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1. Introduction

We study Markov decision processes (MDPs) in a finite-state,
inite-action framework with an average-reward criterion, when
he controlled Markov chain is irreducible and reversible in sta-
ionarity under every stationary Markov control strategy. This
roblem was originally studied in special cases by Cogill and
eng [1], but that work does not seem to have attracted much

E-mail address: ananth@berkeley.edu.
ttps://doi.org/10.1016/j.sysconle.2022.105382
167-6911/© 2022 Elsevier B.V. All rights reserved.
attention. We strengthen the main theorems in [1] by getting
rid of superfluous assumptions. We characterize the class of all
such problems. We also highlight the connections between such
problems and the Gaussian free field of a weighted graph.

This paper is dedicated to the memory of Ari Arapostathis, a
good personal friend, who was fond both of discrete-state MDPs
and of the control problems arising in the Gaussian world of dif-
fusion processes. We hope that the mix of MDPs with Gaussianity
appearing in this paper – which is of a form that is unusual in the

control context – would have met with his approval.
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. Setup

X and U are finite sets, denoting the set of states and the set
f actions respectively. To avoid dealing with corner cases, we
ssume that both X and U have cardinality at least 2. For each
∈ U let P(u) :=

[
pij(u)

]
be a transition probability matrix

TPM) on X , where pij(u) denotes the conditional probability that
he next state is j when the current state is i and the action taken
s u. We are also given a function r : X × U → R, where
(i, u) denotes the reward received if the current state is i and
he current action is u.

A stationary randomized Markov strategy µ is defined to be a
hoice of conditional probability distributions (µ(u|i) : u ∈ U, i ∈
) and results in the TPM P(µ) :=

[
pij(µ)

]
on X , where

ij(µ) :=
∑
u

pij(u)µ(u|i).

e write M for the set of stationary randomized Markov control
trategies. The interpretation of P(µ) is as the TPM of the con-
rolled Markov chain when the strategy µ ∈ M is implemented.

We make the assumption that for each µ ∈ M the TPM P(µ)
s irreducible and reversible. We will then say that we are dealing
ith a reversible Markov decision problem (RMDP). This assump-
ion may seem quite restrictive, but it seems to be sufficiently
nteresting to merit some attention. For instance, applications
o the optimal design of algorithms of the Metropolis–Hastings
ype to generate a target probability distribution on a large set of
ombinatorial configurations, i.e. the Markov Chain Monte Carlo
ethod, are discussed in some depth in [1, Sec. 5].
By the assumption of irreducibility there is unique probability

istribution π (µ) := (πi(µ) : i ∈ X ), called the stationary
istribution of P(µ), which can be thought of as a column vector
atisfying π (µ)TP(µ) = π (µ)T . The assumption of reversibility
ays that we have

i(µ)pij(µ) = πj(µ)pji(µ), for all i, j ∈ X . (1)

he conditions in (1) are often called a detailed-balance assump-
ion. Note that (πi(µ)pij(µ) : (i, j) ∈ X × X ) is a probability
istribution, called the occupation measure of P(µ), and the re-
ersibility assumption for P(µ) is equivalent to the assumption
hat the occupation measure is symmetric when viewed as a
atrix.
We will denote the set of stationary deterministic Markov

ontrol strategies by M̄ and write µ̄ for such a strategy. Thus µ̄ ∈

¯ is a function µ̄ : X → U and, with an abuse of notation, can
lso be thought of as the stationary randomized Markov control
trategy µ̄where µ̄(u|i) equals 1 if u = µ̄(i) and 0 otherwise. Note
hat |M̄| = |U ||X |, where |A| denotes the cardinality of a finite
et A. Of course, P(µ̄) need not be distinct for distinct µ̄ ∈ M̄.
imilarly, M can be thought of as the product of X copies of the
robability simplex based on U .
Even though irreducibility of the P(u) for u ∈ U is not explicitly

entioned as a condition in the definition of the notion of an
MDP in [1], it seems to be implicitly assumed, since the notion
f reversibility seems to be discussed there under the implicit
ssumption that there is a unique stationary distribution. Thus
he use of the terminology ‘‘reversible Markov decision process’’
n this document seems to be consistent with its use in [1].

Also note that while it may be more natural to also include
he reward function r : X × U → R in the definition of an
DP, since the notion of an RMDP depends only on a property
f (P(u), u ∈ U) we choose to define an RMDP purely in terms of
P(u), u ∈ U).
2

. Initial results

Our first claim is the following simple observation. For com-
leteness, a proof is provided in Appendix A.

emma 1. P(µ) is irreducible and reversible for each µ ∈ M iff
(µ̄) is irreducible and reversible for each µ̄ ∈ M̄. ■

As pointed out in [1], a natural class of examples of RMDPs
rises as follows.

xample 1. Let G := (X , E) be a simple connected graph with
he finite vertex set X and edge set E . (Recall that a graph is
called simple if it does not have multiple edges between any
pair of vertices and does not have any self-loops.) To each edge
(i, j) ∈ E (between the vertices i, j ∈ X ) associate the strictly
positive weight sij (thus sij = sji). Since G has no self-loops, we
have sii = 0 for all i ∈ X . Write si for

∑
j∈X sij and S for

∑
i∈X si.

Let P (0) denote the transition probability matrix on X with

p(0)ij =
sij
si
, for all i, j ∈ X .

Let ρ : X × U → (0, 1] be given. When the control action is
u ∈ U , assume that the state transitions occur according to P(u),
where

pii(u) = 1− ρ(i, u),

ij(u) = ρ(i, u)p(0)ij , if j ̸= i.

Finally, assume that a reward function r : X×U → R is given.
To check that this results in an RMDP we first observe that

P (0) is an irreducible and reversible TPM on X . The irreducibility
is obvious. Reversibility can be checked by observing that the
stationary distribution of P (0), i.e. (π (0)

i : i ∈ X ), is given by
π

(0)
i =

si
S for i ∈ X .

Given µ ∈ M, write ρ(i, µ) for
∑

u∈U ρ(i, u)µ(u|i). for j ̸= i,
Then it can be checked that we have pij(µ) = ρ(i, µ)p(0)ij for
j ̸= i, while pii(µ) = 1 − ρ(i, µ). Now, for each µ ∈ M, P(µ)
is irreducible since, by assumption, we have ρ(i, u) > 0 for all
(i, u) ∈ X × U . To check that P(µ) is reversible it suffices to
observe that its stationary distribution, i.e. (πi(µ) : i ∈ X ), is

given by (K (µ) π
(0)
i

ρ(i,µ) : i ∈ X ), where K (µ) :=

(∑
i∈X

π
(0)
i

ρ(i,µ)

)−1

is the normalizing constant. ■

In the scenario of Example 1, if one scales all the weights sij by
the same positive constant then, with the same ρ : X×U → (0, 1]
and r : X × U → R, one gets the same RMDP, since all the si and
S also scale by the same constant. What matters is the irreducible
reversible transition probability matrix P (0) with zero diagonal
entries defined by the weighted graph. Conversely, one can check
that any irreducible reversible TPM P (0) with entries p(0)ij , i, j ∈ X
and zero diagonal entries can be though of as arising from the
simple connected graph G := (X , E) with (i, j) ∈ E iff p(0)ij > 0,
ith weight sij := π

(0)
i p(0)ij , where (π (0)

i : i ∈ X ) is the stationary
istribution of P (0).
As stated in the following simple lemma, whose proof is in

ppendix B, one can associate a simple connected graph to any
MDP. We will refer to this graph as the canonical graph of the
MDP.

emma 2. Consider an RMDP, defined by (P(u) : u ∈ U) as above.
Then there must exist a simple connected graph G := (X , E) such
that for all u ∈ U and distinct i, j ∈ X we have pij(u) > 0 iff
(i, j) ∈ E . ■
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In fact, as stated in the following theorem, it turns out that
under relatively mild conditions every RMDP must be of the form
described in Example 1. The proof is provided in Appendix C.

Theorem 1. Consider an RMDP, defined by (P(u) : u ∈ U) as above.
Let G := (X , E) be the canonical graph associated to this problem,
as in Lemma 2. Suppose now that this graph is biconnected. (Recall
that a graph is called biconnected – or 2-connected – if whenever
any single vertex, together with all the edges involving that vertex, is
removed the resulting graph continues to be connected.) Then there
is an irreducible reversible TPM P (0) on X such that p(0)ij > 0 iff
i, j) ∈ E , and ρ : X × U → (0, 1], such that for each u ∈ U we
ave pij(u) = ρ(i, u)p(0)ij for j ̸= i, and pii(u) = 1− ρ(i, u). ■

Much of the discussion in [1] centers around RMDPs which
ave a Hamilton cycle in their canonical graph. These are bicon-
ected, and hence of the kind in Example 1. However, as seen
rom Example 2, there are RMDPs that are not of the type in
xample 1.

xample 2. Let X = {1, 2, 3} and U = {1, 2}. Choose a ̸= b such
hat 0 < a, b, < 1. Let

P(1) =

[ 0 a 1− a
1 0 0
1 0 0

]
and P(2) =

[ 0 b 1− b
1 0 0
1 0 0

]
.

It can be checked that for any µ ∈ M we have

P(µ) =

[ 0 λa+ (1− λ)b λ(1− a)+ (1− λ)(1− b)
1 0 0
1 0 0

]
,

for some λ ∈ [0, 1] (depending on µ). Since P(µ) is irreducible
and reversible, with the stationary distribution being

π (µ) =
[ 1
2

1
2 (λa+ (1− λ)b) 1

2 (λ(1− a)+ (1− λ)(1− b))
]
,

his, together with some reward function r : X ×U → R, defines
n RMDP. However this RMDP is not of the form in Example 1
s can be seen, for instance, by noticing that p11(µ) = 0 for all
µ but p12(µ) can take on distinct values for distinct µ (since we
assumed that a ̸= b).

Here the canonical graph of the RMDP has vertex set X and
dge set E = {(1, 2), (1, 3)}. Note that this graph is not bicon-
ected. ■

. A characterization of reversible Markov decision problems

Roughly speaking, a simple connected graph G := (X , E) is as
ar from being biconnected as it can be if there is unique path
etween every pair of vertices of the graph, i.e. if the graph is
tree. This is of course not precisely true, since the graph with

wo vertices connected with a single edge is both biconnected
nd a tree and, more generally, in any tree the removal of a leaf
ertex together with the edge connected to it leaves behind a
onnected graph. Nevertheless, this rough intuition suggests that
ne should pay special attention to trees. As the following simple
esult shows, in contrast to the case considered in Theorem 1,
hen the canonical graph of an RMDP is a tree there are hardly
ny restrictions on the structure of the decision problem. The
roof is in Appendix D.

emma 3. Let G := (X , E) be a tree. Let (P(u) : u ∈ U) be any
collection of TPMs on X satisfying the condition that pij(u) > 0 iff
(i, j) ∈ E . Then this defines an RMDP. ■

We now proceed to characterize all RMDPs. It turns out that
the situations discussed in Theorem 1 and Lemma 3 are extreme

cases and, in a sense, the general case lies between these two B

3

Fig. 1. The block graph associated to a simple connected graph with nine nodes,
numbered as indicated, is shown. The articulation points are the vertices 2, 3,
and 6, and are depicted by thick red nodes. There are five blocks, namely {1, 2},
{2, 3}, {3, 5, 6}, {4, 6}, and {6, 7, 8, 9}. Note that the articulation point 2 is shared
by two blocks, as is the articulation point 3, while the articulation point 6 is
shared by three blocks. Note that (since there is more than one block) each block
has at least one articulation point, while the block {3, 5, 6} has two articulation
oints.

xtremes. Underlying this is the well-known block graph structure
f a simple connected graph G := (X , E). Recall that a cutvertex
f G is a vertex such that if we remove that vertex and the edges
onnected to it, the resulting graph is disconnected. A block is
efined to be a maximal connected subgraph of G that has no
utvertices. Thus a block B is biconnected; in particular, it is either
subgraph comprised of a single edge (in which case it has two
ertices) or has the property that given any three distinct vertices
, j, k ∈ B there is path between j and k in B that does not
eet i. Also, any two blocks B and B′ that intersect do so at a
niquely defined vertex, called an articulation point of the block
raph structure. An articulation point will be a cutvertex of G
but not of B or B′, since B and B′ are blocks and so do not have
utvertices). If there is only one block in the block structure, then
here are no articulation points. If there is more than one block
hen every block has at least one articulation point, but in general
ay have several articulation points. Every articulation point then

ies in at least two blocks, but may in general lie in several
locks. An illustrative example of the block graph structure is
iven in Fig. 1; see e.g. [2, Sec. 3.1] for more details (we focus on
onnected graphs, even though the block graph can be defined
ore generally).
Given the simple connected graph G := (X , E), we write A

or the set of articulation points and B for the set of blocks. Note
hat each a ∈ A is a vertex of G, while each B ∈ B is a subgraph
f G. Nevertheless, with an abuse of notation, we will also use B
o denote the vertex set of the block B. Thus we write a ∈ B to
ndicate that the articulation point a is in the vertex set of B and
imilarly write B ∋ a to indicate that the vertex set of B contains
he articulation point a. Further, we will write B̊ for the subset of
hose vertices of the block B that are not articulation points. Note
hat B̊ can be empty.

In the following example we describe a class of RMDPs that
s broader in scope than those considered in Example 1 and
Lemma 3 (in particular Example 2), including both of these as
pecial cases.

xample 3. Let G := (X , E) be a simple connected graph. In the
lock graph structure of G, let A denote the set of articulation
oints and B the set of blocks. For each B ∈ B let P (0)(B) be a given
rreducible reversible TPM on B with diagonal entries p(0)ii (B) = 0
or all i ∈ B and with off-diagonal entries p(0)ij (B) > 0 iff (i, j) ∈ E .
or each articulation point a ∈ A (if any) and u ∈ U , let (νa(u, B) :∑

∋ a) be strictly positive numbers satisfying B∋a νa(u, B) = 1.
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or i ∈ B̊ and u ∈ U , define νi(u, B) = 1, and for all i ∈ X define
i(u, B) = 0 for all u ∈ U if i /∈ B. Let ρ : X ×U → (0, 1] be given.
For each u ∈ U define P(u) :=

[
pij(u)

]
, a TPM on X , by

pij(u) = ρ(i, u)νi(u, B)p
(0)
ij (B) if i ∈ B, j ∈ B, j ̸= i, B ∈ B, (2)

pii(u) = 1− ρ(i, u), if i ∈ X ,
pij(u) = 0, otherwise.

Then this defines an RMDP.
If there is only a single block, then there are no articulation

points and we are in the scenario of Example 1, where the claim
has already been established. Suppose therefore that there are
two or more blocks (thus every block has at least one articulation
point). To verify the claim, we need to check that for each µ ∈

M the matrix P(µ) on X is an irreducible reversible TPM. It is
straightforward to check that P(µ) is a TPM. Noting that for i ̸= j
we have pij(µ) > 0 iff (i, j) ∈ E , we see that P(µ) is irreducible.

Let τi(u, B) := ρ(i, u)νi(u, B), and for µ ∈ M let τi(µ, B) :=∑
u τi(u, B)µ(u|i). Let (ψi(B) : i ∈ B) denote the stationary proba-

bility distribution of P (0)(B). Then, by the assumed reversibility of
this matrix, we have

ψi(B)p
(0)
ij (B) = ψj(B)p

(0)
ji (B), for all i, j ∈ B, B ∈ B.

Consider the vector ( ψi(B)
τi(µ,B)

: i ∈ B). Observe now that we have

ψi(B)
τi(µ, B)

pij(µ) =
ψj(B)
τj(µ, B)

pji(µ) for all i, j ∈ B, B ∈ B. (3)

We now claim that we can find positive constants (m(µ, B) : B ∈

B) such for every B, B′ ∈ B, B ̸= B′, if they share an articulation
point a ∈ A (i.e. a ∈ B, a ∈ B′), then we have

m(µ, B)
ψa(B)
τa(µ, B)

= m(µ, B′)
ψa(B′)
τa(µ, B′)

. (4)

Since this number does not depend on the choice of B ∈ B
containing a, let us denote it by γa(µ). Let us also write γi(µ) for
m(µ, B) ψi(B)

τi(µ,B)
for i ∈ B̊ for any B ∈ B. With this notation in place,

we further claim that we can choose the (m(µ, B) : B ∈ B) such
that∑
i∈X

γi(µ) = 1. (5)

It can then be checked that (γi(µ) : i ∈ X ) is then the stationary
distribution of P(µ) and, based on (3), we can conclude that P(µ)
is reversible.

To find the scaling factors (m(µ, B) : B ∈ B) with the claimed
properties, pick any block and call it the root. Because there are
at least two blocks, this block has at least one articulation point,
and each such articulation point is associated with a unique block
other than the root. Call these blocks the ones at depth 1. If any
such block has additional articulation points (other than the one it
shares with the root), each of these will be associated with a new
block, and we will call the blocks identified in this way (from all
the blocks at depth 1) the blocks at depth 2, and so on. We start
with a scaling factor 1 for the root, and see that we can set the
scaling factor uniquely for each of the blocks at depth 1 in order
to get the matching condition in (4) to hold at all the articulation
points that are shared between the root and the blocks at depth
1. We can next set the scaling factor for each of the blocks at
depth 2 uniquely in order to get the matching condition in (4)
to hold at all the articulation points that are shared between a
block at depth 1 and a block at depth 2 and so on. At the end
of this process we have scaling factors such that the condition in
(4) holds at all articulation points and then we can finally scale
all the scaling factors jointly by the same positive constant to get
the condition in (5). ■
4

The class of RMDPs arising as in Example 3 also includes those
arising as in Lemma 3. This corresponds to the case where every
block is a single edge, which is equivalent to the case where the
given graph G := (X , E) is a tree. Each P (0)(B) is then of the form[

0 1
1 0

]
. If |X | = 2 then there are no articulation points and

the scenario is covered in Theorem 1 (and also in Lemma 3). If
|X | ≥ 3 the articulation points are precisely the non-leaf vertices
of the tree.

It turns out that the scenarios covered in Example 3 com-
pletely characterize all the ways in which an RMDP can arise. This
is stated in the following theorem, whose proof is in Appendix E.

Theorem 2. Consider an RMDP, defined by the TPMs (P(u) : u ∈ U).
Let G := (X , E) be the canonical graph associated to this problem, as
in Lemma 2. In the block graph structure of G, let A denote the set
of articulation points and B the set of blocks. Then for each B ∈ B
there will be an irreducible reversible TPM P (0)(B) on B with diagonal
entries p(0)ii (B) = 0 for all i ∈ B and off-diagonal entries p(0)ij (B) > 0
ff (i, j) ∈ E; for each articulation point a ∈ A (if any) and u ∈ U
here will be strictly positive numbers (νa(u, B) : B ∋ a), satisfying

B∋a νa(u, B) = 1; and there will be ρ : X × U → (0, 1] such that
or each u ∈ U the entries of the matrix P(u) are given by (2). ■

. Dynamic programming equations and policy iteration

Consider an MDP defined by a family (P(u) : u ∈ U) where
ach P(u) is an irreducible TPM on X , and a reward function
: X × U → R. Here X and U are finite sets each assumed to be
f cardinality at least 2. Given µ ∈ M, let β(µ) denote the long

term average reward associated to the stationary randomized
Markov strategy µ. Then we have β(µ) =

∑
i πi(µ)r(i, µ), where

(µ) = (πi(µ) : i ∈ X ) denotes the stationary distribution of
(µ) and r(i, µ) :=

∑
u r(i, u)µ(u|i). Further, there is function

(µ) : X → R such that for all i ∈ X we have

(µ) = r(i, µ(i))+
∑

j

pij(µ)
(
hj(µ)− hi(µ)

)
. (6)

he family of Eqs. (6), one for each i ∈ X , is often viewed as
eeding to be solved for β(µ) and h(µ) := (hi(µ) : i ∈ X ), in

which case it is called Poisson’s equation associated to the TPM
P(µ). Note that the number of variables is one more than the
number of equations and, indeed, one can add the same fixed
constant to each hi(µ) in any solution to find another solution.

A natural choice for h(µ), thought of as a column vector, is
given by the Cesàro limit of the sequence (

∑K−1
k=0

(
P(µ)k − 1π

(µ)T
)
r(µ), K ≥ 1), where r(µ) is thought of as the column

ector with r(µ) = (r(i, µ(i)) : i ∈ X ), and 1 denotes the all-
nes column vector. This Cesàro limit exists because the sequence
1
K

∑K−1
k=0 P(µ)k, K ≥ 1) converges geometrically fast to 1π (µ)T

as K → ∞. Taking the Cesàro limit is needed to deal with the
phenomenon of periodicity.

The average cost dynamic programming equation characterizes
n optimal stationary randomized Markov strategy µ as one
aving the property that for each i ∈ X if µ(u|i) > 0 then we
ust have

(i, u)+
∑

j

pij(u)
(
hj(µ)− hi(µ)

)
= max

v

⎛⎝r(i, v)+
∑

j

pij(v)
(
hj(µ)− hi(µ)

)⎞⎠ , (7)

hich implies the form in which it is usually written, namely

(µ) = max
v

⎛⎝r(i, v)+
∑

pij(v)
(
hj(µ)− hi(µ)

)⎞⎠ . (8)

j
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he characterization of optimal stationary randomized Markov
trategies in Eq. (7) leads to the policy iteration algorithm to find
n optimal stationary deterministic strategy. Namely, starting
ith µ̄(0)

∈ M̄, consider the sequence (µ̄(k)
∈ M̄, k ≥ 0)

here to get µ̄(k+1) from µ̄(k) we pick some state i (if pos-
ible) for which argmaxv

(
r(i, v)+

∑
j pij(v)

(
hj(µ̄(k))− hi(µ̄(k))

))
oes not equal µ̄(k)(i), and replace µ̄(k)(i) by an action achieving
he argmax. It is well-known that we will then have βµ̄(k+1) >

µ̄(k) (a proof is given in [1], for instance) and that this itera-
ion will terminate in a finite number of steps to a stationary
eterministic optimal strategy.
We turn now to the case where the MDP is an RMDP, i.e. when

(µ) is reversible for all µ ∈ M. Consider first the case where
he canonical graph G := (X , E) associated to the RMDP is
iconnected. Then, according to Theorem 1, we have ρ : X ×

→ (0, 1] and an irreducible reversible TPM P (0) on X such that
ij(u) = ρ(i, u)p(0)ij for all distinct i, j ∈ X and pii(u) = 1−ρ(i, u) for
ll i ∈ X . As stated in the following theorem, the policy iteration
lgorithm can be dramatically simplified in this case. The proof is
n Appendix F.

heorem 3. Consider an RMDP whose associated canonical graph
s biconnected. Let P (0) and ρ : X × U → (0, 1] be as in Theorem 1.
et r : X × U → R be the reward function. Then any sequence
µ̄(k)

∈ M̄, k ≥ 0) of stationary deterministic Markov strategies,
tarting from some µ̄(0)

∈ M̄, where µ̄(k+1) is got from µ̄(k) by
icking some state i (if possible) for which

r(i, µ̄(k))− β(µ̄(k))
ρ(i, µ̄(k))

< argmaxv

(
r(i, v)− β(µ̄(k))

ρ(i, v)

)
(9)

and replacing µ̄(k)(i) by some action achieving the argmax, has the
property that β(µ̄(k+1)) > β(µ̄(k)), and this iteration will terminate
in a finite number of steps to a stationary deterministic optimal
strategy. ■

A weaker version of Theorem 3 is proved in [1, Thm.4.2] under
the assumption that there is a Hamilton cycle in the canonical
graph associated to the RMDP (which implies, but is a strictly
stronger requirement than biconnectedness) and that at each
step of the policy iteration the actions at all states are updated
simultaneously in a specific way related to this Hamilton cycle,
see [1, Sec. 4.1].

For a general RMDP it turns out that a simplification of policy
iteration similar to that in Theorem 3 is possible at vertices that
are not articulation points. This is stated in the following theorem,
whose proof is in Appendix G

Theorem 4. For a general RMDP, let A denote the set of articulation
points and B the set of blocks in the block graph structure of the
canonical graph G := (X , E) associated to it. Let (P (0)(B) : B ∈ B),
(νa(u, B) : a ∈ A, B ∋ a, u ∈ U), and ρ : X × U → (0, 1] be as in
Theorem 2. Let r : X × U → R be the reward function. Let µ̄ ∈ M̄
and suppose that for some B ∈ B and k ∈ B̊ we have

r(k, µ̄)− β(µ̄)
ρ(k, µ̄)

< argmaxv

(
r(k, v)− β(µ̄)

ρ(k, v)

)
. (10)

et µ̄′
∈ M̄ be defined by setting µ̄′(k) equal to some v achieving

the argmax, and let µ̄′(j) = µ̄(j) for all j ̸= k. Then we have
(µ̄′) > β(µ̄). ■

6. The Gaussian free field and the generalized second Ray-
Knight theorem

For every µ ∈ M the Cesàro limit of the sequence (
∑K−1

k=0(
P(µ)k − 1π (µ)T

)
, K ≥ 1) exists and is called the fundamen-

tal matrix associated to P(µ) [3, Sec. 2.2.2]. Denote this matrix
5

by Z(µ), with entries zij(µ). From the discussion in Section 5,
note that h(µ) := Z(µ)r(µ), together with β(µ) = π (µ)T r(µ),
solves Poisson’s equation for P(µ), i.e. Eq. (6). Thus, understanding
the fundamental matrix Z(µ) is central to understanding the
dynamics of the RMDP under µ ∈ M.

Z(µ) is best understood by moving to continuous time, replac-
ing the TPM P(µ) by the rate matrix P(µ)− I , where I denotes the
identity matrix on X . Let (Xt (µ), t ≥ 0) denote the corresponding
continuous time Markov chain. Then one can check that

zij(µ) = lim
T→∞

(
Ei[
∫ T

0
1(Xt (µ) = j)dt] − πj(µ)T

)
. (11)

Since P(µ) is reversible, it is straightforward to show that the
matrix on X with entries zij(µ)

πj(µ)
is symmetric [3, Sec. 3.1]. Based

on (11), we may now write, for the choice of h(µ) above, for each
∈ X , the formula

i(µ) =
∑

j

zij(µ)
πj(µ)

πj(µ)rj(µ)

=

∑
j

lim
T→∞

(
Ei[

1
πj(µ)

∫ T

0
1(Xt (µ) = j)dt] − T

)
πj(µ)rj(µ).

(12)

While this may seem a peculiar thing to do, one natural aspect
f the formula on the RHS of (12) is that πj(µ)rj(µ) has the
nterpretation, in continuous time, of the rate at which reward is
enerated in stationarity while in state j. Another natural aspect
s that the centering of the integral is the actual time and not a
tate-dependent scaled version of it. However, the real value of
his way of writing the formula comes from the observation that
he matrix with entries zij(µ)

πj(µ)
is a positive semidefinite matrix [3,

Eqn. (3.42)]. This means that we can find a multivariate mean
zero Gaussian random variable, call it (Vi(µ) : i ∈ X ), with
his covariance matrix. This points to an intriguing and unusual
onnection between Gaussianity and Markov decision theory in
he case of RMDP. As we will see shortly, while the hi(µ) are ex-
pressed as asymptotic limits in (12), the introduction of Gaussian
methods gives, in a sense, much more detailed information about
the behavior of the functions T →

1
πj(µ)

∫ T
0 1(Xt (µ) = j) and thus

much more detailed picture of the role of the initial condition
n causing deviations from the stationary rate of generation of
eward in an RMDP.

Notice that we have
∑

i
∑

j πi(µ)
zij(µ)
πj(µ)

πj(µ) = 0, and so

i πi(µ)Vi(µ) = 0 as a random variable. Thus, to work with
Vi(µ) : i ∈ X ) involves, in a sense, a choice of coordinates
o capture the underlying multivariate Gaussian structure. Other
atural choices of coordinates are possible. For instance, for each
∈ X we may define the multivariate Gaussian (V [k]

i (µ) : i ∈ X )
ia V [k]

i (µ) := Vi(µ) − Vk(µ) (so the choice of coordinates in this
case makes V [k]

k (µ) = 0).
Instead of making a choice of coordinates, the Gaussian object

of interest can be constructed in an intrinsic way. One starts with
independent mean zero Gaussian random variables on the edges
of the canonical graph of the RMDP, with the variance of the
Gaussian on edge (i, j) being (πi(µ)pij(µ))−1. To each edge one
associates a direction in an arbitrary way, with the understand-
ing that traversing the edge along its direction corresponds to
adding this Gaussian, while traversing it in the opposite direction
corresponds to subtracting this Gaussian. One then conditions on
being in the subspace of RE where the total sum of the Gaussians
over every loop in the canonical graph equals zero. This will
allow us to construct a multivariate Gaussian on the vertices
of the canonical graph with the property that the Gaussian on
each edge is the difference between those at its endpoints. This
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ultivariate Gaussian on the vertices is defined only up to one
egree of freedom and this is what corresponds to the freedom
n the choice of coordinates discussed above. See [4, Sec. 9.4] for
ore details. This Gaussian object is called the Gaussian free field
ssociated to P(µ). It is discussed in many sources, e.g. [5, Chap.
], [6, Sec. 2.8], [4, Sec. 9.4], [7, Sec. 2.8].
For each k ∈ X the representation of the Gaussian free field

ia the multivariate Gaussian (V [k]
i (µ) : i ∈ X ) also has a natural

probabilistic interpretation. Consider the transient continuous
time Markov chain on X , with absorption in state k, with the
rate πi(µ)pij(µ) of jumping from state i to state j for all i ̸= k.
et g [k]ij (µ), for i, j ̸= k, denote the mean time spent in state
j before absorption. Then it can be checked that the matrix on
X\{k} with entries g [k]ij (µ) is a symmetric positive definite matrix.
It is, indeed, the covariance matrix of (V [k]

i (µ) : i ̸= k). See [5,7]
or more details.

Let us also observe that the recurrent continuous time Markov
hain (X̃t (µ), t ≥ 0) on X with the rate of jumping from state i
o state j being πi(µ)pij(µ) for j ̸= i satisfies

zij(µ)
πj(µ)

= lim
T→∞

(
Ei[
∫ T

0
1(X̃t (µ) = j)dt] − T

)
. (13)

This is basically a consequence of (11) but is somewhat more
subtle that it might seem. (Xt (µ), t ≥ 0) can be coupled to
(X̃t (µ), t ≥ 0) by creating the latter from the former by stretching
out each duration of time spent in state i by the factor πi(µ)−1,
for each i ∈ X . But then the integral to a fixed time T in (13)
makes the corresponding integral in (11) be to a random time.
Nevertheless, since we take the asymptotic limit in T , (13) follows
from (11).

Now, the generalized second Ray-Knight theorem [7, Thm.
2.17] gives us the promised insight into the transient rates at
which rewards are generated in the individual states. For i ∈ X
and t ≥ 0, let Li,t (µ) :=

∫ t
0 1(X̃s(µ) = i)ds. For k ∈ X and s ≥ 0

define

Γk,s(µ) := inf{t ≥ 0 : Lk,t (µ) ≥ s},

which is the first time at which the time spent in state k by the
process (X̃t (µ), t ≥ 0) is at least s. We then have(
Li,Γk,s(µ)(µ)+

1
2
(V [k]

i (µ))2 : i ∈ X
)

d
=

(
1
2
(V [k]

i (µ)+
√
2s)2 : i ∈ X

)
(14)

or all s ≥ 0, where d
= denotes equality in distribution of the

ector random variables on each side. Here (V [k]
i (µ) : i ∈ X ) is

the Gaussian free field, as described earlier, and is assumed to be
independent of (Li,Γk,s(µ)(µ) : i ∈ X ), whose law is taken assuming
that the process (X̃t (µ), t ≥ 0) starts at k ∈ X .

In (14) note that Li,Γk,s(µ)(µ) denotes the time spent in state i by
(X̃t (µ), t ≥ 0) (which is assumed to start in state k) up to the first
time at which the time spent in state k by this process is at least
s (in particular, we have (Lk,Γk,s(µ)(µ) = s). (Xt (µ), t ≥ 0) can be
coupled to (X̃t (µ), t ≥ 0), as described above, and (Xt (µ), t ≥ 0)
is just the continuous time Markov chain corresponding to the
discrete sequence (Xn, n ≥ 0) (started at state k and under the
stationary Markov control strategy µ ∈ M). It is in this sense that
the distributional identity in (14) gives us detailed information
into the transient rates at which rewards are generated in the
individual states under the stationary Markov strategy µ, for each
initial state.

This unusual way in which Gaussians plays a role in the
context of RMDP to give insight into the transient behavior of
the generation of reward is quite striking. Our purpose in this
paper has only been to highlight this connection. We leave the
exploration of its implications to future research.
6
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Appendix A. Proof of Lemma 1

It is well known that the set of occupation measures as µ
ranges over M is a closed convex set and every extreme point of
this convex set corresponds to the occupation measure of some
µ̄ ∈ M̄ (see e.g. [8, Lemma 5.2]). Now suppose that P(µ̄) is
irreducible and reversible for each µ̄ ∈ M̄. Every µ ∈ M can
be expressed as a finite convex combination of (µ̄ : µ̄ ∈ M̄), and
thus P(µ) is expressed as the corresponding convex combination
of (P(µ̄) : µ̄ ∈ M̄). It follows that P(µ) is irreducible.

But the occupation measure of P(µ) is in the convex hull of the
occupation measures (P(µ̄) : µ̄ ∈ M̄), and these are symmetric
by assumption, so the occupation measure of P(µ) is symmetric
and hence P(µ) is reversible. (Note that the convex combina-
tion expressing the occupation measure of P(µ) in terms of the
occupation measures of stationary deterministic Markov control
strategies may be different from that used above to express P(µ)
in terms of (P(µ̄) : µ̄ ∈ M̄).) This proves that P(µ) irreducible and
reversible for each µ ∈ M. The claim in the opposite direction is
obvious. This completes the proof of the lemma. ■

Appendix B. Proof of Lemma 2

We claim that for every i ∈ X the set of neighbors of i under
(pij(u) : j ∈ X ), namely {j ̸= i : pij(u) > 0} is the same for all
u ∈ U . Suppose, to the contrary, that for some distinct u, v ∈ U
and some i ∈ X we have pij(u) > 0 but pij(v) = 0, for some j ̸= i.
Pick some ũ ∈ U (which could be either u or v if desired) and
consider the two stationary deterministic Markov strategies µ̄(a)

and µ̄(b) given by

µ̄(a)(i) = u, µ̄(b)(i) = v, and µ̄(a)(l) = µ̄(b)(l) = ũ for l ̸= i. (15)

Since P(µ̄(a)) is reversible and pij(u) > 0 it follows that pji(ũ) > 0.
But then, since P(µ̄(b)) is reversible, it would follow that pij(v) >
0, a contradiction. This establishes the claim. This also establishes
the existence of a simple connected graph G := (X , E) such that
for all u ∈ U and distinct i, j ∈ X we have pij(u) > 0 iff (i, j) ∈ E ,
as claimed. ■

Appendix C. Proof of Theorem 1

Suppose first that all the P(u) for u ∈ U are the same, and
let P =

[
pij

]
denote this common TPM over X . Thus P is

irreducible and reversible. Let (πi : i ∈ X ) denote the stationary
distribution of P . We have πipij = πjpji for all i, j ∈ X .

For each i ∈ X we can choose ρ(i, u) ∈ (0, 1] to be 1 − pii.
(Note that we have p < 1 since P is irreducible and |X | ≥ 2.)
ii
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e then let p(0)ij :=
pij

1−pii
for i ̸= j, with p(0)ii := 0 for all i ∈ X .

It can be checked that this defines an irreducible TPM P (0) on
X with p(0)ij > 0 iff (i, j) ∈ E , where G := (X , E) denotes the
canonical graph associated to this RMDP. It can be checked that
the stationary distribution (π (0)

i : i ∈ X ) of P (0) is given by
π

(0)
i = Kπi(1− pii), where K is the normalizing constant. Further,

we have π (0)
i p(0)ij = π

(0)
j p(0)ji for all i, j ∈ X , which establishes that

P (0) is reversible. This completes the proof in this case.
We may thus turn to the case when not all the P(u) are the

same.
Suppose first that |X | = 2, and write X = {1, 2}. Then,

for any u ∈ U , P(u) is irreducible and reversible iff we have
both p12(u) > 0 and p21(u) > 0 (the corresponding stationary
distribution is

[
p21(u)

p12(u)+p21(u)
p12(u)

p12(u)+p21(u)

]
). It can be checked that

ny collection (P(u) : u ∈ U), where each P(u) is irreducible
nd reversible, defines an RMDP (because P(µ) will then be
rreducible and reversible for each µ ∈ M). We can then define
(0)

:=

[
0 1
1 0

]
, with ρ(1, u) = p12(u), and ρ(2, u) = p21(u),

hus establishing the main claim of the theorem in this case. Note
hat the graph associated to this RMDP is biconnected.

Having dealt with the case |X | = 2, we may henceforth
ssume that |X | ≥ 3. Fix i ∈ X . By the assumption that G is
iconnected there must exist distinct j, k ∈ X such that (i, j) ∈ E
nd (i, k) ∈ E . This means that for all u ∈ U we have pij(u) > 0
nd pik(u) > 0. We claim that the ratio pij(u)

pik(u)
does not depend on

. To see this, let u, v ∈ U be distinct and pick some ũ ∈ U (which
could be either u or v if desired) and consider the two stationary
deterministic Markov strategies µ̄(a) and µ̄(b) given as in (15).
Write p(a)lm for plm(µ̄(a)) for l,m ∈ X , and π (a) for the stationary
distribution of P(µ̄(a)); similarly for µ̄(b). By the assumption that

is biconnected, there is a path in G from j to k that does not
ouch i, i.e. one can find a sequence (l0, l1, . . . , lR) of vertices of G,
here R ≥ 1, with l0 = j, lR = k, lr ̸= i for 0 ≤ r ≤ R, and such
hat (lr , lr+1) ∈ E for 0 ≤ r ≤ R− 1. Then we have the equations
(a)
lr p(a)lr lr+1

= π
(a)
lr+1

p(a)lr+1 lr
and π (b)

lr p(b)lr lr+1
= π

(b)
lr+1

p(b)lr+1 lr
, (16)

or all 0 ≤ r ≤ R−1 (these follow from the reversibility of P(µ̄(a))
nd P(µ̄(b)) respectively). Since for all l,m ∈ X with l ̸= i and
̸= i we have p(a)lm = p(b)lm = plm(ũ), we can conclude from the

quations in (16) that

π
(a)
j

π
(a)
k

=
π

(b)
j

π
(b)
k

. (17)

ut the reversibility of P(µ̄(a)) and P(µ̄(b)) also gives us the equa-
ions

π
(a)
i pij(u) = π

(a)
j pji(ũ),

π
(a)
i pik(u) = π

(a)
k pki(ũ),

π
(b)
i pij(v) = π

(b)
j pji(ũ),

π
(b)
i pik(v) = π

(b)
k pki(ũ).

Dividing the first of these by the second (on each side) and
the third of these by the fourth and comparing the resulting
equations, using (17) we conclude that pij(u)

pik(u)
equals pij(v)

pik(v)
. Since

, v ∈ U , u ̸= v, were arbitrarily chosen, we conclude that pij(u)
pik(u)

oes not depend on u, as claimed.
Now, for each i ∈ X , pick an arbitrary ui ∈ U (all of these

ould be the same action, if one wishes). Having made such a
hoice, define µ̄ ∈ M̄ by µ̄(i) = ui for all i ∈ X . Since P(µ̄) is
rreducible and reversible, we have the equations πi(µ̄)pij(ui) =

(µ̄)p (u ) for all distinct i, j ∈ X , where (π (µ̄) : i ∈ X )
j ji j i

7

denotes the stationary distribution of P(µ̄) as usual. For i ̸= j,
define p(0)ij :=

pij(ui)
1−pii(ui)

, and let p(0)ii = 0 for all i ∈ X . Note that
(0)
ij > 0 iff (i, j) ∈ E , where G = (X , E) is the canonical graph
ssociated to this RMDP. The resulting matrix P (0) based on X is
n irreducible TPM with zero diagonal entries, and it is reversible
ith stationary distribution (Kπi(µ̄)(1− pii(ui)) : i ∈ X ), where K

s the proportionality constant. We can now set ρ(i, u) = 1−pii(u)
or all (i, u) ∈ X × U . Indeed, we have already proved that the
pij(u) : j ̸= i) for u ∈ U are proportional (for fixed i ∈ X ), and so
e will have pij(u) = pij(ui)

1−pii(u)
1−pij(ui)

for all (i, j) ∈ E , which gives

ρ(i, u)p(0)ij = pij(u) for all u ∈ U and all distinct i, j ∈ X . Note that
we have ρ(i, u) ∈ (0, 1] for all (i, u), as required.

This concludes the proof of the theorem. ■

ppendix D. Proof of Lemma 3

For all µ ∈ M we have pij(µ) > 0 iff (i, j) ∈ E , and so P(µ) is
an irreducible TPM on X . For i ∈ X and k ̸= i define pk→i(µ) to
be pkj(µ), where j ∈ X is defined as the vertex adjacent to k on
the unique path from k to i in the tree. It can be checked that the
stationary distribution of P(µ) is proportional to (

∏
k̸=i pk→i(µ) :

i ∈ X ) and so P(µ) is reversible. This concludes the proof. ■

Appendix E. Proof of Theorem 2

If there is only one block then we are in biconnected case
covered in Theorem 1, where we have already proved that the
structure of the RMDP must be consistent with the type described
in Example 3. We may therefore assume that there are at least
two blocks, and so every block has at least one articulation point.
For each block B ∈ B an argument similar to that in Theorem 1
shows that for each i ∈ B the (pij(u) : j ∈ B) as u ranges over
U are all proportional. We can therefore find a TPM P (0)(B) =[

p(0)ij (B)
]
on B, with zero diagonal entries, such that pij(u) =(∑

k∈B pik(u)
)
p(0)ij for all distinct i, j ∈ B. Since p(0)ij (B) > 0 iff (i, j)

is an edge in B (viewed as a subgraph), and since B is connected,
we see that P (0)(B) is irreducible. Define ρ(i, u) to be

∑
j∈B pij(u)

for i ∈ B̊ (if any) and, for each articulation point a ∈ B, define
ρ(a, u) to be

∑
j∈X ,j̸=a paj(u) (this quantity does not depend on

which B containing a is being considered), and define νa(u, B)
to be

∑
j∈B pij(u)
ρ(a,u) . Note that the νa(u, B) are strictly positive and∑

B∋a νa(u, B) = 1, as required. Also note that ρ(i, u) ∈ (0, 1] for
all (i, u) ∈ X × U .

It remains to show that each P (0)(B) is reversible. Pick any u ∈

U . Let (πi(u) : i ∈ X ) denote the stationary distribution of P(u). Fix
B ∈ B. By the reversibility of P(u) we have πi(u)pij(u) = πj(u)pji(u)
for all i, j ∈ B. It follows that(
πi(u)

∑
k∈B

pik(u)

)
p(0)ij =

(
πj(u)

∑
k∈B

pjk(u)

)
p(0)ji

This means that if (ψi(B) : i ∈ B) denotes the stationary distribu-
tion of P (0)(B) then it is proportional to (πi(u)

∑
k∈B pik(u) : i ∈ B)

and thus that ψi(B)p
(0)
ij (B) = ψj(B)p

(0)
ji (B) for all i, j ∈ B, which

establishes that P (0)(B) is reversible. This concludes the proof.
■

Appendix F. Proof of Theorem 3

Let (π (0)
i : i ∈ X ) denote the stationary distribution of P (0), and

recall that for any µ ∈ M the stationary distribution of P(µ) is
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iven by (K (µ) π
(0)
i

ρ(i,µ(i)) : i ∈ X ), where K (µ) :=
(∑

i
π
(0)
i

ρ(i,µ(i))

)−1

is

the normalizing constant. Since

β(µ) =
∑

i

r(i, µ(i))πi(µ) = K (µ)
∑

i

r(i, µ(i))
π

(0)
i

ρ(i, µ(i))
,

we get∑
i

r(i, µ(i))− β(µ)
ρ(i, µ(i))

π
(0)
i = 0.

Thus β(µ) can be characterized as

β(µ) = sup{β ∈ R :

∑
i

r(i, µ(i))− β
ρ(i, µ(i))

π
(0)
i ≥ 0}.

If we can find i ∈ X for which Eq. (9) holds, then pick u ∈ U
chieving the argmax on the RHS of Eq. (9) and let µ̄(k+1)(i) = u
nd µ̄(k+1)(j) = µ̄(k)(j) for all j ̸= i, as in the simplified policy
teration algorithm. We then have

j

r(j, µ̄(k+1)(j))− β(µ̄(k))
ρ(j, µ̄(k+1)(j))

π
(0)
j =

∑
j̸=i

r(j, µ̄(k)(j))− β(µ̄(k))
ρ(j, µ̄(k)(j))

π
(0)
j

+
r(i, u)− β(µ̄(k))

ρ(i, u)
π

(0)
i

>
∑

j

r(j, µ̄(k)(j))− β(µ̄(k))
ρ(j, µ̄(k)(j))

π
(0)
j

= 0.

t follows that β(µ̄(k+1)) > β(µ̄(k)), which concludes the proof.

ppendix G. Proof of Theorem 4

Define p(0)ij (µ̄|A) to be νi(µ̄(i), B)p
(0)
ij (B) for i, j ∈ B, i ̸= j, for

ach B ∈ B. Here we recall that we defined νi(u, B) = 1 for
8

ll i ∈ B̊ and u ∈ U , and so we realize that p(0)ij (µ̄|A) depends
nly on the restriction of µ̄ to the articulation nodes, which
s indicated by the notation µ̄|A. It is straightforward to check
hat the p(0)ij (µ̄|A) define a TPM on X . Let (π (0)

i (µ̄|A) : i ∈ X )
enote the stationary distribution associated to this TPM. It is
traightforward to check that the stationary distribution of P(µ̄)

s proportional to ( π
(0)
i (µ̄|A)
ρ(i,µ̄(i)) : i ∈ X ). Further, we can check that

for all η̄ ∈ M̄ such that η̄|A = µ̄|A the stationary distribution of

P(µ̄) is proportional to ( π
(0)
i (µ̄|A)
ρ(i,η̄(i)) : i ∈ X ).

From this, as in the proof of Theorem 3, we can check that for
all η̄ ∈ M̄ such that η̄|A = µ̄|A we have the characterization

β(η̄) = sup{β ∈ R :

∑
i

r(i, η̄(i))− β
ρ(i, η̄(i))

π
(0)
i (µ̄|A) ≥ 0}.

The rest of the proof then follows as in the proof of Theorem 3,
allowing us to conclude the desired strict inequality. ■
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