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Gaussian boson sampling is a promising candidate for showing experimental quantum advantage.
While there is evidence that noiseless Gaussian boson sampling is hard to efficiently simulate using
a classical computer, the current Gaussian boson sampling experiments inevitably suffer from loss
and other noise models. Despite a high photon loss rate and the presence of noise, they are currently
claimed to be hard to classically simulate with the best-known classical algorithm. In this work,
we present a classical tensor-network algorithm that simulates Gaussian boson sampling and whose
complexity can be significantly reduced when the photon loss rate is high. By generalizing the
existing thermal-state approximation algorithm of lossy Gaussian boson sampling, the proposed
algorithm allows us to achieve increased accuracy as the running time of the algorithm scales,
as opposed to the algorithm that samples from the thermal state, which can give only a fixed
accuracy. This generalization enables us to simulate the largest scale Gaussian boson sampling
experiment so far using relatively modest computational resources, even though the output state of
these experiments is not believed to be close to a thermal state. By demonstrating that our new
classical algorithm outperforms the large-scale experiments on the benchmarks used as evidence for
quantum advantage, we exhibit evidence that our classical sampler can simulate the ground-truth
distribution better than the experiment can, which disputes the experimental quantum advantage
claims.

I. INTRODUCTION

We have seen the first plausible quantum
computational advantage experiments over the
past few years using random circuit sampling with
superconducting qubits [1–3] and Gaussian boson
sampling [4–7]. These experiments are not only an
important step toward practical quantum advantage but
also a fundamental milestone as evidence of violation of
the extended Church–Turing thesis [8, 9]. After many
recent results (e.g., Refs. [9–13]), we now have a basis for
believing that these experiments are hard to classically
simulate in the ideal case with no noise. While this is
a necessary foundation, the actual experiments are very
noisy, which could make the sampling problem a lot
easier to classically simulate. Hence, to understand the
computational power of the existing experiments, we
need to rigorously analyze the effect of noise on their
complexity. For this reason, numerous theoretical studies
have been undertaken to understand the complexity of
simulating noisy quantum devices [14–26].

More specifically, it is reasonable to expect that
quantum systems with uncorrected noise become easy to
simulate at a sufficiently large size, and this intuition has
been justified by many recent algorithmic results (e.g.,
Refs. [14, 15, 24, 25]). Therefore, the uncorrected noise
limits the scale of the quantum advantage experiments.
On the other hand, a sufficiently large-scale circuit is
necessary to achieve quantum advantage; otherwise, the
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computational complexity of the problem that a quantum
device solves is still tractable using a currently available
classical computer. Therefore, the hope of quantum
advantage using noisy quantum circuits is to find the
“Goldilocks” regime where the system size is sufficiently
large to be classically intractable but not too large for
noise to destroy the quantum signal. This requires
understanding how well the best (possibly inefficient)
classical algorithm can do to take advantage of noise.

In this work, we give a new classical tensor-network-
based algorithm simulating Gaussian boson sampling
that takes advantage of high-loss experiments which
enables us to simulate current-size Gaussian boson
sampling. To do this, we revisit a family of algorithms
that have previously appeared in the simulation
literature and involve sampling from a classically easy
thermal state [19, 21, 27], which do not currently work
to simulate the existing experiments since the current
Gaussian boson sampling experiments’ output states are
not believed to be close to a thermal state. These
algorithms sample from the distribution of thermal
output state with covariance matrix Vth =W + 12M

for approximating the actual output state, where 12M

represents a vacuum state and W represents random
displacement applied on the vacuum. Our observation
is that the output state of a Gaussian boson sampling
experiment before measurement can always be written in
a similar way, V =W + Vp, where W is again classical
random displacement and Vp is essentially equivalent
to an ideal but smaller-photon-number Gaussian boson
sampling’s output covariance matrix (see Fig. 1). Based
on this observation, our strategy is to exploit the
tensor-network method to approximately simulate Vp,
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which enables us to approximate Vp by 12M in the
trivial case, much like the thermal state approximation,
and to increase the accuracy by increasing the bond
dimension to converge to Vp. The subsequent random
displacement W and measurement have greatly reduced
the computational complexity for the tensor-network
method because they can be operated locally. Also,
we observe that when a loss rate is high, the random
displacement W becomes dominant, and the number of
photons in Vp becomes very small. Since the state Vp
has fewer photons, a tensor-network method can more
efficiently simulate it than V , particularly when the loss
rate is high.

We employ the algorithm to analyze the computational
power of the state-of-the-art Gaussian boson sampling
experiments. We simulate the ground-truth distribution
of the largest Gaussian boson sampling experiments
so far and verify that our algorithm outperforms
the experiments for various benchmarks that were
used to claim a quantum advantage in experiments.
(Throughout this work, the ground-truth means the ideal
quantity obtained by the covariance matrix of the output
state that includes photon loss, following the convention
in the literature [6, 7, 28].) It provides evidence that
our classical algorithm can simulate the ground-truth
distribution better than the experimental samplers can.
Our classical simulation for the most time-consuming
experiment takes about 10 minutes for constructing
the matrix product state (MPS) and about 62 minutes
for sampling 10 million samples. Therefore, based on
benchmarking used in experiments, our tensor network
algorithm can simulate the ground-truth distribution of
Gaussian boson sampling better than the state-of-the-
art experiments in a reasonable time. We finally provide
estimates of the computational cost of our algorithm for
simulating larger systems by analyzing memory and time
cost using the required bond dimension for MPS.

Our results provide a new, more accurate measure
of the complexity of finite-size lossy Gaussian boson
sampling. A typical way of estimating the simulation cost
for Gaussian boson sampling experiments is based on the
best-known classical algorithm [29, 30], whose complexity
substantially increases with the output photon number.
Because of this property, many previous experiments
focused on increasing the output photon numbers.
However, our analysis clearly reveals that most of the
output photons are classical, which do not contribute
to the exponential cost, and shows that the quantum
part Vp is a more accurate quantum resource. Hence,
our algorithm indicates that a more promising path to
the Goldilocks regime for quantum advantage is reducing
the loss rate and increasing the number of squeezed
states instead of focusing on increasing the output photon
numbers.

The paper is structured as follows. After providing
a preliminary discussion of Gaussian boson sampling in
Sec. II, we present our classical algorithm and the theory
behind the algorithm in Sec. III. We also analyze its

scaling as the system size increases and the simulation
accuracy. In Sec. IV, we provide simulation results of
the recent Gaussian boson sampling experiments. In
Sec. V, we provide estimates of computational cost for
larger Gaussian boson sampling experiments for future
experiments. In Sec. VI, we discuss the implications of
our results and open questions.

II. GAUSSIAN BOSON SAMPLING

Gaussian boson sampling is a sampling task that
is proven to be hard to classically simulate for
noiseless circuits under some plausible conjectures [9,
10, 13]. The standard Gaussian boson sampling can
be implemented by first preparing squeezed vacuum
states and injecting them into an M -mode beam-splitter
circuit, characterized by an M ×M unitary matrix U
(see Fig. 1 (a) without loss effect.). Then the output
state’s photon numbers at each mode are measured. The
crucial observation for hardness is that computing the
output probability of Gaussian boson sampling is #P-
hard, which is written as

p(m) =
1∏M

i=1 cosh ri

|haf(Am)|2

m1! · · ·mM !
, (1)

where m = (m1, . . . ,mM ) is an output photon number
pattern, A is defined as A = UDUT, D is a diagonal
matrix defined as D = diag({ri}Mi=1) with squeezing
parameters ri’s, Am is the matrix obtained by repeating
the ith row and columns of the matrix A mi times, and
the hafnian of an n× n matrix X is defined as

haf(X) =
∑

m∈PMP(n)

∏
(i,j)∈m

Xi,j (2)

where PMP(n) represents the set of perfect matching
permutations of n (even) elements.

III. CLASSICAL SIMULATION ALGORITHM

A. Decomposition of the output state of Gaussian
boson sampling

We now present a decomposition of the Gaussian boson
sampling’s output state, which is a crucial first step
for our classical algorithm. As mentioned, our strategy
is to decompose the output state into the quantum
and classical parts. To do that, we decompose the
output Gaussian state’s covariance matrix into two parts
as V = Vp + W , where Vp represents the covariance
matrix of a pure Gaussian state and W ⪰ 0, which
is illustrated in Fig. 1 (see Sec. VIIA for details of
covariance matrix formalism). Here, the covariance
matrix Vp can be interpreted as a pure quantum resource
because it is composed of pure squeezed states and beam
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FIG. 1. (a) Gaussian boson sampling with input squeezed vacuum states that pass through a lossy beam splitter network.
(b) Using the decomposition introduced in the main text, we decompose the output state as pure input squeezed states with
reduced squeezing, followed by a lossless beam splitter network and Gaussian random displacement channel. Note that the
random displacement follows a Gaussian distribution that is generally correlated over different modes.

splitters, which is equivalent to the standard Gaussian
boson sampling with much smaller squeezing parameters
than the input of V . On the other hand, the positive
semidefinite matrix W can be interpreted as a Gaussian
random displacement because the initial covariance
matrix V can be obtained by applying Gaussian random
displacement characterized by the classical covariance
matrix W to the pure Gaussian state of its covariance
matrix Vp [31].

As emphasized before, one may interpret our
classical algorithm as a generalization of the thermal-
state approximation algorithm [19, 21] because if we
approximate the quantum part Vp as a vacuum state 12M ,
then the corresponding simulation becomes a thermal-
state approximation with covariance matrix W + 12M .
Such a generalization allows us to improve the
approximate simulation error by increasing the running
time (see Sec. III B), which is crucial for simulating
current experiments, the output state of which is not
sufficiently close to a thermal state. Although Refs. [21,
27] employ a classical squeezed thermal state, we call this
state a thermal state for simplicity throughout the paper.

More specifically, for the multimode Gaussian
state’s covariance matrix V , we can implement the
optimized decomposition procedure by using semidefinite
programming under the constraints

min
Vp

Tr[Vp] with V − Vp ⪰ 0, Vp ⪰ iΩ, (3)

where the first constraint is to ensure that W = V − Vp
is positive semidefinite, and the second constraint is to
guarantee that Vp represents a proper physical Gaussian
state’s covariance matrix, that is, corresponds to a
positive semidefinite density matrix [31]. Note that this
is different from a simple Williamson decomposition used
in Ref. [30] (see Appendix B). Here, the minimization is
to minimize the quantum part’s average photon number.

We apply the method to the recent Gaussian
boson sampling experiments’ ground-truth covariance

FIG. 2. Characteristics of the squeezed state Vp from the
decomposition for single-mode cases. (a) Relation between
the actual squeezing parameter s and the input squeezing
r for different transmission rate η. (b) Ratio of the actual
squeezed photons to the total photons of the output state V .
(c) and (d) Actual squeezing parameter and squeezed photon
numbers when the input squeezing parameter is infinite. The
dots represent the Borealis, Jiuzhang2.0, and Jiuzhang3.0’s
circuit’s transmission rate and their largest actual squeezing
and squeezed photons, assuming that infinite input squeezing
is used.

matrices [4–6], which are given in Table I. Here the actual
squeezed photons represent the mean photon numbers
from the covariance matrix Vp, namely, Tr[Vp − 12M ]/4.
One can clearly see that the resultant squeezed photons
are much smaller than the total number of photons.
For example, for the largest experiment in Ref. [6] with
M = 288, although the total output photon number was
147.65, the true quantum resources are only around 7
percent, that is, around 11 photons. Another interesting
feature is that in Ref. [5], although Jiuzhang2.0’s different
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Dataset Experiment Input
squeezing

Input
photons

Trans.
rate

Actual
squeezing

Output
photons

Actual
squeezed
photons

Ratio

M16 Borealis 0.88-0.89 16.248 0.368 0.14-0.22 5.98 0.549 0.0917
M72 Borealis 0.88-0.89 72.77 0.317 0.093-0.2 23.056 1.74 0.0755
M216 (low) Borealis 0.52-0.54 67.38 0.321 0.06-0.154 21.622 3.09 0.143
M216 (high) Borealis 1.09-1.11 388.57 0.324 0.087-0.235 125.85 6.54 0.052
M288 Borealis 1.00-1.02 407.64 0.362 0.102-0.247 147.65 10.687 0.0724
M100 Jiuzhang1.0 1.35-1.84 277.64 0.283 0.08-0.26 78.62 1.5 0.019
M144 (P125-1) Jiuzhang2.0 0.47-0.56 14.593 0.539 0.16-0.255 7.87 2.337 0.297
M144 (P125-2) Jiuzhang2.0 0.72-0.94 43.09 0.538 0.215-0.342 23.189 4.281 0.1846
M144 (P65-1) Jiuzhang2.0 0.4-0.545 13.415 0.476 0.124-0.217 6.39 1.628 0.255
M144 (P65-2) Jiuzhang2.0 0.56-0.76 28.267 0.476 0.154-0.270 13.454 2.53 0.188
M144 (P65-3) Jiuzhang2.0 0.80-1.08 65.86 0.476 0.18-0.32 31.34 3.62 0.115
M144 (P65-4) Jiuzhang2.0 1.04-1.41 133.75 0.476 0.20-0.36 63.636 4.385 0.069
M144 (P65-5) Jiuzhang2.0 1.34-1.81 295.15 0.476 0.212-0.379 140.38 4.965 0.035
M144 (low) Jiuzhang3.0 1.14-1.26 113.04 0.424 0.185-0.299 47.93 3.08 0.064
M144 (median) Jiuzhang3.0 1.33-1.47 183.46 0.424 0.193-0.314 77.80 3.37 0.043
M144 (high) Jiuzhang3.0 1.49-1.66 274.22 0.424 0.198-0.323 116.29 3.556 0.031

TABLE I. Parameters of different Gaussian boson sampling experiments from Refs. [4–7]. We display the actual squeezing
parameters and the actual squeezed photons for each experiment obtained by the optimal decomposition introduced in the
main text.

experiments used different squeezing parameters, which
led to a significant difference for output photon numbers,
the actual squeezed photons did not substantially change
much because the transmission rate was fixed. This
highlights the importance of improving the transmission
rate to increase quantum resources. Since the low
transmission rate highly limits the actual squeezing
parameters in experiments, increasing the number of
squeezed states is a better way to increase the actual
squeezed photon number. Indeed, whereas Jiuzhang2.0’s
actual squeezed photons are not significantly increased by
increasing input squeezing parameters, Borealis’s actual
squeezed photons grow faster by increasing the number
of squeezed states.

To understand this better, we quantitatively analyze
the effect of loss for the single-mode case. For different
input squeezing parameters r ≥ 0 and transmission rates
η, we analyze the resultant (smaller) squeezing parameter
s ≥ 0 of Vp from the decomposition, which is exhibited
in Fig. 2. Here, the decomposition of a lossy squeezed
state’s covariance matrix V is written as (see Appendix B
for more details)

V = ηV0 + (1− η)12 (4)

=

(
e2s 0
0 e−2s

)
+

(
ηe2r + 1− η − e2s 0

0 0

)
≡ Vp +W,

(5)

where V0 is the covariance matrix of the input before
loss and e−2s ≡ ηe−2r +(1− η). One can clearly see that
when the loss rate is high, increasing the input squeezing
parameter does not increase the resultant squeezing
parameter s and only increases thermal photons from the
random displacement part W . One can easily show that

for a fixed transmission rate η, even if the input squeezing
is infinite, that is, r → ∞, the actual squeezing is only
s = −1/2 log(1− η), which is shown in Figs. 2(c)(d).
Therefore, increasing the squeezing parameter without
improving the transmission rate does not increase the
quantum resources.

In summary, the proposed decomposition separates the
output photons into two contributions: the quantum
resource from Vp and the classical resource from the
random displacement W . Intuitively, only the quantum
resource can significantly increase the simulation
complexity. However, the currently available classical
algorithm’s complexity still significantly increases with
the classical resource from the random displacement
part (see Appendix A for detailed comparison with
existing classical algorithms). We now present a
classical algorithm that exploits the decomposition,
whose complexity does not increase with the random
displacement as we desire.

B. Matrix product state

The idea of exploiting the decomposition introduced
in the preceding section is to simulate the quantum
part using MPS. An MPS is a useful tensor network
tool that is frequently used to simulate a many-body
quantum state [32]. In general, MPS enables us to
describe a quantum state efficiently if its entanglement
is not large [33]. As we have observed in the preceding
section, when a loss rate is high, the resultant squeezing
parameters are highly suppressed, which are necessary to
constitute entanglement; thus, MPS can be expected to
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describe the system efficiently. An MPS of a given pure
quantum state is written as follows:

|ψ⟩ =
d−1∑

n1,··· ,nM=0

cn1···nM
|n1, · · · , nM ⟩ (6)

≈
d−1∑

n1,··· ,nM=0

χ−1∑
α1,··· ,αM−1=0

Γ[1]n1
α1

λ[1]α1
Γ[2]n2
α1α2

λ[2]α2
×

· · ·λ[M−1]
αM−1

Γ[M ]nM
αM−1

|n1, · · · , nM ⟩, (7)

where d is the dimension of a local Hilbert space and χ
is the bond dimension.

A typical way to construct the output state’s MPS
description is to employ the time evolution method [22,
34]. In this work, we present a method that directly
constructs an MPS of a Gaussian state following the
method from Ref. [33], which can significantly reduce the
cost and the error occurring during time evolution. While
the method from this reference is typically inefficient
in practice, thanks to the property of Gaussian states,
the entire procedure takes only O(cMdχ2), where c is a
parameter that depends on the system’s characteristics,
which will be described below. We provide the details in
Appendix C and summarize the result here:

Γ[1]n1
α1

= ⟨n[1]
1 |⟨n[2···M ]

α1
|Û [2···M ]†Û [1···M ]|n = 0⟩/λ[1]α1

, (8)

Γ[k]nk
αk−1αk

= ⟨n[k]
k |⟨n[(k+1)···M ]

αk
|Û [(k+1)···M ]†Û [k···M ]|n[k···M ]

αk−1
⟩/λ[k]αk

for 1 < k < M, (9)

Γ[M ]nM
αM−1

= ⟨n[M ]
M |Û [M ]|n[M ]

αM−1
⟩/λ[M−1]

αM−1
, (10)

where |n[k···M ]⟩ represents a photon-number state

over [k · · ·M ] modes, Û [k···M ] represents the Gaussian
unitary operation diagonalizing the reduced density
matrix of [k · · ·M ] modes, and each matrix element
and singular values can be obtained by Williamson
decomposition [31]. As shown in Appendix C,
computing the matrix elements requires computing
a hafnian of a matrix whose size is determined by

n
[k]
k +

∑
i(n

[(k+1)···M ]
αk )i +

∑
i(n

[k···M ]
αk−1 )i [35, 36], which

corresponds to the aforementioned parameter c. Thus
the presented MPS construction method’s complexity
increases exponentially in the latter (see Appendix C
for more details). Nonetheless, because of the high
reduction of photon numbers from V to Vp, the matrix
size of which we compute the hafnian is substantially
smaller than directly simulating Vp using the best-known
classical algorithms [29, 30].

Once we construct an MPS for the output state Vp
of the beam splitter circuit, the subsequent random
displacement W and photon number measurement can
be implemented locally. Hence, it does not increase
entanglement anymore, and the sampling procedure
can be efficiently conducted. This part is the main
difference from other algorithms [29, 30] because our

algorithm’s complexity does not increase by the thermal
photons or displacement. Therefore, the complexity
originates mainly from the quantum resources and is
determined by the quantum part’s entanglement because
the remaining part is local. In practice, in order to deal
with the infinite dimensionality of continuous-variable
systems, the local Hilbert space dimension d has to be
appropriately chosen. Nonetheless, since the Gaussian
states’ photon number population has an exponential
tail [10], truncating the local Hilbert space dimension
entails only an exponentially small error.

More specifically, to simulate the random displacement
channel, after sampling a random displacement from the
covariance matrix W , we apply a random displacement
on each site and sample from the displaced output state.
The idea is that thanks to the decomposition V = Vp+W ,
the ground-truth probability distribution can be written
as

p(m) =

∫
d2MβpW (β)p(m|β), (11)

where pW (β) is the Gaussian probability distribution
of the covariance matrix W and β is its random
variable β ∈ CM corresponding to a random
displacement. Therefore, sampling m from the
probability distribution p(m) is equivalent to
sampling (m) from p(m|β) with randomly generated
β from pW (β). To sample from p(m|β) for a given
random displacement β, we transform the output MPS
tensors by applying displacements β as

d−1∑
nk=0

Γ[k−1]nk
αk−1αk

|nk⟩ →
d−1∑
nk=0

D̂(βk)Γ
[k−1]nk
αk−1αk

|nk⟩ (12)

=
d−1∑
nk=0

d−1∑
mk=0

Γ[k−1]nk
αk−1αk

⟨mk|D̂(βk)|nk⟩|mk⟩

(13)

≡
d−1∑

mk=0

Γ̃[k−1]mk
αk−1αk

|mk⟩, (14)

for each 1 ≤ k ≤ M , where D̂(βk) is the displacement
operator on the kth mode by βk. After transformation,
we use the chain rule of marginal probabilities for a given
random displacement β for sampling:

p(m1, . . . ,mM |β)

= p(m1|β)
p(m1,m2|β)
p(m1|β)

· · · p(m1, . . . ,mM |β)
p(m1, . . . ,mM−1|β)

,

(15)

which completes the sampling procedure.

C. Asymptotic behavior of MPS for lossy Gaussian
boson sampling

We now investigate when an efficient MPS
representation exists, i.e., the required bond dimension
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FIG. 3. (a) Any pure output state of a Gaussian boson sampling circuit can be decomposed as (b) the product of two-mode
squeezed vacuum (TMSV) states followed by local Gaussian unitary operations. (c) Thus, after tracing out the other system,
each local system can be described by the product of thermal states followed by Gaussian unitary operation. The Gaussian
unitary operations for each system are different in general.

is χ = poly(K, 1/ϵ), where ϵ is an approximate error set
by the bond dimension and K is the system size. To
this end, it suffices to investigate the Rényi entropy of
its reduced density matrix obtained by bipartition (see
Sec. VIIB) [37, 38]. We focus on K two-mode squeezed
input states distributed to bipartite systems because
any multimode Gaussian states can be decomposed
into a product of two-mode squeezed states up to
bipartition [39], as illustrated in Fig. 3, and because
the maximum entropy is achieved when each part of
two-mode squeezed vacuum states is allocated to distinct
bipartition. We set squeezing parameters to be equal to
r ≥ 0 for all K two-mode squeezed states for simplicity.

With the decomposition from Sec. IIIA, it suffices to
study the output state Vp before random displacement
in Fig. 1, because the rest of the operations are local.
Here, we are interested in the asymptotic regime with a
loss rate converging to one as the system size scales, i.e.,
η → 0, (η = O(K−β) with β > 0). For this case, the
squeezing parameter of Vp becomes

s = −1

2
log
(
ηe−2r + 1− η

)
≈ ηe−r sinh r +O(η2),

(16)

where we fix r to be a constant, and we can show in
the asymptotic limit in K (see Sec. VIIB) that the
Rényi entropy of its reduced density matrix obtained by
bipartition is given by

KSα<1(s) = O(Kη2α), (17)

KSα=1.01(s) = Ω(Kη2). (18)

Hence, when η = O((logK/K)1/2α) with α < 1, the MPS
is efficient; that is, the required bond dimension scales
as poly(K, 1/ϵ). Note that when α → 1, the scaling
approaches to η = o((logK/K)1/2), which recovers

previous results η = o(1/
√
K) [18, 19, 21] with an

additional (logK)1/2 factor improvement. Besides the
logarithmic factor, a more important improvement is that
our classical algorithm can control the approximation
error ϵ in poly(1/ϵ) by increasing the bond dimension χ,
whereas the thermal state approximation cannot control

the error by increasing the running time. In addition,
we show in Appendix D that for any fixed circuits, the
required bond dimension to achieve an error ϵ scales as
χ = O(polylog(1/ϵ)).
On the other hand, KSα=1.01(s) = Ω(Kη2) = Ω(Kγ)

with any constant γ > 0 when η = Ω(K(γ−1)/2), implying
that the MPS algorithm starts to be inefficient [37].

When η = Θ(1/
√
K), we show that while a certain

constant level of approximation error is attainable, the
error may not be reduced efficiently (see Appendix D).

IV. NUMERICAL IMPLEMENTATION FOR
FINITE-SIZE CIRCUITS

In the preceding section we analyzed our algorithm’s
asymptotic behavior. In this section we investigate
the efficiency of our algorithm for the state-of-the-art
Gaussian boson sampling experiments [4–7]. We provide
evidence that our algorithm can simulate the ground-
truth distribution better than the existing experiments
can in a reasonable time.

A. Benchmarking

Before presenting our numerical results, let us briefly
introduce the benchmarking methods widely used for
Gaussian boson sampling and how we verify our
simulation results. A standard theoretical metric is
the TVD between the ground-truth distribution and the
distribution of an experiment or a classical algorithm
because it is the basis of the hardness evidence [9,
10, 13] and it operationally quantifies the difficulty of
discriminating two samplers. TVD cannot be estimated
in practice, however, because it is neither sample-efficient
nor computationally efficient. Therefore, an indirect
method invented to assess the TVD is XEB [11], which
is designed to quantify the weight of samples that have
a large ideal probability (see Sec. VIIC). XEB was
initially introduced and has been extensively studied for
random circuit sampling with qubits [1, 3, 11, 40–43].
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While XEB is still computationally inefficient because
we need to compute the ideal output probability, it is a
sample-efficient measure, which is the reason that it was
used in recent experiments [4, 6]. Another widely used
benchmarking method in Gaussian boson sampling is the
two-point [44] or higher-order correlation function [5, 7],
which is defined recursively as

κ(n1, n2, . . . , nk) = E[n1n2 . . . nk]−
∑
p∈Pk

∏
b∈p

κ[(ni)i∈b]

(19)

with κ(ni) ≡ E[ni] for a single element, where Pk

represents all the partitions of {1, 2, . . . , k}, except the
universal set, and the average is over the samples or the
ground-truth distribution. The purpose of correlation
functions is to compare a given sampler’s correlations
with the ground-truth values and analyze the similarity.

While XEB and correlation functions are widely
employed for demonstrating the quantum advantage in
experiments, neither method is proven to be rigorous
for demonstrating quantum advantage, to the best of
our knowledge. In particular, a spoofing algorithm
can achieve a large XEB for current experiments
without simulating the ground-truth distribution [45].
Vallalonga et al. [28] presented a classical sampler
reproducing ideal two-point correlation functions without
reproducing higher-order correlations. Hence, it
motivated experimentalists to further analyze high-order
correlations to provide additional evidence than that of
two-point or low-order correlations [5, 7]. Nonetheless,
it is still unclear whether the experimental samplers
that lose some two-point correlations but reproduce
higher correlations better have a smaller TVD than
the algorithm in Ref. [28]. (see Ref. [46] for a related
discussion)

Although we still employ the benchmarking methods
despite their apparent drawbacks, we emphasize that our
algorithm is not a spoofing algorithm but genuinely an
approximate algorithm; that is, it is not designed to
spoof benchmarking scores, unlike ones in Refs. [28, 45].
In addition, we exploit those methods because those
benchmarking methods are the basis of experimental
quantum advantage claims. Also, by analyzing small-
size and intermediate-size experiments, we numerically
observe an agreement between the TVD and XEB and
between the XEB and two-point correlation functions.
Based on this observation, we analyze two-point
correlation functions for the largest Gaussian boson
sampling experiments and show that our algorithm
provides better two-point correlation functions than the
experiments provide. We verify that our algorithm can
also reproduce higher-order correlation functions, unlike
the algorithm in Ref. [28]. Therefore, we show that
our simulator outperforms for the benchmarking methods
that were evidence of quantum advantage.

FIG. 4. (a)(b) Example output probability distributions. (c)
TVD and (d) XEB for different photon number sectors. Here,
for the TVD we used the empirically obtained probability
distribution with 1 million samples for each sector, and we
used 10,000 samples for XEB for each sector. They clearly
show the agreement between the XEB and TVD. The error
bar is obtained by 1,000 bootstrapping resamples.

B. Small size

We first simulate the small-size experiment from
Ref. [6]. Since the experiment’s Hilbert space dimension
is small, we can compute all the probabilities and the
TVD between the probability distributions obtained
by samples and the ground-truth distribution. We
implement the MPS simulation with different bond
dimensions χ = 2, 5, 10, which lead to different MPS
truncation errors, 0.099, 0.033, 0.008, respectively, and
show the results in Fig. 4. For χ = 5, although we
have lost around 3 percent of squared singular values,
the simulation accuracy is comparable to that of the
experiment. This is due to additional experimental
noises, such as partial distinguishability, which makes the
experimental sampler’s output probability distribution
deviate from the ground-truth distribution. Therefore,
it clearly shows that the experiments suffer from noises
other than photon loss and lose the sampling accuracy
to the ground-truth distribution, suggesting that the
corresponding classical sampler does not need to achieve
a very high precision to surpass the current experiments.

We now study the XEB and the relation between the
TVD and XEB to employ the XEB for larger systems as
a proxy of TVD, where we cannot efficiently obtain TVD.
Figures 4(c)(d) clearly exhibit that the XEB and TVD
follow the same tendency: that is, when the MPS’s TVD
is larger than the experiment, its XEB is smaller than
the experiment, and vice versa. Using this observation
for our cases, we will use the XEB as a proxy of TVD for
intermediate scales.

We note that in Refs. [5–7], the Bayesian test has been
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Dataset Bond χ Slope (Exp./MPS) Correlation (Exp./MPS) Distance (Exp./MPS) Truncation error

B-M72 120 0.877/0.861 0.977/0.984 0.049/0.049 0.048
B-M72 160 0.877/0.884 0.977/0.989 0.049/0.043 0.040
B-M72 200 0.877/0.899 0.977/0.990 0.049/0.039 0.032
B-M72 240 0.877/0.907 0.977/0.991 0.049/0.036 0.026
B-M216-l 600 0.919/0.935 0.936/0.952 0.021/0.018 0.012
B-M216-h 10000 0.935/0.972 0.964/0.980 0.199/0.151 0.006
B-M288 10000 0.887/0.937 0.960/0.970 0.207/0.197 0.017
J2-P65-1 1000 0.943/0.943 0.977/0.991 0.007/0.005 0.008
J2-P65-2 2000 0.936/0.939 0.981/0.993 0.015/0.010 0.017
J2-P65-3 10000 0.927/0.968 0.986/0.996 0.030/0.017 0.014
J2-P65-4 10000 0.927/0.972 0.988/0.997 0.048/0.025 0.025
J2-P65-5 10000 0.902/0.980 0.989/0.998 0.067/0.029 0.036
J3-high 10000 0.954/0.982 0.993/0.998 0.048/0.026 0.014

TABLE II. Two-point correlation function benchmarking for different scales of experiments. We present the slope, the
correlation, and the two-norm distance to the ground-truth distribution’s two-point correlations. We highlight the better
scores.

used as another benchmarking method together with the
XEB and correlation functions. In this work we do
not employ the Bayesian test because the test’s purpose
is essentially to compare the likelihood of the ground-
truth distribution with a mock-up distribution for a given
experimental data; in other words, the score measures
a distance from an experimental sampler to a mock-up
distribution or the ideal sampler, not a distance from
the ground-truth distribution to an experimental sampler
or a mock-up sampler. We provide more discussion in
Appendix E.

C. Intermediate size

Now we implement the MPS algorithm for
intermediate-size experiments, which were used to
extrapolate for verifying the quantum advantage
of their largest experiments against various mock-
up distributions because results of intermediate-size
experiments can still be verifiable using reasonable
computational resources. Unlike the previous small-size
case, we can no longer compute the TVD because the
number of outcomes is too large. Therefore, based on
the observation that the XEB may be a proxy of TVD,
we will focus on the XEB.

We focus on Borealis’s intermediate-scale experiment
with M = 72 and provide similar simulation results for
different intermediate-scale experiments in Appendix F.
We choose the bond dimensions as χ = 120, 160, 200, 240
with local dimension d = 6, which render the
truncation error 0.048, 0.039, 0.032, 0.026, respectively.
After sampling, we implement XEB for different photon
number sectors, as shown in Fig. 5(a). One can clearly see
that, overall, the bond dimensions we chose render larger
XEB scores than the experiments do. We then analyze
the two-point correlation functions of all pairs of 72
modes and compare them with the ground-truth values,

presented in Fig. 5(b). We can see that as the bond
dimension increases, the two-point correlation functions
are closer to the ideal cases. Also, from χ = 160, the
linear fit of the correlation functions with respect to
the ideal case has a better slope than the experimental
correlation functions have, which indicates that from
χ = 160 our MPS sampler achieves better scores in the
two-point correlation function benchmarking method in
terms of the slope as well as XEB. We also analyze other
statistical quantities such as Pearson correlation of two-
point correlations and two-norm distance of correlations
between a sampler and the ground-truth’s. As shown in
Table II, from χ = 160, the MPS algorithm achieves a
larger correlation and smaller distance. The additional
quantities may explain the reason that the XEB of the
MPS with χ = 120 is better than the experiment, even
though the former has a smaller slope in the two-point
correlation’s linear fit. Note that although we could not
compute the XEBs for all photon number sectors because
of exponential cost for larger photon number sectors,
the photon number sectors we analyze are typically the
dominant photon numbers in general.

D. Largest scale

We now simulate the largest Borealis, Jiuzhang2.0,
and Jiuzhang3.0 experiments, which were used to claim
quantum computational advantage. For the benchmark
we use two-point correlation functions because of the
computationally large cost for XEB and the fact that
they follow a similar tendency. Here we choose the bond
dimension χ = 10000 for all the cases and the cutoff
d = 4 for the MPS construction and d = 10 for sampling.
Figure 6 clearly shows that our classical algorithm
performs significantly better than the experiments in
terms of the slope of the linear fit. Furthermore, one can
see that our sampler’s correlation functions have much



9

(a)

(b)

FIG. 5. Simulation results of Borealis M = 72 case with
the MPS algorithm. (a) XEB; (b) two-point correlation with
different bond dimensions χ = 120, 160, 200, 240. For the two-
point correlation function calculation, we have used 1 million
samples for all cases. The inset of (a) represents the total
photon number distribution, and the shaded region is the
sectors we used for XEB. The error bar is obtained by 1,000
bootstrapping resamples.

smaller fluctuations for all the cases. In fact, if we look at
the other metrics in Table II, such as Pearson correlation
of two-point correlations or two-norm distance to ground-
truth values, our sampler consistently achieves much
better scores.

We further analyze the higher-order correlation
functions for Jiuzhang2.0 and Jiuzhang3.0, which are
used as other benchmarks in Refs. [5, 7]. As two-
point correlation functions, we plot the third-order
correlation functions in Fig. 6. Clearly, the samples
from MPS have a stronger correlation to the ground-
truth correlation functions. We further analyze the
higher-order correlations up to the 6th order, as
illustrated in Fig. 7. Here we present the Spearman
correlation instead of Pearson correlation for consistency

FIG. 6. XEB and two-point correlation functions of
experiments and our MPS sampler for Jiuzhang2.0’s P65-
5 with M = 144, Jiuzhang3.0’s high with M = 144, and
Borealis M = 216 (high) and M = 288. For two-point
correlation functions, we use 1 million samples, and for three-
point correlation functions we use 10 million samples.

with Refs. [5, 7] while we observed a similar trend
for Pearson correlations. Up to the 5th order, the
MPS samples’ correlations manifestly correlate more
with the ground-truth values, which is different from
the spoofing algorithm from Ref. [28] for low-order
correlation functions. For the 6th order, although
Jiuzhang3.0’s case has a slightly larger correlation than
the MPS samples have, the difference still lies within
the error bar. Therefore, up to the 6th order, we
did not observe a clear advantage from experiments
over our classical simulator. We did not conduct the
same analysis of higher-order correlations for Borealis
experiments because the number of provided samples
in Ref. [6] is insufficient for higher-order correlation
analysis.

Note that Jiuzhang3.0 applied 8-fold local beam
splitters to each output mode for implementing pseudo-
photon-number-resolving detection (PPNRD), which
makes M = 144 output modes into M = 1152 modes.
In our simulation we treat the experiment as M = 144
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FIG. 7. Spearman correlation of samples’ higher-order
correlations to the ground-truth correlations. We use 20
million samples for both samplers; and for each order, up
to 20,000 randomly chosen subsets of modes out of M = 144
modes were considered. For the first and second orders, we
used all subsets. The error bars are the standard deviation
obtained by 1,000 bootstrapping resamples.

modes instead of M = 1152 because the purpose of
additional linear-optical circuits is to implement PPNRD
and they are local beam splitters. In other words, after
generating samples by photon numbers, we transform the
photon numbers to photon clicks for both the experiment
and our sampler to compute the correlation functions
of photon clicks for 144 modes. We consider threshold
detectors instead of PNRDs because the photon number
for each output port is not dilute enough to mimic
the true PNRD in experiment, especially for the high
case. We remark that Ref. [7] modeled the ground-
truth distribution as a lossy and partial distinguishable
Gaussian boson sampler, additionally incorporating the
partial distinguishability noise into the ground truth,
while we still employ the lossy Gaussian boson sampler
as the ground truth. Hence, for our analysis, the
partial distinguishability causes a deviation between the
experimental and ground-truth samplers, which allows
the MPS to have a larger truncation error. We expect
that if we include additional noises into the ground-truth
distribution, the truncation error of MPS has to decrease
further; that is, the bond dimension has to be chosen

FIG. 8. Comparison of required bond dimensions from the
implemented experiments’ circuits (solid curves) and when a
global Haar-random circuit is implemented (dashed curves).

larger than the present simulation because the ground-
truth distribution becomes closer to the experimental
sampler. However, the partial distinguishable Gaussian
boson sampling model used in Ref. [7] can be easily
implemented by constructing two independent MPSs for
two distinguishable input sources. In addition, since
a single-mode squeezed state is split into two smaller
squeezed states, the cost of each MPS is smaller than
the indistinguishable Gaussian boson sampler model.

We also analyze the required bond dimension for
different truncation errors, shown in Fig. 8. The
truncation error in this figure is defined as the sum of
the squared lost singular values for the bipartition at the
center for simplicity. Since the trace distance between the
true state and the approximate MPS extensively depends
on the lost singular values for other bipartitions [37, 38],
the error may not be consistent for different sizes of
experiments (especially when the number of modes is
different for each); thus, we do not compare different
experiments. The most important implication from
the figure is that the MPS truncation error is another
crucial parameter for its running time, which is related
to experimental noises causing discrepancy from the
ground-truth distribution because it allows the MPS to
have truncations error to outperform the experiment.
It highlights that besides the experimental scales, the
level of experimental noise significantly changes the cost
of classical simulation. We again emphasize that for
a fixed-size circuit, the bond dimension scales as χ =
O(polylog(1/ϵ)) in the TVD ϵ, as shown in Sec. III C.
Another interesting feature is that assuming that each
experiment implemented a global Haar-random linear-
optical circuit, the required bond dimension substantially
changes for Borealis but it does not for Jiuzhang. This
indicates that the connectivity of Jiuzhang is sufficiently
large to implement an approximate global Haar-random
circuit, whereas Borealis still requires a much deeper
circuit. From a simulation perspective, it also highlights
that unlike the exact Gaussian boson sampling classical
algorithm [29, 30], our classical algorithm inherently
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takes advantage of limited connectivity and the amount
entanglement [33], as do the algorithms proposed in
Refs. [47, 48].

To simulate the largest experiments, we use the Polaris
supercomputer at the Argonne Leadership Computing
Facility. Each node has a single 2.8 GHz AMD EPYC
Milan 7543P 32 core CPU, 512 GB of DDR4 RAM, four
NVIDIA A100 GPUs connected via NVLink, and a pair
of local 1.6TB of SSDs. The same number of GPUs as the
number of optical modes (e.g., 288 GPUs for B-M288)
are used in all simulations. The primary limitation on
the bond dimension is the GPU memory, which is 40
GiB each. We report the simulation time of the largest
experiments, which are Borealis’s M = 216 (high) and
M = 288 cases, Jiuzhang2.0’s M = 144 P65-5 case,
and Jiuzhang3.0’s M = 144 (high) case. In all four
cases, χ = 10000, d = 4 for constructing the MPS, and
d = 10 for random displacement and sampling are used.
Specifically, the longest time for the MPS calculation is
9.5 minutes for Jiuzhang2.0; other large experiments have
similar times. The time for generating 10 million samples
is 62 minutes.

V. COST ESTIMATION FOR LARGER
SYSTEMS

Finally, we estimate the computational cost of
our algorithm to simulate larger systems to provide
a guide for future quantum advantage experiments.
Before presenting the estimate, we emphasize that the
estimate does not guarantee the boundary of quantum
computational advantage because the estimate is based
only on our current algorithm, and there may be
possibilities to improve the algorithm further or find more
efficient classical algorithms.

We focus on the cost for MPS preparation, which
consumes larger costs than sampling for our simulation,
and more particularly, on memory cost (see Appendix H
for more computational cost estimations, including time
cost.) and present the cost by the required bond
dimension of an MPS and the storage memory to
attain the MPS truncation error 0.01, which is typical
truncation error of our simulation as shown in Table II.
Here, to make the analysis simple and consistent, we
assume that (i) input squeezing parameters and loss rates
are uniform across the modes, (ii) all the inputs are
squeezed states without any empty inputs, i.e., vacuum
states. Note that the assumption (i) is not satisfied
in Xanadu’s experiments because the loss rate is not
uniform for different paths of photons, and (ii) is not
satisfied in the USTC experiment where some of the
inputs are vacuum. A more accurate estimate may
depend on the specific configuration of experiments. We
consider three different circuit ensembles: (a) the worst-
case circuits, which provides the maximum entanglement
entropy as in Fig. 3, (b) the circuits similar to the USTC’s
experiments, and (c) the circuits similar to Xanadu’s

experiments.
Figure 9 shows the estimate of the costs for different

experimental parameters. One can clearly see that
different architectures require significantly different
computational costs, highlighting the importance of
detailed circuit configuration and circuit connectivity.
In particular, assuming that the storage capacity of
Frontier, the current largest supercomputer, sets the
boundary of classical computers, and for the worst-case
circuit, if a transmission rate is 0.4, we may need at
least 80 squeezed states as an input. Or, if we use 50
squeezed states, the transmission rate has to be larger
than 0.538. For the USTC circuit type with the same
loss rate, at least a hundred squeezed states are required
for the memory cost to be comparable with Frontier’s
storage capacity. For the Xanadu circuit type, at least
five hundred squeezed states will be necessary.
Finally, it is worthwhile to emphasize again that the

current estimates do not guarantee the boundary of
quantum computational advantage because the estimates
assume the particular algorithm, and there might exist
possibilities of improving our algorithm significantly
or developing other more efficient classical algorithms.
Moreover, the tolerable MPS truncation error may
depend on other types of noise rates of each experiment,
such as partial distinguishability, and how the tolerable
truncation error scales as the system size needs to
be further analyzed, incorporating the effect of the
subsequent random displacement channel. In addition,
for some parameter regions, such as for low loss rates,
other algorithms [29, 30] might be a better option because
our algorithm is particularly efficient for high loss cases.
Therefore, while our estimate will give a guide for future
experiments, one has to analyze the cost in a more
rigorous way with the associated parameters for different
experimental setups.

VI. DISCUSSION

In this work, we have proposed a classical algorithm
that can simulate the state-of-the-art experimental
Gaussian boson samplers using moderate computational
resources based on reasonable benchmarks. One of the
most important implications is that a large amount of
photon loss is indeed significantly detrimental to the
quantum computational advantage. Therefore, for future
experiments to rule out our classical algorithm to be
implemented with reasonable resources, an obvious way
is to significantly improve the transmission rate rather
than increase the input squeezing parameters. In fact,
many experiments have focused on increasing the input
squeezing parameters to increase the output photon
numbers. However, our algorithm manifestly shows that
the actual squeezing parameters are more important to
increase the complexity, which will guide the direction
of future experiments for achieving larger complexity.
Also, when the transmission rate is inevitably limited,
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(a)

(d)

FIG. 9. Computational cost estimate to prepare an MPS for larger systems by (a)-(c) bond dimension of an MPS and (d)-(f)
memory requirement to achieve truncation error 0.01 with input squeezing parameter r = 1.5. Here, (a) and (d) assume the
worst-case circuit (see the main text) with squeezing parameter r = 1.5, (b) and (e) assume a similar structure to the USTC’s
experiments with r = 1.5, and (c) and (f) assume a similar structure to Xanadu’s experiment with r = 1.0. Note that for
consistency, we assume that all the input states are squeezed vacuum states with squeezing parameter r, i.e., the number of
modes is equal to the number of squeezed states, which is not the same as the USTC’s experiment. The RAM and storage
memory of Frontier, the current largest supercomputer, are 9.2PB and 700PB, respectively. Here, we focus on the memory cost
while we present the time cost in Appendix H. We emphasize that the estimates are based on our algorithm, and there may
exist more efficient classical algorithms. We averaged over ten different random circuits to generate (b)(c)(e)(f).

increasing the number of squeezed states makes our
algorithm’s complexity exponentially increase, which
can be another path to overcome our algorithm’s
computational power. In addition, as observed in
our numerical simulation, the circuit connectivity is
another crucial factor to make the tensor network
approach intractable by increasing the entanglement.
Furthermore, the tolerable error for an MPS can
significantly change the required bond dimension and
thus the computational cost. Therefore, reducing the
other types of noise is also crucial to increase the
complexity.

Another interesting implication of our algorithm is
that as the random circuit sampling case [3], the
complexity of experimental Gaussian boson sampling
can now be characterized by an MPS’s bond dimension.
Therefore, it allows us to compare the computational
complexity of a random circuit sampling experiment and
a Gaussian boson sampling experiment.

Moreover, aside from the context of Gaussian boson
sampling for quantum advantage, our algorithm may
be beneficial for other applications. A prominent
application is a simulation for non-Gaussian state
preparation using lossy Gaussian boson sampling with

post-selection, such as Gottesman-Kitaev-Preskill state
and cat state [49, 50], which are important resources for
various quantum information processing.

We now present open questions that were not
addressed in this work. First, an obvious question is
whether there is a better classical algorithm than the
presented one for current-size Gaussian boson sampling
or in an asymptotic regime. Regarding the latter,
whereas our algorithm provides a significant advantage
for fixed-size experiments, our algorithm does not render
a particular advantage over the existing algorithms
asymptotically [18, 19, 21]. Finding a clear boundary
between an easy and hard regime in terms of loss
scaling is still an open question. Also, our entropic
analysis of the algorithm’s complexity is based only on
the quantum part Vp. However, the additional random
displacement channel may decrease the distance between
the algorithm’s output distribution and the ground-truth
distribution due to the contractivity of trace distance
over quantum channels. Thus, another important
open question is incorporating the random displacement
channel’s effect on the simulation complexity and
accuracy. Moreover, our algorithm exploits many
properties of Gaussian states. Generalization of our
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algorithm to more general cases, such as Fock-state boson
sampling [9], is another interesting open question.

VII. METHODS

A. Covariance matrix formalism

Let us introduce the covariance matrix formalism [31,
51, 52]. AnM -mode Gaussian state ρ̂’s covariance matrix
of Wigner function is given by 2M×2M matrix V , whose
elements are written as Vij = ⟨q̂iq̂j + q̂j q̂i⟩/2 − ⟨q̂i⟩⟨q̂j⟩,
where ⟨Ô⟩ = Tr

[
ρ̂Ô
]
. Here, q̂ = (x̂1, . . . , x̂M , p̂1, . . . , p̂M )

is the quadrature operator vector with position and
momentum quadrature operators x̂i’s and p̂i’s. When
a given quantum state is Gaussian and its mean vector
of quadratures is zero, the covariance matrix V can
uniquely identify the quantum state. The condition that
a physical covariance matrix has to satisfy, namely, that
its density matrix is positive semidefinite, is the canonical
commutation relation

V ⪰ iΩ, where Ω ≡ ω ⊗ 1M , ω ≡
(

0 1
−1 0

)
. (20)

For a given covariance matrix, we can obtain the average
photon number by Tr[V − 12M ]/4 if the first-moment
vector of the state is zero.

B. Efficiency of Matrix product state

Here, we present more details about the efficiency
of MPS representation, i.e., when an efficient MPS
representation exists; that is, the required bond
dimension is χ = poly(K, 1/ϵ), where ϵ is the trace
distance between the true state and the approximate
MPS and K is the system size. It is well-known from
Refs. [37, 38] that in order to prove that a given quantum
state’s MPS approximation is efficient, it suffices to
investigate the Rényi entropy of its reduced density
matrix obtained by bipartition. More specifically, the
state allows an efficient MPS representation when the
Rényi entropy entanglement with α < 1 increases at
most logarithmically with the system size. On the other
hand, when the Rényi entropy entanglement with α > 1
increases at least Ω(Kγ) with the system size K and a
constant γ, the state does not allow an efficient MPS
representation.

For a large loss rate, that is, where the loss rate
converges to zero as the system size grows η → 0,
(η = O(K−β) with β > 0), we have

s = −1

2
log
(
ηe−2r + 1− η

)
≈ ηe−r sinh r +O(η2).

(21)

In this case, the Rényi entropy for a two-mode squeezed
state is given by

Sα(s) =
log Tr[ρ̂αA]

1− α
=

log
(
cosh2α s− sinh2α s

)
α− 1

. (22)

Thus, forK two-mode squeezed states, the Rényi entropy
with α < 1 and η → 0 becomes

KSα(s) = O(Kη2α). (23)

On the other hand, when α = 1.01, the total Rényi
entropy is written as

KSα(s) = Ω(Kη2). (24)

C. Cross-entropy benchmarking (XEB)

Here, we formally define the XEB, which is frequently
used as a benchmark for sampling. For Gaussian boson
sampling specifically, XEB is defined for each photon
sector N as

XEN =
1

Ns

Ns∑
i=1

log
pid(Si)

N
, N =

Pr(N)(
N+M−1

N

) , (25)

where Ns is the number of samples, Si’s are the ith
sample’s photon number pattern whose total photon
number is N , pid(Si) is the ground-truth probability of
obtaining Si, and Pr(N) is the probability of obtaining
total N photons from the ground-truth distribution. For
Jiuzhang’s cases, where threshold detectors are used, the
normalization factor is replaced by N = Pr(N)/

(
M
N

)
,

where Pr(N) is the probability of obtaining total N
photon clicks from the ground-truth distribution.

VIII. DATA AVAILABILITY

Samples generated from our method can be found at
doi:10.17605/OSF.IO/49TRH.

IX. CODE AVAILABILITY

Code for our numerical simulation and data analysis
can be found at doi:10.5281/zenodo.7992736.

Appendix A: Existing classical algorithms and our
classical algorithm

In this appendix we compare our classical algorithm
with existing algorithms simulating Gaussian boson
sampling. First, we compare it with the exact
simulation algorithms from Refs. [29, 30, 53]. These
exact simulation algorithms are typically used for
estimating the running time for classical computers

https://doi.org/10.17605/OSF.IO/49TRH
https://doi.org/10.5281/zenodo.7992736
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to simulate the experiments [4–6]. One significant
limitation of such algorithms is that their complexity
increases substantially even if we simply introduce a large
displacement before the photon number measurement.
This is because the large displacement will introduce
more output photons on average, which increases the
matrix size of which we compute the (loop) hafnian for
sampling. It implies that the classical algorithms do
not discriminate between quantum resources, which are
photons from squeezed states, and classical resources,
which are photons from displacement, as long as there
exist quantum resources. Therefore, even when there
are a large number of thermal photons due to photon
loss, which is the case in the current experiments (see
Table I), the complexity analysis based on these types
of algorithms inevitably overestimates the complexity
of the corresponding experiments. Furthermore,
the appropriate target of hardness is typically an
approximate simulation instead of an exact simulation [9,
10, 13]. Therefore, the running time from these exact
algorithms overestimates the complexity of the existing
experiments, taking into account additional experimental
noise.

Let us now introduce approximate classical algorithms
designed to simulate lossy boson sampling. Various types
of algorithms exist for this purpose. First, we consider
efficient classical algorithms using classical states. The
key idea of these algorithms is to find the closest classical
state, such as a thermal state [19, 21, 27] or a separable
state [18], which are easy to efficiently sample from.
One significant drawback of these algorithms is that
they cannot improve the accuracy by increasing the
running time because the closest classical state is fixed
for each algorithm for given parameters of a lossy boson
sampler, and thus we cannot enhance the quality of
the approximate state by increasing the running time.
Therefore, although these approximations provide a
boundary of efficient classical sampling and an important
benchmark for demonstrating quantum advantage, they
are not appropriate to simulate lossy boson samplers or
characterize their complexity unless the loss rate is very
large.

Another relevant type of classical algorithm that takes
advantage of photon loss is matrix product operators [22,
34, 54]. The main idea is that since external noise, such
as photon loss, reduces the amount of the entanglement
of the output state, such a tensor network method
may be able to reduce the complexity of simulating the
corresponding lossy boson samplers. However, although
the required bond dimension does not necessarily increase
rapidly for the high loss regime, simulating the recent
experiments is still too expensive as the output photon
number increases. Another drawback is that since the
matrix product operators simulate density matrices, the
cost is at least quadratically larger than simulating a pure
state, which is the case in the present work.

Our algorithm addresses such drawbacks of the
existing algorithms. Although our algorithm is generally

an approximate sampler because of the truncation of
singular values, the complexity of our algorithm does not
increase by introducing a displacement on the output
state. Therefore, one can significantly reduce the
complexity when a given boson sampler contains a large
number of thermal photons. In addition, our algorithm
can efficiently improve its accuracy from a thermal-state
approximation to the ideal distribution by increasing the
running time depending on the target approximation
error, which is due to the fact that the MPS method
enables us to take into account the contribution from
Vp in contrast to the thermal state approximation that
approximates Vp by a trivial vacuum state’s covariance
matrix 12M . As emphasized repeatedly in the main
text, an interesting feature of our algorithm is that in
one extreme case where we set the MPS part to be a
vacuum state, it becomes a thermal state approximation,
which recovers the concept of the previous results in
Refs. [19, 21] Also, our new algorithm has a significant
advantage over the previous matrix product operator
algorithms [22, 34] in that we remove the thermal
photonsW , which enables a drastic reduction in resource
utilization for the MPS algorithm.
At a high level, our algorithm resembles another type

of classical algorithm designed for approximate noisy
samplers exploiting the fact that the output probability
of noisy quantum devices typically converges to an easy
distribution [15, 24, 25, 28, 55–58]. More formally,
the noisy output probabilities can be expanded as
polynomials with different degrees in terms of the noise
parameter, with the lowest degree of polynomials being
a distribution that is easy to sample from (e.g., uniform
distribution in Refs. [24, 25]). Thus, by appropriately
choosing the degree, one can control the accuracy of
the approximate samplers by increasing the running
time. Our approximate sampler resembles this type of
algorithm in that one extreme case gives a distribution
that is easy to sample from, and as we increase the
running time, we can improve the algorithm’s accuracy.
To the best of our knowledge, however, this type of
classical algorithm requires a large amount of noise to
be efficient and so has not been implemented for finite-
size experiments yet.
Still another type of classical algorithm is specialized

to spoof benchmarking but not necessarily to simulate
the ground-truth sampler [45]. We emphasize that the
proposed algorithm in this work is not designed to spoof
benchmarking but truly to approximately simulate the
ground-truth distribution.

Appendix B: Single-mode decomposition

In this appendix we consider the decomposition of
the simplest example, a single-mode Gaussian state with
photon loss. Suppose we have prepared a squeezed
vacuum state with squeezing parameter r ≥ 0, which we
assumed nonnegative without loss of generality, whose
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covariance matrix is given by

V0 =

(
e2r 0
0 e−2r

)
. (B1)

After the photon loss channel, whose transmission rate
is given by η and loss rate is thus 1 − η, the covariance
matrix transforms to

V = ηV0 + (1− η)12 =

(
ηe2r + 1− η 0

0 ηe−2r + 1− η

)
.

(B2)

By setting ηe−2r +(1−η) = e−2s, we can decompose the
covariance matrix V as

V =

(
e2s 0
0 e−2s

)
+

(
ηe2r + 1− η − e2s 0

0 0

)
≡ Vp +W,

(B3)

where W ’s first matrix element is nonnegative when
r ≥ 0. Here we call s an actual squeezing parameter
because this is the squeezing parameter that is actually
involved in complexity, which will be clear below. We
note that such a decomposition is not unique. For
our purpose, however, we maximize the matrix W and
minimize the energy of the pure Gaussian state Vp to
minimize the quantum resource (see below for another
decomposition from the Williamson decomposition.). We
emphasize that a similar decomposition has been used to
accelerate the classical algorithm for simulating Gaussian
boson sampling quadratically in Ref. [30]. However, the
purpose of the decomposition was to avoid simulating
the density matrix rather than a pure state, not to take
advantage of the fact that the thermal part, namely,
the random displacement part, should not significantly
increase the complexity. Furthermore, the optimization
we implement significantly minimizes the simulation cost.
As an example, the Williamson decomposition from
Ref. [30] gives the following decomposition:

V =

(
et 0
0 e−t

)(
2nnth + 1 0

0 2nnth + 1

)(
et 0
0 e−t

)
(B4)

=

(
et 0
0 e−t

)[(
1 0
0 1

)
+ 2

(
nth 0
0 nth

)](
et 0
0 e−t

)
(B5)

=

(
e2t 0
0 e−2t

)
+ 2

(
nthe

2t 0
0 nthe

−2t

)
. (B6)

Here, the squeezing parameter of the pure state is

t =
1

4
log

(
ηe2r + 1− η

ηe−2r + 1− η

)
, (B7)

and

nth =
1

2

(√
(ηe2r + 1− η)(ηe−2r + 1− η)− 1

)
. (B8)

One can easily show that t > s, namely, our
minimization, gives a smaller photon number for the
quantum part.

Appendix C: MPS construction

In this appendix we provide the method for MPS
construction of Gaussian states based on Ref. [33]. While
the method in that reference is typically inefficient,
we employ the property of Gaussian states to make
it efficient so that we can efficiently find the reduced
density matrix of a bipartition A : B and its spectral
decomposition because the reduced density matrix is still
a Gaussian state and Gaussian states can always be
written as a product of thermal states ρ̂T followed by
a Gaussian unitary operation [31]:

ρ̂B = TrA[|ψ⟩⟨ψ|] = ÛB ρ̂T Û
†
B =

∞∑
n=0

pT (n)ÛB |n⟩⟨n|Û†
B ,

(C1)

where pT (n) =
∏

i∈B n̄
ni
i /(n̄i+1)ni+1 and n̄i is the mean

photon number of the ith mode’s thermal state. One can
easily find ÛB and {n̄i}i∈B by Williamson decomposition
of the covariance matrix of the state in the B part [31].
Hence, the eigenstates of the reduced density matrix are
always a number state followed by a Gaussian unitary
operation.
Here we recall the method of constructing an

MPS proposed in Ref. [33] with adapting Gaussian
states’ properties. First, we apply the singular value
decomposition along the first mode and the rest of the
modes with a prechosen bond dimension χ:

|ψ⟩ ≈
χ−1∑
α1=0

λ[1]α1
|Φ[1]

α1
⟩|Φ[2···M ]

α1
⟩ (C2)

=
d−1∑
n1=0

χ−1∑
α1=0

Γ[1]n1
α1

λ[1]α1
|n1⟩|Φ[2···M ]

α1
⟩ (C3)

=
d−1∑
n1=0

χ−1∑
α1=0

A[1]n1
α1

|n1⟩|Φ[2···M ]
α1

⟩, (C4)

where

A[1]n1
α1

= ⟨n[1]
1 |⟨Φ[2···M ]

α1
|ψ⟩ (C5)

= ⟨n[1]
1 |⟨n[2···M ]

α1
|Û [2···M ]†Û |n = 0⟩. (C6)

Here the approximation is due to truncation from
the predetermined bond dimension, and the state |ψ⟩
can always be written as |ψ⟩ = Û |n = 0⟩ by
Williamson decomposition of a pure Gaussian state;

and, as emphasized before, the singular values λ
[1]
α1

can be easily found by performing the Williamson
decomposition for the marginal covariance matrix over
the bipartition between the first mode and the rest
of the modes as in Eq (C1). Also, the eigenstates

{|Φ[1]
α1⟩}, {|Φ[2···M ]

α1 ⟩} are always photon number states
followed by Gaussian unitary operations. Thus, we can

characterize the eigenstate |Φ[2...M ]
α1 ⟩ = Û [2···M ]|n[2···M ]

α1 ⟩
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as {Û [2···M ],n
[2···M ]
α1 }. We then rewrite it in number basis

|n[2]
2 ⟩ as

|Φ[2···M ]
α1

⟩ =
d−1∑
n2=0

|n[2]
2 ⟩|τ [3···M ]

α1n2
⟩, (C7)

where

|τ [3···M ]
α1n2

⟩ = ⟨n[2]
2 |Φ[2···M ]

α1
⟩, (C8)

where we expand by the eigenstates of the reduced

density matrix {|Φ[3···M ]
α2 ⟩}χ−1

α2=0

|τ [3···M ]
α1n2

⟩ ≈
χ−1∑
α2=0

A[2]n2
α1α2

|Φ[3···M ]
α2

⟩ =
χ−1∑
α2=0

Γ[2]n2
α1α2

λ[2]α2
|Φ[3···M ]

α2
⟩

(C9)

A[2]n2
α1α2

= ⟨n[2]
2 |⟨Φ[3···M ]

α2
|Φ[2···M ]

α1
⟩, (C10)

where A
[2]n2
α1α2 = Γ

[2]n2
α1α2λ

[2]
α2 , and |Φ[3···M ]

α2 ⟩ is the eigenstate
of the reduced density matrix of the [3 · · ·M ] part and

λ
[2]
α2 are the singular values, which can be easily identified.

Practically, we need only to compute matrices A by

A[2]n2
α1α2

= ⟨n[2]
2 |⟨Φ[3···M ]

α2
|Φ[2···M ]

α1
⟩ (C11)

= ⟨n[2]
2 |⟨n[3···M ]

α2
|Û [3···M ]†Û [2···M ]|n[2···M ]

α1
⟩ (C12)

= ⟨n[2]
2 |⟨n[3···M ]

α2
|V̂ [2···M ]|n[2···M ]

α1
⟩, (C13)

where V̂ [2···M ] ≡ Û [3···M ]†Û [2···M ]. By iterating this
procedure, we obtain all the matrix elements, which is
summarized as

A[1]n1
α1

= ⟨n[1]
1 |⟨n[2···M ]

α1
|Û [2···M ]†Û [1···M ]|n = 0⟩, (C14)

A[k]nk
αk−1αk

= ⟨n[k]
k |⟨n[(k+1)···M ]

αk
|Û [(k+1)···M ]†Û [k···M ]|n[k···M ]

αk−1
⟩

for 1 < k < M,
(C15)

A[M ]nM
αM−1

= ⟨n[M ]
M |Û [M ]|n[M ]

αM−1
⟩, (C16)

and

Γ[1]n1
α1

= A[1]n1
α1

/λ[1]α1
, (C17)

Γ[k]nk
αk−1αk

= A[k]nk
αk−1αk

/λ[k]αk
for 1 < k < M, (C18)

Γ[M ]nM
αM−1

= A[M ]nM
αM−1

/λ[M−1]
αM−1

. (C19)

Therefore, the remaining calculation to obtain all the
matrix elements is ⟨n1|V̂ |n2⟩, for number states |n1⟩ and
|n2⟩ and a Gaussian unitary operator V̂ . This quantity
has already been studied in Refs. [35, 36] by noting that
any Gaussian unitary operation can be decomposed as
V̂ = Û2Ŝ(r)Û1, where passive unitary operations Û1 and

Û2 and single-mode squeezers Ŝ(r) = ⊗iŜ(ri):

⟨n1|Û2Ŝ(r)Û1|n2⟩ =
haf(Σn1,n2

)√
n1!n2!

∏
i cosh ri

, (C20)

where U2 and U1 correspond to the unitary matrix that
characterize the unitary operators Û2 and Û1, and Σ is a
matrix obtained by

Σ =

(
U2 0
0 UT

1

)(
tanh r sech r
sech r − tanh r

)(
UT
2 0
0 U1

)
, (C21)

where Σn1,n2
is obtained by repeating Σ’s block matrices

by n1 and n2 times. Hence, the complexity of obtaining
all the matrix elements of A, or equivalently Γ and λ, is
O(Mdχ2 × (hafnian of Σn1,n2

)), and the complexity of

computing the hafnian of Σn1,n2 is Õ(2(n1+n2)/2) [59,
60]. Therefore, two crucial factors determine the
complexity: the bond dimension χ and the maximum
of |n1 + n2| ≡

∑
i((n1)i + (n2)i). While we study

the scaling of the bond dimension χ in Sec. III C
more comprehensively, both the bond dimension and
the maximum |n1 + n2| are affected by the amount of
entanglement. The former is evident, and the latter
is because for a pure multimode Gaussian state, the
reduced state on part B over a bipartition A : B
becomes more thermalized when the parties A and B
are highly entangled. For example, if they are a product
state, the reduced state is still a pure state. Also,
we emphasize that the matrix size of Σn1,n2

is much
smaller than the matrix size for computing the output
probability of the actual output state, which includes the
random displacement. Hence, our MPS construction is,
in general, much more efficient than directly sampling
from the output state using the best-known classical
algorithm [29, 30] when the loss rate is large.

Appendix D: Singular values of output state of Gaussian boson sampling

In this appendix we analyze the distribution of singular values of MPS more quantitatively. By analysis, we show
that we need only the bond dimension χ = poly log(1/ϵ) for a fixed number of squeezed states and squeezing parameters

and that we may not efficiently reduce the simulation error for the transmission rate scaling as η = O(1/
√
N). To

this end, we consider K two-mode squeezed states out of M mode for fixed K and M and provide a way to truncate
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singular values as in Sec. III C. We directly study K two-mode squeezed states’ singular values for a bipartition instead
of entanglement entropy. Then the reduced density matrix of one part of two-mode squeezed states can be written as
a product of thermal states

ρ̂T (n̄)
⊗K =

K⊗
i=1

( ∞∑
ni=0

pn̄(ni)|ni⟩⟨ni|

)
=

∞∑
n=0

pn̄(n)|n⟩⟨n| =
∞∑
k=0

∑
n:

∑
i ni=k

(1−R)KRk|n⟩⟨n|, (D1)

where n̄ = sinh2 s is the mean photon number of thermal states ρ̂T obtained by partial trace, pn̄(ni) ≡ n̄ni
i /(n̄i+1)ni+1,

and pn̄(n) ≡
∏K

i=1 pn̄(ni). Here we have decomposed the sum into the total photon number sector k and outcomes
that have the same photon number, namely, n such that

∑
i ni = k. For the last expression, we define R ≡ n̄/(n̄+1)

Then for each sector k, we have eigenvalues (1 − R)KRk for
(
K+k−1

k

)
terms. Thus, the distribution of the sum of

eigenvalue for each sector k follows a negative binomial distribution. Now we analyze the error when we truncate this
up to l photon sector. For this case the number of singular values we keep is given by

χl ≡
l∑

k=0

(
K + k − 1

k

)
, (D2)

which becomes the bond dimension we use for MPS. The probability we lose by the truncation is

ϵl ≡
∞∑

k=l+1

(
K + k − 1

k

)
(1−R)KRk = 1− I1−R(K, l + 1), (D3)

where IR is regularized incomplete beta function. Here, since (1 − R)KRk is a monotonically decreasing function in
k, the best way of choosing the singular values to minimize the error is to choose from the lowest photon number
sectors. We also note that the truncation number l determines the largest |n1 + n2| that appeared in the direction
construction of MPS of the output Gaussian state (see Sec. III B). Hence, if l needs to increase at most logarithmically,
the part for computing hafnians for the direct construction of the MPS is efficient.

Note that the tail probability of binomial distribution with probability p of obtaining at least k + 1 success out of
n trials, or, equivalently, multiple Bernoulli trials, is 1− I1−p(n− k, 1+ k). Thus, the right-hand side is equivalent to
obtaining at least l+1 successes from the binomial with K + l trials with success probability R. Using concentration

inequality for X ≡
∑K+l

i=1 Xi with Bernoulli random variable Xi with probability R [61], we have

Pr[X > (1 + δ)E(X)] ≤ exp

(
−δ

2

3
E[X]

)
, (D4)

and choosing δ = l/E[X]− 1 = l/[(K + l)R]− 1 > 0 (thus, l > KR/(1−R)), the probability we lose by truncation is
upper bounded as

ϵl = 1− I1−R(K, l + 1) = Pr[X > l] ≤ exp

(
−1

3

(
l

(K + l)R
− 1

)2

(K + l)R

)
≤ exp

(
−1

3
c2lR

)
, (D5)

Now let us consider a fixed-size circuit, that is, one in which K, n̄, and R are fixed. Then

ϵl ≤ exp

(
−1

3

(
l

(K + l)R
− 1

)2

(K + l)R

)
≤ exp

(
−1

3
c2lR

)
, (D6)

where c is a nonzero constant lower bound of δ for l > KR/(1 − R). Thus, in order to bound the error by ϵ, it is
sufficient to choose

l ≥ −3 log ϵ

c2R
= O(log ϵ−1), (D7)

which leads to the upper bound of the bond dimension

χl =
l∑

k=0

(
K + k − 1

k

)
≤ (l + 1)

(
K + l − 1

l

)
≤ (l + 1)

(K + l − 1)K−1

(K − 1)!
= O(lK) = O

((
log ϵ−1

)K)
. (D8)



18

Therefore, the bond dimension to achieve error ϵ is χ = poly log
(
ϵ−1
)
. It also guarantees that the computation of

hafnians is efficient for the direct construction of MPS since l can be chosen to be O(log ϵ−1).

Now let us turn our attention to the case where η = Θ(1/
√
K). When η = Θ(1/

√
K), s = Θ(1/

√
K), n̄ = Θ(1/K),

and R = n̄/(n̄ + 1) ≈ 1/K. First, we note that if we select l = 0, the number of singular values is χ0 = 1 and the
error is also ϵ0 = 1− (1−R)K ≈ 1− (1− 1/K)K ≈ 1− 1/e. Thus, it recovers the same scaling as Refs. [18, 19, 21].

Again, using concentration inequality for X ≡
∑K+l

i=1 Xi with Bernoulli random variable Xi with probability R and
choosing δ = l/E[X]− 1 = l/[(K + l)R]− 1 > 0 (thus, l > KR/(1−R)), we have

ϵl ≤ exp

(
−1

3

(
l

(K + l)R
− 1

)2

(K + l)R

)
. (D9)

The difference from the fixed-size circuit case is that we are interested in the regime where R ≈ n̄ ≈ 1/K. Note that
we chose l to be larger than KR/(1−R) = Kn̄ = O(1) for R = O(1/K). Then the bound we obtained gives, for large
K,

exp

(
−1

3

(
l

(K + l)R
− 1

)2

(K + l)R

)
≈ exp

(
−1

3

(
Kl

(K + l)
− 1

)2
K + l

K

)
≈ exp

(
−1

3
(l − 1)

2

)
, (D10)

and thus the cost to achieve ϵ is

χl =

l∑
k=0

(
K + k − 1

k

)
≤ (l + 1)

(
K + l − 1

l

)
≤ (l + 1)

(K + l − 1)l

l!
= O(lK) = O

((
log

1

ϵ

)K/2
)
. (D11)

Therefore, the upper bound of the cost from the concentration inequality increases exponentially in K.

Appendix E: Bayesian test

As mentioned in the main text, Refs. [5–7] employ
the Bayesian test as a benchmark. In this appendix
we show that the test is not suitable for our purpose
and our sampler because our sampler is closer to the
ground-truth distribution than the experimental sampler
is but our sampler is far from the experimental sampler.
To see this, we compute the TVD of all the pairs
between the ideal, MPS, and experimental samplers, as
illustrated in Fig. 10(a). The figure clearly shows that
while the MPS sampler is a good approximation of the
ground-truth distribution, it still has a large distance to
the experimental sampler. Therefore, as shown in the
figure, even though our sampler approximates the ideal
distribution better than the experiments in TVD, it fails
to pass the Bayesian test, where the Bayesian score is
defined as

score ≡ 1

Ns

Ns∑
j=1

log
Pr(G)(mj) Pr

(s)(N)

Pr(s)(mj) Pr
(G)(N)

, (E1)

where G stands for the ground truth and Pr(i)(m) is
the output probability of obtaining an outcome m a
sampler i, which is either ideal or a mock-up sampler,

and Pr(i)(N) is the probability of obtaining total N
photons. Thus, a positive score means that the ground-
truth distribution is a better approximation than the
mock-up distribution. Consequently, the failure of our
sampler to pass the Bayesian test does not imply that

FIG. 10. (a) TVD between the experimental sampler, MPS
sampler (χ = 20), and the ideal sampler. (b) The Bayesian
score of the MPS sampler.

our sampler is not a good approximation of the ground-
truth distribution.

Appendix F: Intermediate-scale experiments

In this appendix we display an additional plot for
intermediate cases: Borealis’s M = 216 (low) case and
Jiuzhang2.0’s M = 144 with P65-1 and P65-2. For
each case we choose χ = 600, 1000, 2000 with d = 4
(d = 6 is used for sampling by patching the tensors.),
respectively. We numerically demonstrate that the
bond dimensions are sufficient to achieve better scores
than experiments in XEB and two-point correlation
benchmarking, as exhibited in Fig. 11. Also, each case
entails an error of 0.0114, 0.0078, 0.0162, respectively.
For all cases with the chosen bond dimensions, our MPS
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FIG. 11. XEB and two-point correlation function for (a)
Borealis M = 216 (low), (b) Jiuzhang2.0’s P65-1 with M =
144, and (c) Jiuzhang2.0’s P65-2 with M = 144.

simulator achieves comparable XEB scores and two-point
correlation functions.

Appendix G: Implementation

We implement our simulation algorithm using Python.
Specifically, GPU computations are optimized by using
the CuPy library, and distributed computation is
achieved by using the Message Passing Interface (MPI)
using the MPI for Python library. We also develop a
custom CUDA kernel for a minor subroutine in CUDA
C++, which interfaces with Python through CuPy. Part
of the algorithm is taken or modified from the source
code of the Strawberry Fields library [62] as well as The
Walrus library [63].

The simulation algorithm uses a single GPU for
the computation and storage of a single-mode MPS
tensor. During the MPS calculation, all tensors are
computed independently on different GPUs, which fills
tensor entries with appropriately calculated hafnian
values. Hafnians of equal-sized square matrices are
computed in parallel for numerical efficiency, and this
is possible because the hafnian calculation algorithm is
data-independent. To avoid impractical memory costs,
we limit the maximum number of parallel hafnians to a

value dependent on the size of the input matrices, and
we loop over subbatches to complete all hafnians. After a
tensor is completed, the tensor is saved to the local SSD
for later use during sampling.
Additionally, since the computational cost for different

modes varies dramatically, GPUs that completed the
designated tensor calculations are used to accelerate the
computation of more costly tensors. Specifically, when
challenging tensors have too many parallel hafnians to
compute and other GPUs are available, subbatches are
sent via the communication fabric for computation, and
the results are later collected.
For the sampling algorithm, the computed single-

mode MPS tensors are loaded to each GPU. During the
sampling procedure, a vector is passed from one mode
to the next via the communication fabric after some
operations with local tensors for sampling. After the
vector is sent to the next GPU, a new tensor is received
from the previous GPU for new samples, resulting in
a stream of samples that propagate through the chain.
This process is also performed in a parallel manner via
batch parallel random displacement generation, matrix
multiplications, and weighted random choices. For the
largest simulations, 100 samples are processed in parallel
on a single GPU for numerical efficiency and reasonable
memory costs. Therefore, 100×M samples are processed
in parallel on M GPUs.

Appendix H: Computational cost estimation

In this appendix, we further provide estimates of the
computational cost of our algorithm for simulating larger
systems and that for simulating systems that take into
account the experimental architecture. First, as in the
main text, to make the analysis simple and consistent, we
again assume the same conditions for the setup: (i) input
squeezing parameters and loss rates are uniform across
the modes, (ii) all the inputs are squeezed states without
any vacuum states although they are not necessarily
satisfied in the current experiments. We emphasize
that while the USTC’s experiments used a different
number of squeezed state inputs, 50, from the number
of modes, 144, i.e., many of the inputs were the vacuum,
in our analysis, we set them to be equal to remove the
dependence on the position of input squeezed states.
We again consider three different circuit ensembles: (a)

the worst-case circuits as in Fig. 3, (b) the circuits similar
to the USTC’s experiments, and (c) the circuits similar
to Xanadu’s experiments. More specifically, for (b) and
(c), we model the USTC’s experiment using the same
structure with local beam splitters and assume that local
beam splitters follow Haar-random unitaries. We also
model Xanadu’s experiment using the same 3D structure
with local Haar-random random unitary beam splitters.
We present the estimate for the worst-case circuit

in Fig. 12 and the one for the circuit modeling the
experiments in Fig. 13. Here, the required bond
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FIG. 12. Computational cost estimate for constructing an MPS that achieves truncation error 0.01 with squeezing parameter
(a-d) r = 1.0 and (e-h) r = 1.5. The costs are characterized by (a)(e) MPS bond dimension, (b)(f) memory usage, (c)(g) time
scale, and (d)(h) the matrix size for which we have to compute the hafnian.

dimension for achieving a certain truncation error is
obtained by considering the bipartition in Fig. 3(c) and
using Eq. (D3) for the worst-case circuits analytically and
directly numerically computing all the largest singular
values for the USTC and Xanadu’s setup. The required
memory usage is estimated by

(8 bytes)× (bond dimension)2 × (the number of modes)

× (local Hilbert space dimension), (H1)

where 8 bytes is for Complex64 variables, and we set local
Hilbert space dimension 4 as our simulation. The time
scale represents the time cost to prepare the MPS by
counting the number of matrix elements without taking
into account the complexity of computing each element
(see below), which is estimated by

(600 secs)×
(
bond dimension

10000

)2

× (local Hilbert space dimension), (H2)

where 600 secs is to use our simulation time as a
benchmark, which used χ = 104 bond dimension. We
note that the time scale can vary for different computing
devices or be significantly reduced by employing more
resources. Finally, we obtain the largest matrix size for
which we have to compute the hafnian to construct an
MPS, which is equal to 2l in Eq. (D3). This corresponds
to the cost of computing each element of MPS that was
not taken into account in the time scale. In fact, as
presented in the figure, for the relevant regimes for the
current experiments, the matrix size is not too large to
compute in a reasonable time. Also, Ref. [60] shows that
computing the hafnian of matrix size less than 50× 50 is
still possible with a reasonable computational cost. Note

that although we do not present the matrix size estimate
in Fig. 13 because of numerical uncertainty, based on the
worst-case circuit results, we expect that the matrix size
is not an immediate obstacle for the current experimental
parameters.
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