction technique in specific
scenarios.

In particular, by analyzing the impact of acoustic friction
and the transformation of 2D handwriting into 1D acoustic
signals on earables-based finger-face interfaces and studying
the domain knowledge, we found four major factors affecting
finger-face handwriting, which are the distinct shape of the
character, the directional and length confusion, strokes in
the character, as well as coupling and decoupling grounding
conditions. Firstly, these insights have driven the redesign of
certain characters to ensure clarity and distinction in the 1D
acoustic domain and we propose a stroke analysis and redesign
to introduce more distinct features. Secondly, the domain



knowledge helped our system in locating specific features that
can be representative. Leveraging the domain knowledge of
2D to 1D information conversion, we designed a multimodel
machine learning network to better extract features.

In order to evaluate the real-world performance of our
system, we conducted an evaluation with 10 participants. The
results of the evaluation showed that the FaceTyping system
was able to recognize 10 numbers and 26 alphabets with an
average accuracy of 96.82% and 95.54% for numbers and
characters with only 20 training samples per class, respec-
tively. The main contributions of this paper can be summarized
as follows:

e« We analyzed the transformation of 2D spatial hand-
writing into 1D acoustic time sequence information.
These insights guide our approach to redesigning the
2D handwriting strokes for less distinguishable characters
and more effectively capturing the most representative
features from 1D acoustic information.

e We conducted a stroke analysis and character redesign
of the handwritten alphabets and numbers to introduce
greater distinctiveness for identification while maintain-
ing the user’s natural writing habits for better perfor-
mance. Additionally, we developed multimodal archi-
tecture networks to optimally exploit the information
provided by both 2D and 1D domains.

o We developed FaceTyping, an alphanumeric interaction
system designed for earables. In certain contexts, our
system could offers advantages over traditional solutions,
including greater security, privacy, and less obtrusiveness.
Unlike previous face-touching systems, our approach
supports alphanumeric input, which can provide increased
efficiency and may serve as a desirable alternative in-
teraction system in situations that require human-earable
interaction.

« We conducted a usability study, and evaluated our system
in real-world settings. The results of the study indicate
that FaceTyping can achieve consistently high accuracy
across different usage scenarios and diverse input behav-
iors exhibited by the participants.

The rest of this paper is organized as follows. Section II
proposes the related works of FaceTyping. Section III presents
the preliminary study on acoustic friction and the conversion
of 2D spatial handwriting to acoustic 1D time sequence.
Section IV introduces the core idea, system flow, detailed
design, and implementation of our system. And we present the
performance evaluation and experimental results in Section V.
Lastly, we conclude our work in Section VI.

II. RELATED WORKS
A. Earable Interaction and Sensing

Due to their unique sensing position, advanced sensing
capability, and computing capabilities, earables are gaining
research interest as a new type of ubiquitous computing
platform [12]. One of the major categories is earables-based
interaction. Touch sensors are built into some commercial

products for interfacing, but these sensors occupy additional
hardware space and sometimes suffer from limited interac-
tion areas and unintended touch activation [3], [10]. Another
popular category is voice-based controls. For example, Apple
AirPods enable users to control their iPhones or iPads with
Siri voice assistance [13], [14]. However, that voice-based
interaction will become obtrusive in some public scenarios.
There are also many studies focusing on gesture-based inter-
action methods. such as sensing hand movements as input.
For instance, mid-ear hand or finger gesture recognition [15],
[16], and facial movement [17]. Relevant to our work, on-face
finger gestures have been explored in a few previous research
projects. However, the existing papers only recognize a few
gestures on the face [11]. By supporting alphanumeric input,
our system extend the potential of interactions with earables.

B. Acoustics-Based Activity Recognition

Researchers have been analyzing audio signals to determine
physical activity and the environment in order to recognize the
human physical activity. For instance, Chen et al. [18] tracked
finger movements on a wooden tabletop using acoustic signals.
There are also studies that utilize smartphone, smart watch and
smart glasses to actively track finger drawing on the table or
in the air [19], [20]. For the sound-based activities recognition
tasks, various classification models have been used, from
traditional methods like support vector machines and hidden
Markov models [21], [22] to advanced learning techniques
such as neural networks [18], [23], [24]. Amoung various
traditional feature extraction methods, MFCCs are particularly
popular for audio analysis since they distribute spectrogram
energy in accordance with human hearing. A proposed system
was able to recognize 22 human activities within bathrooms
and kitchens by employing a non-Markovian ensemble voting
strategy based on MFCC features [25]. More recent studies
used pre-trained neural networks and MFCCs to identify 38
environmental events [26], [27].

Acoustic-based activity recognition systems utilizing ear-
ables have also been developed. Prior research in this area
has involved classifying acoustic signals, such as coughing
and chewing recorded by microphones positioned directly on
the throat [28], [29]. Closer to our work, EarBuddy [11]
presented a real-time system that detected tapping and sliding
gestures near the ears using commercial earables’ microphones
and recognizing facial and ear gestures with deep learning
models. However, this approach is limited to recognizing only
predefined and coarse-grained gestures, which are inadequate
for complex interactive tasks such as text entry.

ITI. PRELIMINARY
A. Acoustics of friction

Friction acoustic is generated when two sliding surfaces
move in relation to each other, converting kinetic energy into
thermal energy and scattering some of the energy as sound
waves [30]. In our system, friction acoustics are generated
by the sliding of the fingertip and face surfaces, producing



intricate sounds. According to our literature study, the char-
acteristics of these friction acoustics are influenced by mainly
four factors, the distinct shape of the character, the directional
and length confusion, its strokes, as well as coupled and
decoupled grounding conditions.

1) Distinct shape of the character: The most straightfor-
ward impact of the sound generated on the face when the
finger is handwriting is the distinct shape of the character.
The distinct shape of the characters refers to the unique
silhouette or outline that sets them apart from each other. This
is because the distinct shape, i.e., geometric information, of
characters affects the resulted 1D acoustic information. The
differences in distinct shape lead to differences in frequency
distribution and noise level of friction acoustics. Our study
found that while the distinctiveness of shapes allows us to
distinguish many characters based on both 2D handwriting and
1D acoustic information. For those characters with only minor
differences in their distinct shape, it also leads to confusion in
2D handwriting. In order to address this issue, we considered
several additional factors affecting the acoustics of friction in
our system design.

2) Directional and length confusion: During the conver-
sion of 2D handwriting into 1D acoustic information, the
degradation of critical features such as directional information
and stroke length occurs will result in difficulties in char-
acter differentiation. For example, the letters 'm’ and 'w’
can be easily distinguished in 2D handwriting but become
indistinguishable in the 1D acoustic representation due to
the degradation of directional information. Similarly, letters
such as 'h’ and ’n’ which can be differentiated by their
height in 2D images become difficult to distinguish in the
1D acoustic representation as a result of the degradation of
length information. To address these challenges, it is necessary
to consider these information degradation in the design of
our system to minimize the impact of directional and length
confusion. These issues will be further discussed in the Section
of System Design of the paper.

3) Strokes in the character: Characters are composed with
strokes. The strokes are different from character to character
and generate distinct friction acoustics as well. Strokes can
assist in distinguishing characters that are unclear in 2D hand-
writing by taking advantage of the benefits of 1D acoustics
information. For example, the characters 1’ and ’1” may look
similar in 2D handwriting, but they have distinct strokes. The
number ’1’ has only one vertical stroke, while the letter 'I’
has a vertical stroke and a small tail as a second stroke. We
observed that even in the most sloppy way of writing I,
people will still tend to keep the small tail. The presence
of different strokes contributes to the acoustic spectrum by
creating additional peaks and contributing to the components
in the frequency domains of the friction signals. Furthermore,
the gaps between the strokes create blank spaces in the
acoustic spectrum. And the strokes order also determine the
order of peaks in spectrum.

4) Coupling and decoupling grounding conditions: One
of the major impactors of acoustic friction is coupling and

decoupling grounding conditions between the finger and face,
which affect friction and the generated sound. Depending
on the coupling and decoupling grounding conditions at the
interface where the fingertip contacts the face, the sounds
generated by a particular face and finger pair differ largely.
In general, as a result of weak grounding, or decoupling,
the finger and face respond at their own natural frequency,
almost independently of each other. Strong grounding, or
coupling, occurs when the finger and face are in strong contact
conditions. The grounding force can cause the finger and face
to become a coupled system and create a more complicated
and often nonlinear response. For instance, for the pair (0, 0),
in consistent hand-writing, the larger the radius of trajectory,
then the lower drawing speed, which makes the grounding
condition more coupling, thus the number ’0’ has more straight
edges on left and right, which is faster and more decoupling
than the letter "o’. The number *0’ tends to scatter more energy
at low frequencies and produces less friction noise.

Fig. 2: 2D geometric handwriting to 1D acoustic time se-
quence information.

B. 2D Handwriting to 1D Acoustic Time-Spatial Information

Previous face-touching interaction system didn’t study the
conversion from 2D spacial handwriting to 1D acoustic se-
quence, limiting the recognition ability of systems. As a result,
the system was able to support only limited number of pre-
defined gestures.

In this study, we study the conversion from 2D handwriting
into a 1D sequence of acoustic friction to differentiate a
large number of inputs. The 1D sequence of acoustic friction
contains the acoustic connections, time sequence, and fre-
quency information of each handwritten character, as depicted
in Fig. 2.

As we have previously discussed in Section IIL.A, the
conversion of 2D handwriting into 1D acoustic information
results in the degraded geometric information of relationships
between strokes, including directional information and stroke
length. This degradation of information can lead to confusion
between characters that were distinct in 2D. As seen in
top 4 rows of Fig. 3, the category of "Distinct in 2D but
Confused in 1D” includes pairs of characters such as (x, t)
and (w, m), where confusion arises from the degradation of
directional information during the transformation from 2D to
1D. Meanwhile, the pair of (2, z) is confused due to the fact
that they merely have minor differences in distinct shape. Pair
of (h, n) is also confused in 1D domain due to the degra-
dation of stroke length information. In order to improve the
discrimination of character pairs in handwriting recognition, it



is necessary to address the information degradation that occurs
when transforming a 2D visual representation of handwriting
to a 1D acoustic sequence. As a solution, we considered to
incorporate additional features into the acoustic sequences.

Additionally, the acoustic friction introduced in Sections
III.A.2 and III.A.3 allows us to distinguish some characters
that were previously confused in 2D, but become distinct in
1D acoustic information, as shown in the second category of
Fig. 3. As a result, the pair (1, ) are sometimes confused in
2D writting but become distinct because the tail of the letter "I’
generates an additional peak in the acoustic spectrum. Further-
more, the decoupling effect in the 1D acoustic representation
of the character pair of (0, o) results in a weaker acoustic
friction for the number ’0’ compared to the letter *o’. This
unique 1D acoustic feature enables differentiation between
these characters based solely on 2D information. Moreover,
there are other categories of letters are both undistinguishable
in 2D handwriting and 1D acoustic domain due to the face
they have almost the same distinct shape, as illustrated in the
third category of Fig. 3. For instance, the letter pairs of 'u’
and v’ which are very similar in handwriting, given they are
usually scrawled, thus are difficult to distinguish in both 2D
and 1D domain.

The conversion of 2D handwriting into 1D acoustic informa-
tion presents significant challenges to our recognition system.
The first challenge is compensating for the degradation of
directional and length information during the transformation
by incorporating additional features. The second challenge is
how to effectively utilize the unique 1D acoustic features to
improve recognition accuracy. To address these challenges,
guided by the domain knowledge of 2D to 1D information
conversion, we propose a redesign of the writing strokes of
those less indistinguishable characters to incorporate more
features while maintaining their writing style natural to users,
which is detailed in Section IV.B. Also, we leverage the fric-
tion domain knowledge to locate most representative features,
incorporated with the MFCC spectrogram, to better utilize the
time-frequency domain information, and our system employs
a combination of DenseNet and GRU networks to effectively
capture both the 1D time-spatial and frequency information, as
well as the 2D geometry information that remains preserved,
which is described in Section IV.D.

IV. SYSTEM DESIGN
A. System Overview

Our system’s core concept leverages an in-depth understand-
ing of coverting 2D handwriting into 1D acoustic signals.
Through exploring this knowledge, we come up with several
principles and redesigned less distinguishable characters for
more accurate feature identification. Taking the advantages,
our system can recognize 26 letters and 10 numbers written
on the face with a fingertip. It offers an alternative to voice
control, enhacing security and privacy in settings where tradi-
tional methods might be obtrusive, such as during a movie.

As illustrated in Fig. 4, the system captures the finger-face
friction acoustics via earables’ inward-facing microphones,

utilizing occlusion effect from face-bone conducted signals.
To improve handwriting character distinctiveness, we analyze
and suggest redesigns for handwriting patterns, enhancing
their recognizability. The system transforms 2D geometric
handwriting into 1D acoustic data. We developed a multimodal
model to capture both 2D geometric and 1D acoustic features
effectively. As a user writes on their face, the generated friction
acoustic signals are transmitted through the face-ear channel,
captured by the microphone, converting some 2D information
into 1D, including character shapes and stroke order. While
directional and length information being degraded, this con-
version impacts the spectrogram’s overall envelope and the
spectrum peak order. We leverage remaining 2D shape and
stroke features, along with 1D acoustic features, for character
identification. Our multimodal model combines DenseNet,
for 2D shape and stroke feature, with GRU, for sequential
1D acoustic features extraction. Ultilizing transfer learning
addresses user behavior variability, allowing for effective char-
acter classification with less user-specific data enrollment.

B. Redesigning principles

Leveraging the knowledge of transforming 2D writing
patterns into 1D acoustics, we identified three key factors
influencing friction acoustics. Correspondingly, we came up
with three redesign principles: adding extra stroke component,
adjusting the stroke order and emphasizing specific stroke, as
shown in the Fig. 5.

« Adding extra stroke component. Adding extra stroke as
a starting or tail contributes to the unique to the shape of
characters. In 1D acoustics, it generates a short and sharp
peak in the corresponding part in the signal to enhance
the distinct shape and strokes in the character.

« Adjusting the order of strokes. The different strokes can
be more similar in 1D acoustics due to the degradation of
directional and length information. Such as letter x’ and
’t" shown in Fig. 7. We come up with an adjusted order
of strokes for such characters’ handwritting which makes
significant difference on 1D acoustics, reintroducing the
directional information while keeping them within user
writing habits. During our experiments, participants get
used to the change in a few tries.

« Emphasizing the key stroke. The acoustics of some
characters such as ’f” and ’s’ are easier to affected by
coupled condition due to the multiple curves within their
strokes. We emphasize the key stroke in the redesigning
to make their coupled condition more consistent thus
more features remain in the 1D acoustics consistently and
identifiable.

C. Strokes Analysis and Handwriting Redesign

1) Alphabets categories and strokes analysis: Transform-
ing 2D handwriting into 1D acoustics introduces challenges
for handwriting recognition accuracy. Our preliminary study
indicates that this conversion can degrade certain information,
like stroke direction and length, but also introduces new data
through 1D time-spatial characteristics. Consequently, while
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Fig. 4: System flow of FaceTyping.
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Fig. 5: The key redesign methods guided by domain knowl-
edge of conversion from 2D writing pattern to 1D acoustics.

some characters are easily identifiable in 2D, they may become
less distinguishable by 1D acoustics, and vice versa.

To address these challenges, we study the character pairs
that cause confusion and divide them into four groups, namely
Distinct in 2D but Confused in 1D, Confused in 2D but
Distinct in 1D, Both Confused, and Both Distinct. In order
to improve the accuracy of recognition for the categories
Distinct in 2D but Confused in 1D and Both Confused, we
utilize the three methods to redesign the characters, enhancing
the features of characters. Meanwhile, we take advantage of
the 1D acoustic information for characters in the category
Confused in 2D but Distinct in 1D, as illustrated in Fig. 6.

2) Categories of Handwriting and Redesign: To enhance
system performance, we redesigned certain handwriting char-
acters to improve distinguishability, incorporating richer fea-
tures while permitting user-preferred writing styles.

Specifically, the category Confused in 2D but Distinct in
1D encompasses letter pairs such as (0, o), (6, b), and (1, 1),
as demonstrated in Fig. 8, which has clearer differentiation in
1D acoustics. We explored why their 1D acoustics stand out
compared to 2D handwritings, guiding our redesign. In pair
(0, 0), the difference on drawing speed and radius of stroke
resulted in differences in the high frequency component of
the spectrogram, as illustrated in Fig. 8a. The number 0’
has straight edges on both the left and right, and is drawn
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2D
Occlusion Effects ic . . .
————————/
Features .-. Handwriting
( Character Redesign ) : Classification
I Results
Acoustic Friction A 6
— - Contextual
2D Handwriting to 1D 1D Acoustic Features -
T e Time J \ New User
andwriting Redesign
S =/ A B U S,
Gradually update
user profile

at a faster speed compared to the letter *o’, which results
in more energy being scattered at low-frequency and less
friction noise. Similarly, in pair (6, b), the different connecting
part between strokes leaded the difference. The number ’6’
is written in a single continuous stroke, while the letter b’
requires the writer to slowdown at the end of the first vertical
stroke, change direction, and then complete the character. This
difference results in a slower drawing speed and generates
greater coupling friction, leading to increased friction and
noise, as shown in Fig. 8b. In pair (1, 1), a notable difference
can be seen in the spectrogram of the letter "I’ due to the shape
and trajectory of the drawing generates an extra stroke, i.e., the
tail, which creates an additional component in the 1D time-
spatial spectrogram and distinguishes these two characters, as
shown in Fig. 8c.

The category Distinct in 2D but Confused in 1D includes
letter pairs such as (x, t), (m, w), (h, n), and (2, z), where
distinction becomes less significant from 2D handwriting to
1D acoustics, as illustrated in Fig. 9. To adress this, we
adjusted stroke orders for (x, t). As shown in Fig. 7, the
letter ’t” was similar to the letter 'x’ when rotated. After the
stroke adjustment, the degradation of directional information
would not confuse those letters any more, as shown in Fig. 9a.
Similarly, for (m, w), an extra stroke on 'm’ differentiate its
acoustic profile, as shown in Fig. 9b, an extra peak shows the
additional information. For (h, n), emphasizing the first stroke
of h and adding a swash to 'n’ creates distinct peaks in their
spectrogram, as shown in Fig. 9c. These minor 2D changes
significantly impact 1D acoustic distinction.

The Both Confused category includes pairs like (9, q)
and (u, v), which are challenging to differentiate in both 2D
handwriting and 1D acoustics. To improve recognition, we



Categories 2D Handwriting to 1D Acoustic Transformation Handwriting Stroke Redesign
(x,t) 1D Confused: Directional Confusion Different stroke order for ‘t’
Distinct in 2D (m,w) 1D Confused: Directional Confusion Extra stroke added to ‘m’
but confused in 1D (h,n) 1D Confused: Length Confusion Extra stroke added to ‘n’
(2,2) 1D Confused: Shape Emphasis stroke radius of €2’
(0,0) 1D Distinct: | Coupling and Decoupling No Redesign Needed
Confused in 2D Y - - .
but distinct in 1D (6,b) 1D Distinct: | Coupling and Decoupling No Redesign Needed
(1,1) 1D Distinct: | Extra stroke No Redesign Needed
(9,9) Both Confused:  Shape Extra stroke added to ‘q’
Both confused
(u,v) Both Confused: Shape Extra stroke added to ‘u’
Both distinct Others Both Distinct No Redesign Needed

Fig. 6: Handwriting redesign.

75 degrees clockwise

12

Xt LT

Fig. 7: Strokes analysis example: x and t.

added a tail to ’u’, introducing an extra spectral component
that enhances distinguishability, as demonstrated in Fig. 10,
which shows an extra peak after redesign.

Finally, the last category, referred to as Both Distinct,
encompasses characters that are easily distinguishable in both
the 2D handwriting and 1D acoustic domains, most characters
are originally in this category.

Besides the redesign following the principles above, we
have developed a switching method for different keyboards
detailed in the subsequent section that assigns numbers and
letters to distinct keyboards and eliminates the need for further
redesigns, such as the case of (2, z) and (9, q). We utilize
gestures from orthogonal domains as control signals for the
keyboard switching with an extremely high level of accuracy
close to 100%. The user can accurately use these gestures
switch between keyboards. We used two-finger taps, palm
touches on the face, and three-finger sliding as the switching
gestures.

D. Multimodal Generic Model Design

Fingertips drawing on faces generates two pieces of infor-
mation in both 2D and 1D domain. As we discussed, the
remaining 2D handwriting including the distinct shape of each
character and the strokes order within the character. The 1D
domain features including the time sequence information, the
mel-specturm and its frequency component. . To make the
most of both information and extract the right features from
each domain, we have designed a multimodal generic model.

In particular, the remaining 2D handwriting features are
extracted by a DenseNet model. It captures features from
the spectrogram of handwriting’s geometry information that
remains such as distinct shape and stroke order. Meanwhile,
the domain knowledge of acoustic frictions also helps us
on locating the most representative features of 1D acoustics
of characters. We use the domain knowledge of the four

main factors affecting the acoustics of friction as a guide to
choose the features that can best represent the characteristics
of characters. In particular, we consider spectral flux to re-
flect the transitions between the acoustic signal, representing
the switching between the strokes, which could further help
identify the distinct shape. Also, we utilize spectral spread
and spectral skewness to provide information about the timbre
related to the state of the finger-face contact surface, as a rep-
resentation of coupled conditions. Moreover, we use spectral
roll-off to capture sudden changes in the signal, which can be
the symbol of decoupling effects at the turning point inside
the writing characters. The 1D acoustic friction time sequence
features, on the other hand, are extracted using a GRU (Gated
Recurrent Unit) model. In our work, GRU module is utilized
to analyze the time series of acoustic friction signals generated
by the friction of each stroke during handwriting. It takes the
acoustic friction sequence as input and processes it through
recurrent layers, and produces a compact representation of the
friction patterns in handwriting.

As shown in the Fig. 11, we embedded two GRU layers
between the Dense blocks and FC layers to extract and lever-
age both the 2D geometry and 1D time sequence information.
Our analysis shows that by incorporating both modalities,
our multimodal generic model is able to improve the overall
accuracy of handwriting identification compared to using only
DenseNet or GRU.

E. User Behaviour Mitigation

The variability in user behavior, particularly with complex
gestures such as handwriting, significantly affects classifica-
tion accuracy. To address this challenge, we introduced transfer
learning method to mitigate the accuracy drop. During the
enrolling process, all parameters in the global model are fixed
as a feature extractor, except for the closest fully connected
layer to the output end. The model is then retrained using only
the data from the newly added user.

V. EVALUATION

A. Experiment Setup

Environment Our system is applicable in a variety of
everyday scenarios, including situations where people interact
with earables or use them to interact with other devices. During
our experiments, we evaluated the performance of the system
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Multimodal generic model design of the proposed

in four distinct environmental settings with varying levels of
ambient noise. These settings included the office, living room,
car, and street environments, as illustrated in Fig. 12 and
described in detail below.

Participants and Data Collection. We conducted an exper-
iment to assess the performance of our finger-face handwriting
input system. We recruited 10 participants with ages ranging
from 23 to 35 years. All participants were right-handed.
Each participant was instructed to wear the prototype at their
habitual position and asked to perform a complete set of
numbers (0-9) and letters (a-z) using finger-face handwriting.

Hardware. Due to firmware restrictions that limit access
to raw data, instead of existing commercial earables, we
developed a low-cost earables prototype using readily available
hardware components, as illustrated in Fig. 12b. Our system
incorporates a single microphone chip with sensitivity of -28
dB and a 3.5 mm audio jack. The cost of the equipment used in
our prototype is less than 10 dollars, making it accessible to a

broader customer base compared to commercial products. The
sampling rate used was 192kHz. The evaluation experiments
were performed on a computer system equipped with a GPU
RTX 3090, CPU i7-11700KF, and 32GB of RAM.

B. Overall Performance

We first evaluate the overall performance of our system. We
trained our generic model with 9 users and evaluate the generic
model without keyboard-switching mechanism on testing data
from the same users, the average accuracy of our generic
model reached 96.18%. We then implement transfer learning
on the remaining user with only taking a few samples. As
shown in Fig. 13, results also showed that with a relatively
small training sample of only 8 samples per class, the accuracy
of both numbers and letters was over 90%. Furthermore, when
the number of training samples is 20, the average accuracy of
the number identification 96.82%. And the accuracy of letters
identification is 95.54%. These results demonstrate the high
effectiveness of the system in classifying different characters
with minimal training data.

We also conducted an experiment to evaluate the perfor-
mance of our system and compare it with previous face-
touching apporaches without the use of a multimodal generic
model and character redesign as employed in our work. The
results of the experiment are presented in Fig. 14, which
includes the confused pairs disscussed above. Our analysis
revealed that after the integration of our domain knowledge,
the error rate for each of these character pairs significantly
decreased, leading to a substantial improvement in the recog-
nition accuracy of our handwriting system.

C. Usability Study

The usability study of our system was evaluated with 20
participants. After interacting with the system, the participants
were asked to fill out a questionnaire to rate the design of each
character on a seven-point scale, from very comfortable to very
uncomfortable. The results of this evaluation are presented and
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(a) Experiment environments: living room, car, office, and street.

Fig. 12: Experiment environment and prototype.
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Fig. 14: Error rate compared with traditional approaches.

indicate the overall comfort level of the system as perceived
by the participants.

As shown in Fig. 15, the redesigned character pattern
received positive feedback from the 20 participants who voted
on all the letters and numbers. On average, as shown in
Fig. 16, 93.91% of the votes were above neutral. Among them,
about 85% of the votes were rated as “very comfortable” or
“comfortable”, demonstrating that the interaction method in
the system is well received in terms of user experience.

For characters that have been redesigned, the ratings slightly
decreased, however, over 85% of the votes were still positive
or neutral, suggesting that the redesign an acceptable trade-off
between user experience and system performance.

D. Robustness Analysis

1) Impacts of Body Movements: The system’s performance
was tested during various movements, including head rotation
and walking in a living room environment. We sampled
1440 instances for each of the body movement. As shown
in Fig. 18, head rotation has little impact with the average
accuracy 94.69%. Meanwhile, walking has a slight impact on
the average accuracy as 90.53%.

slightly uncomfortable | 1

Comfortable level

uncomfortable | 0

very uncomfortable | 0

23.51%,

I very comfortable

I comfortable

[Esiightly comfortable
neutral

slightly uncomfortable|
juncomfortable
[C—Ivery uncomfortable.

Fig. 16: Distribution of user com- Fig. 17: Impacts of differ-
fort level. ent touching areas.

2) Impacts of Different Touching Areas: We also carried
out experiments to evaluate the sound intensity produced by
friction on various facial regions. We analyzed the results to
construct a heat map of the optimal interaction positions on the
face. The yellow areas indicate strong recorded handwriting
sound, while the blue areas indicate weaker sound. As shown
in Fig. 17, our results reveal that the most desirable location
for finger-face handwriting is near the tragus of the ear.

3) Impacts of Different Background Environment: We as-
sessed our system’s performance across four real-life back-
ground environments: living room, car with its engine on,
office, and a street, to simulate potential usage scenarios.
These settings were chosen to evaluate the system’s hand-
writing identification accuracy under various ambient noises.
As shown in Fig. 19, the accuracy in these environments
were 93.47%, 91.60%, 92.22%, and 88.68%, respectively. The
result shows the system’s high accuracy and robustness in
recognizing handwriting under diverse environmental sounds.

VI. CONCLUSION

In this paper, we propose a face-handwriting interaction
system that addresses the need for seamless user interfaces
on earable devices. We studied domain knowledge of acoustic
friction and conversion from 2D to 1D domains. On the
basis of this domain knowledge, we proposed FaceTyping, a
finger-face acoustic friction system that enables alphanumeric
text input on earables without additional devices and has
the potential to act as complementary input in the scenario
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Impacts of body Fig. 19: Impacts of different
background environment.

where traditional input methods become less feasible. Guided
by domain knowledge, we redesigned the characters’ hand-
writing as recommended writing patterns to incorporate more
geometric features. This was done without changing users’
natural writing habits. This domain knowledge of 2D to
1D also helped us locate and select the most representative
special features. We developed a multimodal generic model
using DenseNet and GRU to locate, capture, and leverage the
most representative features for handwriting identification. We
also incorporated transfer learning to mitigate user behavior
variances and gradually updated user profiles over time. Our
experiments involved 10 participants in real-world settings,
and FaceTyping achieved high accuracy in identifying both
numbers and characters.
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