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Abstract

Given a local Hamiltonian, how difficult is it to determine the entanglement structure of its ground
state? We show that this problem is computationally intractable even if one is only trying to decide
if the ground state is volume-law vs near area-law entangled. We prove this by constructing strong
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are public knowledge. In particular, we construct two families of quantum circuits which produce
volume-law vs near area-law entangled states, but nonetheless the classical descriptions of the circuits
are indistinguishable under the Learning with Errors (LWE) assumption. Indistinguishability of the
circuits then allows us to translate our construction to Hamiltonians. Our work opens new directions in
Hamiltonian complexity, for example whether it is difficult to learn certain phases of matter.
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1 Introduction

The central problem in Hamiltonian complexity is to understand the structure of ground states of local
Hamiltonians and the difficulty of learning properties of them, e.g. [Has07, SCV08, LVV15, ALVV17,
AA23]. In this work we study the following question: given a local Hamiltonian H, how difficult is it to
learn about the entanglement structure of its ground state? For example, given H, can you tell if its ground
state is area-law or volume-law entangled? We call such questions about the qualitative features of the
entanglement structure a Learning Ground State Entanglement Structure (LGSES) problem. This problem
is related to both condensed matter physics – where ground state entanglement structure is a central object of
study – and may also shed light on questions in quantum gravity regarding how entanglement could possibly
be dual to other physical quantities [BFV19, GH20].

Whereas most effort in many-body physics has been directed towards the positive side of this question,
i.e. finding conditions under which properties of the ground state can be efficiently learnt or computed (see
e.g. [CPF+10, LVV15, HKT+22]), here our goal is to prove hardness results for the LGSES problem from
cryptographic assumptions. This explores the limitations that any algorithm for such problems must run up
against. In other words, hardness results for the LGSES problem point to qualitative features of Hamiltonian
ground states that are inherently computationally intractable to compute.

To prove computational hardness results for the LGSES problem, we will relate it to a notion called
pseudoentanglement, a term recently introduced in [ABF+23]. Informally, pseudoentangled state ensembles
consist of low-entanglement states that masquerade as high-entanglement states to computationally bounded
observers; in other words, a pseudoentangled state only looks like a high-entanglement state to bounded
observers, whereas its actual (information-theoretic) entanglement is low. The main result of [ABF+23]
is that it is possible to create pseudoentangled states which hide vast differences in entanglement. More
concretely, they construct two ensembles of quantum states, Ψhigh and Ψlow, such that any state |𝜓⟩ ∈Ψhigh

has high entanglement entropy across any bipartition of the qubits and states in Ψlow have low entanglement,
but any computationally bounded quantum algorithm that receives a state from Ψhigh ∪Ψlow cannot tell
which kind of state it received.

This notion of pseudoentanglement is interesting in its own right and has been used for various applic-
ations in [ABF+23], but its relevance to Hamiltonian complexity is unclear. This is because the settings
are inherently different: the notion of pseudoentanglement in [ABF+23] involves a quantum input, namely
copies of the relevant quantum states, being given to the distinguisher. If we tried to translate this into a
setting involving Hamiltonian ground states, we would end up in a model where we study the properties
of Hamiltonian ground states given quantum copies of these ground states, but without knowing the actual
Hamiltonian itself. In contrast, in Hamiltonian complexity we assume that we know a classical description
of the Hamiltonian under consideration and would like to determine properties of its ground state.

Therefore, if we want to use some notion of pseudoentanglement to prove hardness results for the
LGSES problem, we need to consider a model where the distinguisher is not just given quantum copies
of the high- or low-entanglement states, but rather an efficient classical description of these states. This
leads to a different kind of pseudoentanglement, which we call public-key pseudoentanglement since the
description of the states (the “key”) can be made public. This notion is already implicit in earlier work by
Gheorghiu and Hoban [GH20], who gave a construction of public-key pseudoentanglement that we discuss
in more detail below.

Definition 1.1 (Public-key pseudoentanglement (implicit in [GH20])). Two ensembles of n-qubit poly(n)-
gate quantum circuits {Ck}, {C′k} are public-key pseudoentangled with entanglement gap f (n) vs g(n) if
they are computationally indistinguishable to poly-time quantum algorithms, and yet with high probability
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over the ensembles, Ck|0n⟩ has entanglement≥ f (n) and C′k|0n⟩ has entanglement≤ g(n) across one or more
cuts of the system.

The key difference between this definition and the one in [ABF+23] is that here a classical description
of the circuit used to prepare the states is given as input to the distinguisher, whereas in [ABF+23] the
distinguisher only receives copies of the output state of the circuit. A distinguisher can therefore not only
prepare copies of the output state, but also analyse the classical description of the circuits directly to gain
additional information, making it harder to “hide” the entanglement of pseudoentangled states. Hence,
public-key pseudoentanglement is a much stronger notion than that in [ABF+23], which we will call private-
key pseudoentanglement as the circuits are hidden.

There are generally two features we care about in a pseudoentanglement construction: the entanglement
gap, which we want to be as large as possible in order to hide as much entanglement as possible, and the
set of cuts across which this entanglement gap holds. Informally, a more general set of cuts (i.e. bipartitions
of the qubits) across which the entanglement gap holds corresponds to hiding more qualitative information
about the entanglement structure of the state; this is what we are most interested in for the LGSES problem.

The pioneering work of Gheorghiu and Hoban gave the first pseudoentanglement construction with
entanglement gap n vs n−O(1) across a single cut based on the Learning With Errors (LWE) assumption
[GH20]. Using this they showed that it is difficult to learn fine-grained properties of the ground state
entanglement – namely if the ground state has entanglement n vs n−O(1) across a fixed cut. The basic
idea is that if one passes the circuit to prepare pseudoentangled states through a modified Kitaev clock
construction [KSV02, NVY18], the ground state of the resulting Hamiltonian has the same entanglement
properties as the output state of the circuit. We emphasize that the Kitaev clock Hamiltonian encodes the
circuit used to prepare the state in plaintext, so this application necessarily requires a public-key construction.

However, Gheorghiu and Hoban’s construction only suffices to prove hardness of detecting very small
differences in the entanglement of the ground state across a single cut. In contrast, the LGSES problem asks
about qualitative or coarse-grained features of the entanglement structure, as very fine-grained properties
are usually not physically relevant. This raises the following question: is it possible to get a public-key
pseudoentanglement construction that hides qualitatively different entanglement structures? This would
lead to natural hardness statements for the LGSES problem.

1.1 Near area-law public-key pseudoentanglement

Our first result is to construct strong forms of public-key pseudoentanglement from LWE. In particular we
show it is possible to hide 1D near area-law vs volume-law entanglement.

Theorem 1.2 (Volume vs area-law public-key pseudoentanglement (informal)). Assuming subexponential-
time hardness of LWE, there exist public-key pseudoentangled ensembles with volume-law vs near area-law
entanglement when the qubits are arranged on a 1D line.

That is, in one case the states have entanglement Ω(min(k,n−k)) across any division of the qubits into k
vs n−k qubits (volume-law), and in the other case the entanglement of any cut is≤ |A|polylog(n) where |A|
is the area of the cut when the qubits are arranged on a 1D line (i.e. the number of times the cut crosses the
1D line). We call this near area-law entangled. This is optimal because if the polylog factor were changed
to a log, then these states would be efficiently distinguishable from one another by standard Matrix Product
State learning algorithms [CPF+10, LVV15]. Hiding such qualitatively different entanglement structures
requires a completely different construction from [GH20]. We note that while in Theorem 1.2 we assume
subexponential-time hardness of LWE, we also show that the standard LWE assumption implies a similar
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result.1 We will discuss the application of our result to Hamiltonian complexity shortly, after we present its
proof sketch.

Proof sketch for single-cut pseudoentanglement. Let us first consider a single cut partitioning the qubits
into sets A and B. In this case, the most natural states to consider are of the form ∑x∈{0,1}n |x⟩A|h(x)⟩B for
some function h. If one chooses h to be injective, then this state has entanglement entropy n across this cut; if
one chooses h to be 2k-to-1, then the entanglement is n− k. [GH20] used exactly these states with trapdoor
claw-free functions from [BCM+18], which are functions that are either injective or 2-to-1, but the two
cases are computationally hard to distinguish (given a description of the function) assuming the hardness
of LWE. There are some additional subtleties arising from the fact that the trapdoor claw-free functions
from [BCM+18] do not output numbers, but probability distributions, and are only approximately 2-to-1.
We refer to [GH20] for a detailed analysis of this construction.

To increase the entanglement gap, we need to make the many-to-1 functions more compressing. The
functions in [GH20, BCM+18] additionally have a trapdoor; however, we observe that for pseudoentangle-
ment, we can dispense with the trapdoor and only need so-called lossy functions: these are functions that
are either injective or 2k-to-1, but again the two kinds of functions are hard to distinguish. Starting from this
observation, it turns out to be possible to combine the construction from [GH20] with ideas from a recent
randomness generation protocol [MVV22] to achieve an entanglement gap of n vs n𝛿 for any 𝛿 > 0.2

The challenge with this approach based on [GH20] is that it appears fundamentally restricted to a single
cut. However, our goal is to obtain pseudoentangled states with near area-law vs volume-law entanglement
structure, which requires low entanglement across exponentially many cuts simultaneously. This would
require controlling the entanglement not just between regions A and B, but also within these regions. With
the approach of [GH20] it seems difficult to appropriately modify the state in register A without jeopardising
the entanglement across the cut between A and B.

For this reason, we need a different kind of state that allows us to control the entanglement across all
cuts simultaneously. It turns out that a useful class to consider are binary phase states as in [JLS18, BS19,
ABF+23], i.e., states of the form ∑x∈{0,1}n(−1) f (x)|x⟩. Our approach will be as follows: we start from a
phase state with high-entanglement across every cut. We will then modify this state (in a computationally
undetectable way) to have low entanglement across some particular cut. This achieves the essentially same
as the [GH20]-based construction above.3 However, crucially our “modification procedure” is iterable:
this means that we can perform essentially the same entanglement reduction operation across many cuts in
sequence and end up with a state with low entanglement across every cut.

We first describe the construction and proof for a single cut. For simplicity, let us first consider the cut
between the first and second n/2 qubits. One can easily compute that the reduced density matrix of the first
half of the state is 𝜌 ∝ T T⊤ where Ti j = (−1) f (i∥ j) and i, j ∈ {0,1}n/2 are the first and second halves of the
string x, i.e., T is the truth table of the function f written out in a matrix form. By a direct calculation, one
can show an upper bound on the entanglement entropy of our phase state (i.e. the von Neumann entropy of
𝜌) in terms of the rank of T , and a lower bound on the entanglement entropy in terms of the Frobenius norm
of T T⊤. Our strategy will therefore be to start from a “T -matrix” for a high-entanglement state, and then

1In particular, the polylog correction factor to the area-law scaling is replaced by an n𝜖 correction, where 𝜖 can be any constant
> 0.

2We note that independently from and simultaneously to our work, Gheorghiu and Hoban updated their results to include a
construction of this form, which achieves the aforementioned gap of n𝛿 vs n across a fixed cut with n qubits in one set and poly(n)
in the other.

3One advantage of this construction even for a single cut is that it allows an entanglement gap of n vs poly logn for an O(n)-qubit
state, whereas in the [GH20]-based construction the B-register had to have poly(n) qubits for a comparable entanglement gap.
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perform one of two modifications in a computationally indistinguishable way: either modify T to reduce its
rank to get low-entanglement states, or modify T in a way that does not reduce

∥∥T T⊤
∥∥

2 too much so that
the entanglement of the states remains high. These modified T -matrices then correspond to modified phase
states, and our goal is to hide which of the two procedures we performed, even when handing out a classical
description for preparing the corresponding states.

In [ABF+23] the idea is to apply a private key cryptographic hash function to repeat rows of the matrix
T to reduce its rank. That is, we pick a phase function f (x) which yields high entanglement [BS19],
and then “whittle down” its entanglement by replacing f (x) with f (h(i) j) where i, j ∈ {0,1}n/2 and h :
{0,1}n/2→ {0,1}n/2 is a 2k-to-1 function. This reduces the number of distinct rows in T (each of which is
now repeated many times) and correspondingly decreases the rank of T . As a result, this procedure lowers
the entanglement of 𝜌 by k. On the other hand, if we pick h to be a 1-to-1 function, we simply permute the
rows of T and do not change

∥∥T T⊤
∥∥

2. To make this public-key, we need a way of applying a 2k-to-1 or a
1-to-1 hash function to these phase states in such a way that it is hard to tell which one was applied, even
when the state preparation circuit (and therefore the source code for h) is public.

At first sight, it may seem that we can use the same idea as above: take the lossy functions from [MVV22]
and use them to reduce the rank of T . However, the phase state construction is much less flexible than states
of the form ∑x |x⟩|h(x)⟩: for the latter, the codomain of h does not matter and we can use the functions h
from [MVV22], whose codomain are probability distributions over Zm

q for m≫ n. In contrast, for phase
states we need lossy functions h : {0,1}n/2→{0,1}n/2, i.e. the codomain has to be the same as the domain.
This is a somewhat unusual requirement from a cryptographic perspective and forces us to use a custom
construction of “imperfect” lossy functions based on LWE. Concretely, we first show how to create lossy
functions mapping {0,1}n/2 → {0,1}poly(n) which are exactly injective vs 2k-to-1 (for sufficiently large k)
with high probability. This is not yet what we need, as the codomain is exponentially larger than the do-
main. To fix this, we compose these functions with pairwise independent hash functions which shrink the
codomain size back to 2n/2. This can only make the 2k-to-1 functions more compressing, which is to our
benefit. However, this also introduces unwanted collisions for the injective functions which might break the
high-entanglement case. To deal with this, we show that the repetition pattern this produces in the matrix
T is sufficiently well-behaved that the corresponding states still have high entanglement. Intuitively, this
holds because even though the “injective” functions or no longer actually injective, they are still pairwise
independent, which ensures enough independence in the row repetition pattern of T to give a strong lower
bound on the Frobenius norm

∥∥T T⊤
∥∥

2.

From single-cut to multi-cut pseudoentanglement. As we mentioned, the advantage of the above con-
struction is that it can be extended to pseudoentanglement across all cuts simultaneously. We now explain
how this extension works at a high level. A first observation is that to achieve pseudoentangled states
with 1D near area law scaling, reducing the entanglement across all n− 1 contiguous cuts of the line to
O(polylog(n)) suffices by strong subadditivity. Therefore, a natural approach is to perform a 1D sweep of
the line, reducing the entanglement of the contiguous cuts one at a time. For reasons that will become appar-
ent below, we perform this sweep right-to-left. The final phase function is then a complicated composition
of n independent lossy functions and hash functions.

To show that this construction indeed achieves pseudoentanglement across all cuts simultaneously, we
need to worry about two issues: firstly, for the low entanglement states we need to ensure that performing
the entanglement reduction operation for a cut towards the left of the line does not inadvertently increase
the entanglement across earlier cuts to the right, so that the low entanglement across those earlier cuts is
preserved. Secondly, for the high entanglement states we need to make sure that the fact that we are using
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“imperfect” injective functions does not decrease the entanglement too much even after applying these
functions across every cut.

The first concern is relatively easy to deal with due to the relationships between the “T -matrices” for
different cuts. To see this, consider a phase state |𝜓⟩ = ∑(−1) f (x)|x⟩ on n+m qubits on a line and let
T n|m ∈ {±1}2n×2m

be the T -matrix for the cut between the first n and last m qubits, i.e. T n|m
i j = (−1) f (i∥ j) for

i ∈ {0,1}n, j ∈ {0,1}m. After performing the entanglement reduction operation, this matrix will only have
some smaller number R of distinct rows, each repeated many times. In the next step of the sweep (recalling
that we move right to left), we consider the cut between the first n−1 and last m+1 qubits. We denote the
corresponding T -matrix by T n−1|m+1 ∈ {±1}2n−1×2m+1

. From the definition of the T -matrix, one can see that
the first row of T n−1|m+1 simply consists of the first two rows of T n|m stacked side by side. More generally,
the i-th row of T n−1|m+1 is simply the horizontal concatenation of rows 2i−1 and 2i from T n|m. Suppose we
now reduce the rank of T n−1|m+1 by removing some rows and duplicating others. We then need to check that
if we go back to the cut n|m, the resulting T -matrix (denoted T̃ n|m) still has rank at most R. This is the case
since the rows of T̃ n|m consist of the first and second parts of the rows of T n−1|m+1; since the rank reduction
only repeats, but does not modify, rows in T n−1|m+1, every row in T̃ n|m must have already appeared in T n|m.
As a result, the subsequent rank reduction for cut n− 1|m+ 1 can only decrease, not increase, the rank of
the T -matrix across n|m. It is not too hard to see that this argument generalises to any future rank reduction
operation, not just the immediately subsequent one.

The second concern is more difficult to deal with. When applying this sweep with approximately inject-
ive functions, the entanglement is reduced slightly each time. The rightmost (first) cut in particular has its
entanglement reduced n times, so even a tiny loss could kill the entire construction. Perhaps surprisingly, we
show that this is not the case, and the entanglement losses do not compound too badly. We show that differ-
ent rows have different probabilities of being hashed together due to the structure of the sweep, and a careful
accounting of this process reveals that not much entanglement is lost, even in the first cut. The analysis
is somewhat technical and we refer to Section 3.3 for details. Finally, we note that while the construction
we described here does not produce pseudorandom states ensembles (i.e. the families of pseudoentangled
states, without the public key, are not necessarily pseudorandom states [JLS18]), we can make a simple
modification to our construction to ensure that this is the case. Since our applications do not rely on this we
only give a sketch of this in Section 3.3.3.

1.2 Hardness of learning ground state entanglement structure

Our second result is to show that this public-key, area vs volume-law pseudoentanglement construction en-
ables new applications in quantum Hamiltonian complexity. Because our public-key pseudoentanglement
construction can hide qualitative features of the entanglement structure, we can show natural results for the
hardness of the Learning Ground State Entanglement Structure (LGSES) problem for broad differences in
entanglement structure. As we mentioned above, the main idea for turning pseudoentanglement construc-
tions into hard instances of LGSES is to use a circuit-to-Hamiltonian construction on the state preparation
circuit for the pseudoentangled state. There are a variety of circuit-to-Hamiltonian constructions and using
these on our pseudoentangled states yields a variety of hardness statements for LGSES. In this paper, we con-
sider three different constructions: a Kitaev clock construction with a binary clock, a Kitaev clock construc-
tion with a unary clock, and a customised version of a geoemtrically local 2D construction [AVDK+08]. As
we discuss in Section 1.4, an interesting open problem is whether a custom circuit-to-Hamiltonian construc-
tion that is focused purely on preserving entanglement structure (rather than QMA-hardness) can produce
hard instances of the LGSES problem for more physically natural Hamiltonians.
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Using a Kitaev clock construction with a binary clock [KSV02], we get the following result (see The-
orem 4.2 for the formal statement).

Theorem 1.3 (informal). Assuming subexponential-time hardness of LWE, LGSES is intractable when the
input Hamiltonian is O(logn)-local on n qubits, and the goal is to decide whether the ground state is
volume-law or near area-law entangled for the qubits arranged on a 1D line.

This result follows relatively straightforwardly from the standard Kitaev clock construction. There are
only two issues that need to be addressed: firstly, the ground state of the Hamiltonian in the Kitaev clock
construction is the history state of the circuit, not the output state. However, our pseudoentanglement con-
struction only provides guarantees on the entanglement structure of the output state. This problem can be
addressed using a “padding trick” [NVY18]: we can simply pad the pseudoentanglement circuit with a large
(polynomial) number of identity gates at the end. This will ensure that the history state has most weight on
the output state. Using continuity properties of the von Neumann entropy, this implies that the history state
has the desired entanglement structure, too. The second issue is that we have no control over the entan-
glement within the clock register of the Hamiltonian. However, this does not matter for the coarse-grained
entanglement structure of the state: since the clock register only has logarithmically many qubits, discarding
it only changes the entanglement by O(logn), which is irrelevant for our O(poly logn) vs Ω(n) entanglement
gap.

The Hamiltonian in Theorem 1.3 does not achieve constant locality because the Hamiltonian terms
acting on the binary clock register require locality logn. By using a unary clock instead of a binary clock,
we can make the Hamiltonians in Theorem 1.3 have constant locality [KSV02]. This is also what was used
in [GH20] to study a Hamiltonian version of their entropy difference problem. However, the clock register
now has Θ(n) qubits, and because it has so many qubits, the analysis from Theorem 1.3 no longer yields
the desired entanglement gap. However, if we trace out the clock register and measure entanglement of the
remaining mixed state by any operational mixed-state entanglement measure, we show that we still recover
a maximal entanglement gap across any cut. Intuitively, this is because due to the padding trick, after tracing
out the clock register the remaining mixed state is close in trace distance to the (pure) output state of the
pseudoentanglement circuit. We refer to Theorem 4.4 for the formal statement.

The main downside of the Kitaev clock construction is that the resulting Hamiltonian is not geometrically
local, i.e. even though we imagine the qubits as arranged on a 1D line in order to talk about area and
volume law entanglement, the Hamiltonian itself has no inherent 1D geometrical structure. In contrast,
most physical Hamiltonians are geometrically local. To obtain hard instances of the LGSES problem for
geometrically local Hamiltonians we can use a more sophisticated 2D clock construction, where we account
for time across one of the spatial dimensions instead of needing to add extra clock qubits to the circuit. We
first state the resulting hardness statement for LGSES informally and then briefly sketch the proof. We refer
to Theorem 4.19 for the formal statement and Section 4.3 for details of the construction.

Theorem 1.4. Assuming subexponential-time hardness of LWE, LGSES is intractable when the input Hamilto-
nian is geometrically local on a 2D grid of n×poly(n) qudits with constant local dimension d = O(1), and
the goal is to decide whether the ground state has entanglement scaling polylog(n) or n across horizontal
cuts.

At a high level, the construction of the 2D geometrically local case is similar to before: we take padded
versions of our pseudoentanglement circuits and convert them to local Hamiltonians using a 2D circuit-to-
Hamiltonian construction [AVDK+08]. This circuit-to-Hamiltonian construction produces a geometrically
local Hamiltonian by dispensing with an explicit clock register. As a result, the ground state also does not
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have a clock register and is instead of the form ∑t Vt |𝜓t⟩ (with normalization), where |𝜓t⟩ is the state of the
circuit after time step t and Vt are isometries such that V †

t Vt ′ = 0 for any t ̸= t ′. In other words, similarly
to the Kitaev clock construction, the ground state of the Hamiltonian has the form of a history state, with
different time steps encoded in mutually orthogonal states. Since we padded the circuit with identities,
we can approximate this ground state by ∑Vt |𝜓out⟩ with |𝜓out⟩ the output state of our pseudoentanglement
circuit.

The challenge in bounding the entropy of the reduced states of this “history state” is that the different
time steps are encoded in different bases, specified by the isometries Vt . This is in contrast to the Kitaev
construction, where the intermediate states are all encoded in the same basis. As a result, when we trace out
part of the state ∑Vt |𝜓out⟩, we get a state that looks very different from just the reduced state of |𝜓out⟩. With
the construction of [AVDK+08], we do not know how to bound the entanglement of these reduced states.

We therefore need to modify the construction from [AVDK+08] to gain better control over the entropy
of these reduced states. We do this by increasing the local dimension of the qudits in order to better keep
track of different steps of the circuit execution. With this modified construction, we can ensure that reduced
states of different Vt |𝜓out⟩ corresponding to different phases of the circuit execution are, in a certain sense,
“cutwise” orthogonal (see Lemma 4.15 for details). The overall reduced state is now a sum of different “or-
thogonal” reduced states, each corresponding to a different phase of the circuit execution. We can compute
the entropy of each of these individual reduced states relatively easily from the entanglement properties of
our pseudoentangled states. Using cutwise orthogonality allows us relate the entropy of the overall state to
the entropies of the individual reduced states that we sum over (Lemma 4.13). As a result, we can compute
the entropy of the overall reduced state even though all the different time steps are encoded in different
bases.

1.3 Related work

We have already given a detailed discussion of the work of Gheorghiu and Hoban [GH20], which introduced
the idea of public key-pseudoentanglement and gave the first construction, and the work of Aaronson et
al. [ABF+23], which coined the term pseudoentanglement and gave a private-key construction with maximal
entanglement gap across any cut.

The main motivation in [GH20] was to provide a hardness result for the so-called (quantum) entropy
difference problem: given two (quantum) circuits, decide whose output has more entropy when acting on a
uniformly random input. If the circuit depth is polynomial, these problems are known to be complete for the
complexity classes QSZK and SZK, respectively [GV99, BASTS08]. Gheorghiu and Hoban showed that
for constant-depth circuits with unbounded fan-out or logarithmic-depth circuits with constant fan-out, both
the QED and ED problems are still at least as hard as breaking LWE. In their proof, the entropy difference
between the high- and low-entropy circuits was a single bit. Our improved pseudoentanglement construction
implies that both ED and QED remain LWE-hard with large entropy gaps.4 This is similar in spirit to the
classical result that SZK gaps can be amplified [SV03].

Recently, independent and complementary work of Arnon-Friedman, Brakerski, and Vidick [AFBV23]
gave a new definition of pseudoentanglement. Their definition is private-key and is natural in the context
of operational tasks in quantum Shannon theory. Consequently, they focus on operational mixed-state en-

4This result only requires our single-cut pseudoentanglement construction, for which the depth can be made logarithmic as
in [GH20]. In fact, as mentioned earlier, an independently updated version of [GH20] also achieves single-cut pseudoentanglement
with a large gap, implying the same hardness result for the (Q)ED problem that we obtain from our construction, although their
circuits have poly(n) output qubits for an entropy gap of n𝛿 vs n, whereas ours only have O(n) output qubits, i.e. achieve a larger
relative gap. We refer to [GH20] for a more detailed analysis.
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tanglement measures across a single cut and require their states to be efficiently preparable under LOCC.
In contrast in our work we focus on creating public-key pseudoentanglement with different large-scale geo-
metrical structures, which is driven by our applications in Hamiltonian complexity.

Finally, we discuss the relationship between the LGSES problem and existing algorithms for proper-
ties of ground states. While the physics literature on computing properties of ground states is too vast to
survey here, we highlight two results closer to computer science. First, in [LVV15] the authors provide
a polynomial-time algorithm that, given a classical description of a one-dimensional geometrically local
Hamiltonian with constant spectral gap, outputs an MPS description of the ground state. Therefore 1D
constant gapped geometrically local Hamiltonians cannot “hide” anything about their ground state entangle-
ment structure. We note that this algorithm cannot be used on the Hamiltonians we construct in this paper
as they are neither 1D geometrically local nor have constant spectral gap. Therefore our results limit poten-
tial further improvements to their algorithm. Second, the recent result [HKT+22] considers the problem of
distinguishing phases of matter given labelled examples of states in different phases. The authors show that
if there is a constant spectral gap and the separation between the phases is sufficiently well-conditioned5,
then a classical algorithm can efficiently learn to distinguish between the phases using information from
only few-body measurements. In condensed matter physics, different qualitative entanglement structures
are often associated with different quantum phases of matter; therefore our result also limits potential fur-
ther improvements to such algorithms, i.e. it is not possible to relax some of their assumptions e.g. to gapless
phases. An interesting direction for future work is to make our pseudoentanglement Hamiltonians “more
physical” to be closer to the assumptions of theses algorithmic settings. This would help to better delineate
the boundary between tractability vs intractability of learning properties of ground states of local Hamilto-
nians.

1.4 Discussion and open questions

In this work, we have introduced and studied the Learning Ground State Entanglement Structure (LGSES)
problem: given a classical description of a local Hamiltonian, determine qualitative properties of the entan-
glement of its ground state, e.g. whether it is area-law or volume-law entangled. To prove hardness results for
this problem, we have related it to a notion that we call public-key pseudoentanglement: low-entanglement
states that are computationally indistinguishable from high-entanglement states even when given the state
preparation circuit. Our main technical contribution is to construct public-key pseudoentanglement with
(near) area-law vs volume-law scaling assuming the hardness of LWE.

Psedoentanglement is a relatively new idea with many avenues for future work. We suggest three main
directions: (i) improving pseudoentanglement constructions themselves, (ii) strengthening the link between
pseudoentanglement and condensed matter physics, and (iii) applications of pseudoentanglement beyond
Hamiltonian complexity. We briefly discuss each in turn.

(i) Our public-key pseudoentanglement construction achieves essentially optimal parameters, but its con-
struction uses a fairly involved iterated entanglement reduction procedure. In contrast, the private-key
construction from [ABF+23] is very simple and based on subset states. It would be desirable to have
a similarly straightforward construction of public-key pseudoentanglement, too. Furthermore, as we
suggested in our discussion of [AFBV23], one can extend our definition of public-key pseudoentan-
glement to include a trapdoor that allows for efficient distillation of the “hidden” entanglement. It is
not obvious how to extend our construction to include this feature.

5In particular, there must be a well-behaved function of few-body observables that separates the phases.
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(ii) Our hardness results for the LGSES problem use Hamiltonians that differ from the Hamiltonians
typically studied in condensed matter physics. For example, while we do prove a hardness result
for the LGSES problem for 2D geometrically local Hamiltonians, this only holds for a certain set
of cuts across the system. We expect that these results can be improved to be closer to the settings
studied in condensed matter physics, such as to geometrically local Hamiltonians with more natural
entanglement structures and larger spectral gaps,6 which would have implications for the hardness of
studying quantum phases of matter. This may require developing new sorts of clock constructions
where the only goal is to preserve entanglement structure of BQP computations rather than to encode
more general QMA-complete problems.

(iii) While we have focused on applications in Hamiltonian complexity in this work, pseudoentangle-
ment might be a useful tool for proving hardness results in other domains, too. For example, recent
work [BEM+23, AFBV23] has analysed the computational resources required to execute certain tasks
from quantum Shannon theory, e.g. entanglement distillation. As observed in [AFBV23], proving
hardness results for such problems is closely related to pseudoentanglement, and we hope that our
construction of public-key pseudoentanglement will lead to additional and stronger hardness results
in this direction.

Furthermore, public-key pseudoentanglement might also be interesting from a quantum cryptographic
point of view, in particular its trapdoor-variant we suggested above. For example, recent work has
focused on finding minimal assumptions for quantum cryptography (see e.g. [Zha23] and references
therein for an overview), and it would be interesting to explore how pseudoentanglement is related to
these assumptions.

Finally, it is natural to ask if public-key pseudoentanglement might have applications in quantum grav-
ity. The AdS/CFT correspondence postulates that gravitational theories are dual to quantum mech-
anical systems, and that the entanglement structure of the quantum system is related to the geometry
of the gravitational system [RT06]. Our results show that it is difficult to estimate the entanglement
of quantum states. In contrast, geometry seems to be easy to determine, which might provide an
argument that this duality is exponentially hard to compute, as first suggested in [BFV19]. Indeed
this was part of the motivation for prior works of pseudoentanglement [GH20, ABF+23, AFBV23].
Our public-key extension might allow one to argue about hardness of different versions of the duality,
e.g. the duality remains hard to compute even if given a parent Hamiltonian for the quantum state.
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2 Preliminaries

2.1 Notation

We write [n] for the set {1, . . . ,n}. For a bitstring x ∈ {0,1}n, we denote the m most and least signficant
bits by MSBm(x) and LSBm(x), respectively. We denote the concatenation of strings by x ∥ y. For a set of
indices I ⊂ [n] and bitstrings x ∈ {0,1}|I|, y ∈ {0,1}n−|I| we denote by z = x ∥I y the string z that equals x in
indices in I and y on indices in [n]\ I. We will occasionally think of a bitstring as a Z2-vector, in which case
we denote it as x⃗.

For a matrix A ∈ Cm×n, we denote by ∥A∥p = Tr
[
(A†A)p/2

]1/p
its Schatten p-norm. The 1-norm is

also called the trace norm, the 2-norm the Frobenius norm (or Hilbert-Schmidt norm), and the ∞-norm the
operator norm.

Quantum systems are denoted by capital letters A,B, etc. For a pure state |𝜓⟩AB or a mixed state 𝜌AB on
systems A and B, we denote the reduced states on system A by 𝜓A and 𝜌A, respectively. We write quantum
circuits as C=UT ·UT−1 · · ·U1, where Ui are elementary gates. This should be thought of as a list of gates,
not simply a large unitary; in particular, inserting identity gates into the circuit does change the circuit
(although of course it does not change the unitary implemented by the circuit). We will use this property of
circuits in Section 2.6.

2.2 Independent hash functions

Definition 2.1 (r-wise independent function family). A function family H = {hk : [N] → [M]}k∈K in-
dexed by some set of keys K is r-wise independent if for all distinct x1, . . . ,xr ∈ [N], the random variables
hk(x1), . . . ,hk(xr) (for k ∈ K chosen uniformly) are uniform i.i.d.

The following is a standard result (see e.g. [Vad12, Corollary 3.34]):

Lemma 2.2. For any n,m,r ∈ N, there exists an r-wise independent function family Hn = {hk : Zn
q →

Zm
q }k∈K such that each k ∈K has length poly(n,mr, logq) and given k ∈K, the function hk can be evaluated

in time poly(n,m,r, logq).

2.3 Entropies

We recall the basic definitions of quantum entropies. Throughout, we use the convention that 0 log0 = 0.

Definition 2.3 (von Neumann entropy). The von Neumann entropy of a quantum state 𝜌 is defined as

S(𝜌) =−Tr[𝜌 log 𝜌] .

Definition 2.4 (Conditional von Neumann entropy). The conditional von Neumann entropy of a quantum
state 𝜌AB is defined as

S(𝜌A|B) = S(𝜌AB)−S(𝜌B).
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Definition 2.5 (Binary entropy function). The binary entropy function is defined as

h(x) =−x logx− (1− x) log(1− x),

for x ∈ [0,1].

2.3.1 Continuity properties

Lemma 2.6 (Continuity of the von Neumann entropy [Fan73, Aud07]). Let 𝜌AB and 𝜎AB be the density
matrix of two n-qubit quantum states respectively, each partitioned into subsystems A and B, and let

1
2
||𝜌AB−𝜎AB||1 ≤ 𝜖 .

Then,
|S(𝜌AB)−S(𝜎AB)| ≤ 𝜖 ·n+h(𝜖),

where h(·) is the binary entropy function.

Lemma 2.7 (Continuity of the conditional von Neumann entropy [Win16]). Let 𝜌AB and 𝜎AB be the density
matrix of two n-qubit quantum states respectively, each partitioned into subsystems A and B, and let

1
2
||𝜌AB−𝜎AB||1 ≤ 𝜖 .

Then,

|S(𝜌A|B)−S(𝜎A|B)| ≤ 2𝜖 · log |A|+(1+ 𝜖) ·h
(

𝜖

1+ 𝜖

)
,

where |A| is the dimension of the Hilbert space for subsystem A and h(·) is the binary entropy function.

2.4 Entanglement measures

2.4.1 Pure state entanglement measure

For pure states on systems AB, the entanglement between A and B is quantified using the so-called entangle-
ment entropy, which is simply the von Neumann entropy of the reduced state on either subsystem.

Definition 2.8 (Entanglement entropy). For a pure state |𝜓⟩AB, the entanglement entropy between systems
A and B is defined as S(𝜓A). Note that this is invariant under swapping A and B since for a pure state |𝜓⟩AB,
S(𝜓A) = S(𝜓B).

2.4.2 Entanglement entropy for phase states

Definition 2.9 (T -matrix associated with phase states). Let s : {0,1}n→{0,1}. For an n-qubit phase state

|𝜓⟩= ∑
x
(−1)s(x)|x⟩

and a subset X ⊆ [n], we define the “T -matrix” with respect to the cut X as a {±1}2|I|×2n−|I|
-matrix with

entries

Ti j = (−1)s(i∥X j) ,

where ∥X is the “index string concatenation” defined in Section 2.1.
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Lemma 2.10. Let s : {0,1}n→{0,1} and |𝜓⟩= ∑x(−1)s(x)|x⟩. Then for any cut X ⊆ [n], the entanglement
entropy of that cut is bounded by

− log
(∥∥∥∥ 1

2n T T⊤
∥∥∥∥

2

)
≤ S(𝜓X)≤ logrank(T ) ,

where T is the T -matrix of |𝜓⟩ across cut X.

Proof. This follows from a direct computation, see [ABF+23, Equation (113)].

2.4.3 Mixed state entanglement measures

Quantifying the entanglement of mixed states is much more difficult than for pure states, and several meas-
ures have been proposed [HHHH09]. The two most operationally meaningful ones are the distillable entan-
glement, denoted ED(𝜌AB), and the entanglement cost, denoted EC(𝜌AB). Informally, the distillable entan-
glement of a state 𝜌AB is the rate at which one can extract EPR pairs from many copies of 𝜌AB using local
operations and classical communication (LOCC) (i.e. it gives the number of extractable EPR pairs divided
by the number of available copies of 𝜌 in the limit of infinitely many copies). Conversely, the entanglement
cost of a state 𝜌AB is the rate at which one needs to consume EPR pairs to create the state 𝜌AB using LOCC.
For our purposes the precise definition of these measures does not matter and we refer to [HHHH09, Section
XV.A] for details.

More importantly for our purposes, distillable entanglement and entanglement cost are extremal meas-
ures in the sense that any entanglement measure E that satisfies a number of nautral requirement is bounded
as [DHR02, Chr06]

ED(𝜌AB)≤ E(𝜌AB)≤ EC(𝜌AB) . (2.1)

We will be interested in bounding these operational entanglement measures. For this we will rely on non-
operational quantities that are easier to deal with mathematically. Concretely, we will use the entanglement
of formation and the coherent information, both defined below.

Definition 2.11 (Entanglement of formation). The entanglement of formation of a quantum state 𝜌AB is
defined as

EF(𝜌AB) = inf
{

∑
i

pi S(𝜓i,A)

}
,

where the infimum is taken over all possible ways in which we can decompose 𝜌AB as

𝜌AB = ∑
i

pi |𝜓i⟩AB⟨𝜓i|AB.

Definition 2.12 (Coherent information). The coherent information of a quantum state 𝜌AB is defined as

I(𝜌AB) =−S(𝜌A|B).

We then get the following useful bounds.

Lemma 2.13. Any natural entanglement measure E(𝜌AB) (in the sense of Equation (2.1), see [DHR02] for
details) satisfies

I(𝜌AB)≤ ED(𝜌AB)≤ E(𝜌AB)≤ EC(𝜌AB)≤ EC(𝜌AB) .
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Proof. The lower bound in terms of coherent information was shown in [DW05] and the upper bound in
terms of entanglement of formation follows from [HHT01].

For pure states, all of these measures coincide with the entanglement entropy:

Lemma 2.14 ([Woo01], [HH01], [SN96]). Let 𝜌AB be a pure state. Then,

EF(𝜌AB) = EC(𝜌AB) = ED(𝜌AB) = I(𝜌AB) = S(𝜌A).

Finally, we will require the following continuity property of entanglement of formation.

Lemma 2.15 (Continuity of entanglement of formation [Win16]). Let 𝜌AB and 𝜎AB be the density matrix of
two n-qubit quantum states respectively, each partitioned into subsystems A and B, and let

1
2
||𝜌AB−𝜎AB||1 ≤ 𝜖 .

Additionally, let 𝛿 =
√

𝜖(2− 𝜖) and let h(·) be the binary entropy function. Then,

|EF(𝜌AB)−EF(𝜎AB)| ≤ 𝛿 ·n+(1+ 𝛿) ·h
(

𝛿

1+ 𝛿

)
.

2.5 Learning with Errors

Definition 2.16 (Uniform, Gaussian, and lossy matrix distributions). We denote the uniform distribution
over Zm×n

q -matrices by Um×n
q . We denote by Dm×n

q,𝜎 the distribution over Zm×n
q where each element is an

i.i.d. sample from the discretised Gaussian distribution with width 𝜎 (see [Pei16, Section 2.2] for a defini-
tion).

We further define the following distribution Lm×m
q,ℓ,𝜎 over Zm×m

q -matrices:

(i) Sample B,C←U ℓ×m
q .

(ii) Sample E← Dm×m
q,𝜎 .

(iii) Output B⊤ ·C+E.

Definition 2.17. The LWEn,m,q,𝜎 problem is the computational problem of distinguishing the following two
distributions:

(i) (A, u⃗)←Um×n
q ×Um

q .

(ii) (A,A · s⃗+ e⃗), where A←Um×n
q , s⃗←Un

q , and e⃗← Dm
q,𝜎 .

We will rely on the following standard assumption in post-quantum cryptography [Reg09, Pei16].

Assumption 2.18 (Standard LWE assumption). For every constant 𝛽 > 0, every poly(m)-time quantum
algorithm has negl(m)-advantage in solving the LWEn,m,q,𝜎 problem for n = m𝛽 , q = 2poly(n), and 𝜎 ≥

q
poly(m) ≥ 2

√
m.

We will also make use of the following stronger assumption to achieve larger entanglement gaps in our
pseudoentanglement construction [LP11, Pei16].
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Assumption 2.19 (Subexponential-time LWE assumption). There exist constants 𝛽1 > 𝛽2 > 0 such that
every poly(m)-time quantum algorithm has advantage at most 2−Ω(ℓ𝛽1 ) in solving the LWEℓ,m,q,𝜎 problem
for m = 2O(ℓ𝛽2 ), q = 2poly(m), and 𝜎 ≥ q

poly(m) ≥ 2
√

m.

We will use the following immediate consequence of Assumption 2.18 [GKPV10].

Lemma 2.20.

(i) Under Assumption 2.18 matrices sampled from Um×m
q and Lm×m

q,ℓ,𝜎 are computationally indistinguish-
able for m = poly(ℓ), q = 2poly(m), and 𝜎 ≥ q

poly(m) ≥ 2
√

m.

(ii) Under Assumption 2.19 there exists a constant 𝛽 > 0 such that matrices sampled from Um×m
q and

Lm×m
q,ℓ,𝜎 are computationally indistinguishable for m = 2ℓ

𝛽

, q = 2poly(m), and 𝜎 ≥ q
poly(m) ≥ 2

√
m.

Proof. In A = B⊤ ·C +E, we can view every column ci ∈ Zℓ
q of C as an LWE secret of length ℓ. Then

distinguishing Um×m
q and Lm×m

q,ℓ,𝜎 is equivalent to solving at least one of m instances of LWEℓ,m,q,𝜎 decision
problems. This can be bounded using a union bound for both parts of the lemma:

(i) By Assumption 2.18, the distinguishing advantage on a single instance of LWEℓ,m,q,𝜎 is negl(m), so
the distinguishing advantage for m copies is at most mnegl(m), which is still negligible in m.

(ii) By Assumption 2.19, there are constants 𝛽 := 𝛽2 < 𝛽1 such that the distinguishing advantage on a
single instance of LWEℓ,m,q,𝜎 is 2−Ω(ℓ𝛽2 ), so the distinguishing advantage for m copies is at most
m2−Ω(ℓ𝛽2 ) = 2O(ℓ𝛽)−Ω(ℓ𝛽2 ) = negl(m) since 𝛽2 > 𝛽.

Lemma 2.21. If q≥ 2ℓ/2 and ℓ≤ m, then

PrA←Uℓ×m
q

[rankA = ℓ]≥ 1−O(2−ℓ/4) .

Proof. We can imagine A being sampled row-by-row. Conditioned on the first r rows being linearly inde-
pendent, the probability of the first r+1 rows being linearly independent is 1−qr/qm, so the probability of
all rows being linearly independent is

ℓ−1

∏
r=0

(
1− qr

qm

)
≥ 1− ℓ

q
≥ 1−O(2−ℓ/4) .

We will need the following simple fact about the number of binary vectors that get mapped to 0 under a
random matrix multiplication.

Lemma 2.22. If q≥ 2m/ℓ, then

PrA←Uℓ×m
q

[
|{⃗x ∈ {0,1}m s.t. A · x⃗ = 0⃗}| ≤ 2ℓ

]
≥ 1−O(2−ℓ) .
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Proof. For x⃗ ∈ {0,1}m define 1⃗x as the indicator random variable (over the random choice of A) that is 1 if
A · x⃗ = 0⃗. Then by linearity of expectation,

EA

[
|{⃗x ∈ {0,1}m s.t. A · x⃗ = 0⃗}|

]
= EA

[
∑
x⃗

1⃗x

]
= ∑

x⃗
EA [1⃗x] = 1+

2m−1
qℓ

,

where the last equality holds because 1⃗0 = 1 always, and for the remaining 2m− 1 choices of x⃗ ̸= 0⃗, the
vector A · x⃗ is uniform in Zℓ

q. Therefore by Markov’s inequality,

PrA←Uℓ×m
q

[
|{⃗x ∈ {0,1}m s.t. A · x⃗ = 0⃗}|> 2ℓ

]
≤ 2−ℓ+

2m−1
(2q)ℓ

= O(2−ℓ)

for q≥ 2m/ℓ.

2.6 Hamiltonians and Kitaev clock construction

In this section, we will introduce some notations having to do with some variants of the standard circuit-to-
Hamiltonian construction by [KSV02].

Definition 2.23 (History state). For a circuit C=UK ·UT−1 · · ·U1, the history state |ΨC⟩ is defined as

|ΨC⟩=
1√

K +1

T

∑
t=0

Ut ·Ut−1 · · ·U1|0n⟩⊗ |clock(t)⟩.

Here, clock(t) can be any encoding of the integer t, typically in binary or unary.

Definition 2.24 (Padded history state Hamiltonian). For a circuit C = UK ·UK−1 · · ·U1 on n qubits with
K = poly(n), define the M-padded circuit as C′M = UK+M · · ·UK+1 ·UK · · ·U1, where UK+M, . . . ,UK+1 are
identity gates. A M-padded history state Hamiltonian HC,M for circuit C is any Hamiltonian with spectral
gap at least 1/poly(n) whose unique ground state is |ΨC′M

⟩.

Applying Kitaev’s well-known circuit-to-Hamiltonian construction [KSV02] to a padded circuit imme-
diately shows the existence of padded history state Hamiltonians. The requirement on the spectral gap
follows e.g. from [AVDK+08].

Lemma 2.25 ([KSV02, AVDK+08]). If we choose clock(t) in Definition 2.23 to be a binary encoding, then
for any K = poly(n), a poly(n)-length circuit C has a O(logn)-local M-padded history state Hamiltonian
HC,M.

If we choose clock(t) in Definition 2.23 to be a unary encoding, then for any K = poly(n), a poly(n)-
length circuit C has a O(1)-local M-padded history state Hamiltonian HC,M.

The useful property of the padded history state Hamiltonian is that its ground state is close to the output
state of the circuit C. This has already been shown and used in [NVY18, GH20], so we only sketch the
proof.

Lemma 2.26. Let C be a K = poly(n)-gate circuit on n qubits. For any 𝜖 ≥ 1/poly(n) there exists a
M = poly(n) such that the ground state |𝜓ground⟩ of the M-padded history state Hamiltonian HC,M satisfies∥∥|𝜓 f ⟩⟨𝜓 f |− |𝜓ground⟩⟨𝜓ground|

∥∥
1 ≤ 𝜖 ,

where |𝜓 f ⟩=UK · · ·U1|0n⟩⊗ 1√
M+K+1 ∑

M+K
t=0 |clock(t)⟩
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Proof. By construction,

|𝜓ground⟩=
1√

M+K +1

K

∑
t=0

Ut ·Ut−1 · · ·U1|0n⟩⊗ |clock(t)⟩+ 1√
M+K +1

|𝜓 f ⟩⊗
M

∑
t=K+1

|clock(t)⟩ .

The lemma then follows by a direct calculation choosing M = poly(n) sufficiently large such that K+1
M+K+1 =

O(𝜖) is sufficiently small.

3 Public-key pseudoentanglement: definition and construction

In this section, we define and construct public-key pseudoentanglement. Our construction uses a similar
idea as in [ABF+23, Appendix A], which is to consider phase states whose phases have been manipulated
in a particular way to create high or low entanglement. The “manipulation” of these phases is by means
of applying a one-to-one or many-to-one function (see Section 3.2 for details). We therefore need to con-
struct such lossy functions with the appropriate parameters, which we do in Section 3.1 based on the LWE
assumption.

In Section 3.2, we then use these lossy functions to construct indistinguishable families of quantum states
where states in one family have high entanglement and states in the other family have low entanglement
across a single fixed bipartition of the qubits. In Section 3.3, we extend this construction to states that have
high or low entanglement for (almost) every cut on a 1Dimensional line, i.e. we imagine the qubits of the
state being arranged on a line and consider all bipartitions into left and right qubits. We show that under the
subexponential-time LWE assumption, it is possible to construct pseudoentangled states of this form where
either all cuts a have a linear or a polylogarithmic amount of entanglement, which is the largest possible
separation, as discussed in Remark 3.11. In this sense our public-key pseudoentanglement construction
is optimal. We will use this multi-cut construction in Section 4 to show that learning the ground state
entanglement structure of (classically described) local Hamiltonians is computationally hard (under the LWE
assumption).

3.1 Construction of lossy functions

We define the following rounding function for Zq elements.

Definition 3.1. For q = cp with c ∈N, divide Zq into p consecutive bins. We define ⌊x⌋p ∈Zp as the index
of the bin in which x lies. For a vector x ∈Zm

p , ⌊⃗x⌋p ∈Zm
p is defined as the element-wise application of ⌊·⌋p.

Definition 3.2 (Lossy function construction). Choose parameters ℓ(m),r(m) ≤ poly(m). Let p = 24, q =
2m, and 𝜎 = q/m3. Let Hm = {hk : Zm

p → Zm
2 }k∈Khash

m
be the r(m)-wise independent function family from

Lemma 2.2. We define two families of functions f : {0,1}m → {0,1}m indexed by key sets Kinj
m ,Klossy

m ⊂
Zm×m

q ×Khash
m as follows:

• To sample a key from Kinj
m , denoted k←Kinj

m , sample A←Um×m
q and khash ∈ Khash

m uniformly. Set
k = (A,khash).

• To sample a key from Klossy
m , denoted k←Klossy

m , sample A← Lm×m
q,ℓ,𝜎 and khash ∈ Khash

m uniformly. Set
k = (A,khash).
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• For a key k = (A,khash) ∈ Kinj
m ∪Klossy

m , the function fk : {0,1}m→{0,1}m is defined as

fk(⃗x) = hkhash (⌊A · x⃗⌋p) .

The following theorem summarises the relevant properties of our lossy function construction.

Theorem 3.3. The following properties hold for the function family from Definition 3.2 instantiated with
any r(m)≤ poly(m) and poly log(m)≤ ℓ(m)≤ poly(m).

(i) (Almost injective functions) With overwhelming probability over the choice of A←Um×m
q , the function

family { f(A,khash)}khash∈Khash
m

is r(m)-wise independent:

PrA←Um×m
q

[
{ f(A,khash)}khash∈Khash

m
is r(m)-wise independent

]
≥ 1−O(2−m) .

(ii) (Highly compressing functions) For keys in Klossy, the image of fk has size at most 2ℓ
2

with over-
whelming probability:

Prk←Klossy
m

[
| img fk| ≤ 2ℓ

2
]
≥ 1−2−ℓ/4

(iii) (Computational indistinguishability) Under Assumption 2.18, if r(m) ≤ poly(m) and ℓ(m) ≥ Ω(mc)
for any constant c> 0, then all efficient quantum algorithms have advantage negl(m) in distinguishing
keys sampled according to Kinj

m and Klossy
m .

Similarly, under Assumption 2.19, there exists a constant 𝛿> 0 such that if r(m)≤ poly(m) and ℓ(m)≥
Ω(log(m)1+𝛿), then all efficient quantum algorithms have advantage negl(m) in distinguishing keys
sampled according to Kinj

m and Klossy
m .

Proof. We prove Item (i) in Corollary 3.5. Item (ii) is shown in Lemma 3.8. Item (iii) follows immediately
from Lemma 2.20.

3.1.1 Bounds for almost injective functions

Lemma 3.4. For m ∈ N, p = 24, and q = cp for some c ∈N,

PrA←Um×m
q

[⃗x 7→ ⌊A⃗x⌋p is injective]≥ 1−O(2−m) .

Proof. We bound the probability that there exists a pair x⃗ ̸= x⃗′ ∈ {0,1}m for which ⌊A⃗x⌋p = ⌊A⃗x′⌋p. Suppose
first that x⃗ = 0. Then x⃗′ ̸= 0, so ⌊A⃗x′⌋p is a uniform Zm

p -vector over the random choice of A. Hence using
p = 24 and a union bound,

PrA←Um×m
q

[
∃⃗x′ s.t. ⌊A⃗x⌋p = ⌊A⃗x′⌋p

]
≤ 2m2−4m ≤ 2−m .

If both x⃗, x⃗′ are non-zero, then over the random choice of A, A⃗x and A⃗x′ are independent uniform Zm
q -vectors,

so ⌊A⃗x⌋p and ⌊A⃗x′⌋p are independent uniform Zm
p -vectors. Hence, for fixed non-zero x⃗, x⃗′,

PrA←Um×m
q

[
⌊A⃗x⌋p = ⌊A⃗x′⌋p

]
≤ 2−4m.

The lemma follows by a union bound over the (less than) 22m possible pairs (⃗x, x⃗′) and using p = 24.
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Corollary 3.5.

PrA←Um×m
q

[
{ f(A,khash)}khash∈Khash

m
is r-wise independent

]
≥ 1−O(2−m) .

Proof. Composing an injective function with an r-wise independent hash family yields another r-wise in-
dependent hash family. Therefore, the corollary follows directly from Lemma 3.4 and the construction of
f(A,khash) in Definition 3.2.

3.1.2 Bounds for compressing functions

Definition 3.6. For any M ∈ Zℓ×m
q , let fM : {0,1}m → Zℓ

q be the associated linear map. We define v⃗ j(M)

as the j-th element of img( fM) (ordered according to the usual ordering on Zℓ
q). For j ∈ {1, . . . ,qrankM} we

then define the following collection of subsets:

C j(M) = f−1
M (⃗v j(M))⊆ {0,1}m .

If j > | img( fM)|, then C j(M) =∅.

Remark 3.7. Note that in the above definition, j > | img( fM)| can indeed occur: this is because rankM is
defined over Zq, but we have restricted the domain of fM to bitstrings, so img fM only contains Zq elements
that have a binary preimage under fM. Still, qrankM is an upper bound on | img fM|, which is all that will
matter for our purposes. Further, observe that the family {C j(M)} j defines a partition on {0,1}m.

Lemma 3.8.

Prk←Klossy
m

[
| img fk| ≤ 2ℓ

2
]
≥ 1−2−ℓ

Proof. First observe that for any choice of key k = (A,khash),

| img fk| ≤ | imggA| , (3.1)

where gA(⃗x) = ⌊A · x⃗⌋p. We will therefore bound the latter. For this, for A = B⊤C+E chosen as in Defini-
tion 3.2 we can bound

| imggA| ≤
qℓ

∑
j=1
|{gA(⃗x) | x⃗ ∈C j(C)}| . (3.2)

This is because rankC ≤ ℓ, so by Remark 3.7 {C j(C)} j=1,...,qℓ forms a partition of {0,1}m.
We now fix a C and a j such that 0⃗ /∈ C j(C) and bound the expectation of |{gA(x) | x ∈ C j(C)}| over

A← Lm×m
q,ℓ . Recall that gA(x) “rounds” each entry of A · x⃗ to a Zp element by dividing Zq into p equally

sized contiguous regions. We can therefore define Bq,p,𝛽 as the set of Zq-elements that are within 𝛽 < q
2p of

such a cut (where distance is in Zq, i.e. mod q). Since there are exactly p cuts, |Bq,p,𝛽| = 2p𝛽. (This is an
equality because for 𝛽 < q

2p , the 𝛽-thickenings around the cuts cannot overlap.)
For i = 1, . . . ,m we define the random variable (where the randomness is only over B as we fixed a

choice of C and j and C · x⃗ is the same for all x⃗ ∈C j(C))

1i =

{
1 if ∃⃗x ∈C j(C) s.t. (B⊤C · x⃗)i ∈ Bq,p,𝛽 ,

0 else .
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Here, (B⊤C · x⃗)i ∈ Zq denotes the i-th vector entry. Importantly, the different 1i are independent. To see
this, observe that C · x⃗ is a fixed non-zero vector for all x⃗ ∈C j(C). Therefore, (B⊤C · x⃗)i is the inner product
between the i-th row of B and this fixed vector. Since the different rows of B are sampled independently,
(B⊤C · x⃗)i are independent, too, and consequently so are 1i. By the same reasoning, (B⊤C · x⃗)i is uniform, so

PrB[1i = 1] =
2p𝛽

q
. (3.3)

To relate these random variables to |{gA(x) | x ∈ C j(C)}|, we set 𝛽 = 2m𝜎 and define a set of “large”
error matrices E:

L = {E ∈Zm×m
q | E has a row ei with 1-norm ∥ei∥1 ≥ 𝛽} .

(i) Case E ∈ L. We will bound the probability of this happening and treat this event separately. Since each
entry to E is a Gaussian with standard deviation 𝜎, ∥ei∥1 is a sum of absolute values of i.i.d. Gaussians,
so by a union bound over the m rows and the 2m possible signs for the absolute values within each
row,

Pr[E ∈ L]≤ m2me−
𝛽2

2m𝜎2 ≤ 2−m. (3.4)

(ii) Case E /∈ L. In this case, in each direction i the difference between (B⊤C · x⃗)i and (A · x⃗)i is at most 𝛽.
Hence, since B⊤C · x⃗ is the same for all x∈C j(C), the only way that the “cloud” of points {A · x⃗}x∈C j(C)

be split into two distinct sets along dimension i by the rounding procedure is if 1i = 1. Therefore, for
any E /∈ L we find that

|{gA(x) | x ∈C j(C)}| ≤ 2∑i 1i .

We can bound the expectation of this quantity over the random choice of B. Because the different 1i

are independent:

EB←Uℓ×m
q

[
2∑i 1i

]
= Π

m
i=1EB←Uℓ×m

q

[
21i
]

By Equation (3.3):

=

(
1+

2p𝛽
q

)m

Since q≥ 2p𝛽m for sufficiently large m:

≤ e .

We can now combine the pieces of the proof as follows. We write E← Lc for an error matrix E sampled
as in Definition 3.2 conditioned on E /∈ L and C←U ℓ×m

q |good for a uniform C conditioned on

|{⃗x ∈ {0,1}m s.t. C · x⃗ = 0⃗}| ≤ 2ℓ .

By Equations (3.1) and (3.4) and Lemma 2.22 and with A = B⊤C+E as before:

Prk←Klossy

[
| img fk|> 2ℓ

2
]
≤ O(2−ℓ)+PrB←Uℓ×m

q ,C←Uℓ×m
q |full,E←Lc

[
| imggA|> 2ℓ

2
]
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By Markov’s inequality:

≤ O(2−ℓ)+
1

2ℓ2 EB←Uℓ×m
q ,C←Uℓ×m

q |good,E←Lc [| imggA|]

By Equation (3.2)

≤ O(2−ℓ)+
1

2ℓ2

qℓ

∑
j=1

EC←Uℓ×m
q |good,E←Lc

(
EB←Uℓ×m

q
[|{gA(⃗x) | x⃗ ∈C j(C)}|]

)
By our analysis of the case E /∈ L, we know that the expression in parentheses is at most e in case j is such
that 0⃗ /∈ C j(C). On the other hand, if 0⃗ ∈ C j(C) then for that value of j the expression in parentheses is
trivially bounded by 2ℓ by our definition of U ℓ×m

q |good. Therefore we can bound the whole expression by

≤ O(2−ℓ)+
e(qℓ−1)+2ℓ

2ℓ2 ≤ O(2−ℓ)+O(2−ℓ(ℓ−logq))≤ O(2−ℓ)

since m≥ ℓ and ℓ− logq≥ 1.

3.2 Public-key pseudoentanglement across a single cut

We will now use our lossy function construction from Section 3.1 to construct public-key pseudoentangled
states for the middle cut that separates the left and right half of qubits. In Section 3.3 we will use the ideas
from this section in an iterated way to construct pseudoentangled states for qubits arranged on a line that are
pseudoentangled across every cut on the line. Strictly speaking, all the results in this section follow from the
more general analysis in Section 3.3. We spell them out nonetheless because it may be easier for readers to
first understand the single-cut construction in detail before moving on to Section 3.3.

We begin by defining single-cut public-key pseudoentanglement formally.

Definition 3.9 (Public-key pseudoentanglement across a single cut). A public-key pseudoentangled state
ensemble with entanglement gap ( f (n),g(n)) across cuts Xn ⊂ [n] consists of two sequences of families of
quantum states Ψlow

n = {|𝜓k⟩}k∈Klow
n

and Ψ
high
n = {|𝜓k⟩}k∈Khigh

n
indexed by key sets Klow

n and Khigh
n respect-

ively with the following properties:

(i) Every |𝜓k⟩ ∈Ψlow
n ∪Ψ

high
n is an n-qubit state.

(ii) Every key k ∈ Klow
n ∪K

high
n has length poly(n), and there exists an efficient sampling procedure that,

given as input n and a label “high” or “low”, outputs a key k ∈ Klow
n or k ∈ Khigh

n , respectively. We
write k←Klow

n and k←Khigh
n for keys sampled according to this procedure.

(iii) Given k∈Klow
n ∪K

high
n , the corresponding state |𝜓k⟩ is efficiently preparable (without knowing whether

k ∈Klow or k ∈Khigh). Formally, there exists a uniform polynomial-time circuit family {Cn} such that
Cn takes as input a key k ∈ Klow

n ∪K
high
n and outputs a state negligibly close to |𝜓k⟩.

(iv) The keys from Klow
n and Khigh

n are computationally indistinguishable. Formally, for all poly(n)-time
quantum adversaries A that take as input a key Klow

n ∪K
high
n and output a single bit:∣∣∣Prk←Klow

n
[A(k) = 0]−Prk←Khigh

n
[A(k) = 0]

∣∣∣= negl(n) .
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(v) With overwhelming probability, across the cut Xn states in Ψlow
n have entanglement entropy Θ( f (n))

and states in Ψ
high
n have entanglement entropy Θ(g(n)). Formally, there exist constants 0 < C1 < C2

such that for all sufficiently large n,

Prk←Klow
n
[S((𝜓k)Xn) ∈ [C1 f (n),C2 f (n)]]≥ 1−negl(n) ,

Prk←Khigh
n

[S((𝜓k)Xn) ∈ [C1g(n),C2g(n)]]≥ 1−negl(n) .

Here, S((𝜓k)Xn) is the von Neumann entropy of the reduced state of |𝜓k⟩ on the qubits in the set
Xn ⊂ [n].

Remark 3.10. We will frequently abuse notation and use entanglement gaps of the form (O( f (n)),Ω(g(n))).
By this, we mean that (across a specified cut Xn) Ψlow

n has entanglement at most O( f (n)) and Ψ
high
n has

entanglement at least Ω(g(n)). Formally, this means that for this case Item (v) of Definition 3.9 has to be
modified as follows:

Prk←Klow
n
[S((𝜓k)Xn)≤ O( f (n))]≥ 1−negl(n) ,

Prk←Khigh
n

[S((𝜓k)Xn)≥Ω(g(n))]≥ 1−negl(n) .

Remark 3.11. A natural question is what the optimal entanglement gap for pseudoentangled states is.
Clearly, the high-entanglement states can have entanglement at most g(n) = O(n) across any cut, since
the entanglement entropy is upper bounded by the number of qubits. For the low-entanglement states, one
can show that the entanglement entropy needs to scale faster than logn, i.e. f (n) = 𝜔(logn). Otherwise,
one could distinguish the low-entanglement states from the high-entanglement states using a variant of the
SWAP test. This was proven in [JLS18] and [ABF+23, Appendix F] for private-key pseudoentangled states
and the same proof applies to the public-key setting, too.

We now give a construction of single-cut pseudoentangled states based on our lossy function construc-
tion from Section 3.1. As we will show in Theorem 3.13, these states do indeed form pseudoentangled
ensembles in the sense of Definition 3.9. Under the standard LWE assumption (Assumption 2.18), we can
achieve an entanglement gap of (O(n𝛿),Ω(n)) for any 𝛿 > 0, where n is the number of qubits and the
cut divides the qubits into two equal halves; under the stronger subexponential-time LWE assumption (As-
sumption 2.19) we can achieve an entanglement gap of (O(poly logn),Ω(n)), which is essentially optimal
as noted in Remark 3.11.

For simplicity, for the rest of this subsection we always assume that n is even and write m = n/2. We
will consider the cut that divides the qubits into two sets of size n; we could also consider more general cuts
and treat them with the same technique, which we do in Section 3.3.

Overview. The intuition of the construction below is as follows: our high entanglement and low entan-
glement states will be phase states of the form |𝜓k⟩= ∑x∈{0,1}n(−1)sk(x)|x⟩, where sk : {0,1}n→ {0,1} is a
function described by some public key k. This is why we call the construction public-key: the states we are
considering are fully described by the public key k, and given k one can efficiently generate |𝜓k⟩. Our task
then is to construct two families of functions {sk}k∈Khigh and {sk}k∈Klow indexed by key sets Khigh and Klow,
respectively, such that

(i) for k ∈ Klow, the state |𝜓k⟩ has low entanglement entropy and for k ∈ Khigh, the state |𝜓k⟩ has high
entanglement entropy, but

(ii) it is computationally hard to distinguish keys in Khigh from those in Klow.
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To construct these functions, recall from Lemma 2.10 that if we define a matrix T ∈ {±1}2n/2×2n/2
by

Ti j = (−1)sk(i∥ j), then

− log
(∥∥∥∥ 1

2n T T⊤
∥∥∥∥

2

)
≤ S(𝜓X)≤ logrank(T ) .

Therefore, for the high-entanglement states we need to show that
∥∥ 1

2n T T⊤
∥∥

2 is small, and for the low-
entanglement case we need to show that rank(T ) is small.

If one samples sk from a 4-wise independent function family, one can show that
∥∥ 1

2n T T⊤
∥∥

2 is indeed
exponentially small. We take this as our starting point and now want to modify this sk to “remove” entan-
glement to get low-entanglement states, i.e. we need to reduce the rank of the corresponding matrix T . One
natural way to do this is to repeat rows of T : if we consider some many-to-one function h, then the matrix
T̃i j := Th(i), j is the same as T , except instead of all of the rows of T , the matrix T̃ only contains (many copies)
of those rows in T whose index is in imgh. Hence, the rank of T̃ is at most imgh. We can incorporate this
row repetition procedure into our definition of our function sk to get an “augmented phase function” whose
states |𝜓k⟩ have low entanglement. The technical term we use to describe removing entanglement by means
of row repetitions is smashing down the entanglement.

Of course if for the high-entanglement case our sk was simply a 4-wise independent function, but for
the low-entanglement case it was augmented with this row reduction procedure, the two cases would be
easily distinguishable given a description of either function. In other words, we need to smash down the
entanglement in a computationally undetectable way. To solve this problem, in the high-entanglement case
we will also augment sk by a “fake” row reduction procedure that is computationally indistinguishable from
the procedure in the low-entanglement case, but that does not actually meaningfully reduce the rank of the
matrix T . For this, we use the lossy function construction from Section 3.1: in the low-entanglement case,
the row repetition function h described above will be a compressing function and therefore reduce the rank
of the matrix T ; for the high-entanglement case, the function h is an almost injective function (Theorem 3.3),
which we show does not reduce the Frobenius norm of T T ⊺ too much. Since the compressing and almost
injective functions are computationally indistinguishable (even given a public key description of them), the
descriptions of the corresponding augmented phase functions sk are also computationally indistinguishable.

We now give a formal description of this construction.

Definition 3.12. Fix a function f (n). (This will be treated as a parameter of the construction.) Let Hn =
{hk : {0,1}n → {0,1}}k∈K4

n
be a 4-wise independent family as given in Lemma 2.2. Instantiate the lossy

functions from Section 3.1 with parameters ℓ(m) =
√

f (2m) and r(m) = 2. (Recall that m := n/2.)
We first describe the sampling procedure for the keys Klow

n and Khigh
n .

(i) To sample k ∈ Klow
n , sample krep←Klossy

m and kfin ∈ K4
n uniformly. Set k = (krep,kfin).

(ii) To sample k ∈ Khigh
n , sample krep←Kinj

m and kfin ∈ K4
n uniformly. Set k = (krep,kfin).

For k = (krep,kfin), define the labelling function rk : {0,1}n→{0,1}n by

rk(x) = ( fkrep(i) ∥ j) with i = MSBm(x), j = LSBm(x) .

We next define the function sk : {0,1}n→{0,1} as

sk(x) = hkfin(rk(x)) .
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The states |𝜓k⟩ are then given by

|𝜓k⟩= ∑
x∈{0,1}n

(−1)sk(x)|x⟩ .

Theorem 3.13.

(i) Under the standard LWE assumption (Assumption 2.18), for any function f (n)= n𝛿 for 𝛿> 0, the state
families Ψlow

n = {|𝜓k⟩}k∈Klow
n

and Ψ
high
n = {|𝜓k⟩}k∈Khigh

n
from Definition 3.12 form a pseudoentangled

state ensemble with entanglement gap (O( f (n)),Ω(n)) across the cuts Xn = [n/2].

(ii) Under the subexpoential-time LWE assumption (Assumption 2.19), there exists a function f (n) =
poly logn such that the state families Ψlow

n = {|𝜓k⟩}k∈Klow
n

and Ψ
high
n = {|𝜓k⟩}k∈Khigh

n
from Defini-

tion 3.12 form a pseudoentangled state ensemble with entanglement gap (O( f (n)),Ω(n)) across the
cuts Xn = [n/2].

Proof. We need to check the properties required in Definition 3.9. Items (i) and (ii) are obvious. Item (iii)
is also immediate because the function sk(x) is an efficiently computable classical function, so it follows
from the standard phase oracle construction that |𝜓k⟩ can be constructed efficiently, too. It Theorem 3.3
Item (iii) that the key familiesKhigh andKlow are computationally indistinguishable for all choices f (n) = n𝛿

for 𝛿 > 0 under the standard LWE assumption, and that they are indistinguishable for some (sufficiently
large) f (n) = O(poly logn). The proof of Item (v) is slightly more involved, so we show it separately as
Lemma 3.14 below.

Lemma 3.14. Using the same setup as in Theorem 3.13, we have that

Prk←Klow
n
[S((𝜓k)Xn)≤ f (n)]≥ 1−negl(n) ,

Prk←Khigh
n

[S((𝜓k)Xn)≥ n/8]≥ 1−negl(n) .

Proof. The states |𝜓k⟩ in Definition 3.9 are phase states, so viewing sk as a function sk : {0,1}m→{0,1}m→
{0,1}, we can define the matrix Tk ∈ {±1}2m×2m

as in Definition 2.9. From Lemma 2.10 we then have that

− log
(∥∥∥∥ 1

2n TkT⊤k

∥∥∥∥
2

)
≤ S((𝜓k)Xn)≤ logrank(Tk) .

To prove the first statement in the lemma, we therefore need to bound the probability that Tk has large
rank if k = (krep,kfin) ∈ Klow

n . For this, observe that by construction Tk has at most | img fkrep | distinct rows.
Therefore, recalling that we chose ℓ(m) =

√
f (n) (with n= 2m as before) we get from Theorem 3.3 Item (ii)

that

Prk←Klow
n
[S((𝜓k)Xn)> f (n)]≤ Prk←Klow

n
[logrankTk > f (n)]

≤ Prk←Klow
n

[
| img fkrep |> 2ℓ(m)2

]
≤ 2−ℓ(m) = negl(n) .

Here we used that ℓ(m) = log(m)1+𝛿 for some 𝛿 > 0 by Theorem 3.3 Item (iii), so 2−ℓ(m) = negl(n).
To prove the second statement in the lemma, we need to bound the probability that TkT⊤k has large

Frobenius norm. We will do this by computing the expectation of the Frobenius norm and then applying
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Markov’s inequality. We begin by expanding the Frobenius norm and using that Ti j ∈ {±1}:

Ek←Khigh
n

[
∥T T ⊺∥2

2

]
= ∑

i, j∈{0,1}m

E

( ∑
l∈{0,1}m

TilTjl

)2


= ∑
i, j∈{0,1}m

E

[
∑

a,b∈{0,1}m

TiaTjaTibTjb

]

= ∑
i∈{0,1}m

E

[
∑

a,b∈{0,1}m

TiaTiaTibTib

]
+ ∑

i, j∈{0,1}m

E

[
∑

a∈{0,1}m

TiaTjaTiaTja

]

+ ∑
i, j∈{0,1}m

i̸= j

E

 ∑
a,b∈{0,1}m

a̸=b

TiaTjaTibTjb



= 23m +23m + ∑
i, j∈{0,1}m

i̸= j

E

 ∑
a,b∈{0,1}m

a̸=b

TiaTjaTibTjb


= 23m+1 + ∑

i, j∈{0,1}m

i̸= j

∑
a,b∈{0,1}m

a̸=b

E
[
(−1)sk(i∥a)+sk(i∥b)+sk( j∥a)+sk( j∥b)

]
. (3.5)

Since sk(x) = hkfin(rk(x)), and hkfin is drawn from a 4-wise independent function family, it is easy to
see that the term E

[
(−1)sk(i∥a)+sk(i∥b)+sk( j∥a)+sk( j∥b)] is zero unless the 4 terms in the exponents pair up to

cancel. In particular, this means that a necessary condition for E
[
(−1)sk(i∥a)+sk(i∥b)+sk( j∥a)+sk( j∥b)] ̸= 0 is

that

rk(i ∥ a) = rk(i ∥ b) or rk(i ∥ a) = rk( j ∥ a) or rk(i ∥ a) = rk( j ∥ b) .

Since a ̸= b, from the definition of rk we see that the first and last case never occur. The second case
is equivalent to fkrep(i) = fkrep( j). We can bound this using the properties of fkrep . For this, recall that
krep = (A,khash). We call a choice of A “good” if { f(A,khash)}khash forms a 2-wise independent family.

Prk←Khigh
n

[ fkrep(i) = fkrep( j)] = Prkrep←Kinj
m
[ fkrep(i) = fkrep( j)]

≤ Prkrep=(A,khash)←Kinj
m
[ fkrep(i) = fkrep( j) | A good]+Prkrep=(A,khash)←Kinj

m
[A not good]

≤ O(2−m) .

The last line follows because for a good A, the probability that fkrep(i) = fkrep( j) (for i ̸= j) is 2−m by 2-wise
independence, and the probability that A is not good is O(2−m) by Theorem 3.3 Item (i). Therefore,

∑
i, j∈{0,1}m

i̸= j

∑
a,b∈{0,1}m

a̸=b

E
[
(−1)sk(i∥a)+sk(i∥b)+sk( j∥a)+sk( j∥b)

]
≤ 24m ·O(2−m) = O(23m) .

Inserting this into Equation (3.5), we get that

Ek←Khigh
n

[
∥T T ⊺∥2

2

]
≤ O(23m) .
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Therefore we get from Markov’s inequality:

Prk←Khigh
n

[
− log

∥∥∥∥ 1
2n TX ,kT ⊺

X ,k

∥∥∥∥
2
<

m
4

]
= Prk←Khigh

n

[∥∥∥TX ,kT ⊺
X ,k

∥∥∥2

2
> 22n−m/2

]
≤ 1

22n−m/2 Ek←Khigh
n

[∥∥∥TX ,kT ⊺
X ,k

∥∥∥2

2

]
≤ O(23m−4m+m/2) = O(2−m/2) ,

where we inserted n = 2m.

3.2.1 Application: quantum entropy difference problem with maximal gap

One immediate application of our single-cut construction is that we get a maximal stretching of the entropy
gap for the quantum entropy difference problem studied in [GH20]. To recap, the problem is as follows:

Definition 3.15 (Quantum entropy difference problem). Given two circuits C1 and C2 each acting on n
qubit, decide whether or not S(𝜌A)> S(𝜎A), where 𝜌A and 𝜎A are the reduced density matrices of the states
|𝜓1⟩=C1|0n⟩ and |𝜓2⟩=C2|0n⟩ with the last n/2 qubits traced out.

Under the subexponential-time LWE assumption (Assumption 2.19), our construction in Section 3.2
yields C1 and C2 such that S(𝜌A) =Ω(n) and S(𝜎A) = poly logn, yet the quantum entropy difference problem
still remains hard for any polynomially bounded quantum algorithm. From Remark 3.11, it can be argued
that this entropy gap is maximal. Previously, the entropy gap in [GH20] was only O(1). Note that by the
same arguments as [GH20], our circuits can also be made shallow depth—that is, they are in NC1.

A different version of the entropy difference problem, called the Hamiltonian quantum entropy dif-
ference problem, also appears in [GH20], where, instead of circuits, the input is the description of two
Hamiltonians, and the task is to distinguish between different entanglement entropies across a fixed cut of
the ground states of these Hamiltonians. [GH20] showed that this problem is LWE-hard for O(1) entropy
gaps. Our construction achieves hardness for a maximal entropy gap of poly logn vs n for that problem,
too, by running our pseudoentanglement construction through a history state Hamiltonian construction in
the same manner as in [GH20].

In Section 4 we will consider a much stronger version of this problem: instead of distinguishing Hamilto-
nians with ground states whose entanglement differs across a single cut, we will construct indistinguishable
Hamiltonians whose ground states have qualitatively different entanglement structures, e.g. near area-law
vs volume-law entanglement. This will require states that are pseudoentangled across many cuts simultan-
eously, which we construct in the next section.

3.3 Area-law public-key pseudoentangled states on a 1D line

In this section we will give a (nearly) area-law public-key pseudoentangled states construction on a line
based on the row repetition technique we introduced in Section 3.2. This means that we will construct
public-key pseudoentangled states such that if we imagine the qubits arranged on a line, the entanglement
gap is poly logn vs n across all cuts that separate the qubits into left and right qubits on the line.

We begin by formally defining this multi-cut version of pseudoentanglement. The definition is almost
identical to Definition 3.9, except that we now need to require an entanglement gap across all cuts on a line
simultaneously. One slight subtlety is that if we consider cuts close to the end of the line, the entanglement
will be low simply by virtue of the fact that there are only very few qubits on one side of the cut. Therefore, in
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the high-entanglement case, we need to require the entanglement to be at least g(distance from end of line)
rather than simply g(n). Furthermore, very close to the boundary (namely, O(logn) close), certain properties
of our construction break down. Therefore, we only consider cuts that are at least 𝜔(logn) far from the
boundary. Since we are primarily interested in large entanglement gaps of the form (O(poly logn),Ω(n)),
this small boundary region is of no particular interest to us. Nonetheless, it is possible to modify our
construction to work for such small boundary regions too; we briefly sketch this in Section 3.3.3.

As in the single-cut case, we use entanglement gaps of the form (O( f (n)),Ω(g(n))) for pseudoentangled
states where we only have an upper bound on the entanglement in the low-entanglement case and a lower
bound in the high-entanglement case (see Remark 3.10 for details). To simplify the definition slightly, below
we state the definition directly for this case; it is straightforward to adapt it to the case where one wants the
exact scaling rather than one-sided bounds, but we will not need this for our results.

Definition 3.16 (Public-key pseudoentanglement across geometrically local cuts in 1D). A public-key
pseudoentangled state ensemble with entanglement gap (O( f (n)),Ω(g(n))) across geometrically local cuts
on a 1D line consists of two sequences of families of quantum states Ψlow

n = {|𝜓k⟩}k∈Klow
n

and Ψ
high
n =

{|𝜓k⟩}k∈Khigh
n

indexed by key setsKlow
n andKhigh

n respectively that satisfy Items (i) to (iv) from Definition 3.9
and the following modified version of Item (v) from Definition 3.9:

(v’) For any function b(n) = 𝜔(logn), with overwhelming probability, states in Ψlow
n have entanglement

entropy O( f (n)) and states in Ψ
high
n have entanglement entropy Ω(g(distance from end of line)) for

all geometrically local cuts that are at least b(n) far from the end of the line. Formally,

Prk←Klow
n

[
∀c ∈ {b(n), . . . ,n−b(n)} : S((𝜓k)[c])≤ O( f (n))

]
≥ 1−negl(n) ,

Prk←Khigh
n

[
∀c ∈ {b(n), . . . ,n−b(n)} : S((𝜓k)[c])≥Ω

(
min(g(c),g(n− c))

)]
≥ 1−negl(n) .

Here, (𝜓k)[c] is the reduced states of |𝜓k⟩ on qubits (1, . . . ,c).

Overview. We first give an informal overview of our construction and proof. Recall the high-level idea
for single-cut pseudoentanglement: we started from a phase-state whose phases where chosen in a 4-wise
independent way and then “smashed down” the entanglement across a particular cut by repeating rows in the
matrix T associated with the phase state (see Definition 2.9) associated with that cut. To generalise this to
all geometrically local cuts on the 1-D line, we can sequentially apply this single cut technique. Specifically,
we again begin with a phase state and consider a cut on right end of the 1D line. We can then reduce the
T -matrix across that cut as in the single cut construction. The modified T -matrix corresponds to a modified
phase state which is now guaranteed to have high or low entanglement across the cut we chose. We can now
consider the next cut, moving right to left. Starting from the modified phase state from the first iteration of
the procedure, we can again consider the associated T -matrix, but now across the second cut, and again use
the row-repetition procedure as in the single cut case. Performing this procedure for all cuts, moving right
to left cut-by-cut, we obtain our final states.

The key difficulty in the proof is to show that subsequent row repetition operations do not tamper with
the entanglement structure across previous cuts. For the low entanglement ensemble, one might worry that
future row repetition might increase the rank of the T -matrix across previous cuts. We prove that if the cuts
are treated in the correct order, this does not happen, later treatments never jeopardize the low entanglement
status we established for previous cuts. Combining this with the single cut analysis, we conclude that the
low entanglement ensemble enjoys the same low entanglement guarantee as in the single cut analysis for
each cut.
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For the high entanglement ensemble, one might worry about the opposite direction, namely that treating
future cuts might reduce the rank of the T -matrix for previous cuts. Indeed, this might happen because the
functions we use for the row repetition operations in the high entanglement case are not perfectly injective,
only “almost injective” as shown in Theorem 3.3. To show that nonetheless the entanglement across all
cuts remains high, we prove a similar upper bound on the expectation of the Frobenius norm as the single
cut version. The analysis is somewhat complicated and relies on the statistical properties of the “almost
injective functions” from Theorem 3.3 and the structure of the iterated row repetition operations.

We begin by describing our construction for the multi-cut case. This is analogous to the single-cut case
(Definition 3.12), except that we now need to iterate the row repetition operations, so the function rk from
Definition 3.12 needs to be modified and defined recursively.

Definition 3.17. Fix a function f (n) (this will be treated as a parameter of the construction). Let Hn =
{hk : {0,1}n→ {0,1}}k∈K4

n
be a 4-wise independent family as given in Lemma 2.2. For m ∈ { f (n), f (n)+

1, . . . ,n}, instantiate the m-bit lossy function from Section 3.1 with parameters ℓ(m) =
√

f (n) and r(m) = 2.
We first describe the sampling procedure for the keys Klow

n and Khigh
n .

(i) To sample k ∈ Klow
n , for m ∈ { f (n), f (n)+1, . . . ,n}, independently sample krep

m ←Klossy
m (see Defini-

tion 3.2) and kfin ∈ K4
n uniformly. Set k = (krep

f (n),k
rep
f (n)+1, . . . ,k

rep
n ,kfin).

(ii) To sample k ∈ Khigh
n , for m ∈ { f (n), f (n)+1, . . . ,n}, independently sample krep

m ←Kinj
m and kfin ∈ K4

n
uniformly. Set k = (krep

f (n),k
rep
f (n)+1, . . . ,k

rep
n ,kfin).

For k = (krep
f (n),k

rep
f (n)+1, . . . ,k

rep
n ,kfin), define the labelling functions r f (n)

k , . . . ,rn
k : {0,1}n→{0,1}n recursively

by

rm
k (x) =

{
x m = n+1,
rm+1

k ( fkrep
m
(i) ∥ j) f (n)≤ m≤ n,MSBm(x) = i,LSBn−m(x) = j,

where MSBm(x) is the first m bits of x, LSBm(x) is the last m bits of x, and i ∥ j is the concatenation of bit
strings i and j. For simplicity, we define rk(x) = r f (n)

k (x).
With this notation, for k = (krep

f (n),k
rep
f (n)+1, . . . ,k

rep
n ,kfin), we next define the function sk : {0,1}n→{0,1}

as
sk(x) = hkfin (rk(x)) ,

The states |𝜓k⟩ are then given by

|𝜓k⟩= ∑
x∈{0,1}n

(−1)sk(x)|x⟩ .

Our main result is that this construction satisfies the requirements from Definition 3.16 as summarised
by the following theorem. In particular, we show that under the subexponential-time LWE assumption, our
construction achieves an entanglement gap of poly logn vs n, which is essentially optimal by Remark 3.11.
On a 1D line, this entanglement scaling corresponds to area-law (up to poly log factors) vs volume law
entanglement, which is why we call this result area-law pseudoentangled states.

Theorem 3.18.

(i) Under the standard LWE assumption (Assumption 2.18), for any function f (n)= n𝛿 for 𝛿> 0, the state
families Ψlow

n = {|𝜓k⟩}k∈Klow
n

and Ψ
high
n = {|𝜓k⟩}k∈Khigh

n
from Definition 3.17 form a pseudoentangled

state ensemble with entanglement gap (O( f (n)),Ω(n)) across geometrically local cuts in 1D (Defin-
ition 3.16).
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(ii) Under the subexponential-time LWE assumption (Assumption 2.19), there exists a function f (n) =
poly logn such that the state families Ψlow

n = {|𝜓k⟩}k∈Klow
n

and Ψ
high
n = {|𝜓k⟩}k∈Khigh

n
from Defini-

tion 3.17 form a pseudoentangled state ensemble with entanglement gap (O( f (n)),Ω(n)) across geo-
metrically local cuts in 1D (Definition 3.16).

Proof. We need to check the properties required in Definition 3.16. Items (i) to (iv) hold by the same
argument as in Theorem 3.13. The proof of Item (v’) is more involved. We show the entanglement scaling
for the low-entanglement states in Proposition 3.19 and for the high-entanglement states in Proposition 3.24.

3.3.1 Low-entanglement states

Proposition 3.19. Using the same setup as in Theorem 3.18, for any c ∈ [n] we have that

Prk←Klow
n

[
∀ j = 1, . . . ,n : S((𝜓k)[c])≤ O( f (n))

]
≥ 1−negl(n) .

Proof. If c < f (n) the statement holds trivially because then (𝜓k)[c] has at most f (n) qubits, and therefore
at most entropy f (n). Hence fix any c ∈ { f (n), . . . ,n} and consider the cut between the first c qubits and the
last n− c qubits. As in Definition 2.9, we can define the matrix T ∈ {±1}2c×2n−c

by

Ti j = (−1)sk(i∥ j) = (−1)hkfin (rk(i∥ j)) .

Then by Lemma 2.10, it suffices to show that the rank of this matrix is bounded by 2O( f (n)) with overwhelm-
ing probability.

Define the functions r̃m
k : {0,1}c→{0,1}2n−c

by

r̃m
k (i) = (rm

k (i ∥ j)) j∈{0,1}n−c .

In particular, r̃k(i) := r̃ f (n)
k (i) outputs the i-th row of T prior to applying the hash function hkfin .

From the recursive definition of rk, it is easy to see that for i ∈ {0,1}c, j ∈ {0,1}n−c we can write
rk(i ∥ j) = 𝜉(rc

k(𝜁(i)) ∥ j) for some functions 𝜉, 𝜁 whose details do not matter here. This implies that
| img r̃k| ≤ | img r̃c

k|. We then have that

rank(T )≤ | img r̃k| ≤ | img r̃c
k| ≤ | img fkrep

c
| ,

where the first inequality holds because the number of distinct rows in T is at most | img r̃k|, the second
inequality follows from the argument above, and the third inequality follow from the definition of rc

k in
Definition 3.17. Having reduced the problem to bounding the image size of fkrep

c
, the lemma now follows

exactly like Lemma 3.14.

3.3.2 High-entanglement states

We will now show that despite using the imperfect injective functions from Theorem 3.3, the states in Ψ
high
n

from our construction in Definition 3.17 have high entanglement across every geometrically local cut on a 1D
line (sufficiently far from the end of the line). The keys inKhigh

n are of the form k=(krep
f (n),k

rep
f (n)+1, . . . ,k

rep
n ,kfin),

and each krep
m has the form krep

m = (Am,khash
m ). By Item (i) of Theorem 3.3, we know that with overwhelming

probability over the choice of the matrix Am (as long as m =𝜔(logn)), the family { f(Am,khash
m )}khash

m
is pairwise
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independent. We call a matrix Am “good” if this is the case. We then define a “good” key k ∈ Khigh
n as one

for which all the Am-matrices are good:

Khigh
n

∣∣
good =

{
(krep

f (n),k
rep
f (n)+1, . . . ,k

rep
n ,kfin) ∈ Khigh

n s.t. ∀m : krep
m = (Am,khash

m ) has a good Am

}
.

We write k←Khigh
n
∣∣
good to denote a key sampled as before, but conditioned on getting a good key.

We being by showing a few useful properties of the rm
k -functions.

Lemma 3.20. Instantiate the construction from Definition 3.17 with any choice of function f (n). For any
x,y,x′,y′ ∈ {0,1}n and m ∈ { f (n), f (n)+1, . . . ,n} such that x ̸= y, x′ ̸= y′ , LSBn−m(x) = LSBn−m(x′), and
LSBn−m(y) = LSBn−m(y′), the following two properties hold:

Pr
k←Khigh

n

∣∣
good

[rm
k (x) = rm

k (y)] =


Pr

k←Khigh
n

∣∣
good

[
rm+1

k (x) = rm+1
k (y)

]
if LSBn−m(x) ̸= LSBn−m(y)

1
2m + 2m−1

2m Pr
k←Khigh

n

∣∣
good

[
rm+1

k (x) = rm+1
k (y)

]
if LSBn−m(x) = LSBn−m(y) ,

and
Pr

k←Khigh
n

∣∣
good

[rm
k (x) = rm

k (y)] = Pr
k←Khigh

n

∣∣
good

[
rm

k (x
′) = rm

k (y
′)
]
.

Proof. For ease of exposition, let pm
x,y = Pr

k←Khigh
n

∣∣
good

[
rm

k (x) = rm
k (y)

]
. Throughout the proof all probabilities

are over k←Khigh
n
∣∣
good. We prove the lemma by induction.

From the definition of rn+1(x) we have

pn
x,y = ∑

x′,y′∈{0,1}n

Pr[ fkrep
n
(x) = x′∧ fkrep

n
(y) = y′] · pn+1

x′,y′

=
1
2n

=
1
2n +

2n−1
2n Pr

k←Khigh
n

∣∣
good

[
rn+1

k (x) = rn+1
k (y)

]
.

The second line holds because fkrep
n

is pairwise independent conditioned on good k, and pn+1
x′,y′ = 0 for any

x′,y′ ∈ {0,1}n such that x ̸= y. This shows the lemma for m = n since trivially LSB0(x) = LSB0(y) (so we
are in the second case for the first equation in the lemma) and we have shown that pn

x,y is independent of x,y
(so the second equation in the lemma holds).

Now assuming the claim holds for m+1, we will argue that it also holds for m. Let i = MSBm(x), j =
MSBm(y),a = LSBn−m(x),b = MSBm(y). In particular, we have the following useful observation: if
LSBn−m(x) = LSBn−m(y) then LSBn−m−1(x) = LSBn−m−1(y).

Case 1: a ̸= b and i ̸= j. Since fkrep
m

is pairwise independent conditioned good k, and {krep
m } are sampled

independently for different m, we have
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pm
x,y = ∑

i′, j′∈{0,1}m

Pr[ fkrep
m
(i) = i′∧ fkrep

m
( j) = j′] · pm+1

i′∥a, j′∥b

=
1

22m ∑
i′, j′∈{0,1}m

pm+1
i′∥a, j′∥b

=
1

22m ∑
i′, j′∈{0,1}m

pm+1
x,y

= pm+1
x,y ,

where the third line uses the induction hypothesis. The second property is obvious, by induction hypothesis,
pm

x,y = pm+1
x,y = pm+1

x′,y′ = pm+1
x′,y′ .

Case 2: a ̸= b and i = j. Similarly, by the fact that fkrep
m

is pairwise independent conditioned good k, and
{krep

m } are sampled independently for different m, we have

pm
x,y = ∑

i′∈{0,1}m

Pr[ fkrep
m
(i) = i′] · pm+1

i′∥a,i′∥b

=
1

2m ∑
i′∈{0,1}m

pm+1
i′∥a,i′∥b

=
1

2m ∑
i′∈{0,1}m

pm+1
x,y

= pm+1
x,y ,

where the third line uses the induction hypothesis. Similarly, the second property holds for this case.

Case 3: a = b and i ̸= j. Similarly, by the fact that fkrep
m

is pairwise independent conditioned good k, and
{krep

m } are sampled independently for different m, we have

pm
x,y = ∑

i′, j′∈{0,1}m

Pr[ fkrep
m
(i) = i′∧ fkrep

m
( j) = j′] · pm+1

i′∥a, j′∥a

=
1

22m ∑
i′∈{0,1}n

pm+1
i′∥a,i′∥a +

1
22m ∑

i′, j′∈{0,1}m

i′ ̸= j′

pm+1
i′∥a, j′∥a

=
1

2m +
1

22m ∑
i′, j′∈{0,1}m

i′ ̸= j′

pm+1
x,y

=
1

2m +
2m−1

2m pm+1
x,y ,

where the third line uses the induction hypothesis. Similarly, the second property holds for this case.
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Lemma 3.21. Instantiate the construction from Definition 3.17 with any choice of function f (n). For any
d ∈ [n] and x,y ∈ {0,1}n such that LSBd(x) = LSBd(y) and LSBd+1(x) ̸= LSBd+1(y), the following holds:

Pr
k←Khigh

n

∣∣
good

[rk(x) = rk(y)]≤
2d+1

2n .

Proof. For ease of exposition, we again abbreviate pm
x,y = Pr

k←Khigh
n

∣∣
good

[rk(x) = rk(y)]. By Lemma 3.20 we

have the following recursive relationship:

pm
x,y =

{
1

2m + 2m−1
2m pm+1

x,y if LSBn−m(x) = LSBn−m(y)
pm+1

x,y otherwise
,

with the boundary condition pn+1
x,y = 0.

For x,y ∈ {0,1}n such that LSBd(x) = LSBd(y) and LSBd+1(x) ̸= LSBd+1(y), we have

p f (n)
x,y ≤

n

∑
m= f (n)

1[LSBn−m(x) = LSBn−m(x)]
2m

≤
n

∑
m=n−d

1
2m

≤ 2d+1

2n ,

as desired.

Corollary 3.22. Instantiate the construction from Definition 3.17 with any choice of function f (n). For any
x ∈ {0,1}n, the following holds:

∑
y∈{0,1}n

x ̸=y

Pr[rk(x) = rk(y)]≤ n.

Proof. Observe that for any given x, the number of y∈{0,1}n such that LSBd(x)=LSBd(y) but LSBd+1(x) ̸=
LSBd+1(y) is 2n

2d+1 . Therefore, splitting up the sum over y depending on the first bit on which x and y differ,
we get from Lemma 3.21 that

∑
y∈{0,1}n

x ̸=y

Pr[rk(x) = rk(y)] =
n−1

∑
d=0

∑
y∈{0,1}n

LSBd(x)=LSBd(y)
LSBd+1(x)̸=LSBd+1(y)

Pr[rk(x) = rk(y)]

≤
n−1

∑
d=0

2n

2d+1
2d+1

2n

= n .

Now we can use this lemma to upper bound the expectation of the Frobenius norm of the T -matrix (see
Definition 2.9) associated any cut X ⊂ [n]. While Theorem 3.18 only requires us to consider geometrically
local cuts, the proof works for arbitrary cuts, which we will make use of in Section 3.4. Specifically, we
have the following lemma.
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Lemma 3.23. Instantiate the construction from Definition 3.17 with any choice of function f (n) and con-
sider any cut X ⊆ [n] of size m := |X | ≤ n/2. Let TX ,k be the T -matrix (Definition 2.9) for |𝜓k⟩ associated
with cut X. Then we have the following bound on the expected squared Frobenius norm:

E
k←Khigh

n

∣∣
good

[∥∥∥TX ,kT ⊺
X ,k

∥∥∥2

2

]
≤ 5n ·22n−m .

Proof. To simplify the notation, we drop the explicit dependence on X and k and simply write T = TX ,k. All
expectations are taken over k←Khigh

n
∣∣
good.

The first part of the proof is almost identical to the proof of Theorem 3.13, except that now we con-
sider cuts that do not necessarily divide the qubits into two equally sized sets. We spell out the details for
completeness. Expanding the Frobenius norm and using that Ti j ∈ {±1}:

E
[
∥T T ⊺∥2

2

]
= ∑

i, j∈{0,1}m

E

( ∑
l∈{0,1}n−m

TilTjl

)2


= ∑
i, j∈{0,1}m

E

[
∑

a,b∈{0,1}n−m

TiaTjaTibTjb

]

= ∑
i∈{0,1}m

E

[
∑

a,b∈{0,1}n−m

TiaTiaTibTib

]
+ ∑

i, j∈{0,1}m

E

[
∑

a∈{0,1}n−m

TiaTjaTiaTja

]

+ ∑
i, j∈{0,1}m

i̸= j

E

 ∑
a,b∈{0,1}n−m

a̸=b

TiaTjaTibTjb



= 22n−m +2n+m + ∑
i, j∈{0,1}m

i̸= j

E

 ∑
a,b∈{0,1}n−m

a̸=b

TiaTjaTibTjb


= 22n−m +2n+m + ∑

i, j∈{0,1}m

i̸= j

∑
a,b∈{0,1}n−m

a̸=b

E
[
(−1)sk(i∥a)+sk(i∥b)+sk( j∥a)+sk( j∥b)

]
. (3.6)

Since sk(x) = hkfin(rk(x)), and hkfin is drawn from a 4-wise independent function family, it is easy to
see that the term E

[
(−1)sk(i∥a)+sk(i∥b)+sk( j∥a)+sk( j∥b)] is zero unless the 4 terms in the exponents pair up to

cancel. In particular, this means that a necessary condition for E
[
(−1)sk(i∥a)+sk(i∥b)+sk( j∥a)+sk( j∥b)] ̸= 0 is

that

rk(i ∥ a) = rk(i ∥ b) or rk(i ∥ a) = rk( j ∥ a) or rk(i ∥ a) = rk( j ∥ b) .

In Theorem 3.13, the probability of this event was straightforward to bound using pairwise independence.
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Here, this direct argument is replaced by using Corollary 3.22. For the first case, we can bound

∑
i, j∈{0,1}m

i̸= j

∑
a,b∈{0,1}n−m

a̸=b

Pr[rk(i ∥ a) = rk( j ∥ a)] = ∑
i∈{0,1}m

∑
a,b∈{0,1}n−m

a̸=b

 ∑
j∈{0,1}m

i̸= j

Pr[rk(i ∥ a) = rk( j ∥ a)]



≤ ∑
i∈{0,1}m

∑
a,b∈{0,1}n−m

a̸=b

 ∑
y∈{0,1}n

y̸=(i∥a)

Pr[rk(i ∥ a) = rk(y)]


≤ 22n−m ·n .

For the second line we have added terms to the sum in parentheses, which can only increase its value. For the
third line we have used Corollary 3.22 to deduce that the term in parentheses is at most n and then counted
the number of terms in the outer sum.

By analogous derivations, we also obtain

∑
i, j∈{0,1}m

i̸= j

∑
a,b∈{0,1}n−m

a̸=b

Pr[rk(i ∥ a) = rk(i ∥ b)]≤ 2n+m ·n ,

∑
i, j∈{0,1}m

i̸= j

∑
a,b∈{0,1}n−m

a̸=b

Pr[rk(i ∥ a) = rk( j ∥ b)]≤ 2n ·n .

Using the trivial bound E
[
(−1)sk(i∥a)+sk(i∥b)+sk( j∥a)+sk( j∥b)] ≤ 1, we can therefore bound the remaining

sum in Equation (3.6)

∑
i, j∈{0,1}m

i̸= j

∑
a,b∈{0,1}n−m

a̸=b

E
[
(−1)sk(i∥a)+sk(i∥b)+sk( j∥a)+sk( j∥b)

]

≤ ∑
i, j∈{0,1}m

i̸= j

∑
a,b∈{0,1}n−m

a̸=b

(
Pr[rk(i ∥ a) = rk( j ∥ a)]+Pr[rk(i ∥ a) = rk(i ∥ b)]+Pr[rk(i ∥ a) = rk( j ∥ b)]

)

≤ n ·22n−m +n ·2n+m +n ·2n .

Inserting this into Equation (3.6) we get that

E
[
∥T T ⊺∥2

2

]
≤ 22n−m +2n+m +n ·22n−m +n ·2n+m +n ·2n ≤ 5n ·22n−m

since we assumed that m≤ n/2.

Proposition 3.24. Using the same setup as in Theorem 3.18, for any cut X ⊆ [n] of size m := |X |= 𝜔(logn)
we have that

Prk←Khigh
n

[
∀ j = 1, . . . ,n : S((𝜓k)X)≥

1
4

min(m,n−m)

]
≥ 1−negl(n) .
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Proof. Without loss of generality, we can assume that m = |X | ≤ n/2; otherwise we can simply consider
the complementary cut [n] \ X and use the fact that S((𝜓k)X) = S((𝜓k)[n]\X). Let TX ,k be the T -matrix
(Definition 2.9) for |𝜓k⟩ associated with cut X . By Lemma 2.10 it suffices to show that

Prk←Khigh
n

[
− log

∥∥∥∥ 1
2n TX ,kT ⊺

X ,k

∥∥∥∥
2
<

m
4

]
≤ negl(n) .

The event that− log
∥∥∥ 1

2n TX ,kT ⊺
X ,k

∥∥∥
2
< m

4 is equivalent to the event that
∥∥∥TX ,kT ⊺

X ,k

∥∥∥2

2
> 22n−m/2. We can bound

the probability of the latter as follows. From Item (i) in Theorem 3.3 and a union bound we know that if we
sample a key k←Khigh

n , the probability that this key is not contained in Khigh
n
∣∣
good at most n ·2− f (n), which

is negligible in n since we chose f (n) = 𝜔(logn) in Theorem 3.18. Therefore we get that

Prk←Khigh
n

[
− log

∥∥∥∥ 1
2n TX ,kT ⊺

X ,k

∥∥∥∥
2
<

m
4

]
≤ Pr

k←Khigh
n

∣∣
good

[
− log

∥∥∥∥ 1
2n TX ,kT ⊺

X ,k

∥∥∥∥
2
<

m
4

]
+negl(n)

= Pr
k←Khigh

n

∣∣
good

[∥∥∥TX ,kT ⊺
X ,k

∥∥∥2

2
> 22n−m/2

]
+negl(n)

≤ 1
22n−m/2 Ek←Khigh

n

∣∣
good

[∥∥∥TX ,kT ⊺
X ,k

∥∥∥2

2

]
+negl(n)

≤ 5n ·22n−m−2n+m/2 +negl(n)

= 5n ·2−m/2 +negl(n)

= negl(n) .

Here, the third line uses Markov’s inequality, the fourth line uses Lemma 3.23, and the last line holds because
m = 𝜔(logn).

3.3.3 Pseudorandom states and entropy lower bounds for cuts with sub-logarithmic sizes

Note that the current high entanglement construction may not always satisfy volume law entanglement for
partitions where one side is extremely small (formally speaking, of size O(logn)). Although this limitation
does not impede the applications presented in this paper, we briefly discuss adjustments needed in our
construction guaranteeing that volume law entanglement even holds for these small cuts.

Intuitively, when the size of the subsystem is at most O(logn), adversaries can approximate entangle-
ment entropy up to an inverse polynomial error. On the other hand, a logarithmically-sized subsystem of
Haar random states concentrates very strongly around the maximally mixed state. Therefore, any pseudor-
andom state must have volume law entanglement for cut X of size |X |= O(logn).

While the construction we have described so far is not pseudorandom,7 a simple modification can
achieve this: according to [ABF+23, Appendix A], it suffices to modify krep

i and kfin such that they are pseu-
dorandom functions (PRFs). The construction utilizes two types of functions: k-wise independent functions
and LWE functions, with the latter being PRFs based on the standard LWE assumption. Consequently, the
transformation involves converting k-wise independent families into families that are both k-wise independ-
ent and pseudorandom (for a specific construction, refer to [ABF+23, Appendix A]). Notably, since both
our low-entanglement and high-entanglement constructions employ the same k-wise independent families,
these modifications do not jeopardize the public-key indistinguishability of two constructions.

7By “pseudorandom” we mean that the state families without the public key are indistinguishable from Haar random states.
Naturally, if the circuit to prepare the state is made public, it is easy to distinguish the state from Haar random states since generic
Haar random states have no short state preparation circuit.
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3.4 Area-law public-key pseudoentangled states on a 2D grid

We can easily generalise the 1D construction from Section 3.3 to a system of qubits arranged on a 2D grid.
This is the same construction as in [ABF+23, Appendix D.5], so we only provide a short sketch. Let |𝜓k⟩
be an n-qubit state from a pseudoentangled state ensemble. We can arrange the qubits of this state on an√

n×
√

n grid as shown in Figure 1. Now consider a contiguous 2D subregion R of this
√

n×
√

n grid. Let

Figure 1: Arranging an n-qubit state on a
√

n×
√

n grid.

|R| be the size of R (i.e. the number of qubits in R) and |∂R| the size of the boundary of R. Unfolding the
“snake”, this region R corresponds to a (not necessarily geometrically local) cut in 1D.

For the pseudoentangled state ensembles we constructed in Theorem 3.18, a high-entanglement state
|𝜓k⟩ has entanglement entropy Ω(|R|) for any (sufficiently large) cut R, even if the cut is not 1D geomet-
rically local (Proposition 3.24). This means that arranged on a 2D grid, the high-entanglement states from
Theorem 3.18 exhibit volume law entanglement scaling.

Conversely, consider a low-entanglement state |𝜓k⟩ from the construction in Theorem 3.18. From the
geometry of Figure 1 it is easy to see that a region R corresponds to a 1D cut that divides the qubits into
at most O(|∂R|) contiguous regions; this is because the boundary of the region R can cut the “snake” at
most O(|∂R|) times. For each of these O(|∂R|) cuts in 1D, we know from Theorem 3.18 that |𝜓k⟩ has
entanglement entropy at most O(poly logn) across that cut. Using subadditivity of entanglement entropy, it
then follows that the entanglement entropy of the region R is at most O(|∂R| ·poly logn), which corresponds
to area-law scaling in two dimensions (up to polylogarithmic factors).

4 Computational hardness of learning ground state entanglement structure

Our public-key pseudoentanglement constructions can be leveraged to construct Hamiltonians such that
it is hard to learn the entanglement structure of their ground state. This is what we will discuss in the
next sections. Specifically, we will study variants of the following problem, which we define somewhat
informally.

Definition 4.1 (Learning Ground State Entanglement Structure (LGSES) problem). Given a classical de-
scription of a k-local Hamiltonian H on n qubits with spectral gap at least 1

poly(n) , decide whether the ground
state of H has entanglement structure A or B? Here, A and B should be two qualitatively different, pre-
specified entanglement structures, e.g. near are-law and volume law entanglement.

We will see three different variants of this problem for three different types of local Hamiltonians and
correspondingly three slightly different entanglement structures. We will progressively make our construc-
tions more local—in some sense, more local corresponds to more physical Hamiltonians—but we will pay
a slight price in terms of how straightforwardly the entanglement structures can be described.
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(i) In Section 4.1, we will study the hardness of LGSES for O(logn)-local Hamiltonians on n qubits
arranged in a 1D line. The two entanglement structures to distinguish between will be poly logn vs
Ω(n) entanglement across geometrically local cuts in 1D. In other words, we are asked to distinguish
1D near area-law vs volume-law entanglement.

(ii) In Section 4.2, we will improve upon the locality of the Hamiltonian and study the hardness of LGSES
for O(1)-local Hamiltonians on n qubits arranged in a 1D line. However, the entanglement structure
will be slightly more complicated: we will consider the reduced states of ground states on a specific
subsystem and ask whether this has 1D near area-law or volume-law entanglement structure for a
mixed state measure of entanglement.

(iii) In Section 4.3, we will study the hardness of LGSES for 2-local Hamiltonians on a 2D grid of size
n× poly(n) and with constant local dimension, where all Hamiltonian terms are geometrically local
(i.e. only nearest neighbors on the grid can interact). The two entanglement structures to distinguish
will be entanglement entropy O(poly logn) vs Ω(n) across horizontal cuts through the grid.

4.1 1D Hamiltonians with logn-locality and pure states

In this section, we will show how to obtain two families of logn-local Hamiltonians, one whose ground
state has poly logn entanglement scaling and the other whose ground state has Ω(n) entanglement scaling
across geometrically local cuts in 1D, such that given the description of one of these Hamiltonians it is
computationally hard to decide which family it belongs to.

We will start with the public-key pseudoentangled state constructions in Section 3.3, use the padded
circuit-to-Hamiltonain construction of Section 2.6, and then use the trace distance closeness property of
Lemma 2.26 to show that the entanglement structures of the ground states of these Hamiltonians resemble
the entanglement structure of the public-key pseudoentangled states.

Theorem 4.2. For every n ∈N, there exist two families Hlow
n and Hhigh

n of O(logn)-local Hamiltonians on
(n+O(logn)) qubits arranged on a 1D line with spectral gap Ω(1/poly(n)) and efficient procedures that
sample (classical descriptions of) Hamiltonians from either family (denoted H←Hlow

n and H←Hhigh
n ) with

the following properties:

(i) Hamiltonians sampled according to H←Hlow
n and H←Hhigh

n are computationally indistinguishable
under Assumption 2.19.

(ii) With overwhelming probability, the ground states of Hamiltonians H←Hlow
n have 1D near area-law

entanglement and Hamiltonians H←Hlow
n have 1D volume-law entanglement. Formally, this means

that for geometrically local cuts in 1D of size r =𝜔(logn), the ground states of the Hamiltonians have
entanglement entropy O(poly logn) or Ω(min(r,n− r)), respectively.

Proof. Let Ψlow
n = {|𝜓k⟩}k∈Klow

n
and Ψ

high
n = {|𝜓k⟩}k∈Khigh

n
be two ensembles of public key pseudoentangled

states across geometrically local cuts from Section 3.3. For a key k ∈ Klow
n ∪Khigh

n , we denote by Hk the
O(logn)-local K-padded history state Hamiltonian from Lemma 2.25 with a binary clock, for K = poly(n)
to be chosen later. We then choose Hlow

n = {Hk}k∈Klow
n

and Hhigh
n = {Hk}k∈Khigh

n
. It follows from our

pseudoentanglement construction and the padded history state Hamiltonian that these are efficiently sample-
able families of O(logn)-local Hamiltonians, noting that each term has a classical description (as a list of
matrix entries) of size poly(n) and there are poly(n) terms, so the full Hamiltonians has an explicit classical
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description of size poly(n), too. The statement about the spectral gap follows from Lemma 2.25. Item (i)
follows directly from the indistinguishability of Klow

n and Khigh
n (Item (iv) in Definition 3.9).

To prove Item (ii), first consider a Hamiltonian H←Hlow
n . Let |𝜓ground⟩ be its ground state and define

|𝜓 f ⟩= |𝜓⟩⊗
1√

T +1

T

∑
t=0
|clock(t)⟩ ,

where |𝜓⟩ is the pseudoentangled state for which H is the history state Hamiltonian and T is the number of
gates in the (padded) circuit (see Section 2.6). Note that from Lemma 2.26,∥∥|𝜓 f ⟩⟨𝜓 f |− |𝜓ground⟩⟨𝜓ground|

∥∥
1 = O

(
1

poly(n)

)
, (4.1)

for a sufficiently large choice of padding K = poly(n).
Let (A,B) be a geometrically local bipartition of the n+O(logn) with |A|, |B|= 𝜔(logn). Since we are

considering geometrically local cuts with |B| = 𝜔(logn) and there are only O(logn) qubits, for a suitable
choice of implicit constants in |B|= 𝜔(logn) all of the clock qubits are contained in B and therefore do not
contribute to the entanglement across the cut. Hence,

S((𝜓 f )A) = O(poly logn) .

Using the continuity property of the von Neumann entropy (Lemma 2.7) and Equation (4.1), if we choose
the padding K = poly(n) sufficiently large we get that

S((𝜓ground)A)≤ S((𝜓 f )A)+O
(

1
poly(n)

)
= O(poly logn)

as desired.
By applying a similar argument, when we consider H←Hhigh

n and a bipartition (r,n− r),

S((𝜓ground)A) = Ω(min(r,n− r)).

This completes the proof.

Remark 4.3. Under the standard LWE assumption (Assumption 2.18) instead of Assumption 2.19, The-
orem 4.2 still holds, but with the smaller entanglement gap O(n𝛿) vs Ω(n) for any 𝛿 > 0. This mirrors
directly the statement in Theorem 3.18.

4.2 1D Hamiltonians with constant locality and mixed states

In this section, we will modify the construction in Section 4.1 with a unary clock to get constant locality.
However, because the clock register will now have poly(n) qubits, we can no longer simply remove the clock
qubits as we did in Theorem 4.2. Therefore, we will consider the entanglement structure of the reduced
density matrices of the ground state with the clock register traced out. Using mixed state entanglement
measures (Section 2.4.3), we will show that one such density matrix will have high entanglement, and the
other will have low entanglement.

As discussed in Section 2.4, there are many mixed state measures of entanglement. We will show that
for any “natural” mixed state entanglement measure (in the sense of Lemma 2.13), the ground state of the
our Hamiltonian (with the clock register traced out) has either high or low entanglement. We achieve this by
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giving an upper bound on the entanglement of formation of our low entanglement construction and a lower
bound on the distillable entanglement of our high entanglement construction. Combined with Lemma 2.13,
this gives an entanglement gap for any natural entanglement measure. In fact, Hamiltonians constructed
from our ensembles of pseudoentangled states achieve a maximally large gap.

Theorem 4.4. For every n ∈ N, there exist two families Hlow
n and Hhigh

n of O(1)-local Hamiltonians on
(n+ poly(n)) qubits arranged on a 1D line with spectral gap Ω(1/poly(n)) and efficient procedures that
sample (classical descriptions of) Hamiltonians from either family (denoted H←Hlow

n and H←Hhigh
n ) with

the following properties:

(i) Hamiltonians sampled according to H←Hlow
n and H←Hhigh

n are computationally indistinguishable
under Assumption 2.19.

(ii) If we trace out poly(n) many qubits from the ground state of each Hamiltonian, the entanglement
gap between the resultant quantum states in the high and low families is Ω(min(r,n − r)) versus
O(poly logn), for a cut of size (r,n− r), for any natural entanglement measure. With overwhelming
probability, the reduced states on the first n qubits of the ground states of Hamiltonians H ←Hlow

n
have 1D near area-law entanglement and Hamiltonians H←Hlow

n have 1D volume-law entanglement
with respect to any natural mixed state entanglement measure (in the sense of Lemma 2.13).

Proof. We consider the same construction ofHlow
n andHhigh

n as in Theorem 4.2, except that we now use the
unary clock construction from Lemma 2.25 instead of the binary one as in Theorem 4.2. With this, we only
need to show Item (ii) as the other properties follow in exactly the same way as in the proof of Theorem 4.2.

First consider a Hamiltonian H ← Hlow
n . Let |𝜓ground⟩ and |𝜓 f ⟩ be as in Theorem 4.2, except with

a unary clock. Let 𝜌data be the density matrix on n qubits left when we trace out the clock qubits from
|𝜓ground⟩ and recall that the reduced state of |𝜓 f ⟩ on the first n qubits is the pseudoentangled state |𝜓⟩⟨𝜓|
(using the notation from Theorem 4.2). Then, using Lemma 2.26 and the fact that tracing out qubits cannot
increase the trace distance between two states,

|| 𝜌data−|𝜓⟩⟨𝜓| ||1 = O
(

1
poly(n)

)
(4.2)

for a sufficiently large padding K = poly(n). Then, using continuity properties of the conditional von Neu-
mann entropy (Equation (4.2), Lemma 2.7), standard properties of the binary entropy function, the fact that
all natural mixed state entanglement measures collapse to the von Neumann entanglement entropy for pure
states (Lemma 2.14), and the fact that coherent information is just the negative of conditional von Neumann
entropy (Definition 2.12) and lower bounds distilalble entanglement (Lemma 2.13),

ED(𝜌data, AB)≥ I(𝜌data, AB) = Ω

(
n− 1

poly(n)

)
.

By applying a similar argument, when we consider H ←Hhigh
n and a bipartition (r,n− r), using continuity

properties of the entanglement of formation (Lemma 2.15) we get that

EF(𝜌data, AB) = O
(

poly logn+
1

poly(n)

)
.

Then, with the observation that any natural entanglement measure is upper bounded by EF and lower
bounded by ED (Lemma 2.13), the result follows.

Remark 4.5. Just as in Remark 4.3, under the standard LWE assumption (Assumption 2.18) Theorem 4.4
still holds, but with the smaller entanglement gap O(n𝛿) vs Ω(n) for any 𝛿 > 0.
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4.3 2D Hamiltonians with geometric locality and pure states

In this section, we will show how to obtain two families of 2D Hamiltonians on a 2D grid of poly(n) qudits,
one whose ground state has entanglement entropy of order n and the other whose ground state has entan-
glement entropy of order poly logn, with respect to most horizontal cuts across the 2D grid. Thus, arguably,
this gives us a relatively more complicated entanglement structure than the constructions in Theorem 4.2
and Theorem 4.4. However, we gain in geometric locality: the Hamiltonian only has nearest neighbor
interactions on a 2D grid. Formally, 2D Hamiltonians are defined as follows.

Definition 4.6 (2D (local) Hamiltonian, [AGIK09]). Let H be a Hermitian operator (interpreted as a Hamilto-
nian, giving the energy of some system). We say that H is an r-state Hamiltonian if it acts on r-state qudits
(i.e. d = r). When r = 2, namely, when the qudits are qubits. We say that H is k-local if it can be written as

H = ∑
i

Hi,

where each Hi acts non-trivially on at most k qudits. Note that this term does not assume anything about the
physical location of the qudits. We say that H is a 2D Hamiltonian if the qudits are arranged on a 2D grid
and the terms Hi interact only pairs of nearest neighbor qudits. In particular, a 2D Hamiltonian is 2-local.

Overview. The main steps of our construction are as follows:

• First, we start with two n-qubit public key pseudoentangled states across multiple cuts, according to
the construction in Section 3.3, and consider the circuits for preparing them. Suppose these circuits
have K = poly(n) gates. Without loss of generality, we assume the circuit can be decomposed into
R = poly(n) “rounds”, each made up of exactly n nearest-neighbor interactions on qubits 1, (1,2),
(2,3), etc. Any circuit can be transformed into this form by inserting a polynomial number of identity
and swap gates. Hence, the circuit contains nR gates in total. As in Section 4.1, we pad the circuits
with nM identity gates at the end for a sufficiently large M = poly(n).

• Then, we use a modified version of the 2D clock construction [AVDK+08] to construct two families
of 2D Hamiltonians such that the padded circuit is embedded into its ground state. That is, if C =
UnT ·UnT−1 · · ·U1 is the circuit with padding, where T = M +R is the total number of rounds after
padding, we construct a Hamiltonian H such that the ground state |𝜓ground⟩, on an n× T grid of
qudits, encodes the time evolution of the padded circuit.

• We show how, because of the padding, the entanglement structure of the 2D ground state across any
horizontal cut resembles the entanglement structure of the state

|𝜓output⟩=UnR ·UnR−1 · · ·U1|0n⟩, (4.3)

across the same cut.

• By virtue of our pseudoentanglement construction, the state in Equation (4.3) either has high or low
entanglement, whenever the cut has distance 𝜔(logn) to the boundary of the grid. Then, by a con-
tinuity argument, we show that the ground state |𝜓ground⟩ also inherits the high or low entanglement
property.
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4.3.1 Geometrically local 2D history state Hamiltonians

Based on the framework of [AVDK+08], we begin by showing how to construct a 2D Hamiltonian whose
ground state encodes the state obtained by taking our padded circuit, as defined in Equation (4.3). Without
loss of generality, we assume that before padding, the circuit has initial state |0⟩ and consists of R rounds,
where in each rounds there are n nearest-neighbor gates, acting on qubits 1, (1,2), (2,3), (3,4) and so on.

Legal shapes of the clock. To start, we will introduce some notation to reason about the valid clock states.
Suppose we have in total n(T +1) 9-state qudits arranged on a two-dimensional square lattice with n rows
and T +1 columns. We refer to the quantum state defined on this lattice as a clock state. From the top to the
bottom, we number the rows from 1 to n. From left to right, we number the columns from 0 to T . Intuitively,
the vertical axis of the 2D grid aligns with the spatial dimension of the original circuit, while the horizontal
axis of the 2D grid aligns with the temporal dimension of the original circuit. Additionally, we have the
following features.

• Possible states: For each qudit, following the notation of [AVDK+08], we denote its 9 possible states
to be

|⃝⟩, | ↑⃝⟩, | ↓⃝⟩, | ⇑⃝⟩, | ⇓⃝⟩, |×⃝⟩, |⇈⃝⟩, |⇊⃝⟩, |M⃝⟩.

The former 6 states were introduced in [AVDK+08] whereas the latter three states are newly intro-
duced in this work.

• Phases: These states can be categorized into six distinct phases: the unborn phase represented by
|⃝⟩, the first phase containing | ↑⃝⟩, | ↓⃝⟩, the second phase containing | ⇑⃝⟩, | ⇓⃝⟩, the dead phase
represented by |×⃝⟩, the flag phase containing |⇈⃝⟩, |⇊⃝⟩, and the marker phase represented by |M⃝⟩.

• Encoding the value: The orientation of the state in the first phase, the second phase, and the flag
phase encodes the value, i.e., |0⟩ and |1⟩ states of a qubit in the circuit. For example, we can map |0⟩
to | ↑⃝⟩ (| ⇑⃝⟩, |⇈⃝⟩) and |1⟩ to | ↓⃝⟩ (| ⇓⃝⟩, |⇊⃝⟩).

• Symbols for spanned subspaces: Denote | ↑↓⃝⟩ as any state in the subspace spanned by | ↑⃝⟩ and | ↓⃝⟩.
Similarly, denote | ⇕⃝⟩ as any state in the space spanned by | ⇑⃝⟩ and | ⇓⃝⟩, and denote |⇈⇊⃝⟩ as any state
in the space spanned by |⇈⃝⟩ and |⇊⃝⟩.

• Shapes: Based on the concept of phases, we can further define the shape of the quantum state on this
two-dimensional square lattice. A shape is defined as an allocation of one of five phases to each qudit,
ignoring the orientations of the states in the first, second, or the flag phase. Intuitively, the flag phase
serves as a marker for the location where the current change occurs, and plays a similar role as the
flag in [AGIK09] concerning the ground state in the one-dimensional setting.

Similar to [AVDK+08], we show that we can represent the time evolution of the padded circuit using a series
of (3n− 1)T + 1 clock states that are legal shapes, where each shape corresponds to one time step in the
circuit.

Remark 4.7. Formally defined in Definition 4.8, the notion of legal shapes we consider is slightly different
from the original ones in [AVDK+08] because we have the extra flag and marker states.

Definition 4.8 (Legal shapes, [AVDK+08]). Denote L = (3n−1)T . For any t ∈ [0,L], we say a clock state
is in the t-th legal shape if one of the following conditions is satisfied
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(i) There exists r and k ∈ [0,n] such that t = (3n− 1)r + k. Moreover, the r leftmost columns of the
state are in the dead phase, the top k−1 qudits in the (r+1)-th column are in their second phase, the
bottom n−k are in the first phase, the qudit in between is in the flag phase, and qudits in the remaining
R− r columns are all in the unborn phase

(ii) There exists r and k ∈ [0,2n−1] such that t = (3n−1)r+n+ k. Moreover, the r leftmost columns of
the state are in the dead phase, the (r+1)-th column has its n− k topmost qudits in the second phase
while its remaining k qudits in the dead phase, the (r+ 2)-th column has its n− k topmost qudits in
the unborn phase, the bottom k−1 qudits in the first phase, the qudit in between is in the flag phase,
and all qudits in the remaining columns are in the unborn phase.

(iii) There exists r and k ∈ [0,2n−1] such that t = (3n−1)r+n+ k. Moreover, the r leftmost columns of
the state are in the dead phase, the (r+1)-th column has its n− k topmost qudits in the second phase
while its remaining k qudits in the dead phase, the (r+2)-th column has its n− k−1 topmost qudits
in the unborn phase, the bottom k qudits in the first phase, the qudit in between is in the marker phase,
and all qudits in the remaining columns are in the unborn phase.

Denote S to be the (L+ 1)2n-dimensional space spanned by all states in legal shapes. Moreover, for
each 0≤ t ≤ L and 0≤ j ≤ 2n−1, define |𝛾 j

t ⟩ to be the state in the t-th legal shape, where the orientations
of its n active qudits (i.e., qudits in the first phase, second phase, or the flag phase) correspond to the state
of the circuit after applying the first t gates to an initial state that encodes the binary representation of j, or
quantitatively,

Ut ·Ut−1 · · ·U1| j⟩. (4.4)

Moreover, we denote |𝛾(t)⟩ ≡ |𝛾0
t ⟩ for brevity.

The following is immediate from the construction.

Lemma 4.9. For any 0≤ j ≤ 2n−1 and any t1 ̸= t2 ∈ [0,L], |𝛾 j
t1⟩ and |𝛾 j

t2⟩ are orthogonal to each other.

Transition rules. Based on the definition of |𝛾 j
t ⟩, we can further divide S into 2n subspaces S1, . . . ,S2n ,

where each subspace S j is spanned by {|𝛾 j
0⟩, . . . , |𝛾

j
L⟩}. As shown in [AVDK+08], intuitively, the transition

rules between the states |𝛾 j
0⟩, . . . , |𝛾

j
L⟩ can also be understood as follows.

• Downward stage: Consider a state |𝛾 j
t ⟩ for some t = (3n−1)r. In this stage, the n qudits located in

the r-th column are in their initial phase, and the orientations of these active qudits (i.e., those in the
first phase, second phase, and the flag phase) encode the initial state of the circuit at the beginning of
the r-th round. To the left of this column, the qudits are in the dead phase, while to the right, they are
in the unborn phase. The state |𝛾 j

t+1⟩ can be obtained from |𝛾 j
t ⟩ by converting the uppermost qudit

in the r-th column into active-phase and then applying the first gate of the r-th round (a one-qubit
gate) to the state encoded in these active qudits. Subsequently, the state |𝛾 j

t+2⟩ is derived from |𝛾 j
t+1⟩

by converting the second qudit from the top in the r-th column into active phase, converting the frist
qudit from the top in the r-th column into first phase, and applying the second gate of the r-th round
(a two-qubit gate) to both this qudit and the one above it. This process continues in a similar manner
until we reach the state |𝛾 j

t+n⟩, where the entire r-th column consists of qudits in the second phase
except the one at the bottom. These sequential steps are referred to as the downward stage.
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• Upward stage: Correspondingly, there is an upward stage. In this stage, the state |𝛾 j
t+n+1⟩ is trans-

formed from |𝛾 j
t+n⟩ by shifting the bottommost qudit in the r-th column one position to the right. To

be more precise, the bottommost qudit shifts into the dead phase, while the qudit to the right of it shifts
into the active phase. Then, |𝛾 j

t+n+2⟩ is transformed from |𝛾 j
t+n+1⟩ by shifting the bottommost qudit

into the first phase without changing its encoding and shifting the qudit above it into the marker phase.
It is worth noticing that the encoded state is not changed during this process, which corresponds to
the identity gate applied in the circuit. Continuing this iterative process to go up the column, we can
“copy” the encoding of the r-th column into the (r+1)-th column. We observe that the upward stage
ends in the state |𝛾 j

t+n+n⟩= |𝛾
j
2(r+1)n⟩ which aligns with the previously described initial state of a new

round.

An example of legal shapes with n = 6 and T = 2 is given in Figure 2, where the shapes correspond
to t = 0,1, . . . ,19. It is worth noting that each shape has exactly n qudits in the first, second, or the flag
phase. Consequently, each shape contains a subspace with a dimension of 2n spanned by the possible states
of qudits within the first or second phase.

Constructing the corresponding Hamiltonian. Based on the construction in [AVDK+08], in the remain-
ing part of this section, we present a two dimensional Hamiltonian on the grids whose ground state is the
history state of the evolution

|𝜓ground⟩=
1√

L+1

L

∑
t=0
|𝛾0

t ⟩. (4.5)

Following [AVDK+08], our 2D Hamiltonian H2D contains three parts:

H2D ≡
1
2

L

∑
ℓ=1

Hℓ+Hinput + J ·Hclock, (4.6)

where J = 𝜖−2 ·L6 with 𝜖 = 1
polyn . Conceptually, each Hamiltonian term Equation (4.6) imparts an “energy

penalty” upon any state that fails to meet the required properties of the ground state. In particular, Hclock
guarantees that the ground state is a superposition over a set of clock states in legal shapes. Then, Hinput
verifies that the component in the first legal shapes encodes the input of the circuit, i.e., |0⟩, in its first
column of qudits. Finally, the propogation Hℓ ensures the correctness of transitions between consecutive
legal shapes, meaning that the encoded quantum state evolves in accordance with the corresponding gate
applied in the circuit during that time step. Formally, as in [AVDK+08], we let

Hinput :=
n

∑
i=1

(| ↓⃝⟩⟨ ↓⃝|)i,1,

where the indices indicate that the corresponding term acts on the i-th row and the first column of the 2D
grid. As for Hclock, similar to the case in [AVDK+08], it is worth noting that the legal shapes defined in
Definition 4.8 can be verified in a 2-local way, which allows us to define a 2-local Hamiltonian such that its
ground space contains only superpositions of clock states in legal shapes.

Similarly to [AVDK+08, Claim 4.2], we prove the following result.

Lemma 4.10. A clock state is in legal shape defined in Definition 4.8 if and only if it contains none of the
forbidden configurations in Table 1.
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↑↓⃝ ⃝ ⃝
↑↓⃝ ⃝ ⃝
↑↓⃝ ⃝ ⃝
↑↓⃝ ⃝ ⃝
↑↓⃝ ⃝ ⃝
↑↓⃝ ⃝ ⃝

t = 0

⇈⇊⃝ ⃝ ⃝
↑↓⃝ ⃝ ⃝
↑↓⃝ ⃝ ⃝
↑↓⃝ ⃝ ⃝
↑↓⃝ ⃝ ⃝
↑↓⃝ ⃝ ⃝

t = 1

⇕⃝ ⃝ ⃝
⇈⇊⃝ ⃝ ⃝
↑↓⃝ ⃝ ⃝
↑↓⃝ ⃝ ⃝
↑↓⃝ ⃝ ⃝
↑↓⃝ ⃝ ⃝

t = 2

⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
⇈⇊⃝ ⃝ ⃝
↑↓⃝ ⃝ ⃝
↑↓⃝ ⃝ ⃝
↑↓⃝ ⃝ ⃝

t = 3

⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
⇈⇊⃝ ⃝ ⃝
↑↓⃝ ⃝ ⃝
↑↓⃝ ⃝ ⃝

t = 4

⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
⇈⇊⃝ ⃝ ⃝
↑↓⃝ ⃝ ⃝

t = 5

⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
⇈⇊⃝ ⃝ ⃝

t = 6

⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
×⃝ ⇈⇊⃝ ⃝

t = 7

⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
⇕⃝ M⃝ ⃝
×⃝ ↑↓⃝ ⃝

t = 8

⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
×⃝ ⇈⇊⃝ ⃝
×⃝ ↑↓⃝ ⃝

t = 9

⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
⇕⃝ M⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝

t = 10

⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
×⃝ ⇈⇊⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝

t = 11

⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
⇕⃝ M⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝

t = 12

⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
×⃝ ⇈⇊⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝

t = 13

⇕⃝ ⃝ ⃝
⇕⃝ M⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝

t = 14

⇕⃝ ⃝ ⃝
×⃝ ⇈⇊⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝

t = 15

⇕⃝ M⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝

t = 16

×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝

t = 17

×⃝ ⇈⇊⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝

t = 18

×⃝ ⇕⃝ ⃝
×⃝ ⇈⇊⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝

t = 19

Figure 2: An example of clock states in legal shapes with n = 6, T = 2.

Proof. The proof is similar to the proof of [AVDK+08, Claim 4.2]. First, we can check that any clock state
in legal shape contains none of the forbidden configurations. Conversely, for any clock state that contains
none of these configurations, each of its rows admits to the pattern ×⃝∗[ ↑↓⃝, ⇕⃝,⇈⇊⃝, ⇕⃝M⃝]⃝∗. In other words,
it starts with a sequence of zero or more ×⃝ from the left, then incorporates either ↑↓⃝, ⇕⃝, ⇈⇊⃝, or ⇕⃝M⃝, and
ends with a sequence of zero or more⃝ on the right. As for the vertical direction, the columns are in one
of three distinct formats when read from top to bottom: ⇕⃝∗[⇈⇊⃝] ↑↓⃝∗, ⇕⃝∗×⃝∗,⃝∗[⇈⇊⃝] ↑↓⃝∗, or⃝∗[ M⃝] ↑↓⃝∗, and
such a shape must satisfy Definition 4.8.

Based on Lemma 4.10, we can define a two-local nearest-neighbor Hamiltonian that checks whether a
clock state is in legal shape or not. For example, prohibits a qudit at location (i, j) in state⃝ to be positioned
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Forbidden Guarantees that
⃝ ↑↓⃝,⃝ ⇕⃝,⃝×⃝,⃝⇈⇊⃝,⃝M⃝ ⃝ is to the right of all other qubits
⃝×⃝, ↑↓⃝×⃝, ⇕⃝×⃝,⇈⇊⃝×⃝, M⃝×⃝ ×⃝ is to the left of all other qubits
⃝×⃝,×⃝⃝ ⃝ and ×⃝ are not horizontally adjacent
↑↓⃝ ↑↓⃝, ↑↓⃝ ⇕⃝, ↑↓⃝⇈⇊⃝
⇕⃝ ↑↓⃝, ⇕⃝ ⇕⃝, ⇕⃝⇈⇊⃝ only one of ↑↓⃝, ⇕⃝, or ⇈⇊⃝ per row
⇈⇊⃝ ↑↓⃝, ⇈⇊⃝ ⇕⃝, ⇈⇊⃝⇈⇊⃝
⃝
⇕⃝ ,

↑↓⃝
⇕⃝ ,

×⃝
⇕⃝ ,

⇈⇊⃝
⇕⃝ only ⇕⃝ above ⇕⃝

↑↓⃝
⃝ ,

↑↓⃝
⇕⃝ ,

↑↓⃝
×⃝ ,

↑↓⃝
⇈⇊⃝ only ↑↓⃝ below ↑↓⃝

⃝
×⃝ ,

×⃝
⃝ ⃝ and ×⃝ are not vertically adjacent

⇕⃝
⃝ ,

⇈⇊⃝
⃝ ,

×⃝
↑↓⃝ ,

×⃝
⇈⇊⃝ no⃝ below ⇕⃝ and ⇈⇊⃝; no ↑↓⃝ and ⇈⇊⃝ below ×⃝

⃝
↑↓⃝ no⃝ above ↑↓⃝

↑↓⃝
M⃝ ,

⇕⃝
M⃝ ,

×⃝
M⃝ ,

⇈⇊⃝
M⃝ only⃝ above M⃝

M⃝
⃝ ,

M⃝
⇕⃝ ,

M⃝
×⃝ ,

M⃝
⇈⇊⃝ only ↑↓⃝ below M⃝

↑↓⃝M⃝,×⃝M⃝,⇈⇊⃝M⃝, M⃝M⃝ only ⇕⃝ to the left of M⃝
M⃝ ↑↓⃝, M⃝ ⇕⃝, M⃝⇈⇊⃝ only⃝ to the right of M⃝

Table 1: Local rules for basis state to be in legal shape.

to the left of a qudit at location (i, j+ 1) in state ×⃝. Then, the corresponding Hamiltonian term would be
(|⃝,×⃝⟩⟨⃝,×⃝|)(i, j),(i, j+1). Summing over all the forbidden configurations of Table 1 and over all relevant
pairs of particles, we have

Hclock ≡ ∑
r∈rules

Hr. (4.7)

Next, we turn to the propagation term Hℓ that guarantees the correctness of transitions between clock states
in consecutive legal shapes. Observe that according to Definition 4.8, consecutive legal shapes only differ
in at most two adjacent locations, which makes it possible to be verified using two-local nearest-neighbour
Hamiltonians. In particular, the structure of Hℓ takes on different forms depending on whether ℓ is in the
downward phase (i.e., is of the form (3n− 1)r+ k for 1 ≤ k ≤ n) or the upward phase (i.e., is of the form
(3n− 1)r+ n+ k for 1 ≤ k < 2n− 1). For the downward stage, Hℓ checks that a gate is applied correctly.
For ℓ= (3n−1)r+ k and 2 < k ≤ n, as the same in [AVDK+08], we define

Hℓ ≡
(

0 −Uℓ

−U†
ℓ 0

)
+

(∣∣∣⇈⃝↑⃝〉〈⇈⃝↑⃝ ∣∣∣+ ∣∣∣⇈⃝↓⃝〉〈⇈⃝↓⃝ ∣∣∣+ ∣∣∣⇊⃝↑⃝〉〈⇊⃝↑⃝ ∣∣∣+ ∣∣∣⇊⃝↓⃝〉〈⇊⃝↓⃝ ∣∣∣
)

k−1,r

k,r

+

(∣∣∣⇈⃝↑⃝〉〈⇈⃝↑⃝ ∣∣∣+ ∣∣∣⇈⃝↓⃝〉〈⇈⃝↓⃝ ∣∣∣+ ∣∣∣⇊⃝↑⃝〉〈⇊⃝↑⃝ ∣∣∣+ ∣∣∣⇊⃝↓⃝〉〈⇊⃝↓⃝ ∣∣∣
)

k,r

k+1,r
, (4.8)
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where the stacked notation
∣∣∣··〉〈·· ∣∣∣ denotes a 2-local Hamiltonian term acting on nearest neighbors as in-

dicated by the indices outside the parentheses. Moreover, the first term in Equation (4.8) represents a
Hamiltonian that acts on the two particles in positions (k,r) and (k+ 1,r) and is restricted to the subspace
spanned by ∣∣∣⇈⃝↑⃝〉 ∣∣∣⇈⃝↓⃝〉 ∣∣∣⇊⃝↑⃝〉 ∣∣∣⇊⃝↓⃝〉 ∣∣∣ ⇑⃝

⇈⃝

〉 ∣∣∣ ⇑⃝
⇊⃝

〉 ∣∣∣ ⇓⃝
⇈⃝

〉 ∣∣∣ ⇓⃝
⇊⃝

〉
For the special cases where k = 1 or n, we set

H(3n−1)r+1 ≡

(
0 −U(3n−1)r+1

−U†
(3n−1)r+1 0

)
+(| ↑⃝⟩⟨ ↑⃝|+ | ↓⃝⟩⟨ ↓⃝|)1,r

+

(∣∣∣⇈⃝↑⃝〉〈⇈⃝↑⃝ ∣∣∣+ ∣∣∣⇈⃝↓⃝〉〈⇈⃝↓⃝ ∣∣∣+ ∣∣∣⇊⃝↑⃝〉〈⇊⃝↑⃝ ∣∣∣+ ∣∣∣⇊⃝↓⃝〉〈⇊⃝↓⃝ ∣∣∣
)

1,r

2,r
,

and

H(3n−1)r+n ≡

(
0 −U(3n−1)r+n

−U†
(3n−1)r+n 0

)
+

(∣∣∣⇈⃝↑⃝〉〈⇈⃝↑⃝ ∣∣∣+ ∣∣∣⇈⃝↓⃝〉〈⇈⃝↓⃝ ∣∣∣+ ∣∣∣⇊⃝↑⃝〉〈⇊⃝↑⃝ ∣∣∣+ ∣∣∣⇊⃝↓⃝〉〈⇊⃝↓⃝ ∣∣∣
)

n−1,r

n,r

+

(∣∣∣ ⇑⃝
⇈⃝

〉〈 ⇑⃝
⇈⃝

∣∣∣+ ∣∣∣ ⇑⃝
⇊⃝

〉〈 ⇑⃝
⇊⃝

∣∣∣+ ∣∣∣ ⇓⃝
⇈⃝

〉〈 ⇓⃝
⇈⃝

∣∣∣+ ∣∣∣ ⇓⃝
⇊⃝

〉〈 ⇓⃝
⇊⃝

∣∣∣) n−1,r

n,r
.

As for the upward stage, we have ℓ= (3n−1)r+n+k for some 1≤ k < 2n−1. If 1 < k < 2n−1 and is an
odd number, in this step the qudit in the marker phase |M⃝⟩ in the i-th row with i = n− (k−1)/2 will acquire
the value of the qudit on the left of it. Then, the corresponding Hamiltonian term Hℓ can be written as

Hℓ ≡
∣∣∣M⃝
↑⃝

〉〈
M⃝
↑⃝

∣∣∣ i,r+1

i+1,r+1
+
∣∣∣⃝
⇈⃝

〉〈⃝
⇈⃝

∣∣∣ i−1,r+1

i,r+1
− (| ⇑⃝, M⃝⟩⟨×⃝,⇈⃝|+ |×⃝,⇈⃝⟩⟨ ⇑⃝, M⃝|)(i,r)(i,r+1)

+
∣∣∣M⃝
↓⃝

〉〈
M⃝
↓⃝

∣∣∣ i,r+1

i+1,r+1
+
∣∣∣⃝
⇊⃝

〉〈⃝
⇊⃝

∣∣∣ i−1,r+1

i,r+1
− (| ⇓⃝, M⃝⟩⟨×⃝,⇊⃝|+ |×⃝,⇊⃝⟩⟨ ⇓⃝, M⃝|)(i,r)(i,r+1) ,

where the first line corresponds to changing the state | ⇑⃝, M⃝⟩ to |⃝,⇈⃝⟩, and the second line corresponds to
changing the state | ⇓⃝, M⃝⟩ to |⃝,⇊⃝⟩.

If k is an even number, in this step the qudit in the flag phase |⇈⇊⃝⟩ in the i-th row with i = n+ 1− k/2
will transform into the first phase ↑↓⃝, while the qudit above it will transform into the marker phase M⃝ from
the unborn phase |⃝⟩. Then, the corresponding Hamiltonian term Hℓ can be written as

Hℓ ≡
∣∣∣M⃝
↑⃝

〉〈
M⃝
↑⃝

∣∣∣ i−1,r+1

i,r+1
+
∣∣∣⃝
⇈⃝

〉〈⃝
⇈⃝

∣∣∣ i−1,r+1

i,r+1
−
(∣∣∣M⃝
↑⃝

〉〈⃝
⇈⃝

∣∣∣+ ∣∣∣⃝
⇈⃝

〉〈
M⃝
↑⃝

∣∣∣) i−1,r+1

i,r+1

+
∣∣∣M⃝
↓⃝

〉〈
M⃝
↓⃝

∣∣∣ i−1,r+1

i,r+1
+
∣∣∣⃝
⇊⃝

〉〈⃝
⇊⃝

∣∣∣ i−1,r+1

i,r+1
−
(∣∣∣M⃝
↓⃝

〉〈⃝
⇊⃝

∣∣∣+ ∣∣∣⃝
⇊⃝

〉〈
M⃝
↓⃝

∣∣∣) i−1,r+1

i,r+1
.
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For the special case where k = 1 or k = 2n−1, we set

H(3n−1)r+n+1 ≡
∣∣∣ ⇑⃝
⇈⃝

〉〈 ⇑⃝
⇈⃝

∣∣∣ n,r−1

n,r
+
∣∣∣ ⇓⃝
⇈⃝

〉〈 ⇓⃝
⇈⃝

∣∣∣ n,r−1

n,r
+
∣∣∣⃝
⇈⃝

〉〈⃝
⇈⃝

∣∣∣ n−1,r+1

n,r+1

− (|⇈⃝,⃝⟩⟨×⃝,⇈⃝|+ |×⃝,⇈⃝⟩⟨⇈⃝,⃝|)(n,r)(n,r+1)

+
∣∣∣ ⇑⃝
⇊⃝

〉〈 ⇑⃝
⇊⃝

∣∣∣ n,r−1

n,r
+
∣∣∣ ⇓⃝
⇊⃝

〉〈 ⇓⃝
⇊⃝

∣∣∣ n,r−1

n,r
+
∣∣∣⃝
⇊⃝

〉〈⃝
⇊⃝

∣∣∣ n−1,r+1

n,r+1

− (|⇊⃝,⃝⟩⟨×⃝,⇊⃝|+ |×⃝,⇊⃝⟩⟨⇊⃝,⃝|)(n,r)(n,r+1) ,

and

H(3n−1)(r+1) ≡
∣∣∣ ⇑⃝×⃝〉〈 ⇑⃝×⃝ ∣∣∣ 1,r

2,r
+ | ↑⃝⟩⟨ ↑⃝|1,r+1− (| ⇑⃝, M⃝⟩⟨×⃝, ↑⃝|+ |×⃝, ↑⃝⟩⟨ ⇑⃝, M⃝|)(1,r)(1,r+1)

+
∣∣∣ ⇓⃝×⃝〉〈 ⇓⃝×⃝ ∣∣∣ 1,r

2,r
+ | ↓⃝⟩⟨ ↓⃝|1,r+1− (| ⇓⃝, M⃝⟩⟨×⃝, ↓⃝|+ |×⃝, ↓⃝⟩⟨ ⇓⃝, M⃝|)(1,r)(1,r+1) .

Based on the definition of Hinput, Hclock, and Hℓ, we present the following result, which is a variant of
[AVDK+08, Lemma 4.7].

Lemma 4.11. For any 𝜖 ≥ 1/poly(n), the Hamiltonian H2D defined in Equation (4.6) on the n× (T + 1)
grid of qudits satisfies the following.

• The history state of the evolution |𝜓ground⟩ is a ground state of H2D. Moreover, any ground state of
H2D is 𝜖-close to |𝜓ground⟩.

• The spectral gap of H2D is at least Ω((nT )−3) = 1/polyn.

The proof of Lemma 4.11 essentially follows the proof of [AVDK+08, Lemma 4.7].

4.3.2 Entanglement properties of the ground state

In this section, we analyze the entanglement properties of the state |𝜓ground⟩ defined in Equation (4.5),
which is the ground state of the 2D Hamiltonian H2D defined in Equation (4.6). We begin by presenting
some definitions and technical lemmas that are useful.

Definition 4.12 (Cutwise orthogonality). For any K > 0, let |𝜓1⟩ and |𝜓2⟩ be two K-qudit states, and con-
sider any bipartite cut among these K qudits. We denote the density matrices obtained by tracing out the
right parts of |𝜓1⟩ and |𝜓2⟩ as 𝜌(A)1 and 𝜌

(A)
2 , respectively. Similarly, we define 𝜌

(B)
1 and 𝜌

(B)
2 . We define |𝜓1⟩

and |𝜓2⟩ to be cutwise orthogonal with respect to this bipartite cut if the following condition holds:

𝜌
(A)
1 𝜌

(A)
2 = 𝜌

(B)
1 𝜌

(B)
2 = 0.

The next lemma demonstrates the entanglement properties of a set of mutually cutwise orthogonal states.
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Lemma 4.13. For any m,K > 0, suppose there are m K-qudit states |𝜓1⟩, . . . , |𝜓m⟩ and there is a bipartite
cut among these K qudits into subsystems (A,B). Then for any 𝛼1, . . . ,𝛼m with ∑i𝛼

2
i = 1, the state

|Ψ⟩= 𝛼1|𝜓1⟩+ · · ·+𝛼m|𝜓m⟩

satisfies

S(ΨA) =
m

∑
i=1
|𝛼i|2S((𝜓i)A)+

m

∑
i=1
|𝛼i|2 log

1
|𝛼i|2

,

if |𝜓i⟩ and |𝜓 j⟩ are cutwise orthogonal for any i ̸= j ∈ [m]. Here, ΨA is the reduced state of |Ψ⟩ on subsystem
A, and likewise for the other states.

Proof. For any i ∈ [m], we express the Schmidt decomposition of |𝜓i⟩ as

|𝜓i⟩=
Ki

∑
k=1

𝛽i,k|𝜓
(A)
i,k ⟩⊗ |𝜓

(B)
i,k ⟩.

Consequently, for any i ∈ [m] we have

(𝜓i)A =
Ki

∑
k=1
|𝛽i,k|2|𝜓

(A)
i,k ⟩⟨𝜓

(A)
i,k |, (𝜓i)B =

Ki

∑
k=1
|𝛽i,k|2|𝜓

(B)
i,k ⟩⟨𝜓

(B)
i,k |.

Given that |𝜓i⟩ and |𝜓 j⟩ are cutwise orthogonal for any i ̸= j ∈ [m], we can then derive that∣∣∣〈𝜓(A)
i,ki
|𝜓(A)

j,k j

〉∣∣∣= ∣∣∣〈𝜓(B)
i,ki
|𝜓(B)

j,k j

〉∣∣∣= 0,

for any ki ∈ [Ki], k j ∈ [K j], and any i ̸= j ∈ [m]. Then, tracing out the right part of |Φ⟩, the resulting reduced
state ΨA is given by

ΨA =
m

∑
i=1
|𝛼i|2

Ki

∑
k=1
|𝛽i,k|2|𝜓

(A)
i,k ⟩⟨𝜓

(A)
i,k |,

where the components {|𝜓(A)
i,k ⟩} are orthogonal to each other. Hence, we can conclude that

S(ΨA) =
m

∑
i=1

Ki

∑
k=1
|𝛼i|2|𝛽i,k|2 log

1
|𝛼i|2|𝛽i,k|2

=
m

∑
i=1
|𝛼i|2

Ki

∑
k=1
|𝛽i,k|2

(
log | 1

𝛼i|2
+ log

1
|𝛽i,k|2

)
=

m

∑
i=1
|𝛼i|2S(|𝜓i⟩)+

m

∑
i=1
|𝛼i|2 log

1
|𝛼i|2

.

We consider a horizontal cut through the 2D grid of size n× (T + 1) such that the cut has distance at
least 𝜔(logn) to both the top and the bottom of the grids, and use S(·) to denote the entanglement entropy
across this cut. Additionally, we slightly abuse notation by using S((𝜓output)A) to denote the entanglement
entropy of the reduced output state (𝜓output)A across the corresponding cut among the n qubits. Formally, if
the horizontal cut through the n× (T +1) 2D grid is positioned between the c-th line and the (c+1)-th line,
then S((𝜓output)A) is defined as the von Neumann entropy of (𝜓output)A, which is the reduced state of |𝜓output⟩
across the cut between the c-th qubit and the (c+ 1)-th qubit among the n qubits. With this notation, we
establish the following fact.
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Lemma 4.14. For any t ∈ [(3n− 1)R,L], the t-th legal shape |𝛾(t)⟩ defined in Equation (4.4) satisfies
S(𝛾A(t)) = S((𝜓output)A).

Proof. For any t ∈ [(3n−1)R,L], observe that |𝛾(t)⟩ can be decomposed as follows:

|𝛾(t)⟩= (dead qudits)⊗ (active qudits)⊗ (unborn qudits),

where (dead qudits) denotes qudits in the dead phase, (active qudits) denotes qudits in the first, second, or
the flag phase, and (unborn qudits) denotes qudits in the unborn phase. Moreover, note that with respect
to the cut (dead qudits) can be further divided into

(dead qudits) = (dead qudits)above⊗ (dead qudits)below,

where (dead qudits)above and (dead qudits)below denote qubits in the dead phase that is above the cut and
below the cut, respectively. Similar division can also be applied to the unborn qudits. Hence, we have

|𝛾(t)⟩= (dead qudits)above⊗ (unborn qudits)above⊗ (active qudits)
⊗ (dead qudits)below⊗ (unborn qudits)below,

S(𝛾A(t)) thus equals the von Neumann entropy of the reduced state of active qudits, which equals S((𝜓output)A)
given that the active qudits encodes |𝜓output⟩ in their orientations when t ≥ (3n−1)R.

Next, we introduce a concept called “turn” to analyze the entanglement structure of the ground state
|𝜓ground⟩. Formally, we divide the L+ 1 clock states |𝛾(0)⟩, . . . , |𝛾(L)⟩ in legal shapes into T + 1 turns,
where in each turn, the changes of the legal shapes happen on the same side of the cut. As an example,
suppose n is even and the cut is between the n

2 -th line and the
( n

2 +1
)
-th line. Then, the first turn consists of

{|𝛾(0)⟩, . . . , |𝛾(n/2)⟩}, the second turn consists of {|𝛾(n/2+ 1)⟩, . . . , |𝛾(3n/2)⟩}, and so on. An example
with n = 6 and T = 2 is given in Figure 3. It is worth pointing out that the concept of “turn” is new and is
crucial to our analysis regarding the entanglement structure of the ground states.

For the p-th turn of legal shapes starting at the t(p)
s -th legal shape and ending at the t(p)

e -th legal shape,
we define the uniform superposition state of this turn to be

|𝜁(p)⟩ ≡ 1√
t(p)
e − t(p)

s +1

t(p)
e

∑
𝜏=t(p)

s

|𝛾(𝜏)⟩. (4.9)

Then, the ground state |𝜓ground⟩ defined in Equation (4.5) can also be expressed as

|𝜓ground⟩=
T+1

∑
p=1

√
t(p)
e − t(p)

s +1
L+1

|𝜁(p)⟩.

Lemma 4.15. For any p1 ̸= p2 ∈ [1,T + 1], the uniform superposition states |𝜁(p1)⟩ and |𝜁(p2)⟩ of these
two turns are cutwise orthogonal with respect to the cut per Definition 4.12.

Proof. We prove this lemma by showing that for any two states |𝛾(t1)⟩, |𝛾(t2)⟩ in these two turns, respect-
ively, are cutwise orthogonal.

If |p1− p2|> 1, note that the number of qudits in dead phases are different on both sides of the cut for
any possible |𝛾(t1)⟩ and |𝛾(t2)⟩. Hence, they are cutwise orthogonal.
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Turn 1:

↑↓⃝ ⃝ ⃝
↑↓⃝ ⃝ ⃝
↑↓⃝ ⃝ ⃝
↑↓⃝ ⃝ ⃝
↑↓⃝ ⃝ ⃝
↑↓⃝ ⃝ ⃝

⇈⇊⃝ ⃝ ⃝
↑↓⃝ ⃝ ⃝
↑↓⃝ ⃝ ⃝
↑↓⃝ ⃝ ⃝
↑↓⃝ ⃝ ⃝
↑↓⃝ ⃝ ⃝

⇕⃝ ⃝ ⃝
⇈⇊⃝ ⃝ ⃝
↑↓⃝ ⃝ ⃝
↑↓⃝ ⃝ ⃝
↑↓⃝ ⃝ ⃝
↑↓⃝ ⃝ ⃝

⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
⇈⇊⃝ ⃝ ⃝
↑↓⃝ ⃝ ⃝
↑↓⃝ ⃝ ⃝
↑↓⃝ ⃝ ⃝

Turn 2:

⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
⇈⇊⃝ ⃝ ⃝
↑↓⃝ ⃝ ⃝
↑↓⃝ ⃝ ⃝

⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
⇈⇊⃝ ⃝ ⃝
↑↓⃝ ⃝ ⃝

⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
⇈⇊⃝ ⃝ ⃝

⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
×⃝ ⇈⇊⃝ ⃝

⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
⇕⃝ M⃝ ⃝
×⃝ ↑↓⃝ ⃝

⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
×⃝ ⇈⇊⃝ ⃝
×⃝ ↑↓⃝ ⃝

⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
⇕⃝ M⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝

⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
×⃝ ⇈⇊⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝

Turn 3:

⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
⇕⃝ M⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝

⇕⃝ ⃝ ⃝
⇕⃝ ⃝ ⃝
×⃝ ⇈⇊⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝

⇕⃝ ⃝ ⃝
⇕⃝ M⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝

⇕⃝ ⃝ ⃝
×⃝ ⇈⇊⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝

⇕⃝ M⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝

×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝

×⃝ ⇈⇊⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝

×⃝ ⇕⃝ ⃝
×⃝ ⇈⇊⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝

×⃝ ⇕⃝ ⃝
×⃝ ⇕⃝ ⃝
×⃝ ⇈⇊⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝
×⃝ ↑↓⃝ ⃝

Figure 3: An example of the first three turns when n = 6, T = 2, and the cut is between the third line and
the fourth line.

If |p1− p2| = 1, i.e., p1 and p2 are two consecutive turns, then the changes of shapes two turns are on
different sides of the cut. Without loss of generality we assume p2 = p1+1 and the changes in the p2-th turn
happen below the cut. Then, |𝛾(t2)⟩ contains a qudit in the flag phase |⇈⇊⃝⟩ or the marker phase |M⃝⟩ below
the cut, which is not present in |𝛾(t1)⟩. As for the part above the cut, note that |𝛾(t2)⟩ contains a column
whose qudits above the cut are all in the second phase | ↑↓⃝⟩, which is not present in |𝛾(t1)⟩. Hence, |𝛾(t1)⟩
and |𝛾(t2)⟩ are cutwise orthogonal.
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Padding does not change entanglement structure within a turn. The next lemma can be viewed as a
sanity check. Suppose we are at the time instance corresponding to ts =(3n−1)R, so that |𝛾(ts)⟩ corresponds
to an encoding of |𝜓output⟩. Note that the state |𝜓output⟩ has nice entanglement properties that we desire. For
t ≥ ts, all we do to the circuit is pad it with unitaries. Ideally, it should not change the entanglement structure
of the encoded state, but it is not immediately obvious that it is indeed the case, because of the complicated
way in which we encode the clock. In the next lemma, we assuage some of that concern by showing that
the entanglement structure indeed does not change, when we consider a superposition of temporal states, for
t > ts, that are all part of the same turn.

Lemma 4.16. For any turn of states in legal shapes that starts at the ts-th shape and ends at the te-th shape,
denote

|𝜁⟩ ≡ 1√
te− ts +1

te

∑
𝜏=ts
|𝛾(𝜏)⟩

to be the uniform superposition state over all the clock states in this turn as in Equation (4.9). Then, if
ts ≥ (3n−1)R, we have

S(𝜁A) = S(𝛾A(𝜏)) = S((𝜓output)A), ∀𝜏 ∈ [ts, te].

Otherwise, we have

0≤ S(𝜁A)≤ 2n.

Proof. Without loss of generality we assume the changes of the shapes in this turn happens above the
cut. Observe that in all the states in this phase, their active qudits string encodes the same quantum state
|𝜓output⟩ in their orientations and the encodings are cut through at the same position, however in orthogonal
subspaces. Hence, if |𝜓output⟩ admits the following Schmidt decomposition

|𝜓output⟩= ∑
i
𝜈i|𝜓(A)

i ⟩⊗ |𝜓
(B)
i ⟩,

across the cut, where A and B denote the subsystems above and below the cut, respectively, the state in the
𝜏-th shape |𝛾(𝜏)⟩ admits the following decomposition

|𝛾(𝜏)⟩= ∑
i
𝜈i|𝛾(A)i (𝜏)⟩⊗ |𝛾(B)i ⟩,

where {|𝛾(A)i (𝜏1)⟩} and {|𝛾(A)i (𝜏2)⟩} span orthogonal subspaces for any 𝜏1 ̸= 𝜏2 ∈ [ts, te], and the RHS of the
tensor product is identical for every ts ≤ 𝜏 ≤ te. Hence, the superposition state |𝜁⟩ of this phase satisfies

|𝜁⟩= 1√
te− ts +1

te

∑
𝜏=ts

∑
i
𝜈i|𝛾(A)i (𝜏)⟩⊗ |𝛾(B)i ⟩

= ∑
i
𝜈i

(
1√

te− ts +1

te

∑
𝜏=ts
|𝛾(A)i (𝜏)⟩

)
⊗|𝛾(B)i ⟩.

Hence, for any ts ≤ 𝜏 ≤ te, tracing out the left side of |𝛾(𝜏)⟩ yields the same reduced state as tracing out the
left side of |𝜁⟩, by which we can conclude that

S(𝜁A) = S(𝛾A(𝜏)) = S((𝜓output)A), ∀ts ≤ 𝜏 ≤ te.

where the last equation is from Lemma 4.14.
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Remark 4.17. As for the case where ts < (3n− 1)R, it is possible that in this turn there exists some clock
state |𝛾(𝜏)⟩ encoding an intermediate state of the circuit rather than |𝜓output⟩. Nevertheless, all the clock
states in this turn have their (active qudits) concentrated within only two columns of the 2D grid. Hence,
|𝜁⟩ is in a Hilbert space spanned by 2n basis states which has dimension at most 22n, which leads to

0≤ S(𝜁A)≤ 2n.

Showing that the ground state inherits desirable entanglement properties because of padding. In this
section, we will collect all our ideas together and prove that the entanglement entropy of the ground state of
our clock Hamiltonian is, more or less, the same as the entanglement entropy of |𝜓output⟩. At a high level,
this is because of padding. Since we pad with sufficiently many identities, the entanglement structure of the
ground state looks fairly similar to |𝜓output⟩, because of a preponderence of terms which encode |𝜓output⟩ in
the superposition.

Lemma 4.18. Consider a horizontal cut through the 2D grid of size n× (T + 1) such that the cut has
distance at least 𝜔(logn) to both the top and the bottom of the grid, the entanglement entropy S((𝜓ground)A)
of the ground state |𝜓ground⟩ defined in Equation (4.5) satisfies(

1− 1
n

)
·S((𝜓output)A)≤ S((𝜓ground)A)≤ S((𝜓output)A)+poly logn,

for any T = polyn satisfying T ≥ 3nR.

Proof. For any p ∈ [1,T +1], we denote

𝛼p ≡

√
t(p)
e − t(p)

s +1
L+1

,

where t(p)
s and t(p)

e separately denotes the number of starting shape and ending shape of the p-th turn. Then
the ground state |𝜓ground⟩ defined in Equation (4.5) satisfies

|𝜓ground⟩=
T+1

∑
p=1

𝛼p|𝜁(p)⟩.

Since the states |𝜁(p)⟩ are shown to be cutwise orthogonal by Lemma 4.15, we can derive that

S((𝜓ground)A) =
T+1

∑
p=1
|𝛼p|2S(𝜁A(p))+2

T+1

∑
p=1
|𝛼p|2 log(1/|𝛼p|)

according to Lemma 4.13. Furthermore, by Lemma 4.16 we can establish that

S(𝜁A(p)) = S((𝜓output)A), ∀p ∈ (R+1,T +1],

which leads to

S((𝜓ground)A) =
T+1

∑
p=R+2

|𝛼p|2S((𝜓output)A)+2
T+1

∑
p=1
|𝛼p|2 log(1/|𝛼p|)+

R+1

∑
p=1
|𝛼p|2S(𝜁A(p)) (4.10)
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Given that T = polyn, we have

0≤
T+1

∑
p=1
|𝛼p|2 log(1/|𝛼p|)≤ poly logn

for any possible values of 𝛼1, . . . ,𝛼T+1. As for the third term in Equation (4.10), we have

0≤
R+1

∑
p=1
|𝛼p|2S(𝜁A(p))≤ 2n ·

R+1

∑
p=1
|𝛼p|2,

given that 0≤ S(𝜁A(p))≤ 2n by Lemma 4.16. Furthermore, we have

R+1

∑
p=1
|𝛼p|2 ≤

R+1

∑
p=1

t(p)
e − t(p)

s +1
L+1

≤ 3nR
2nT +1

≤ 1
n
,

and

T+1

∑
p=R+2

|𝛼p|2 = 1−
R+1

∑
p=1
|𝛼p|2 ≥ 1− 1

n
.

Thus, we can conclude that(
1− 1

n

)
·S((𝜓output)A)≤ S((𝜓ground)A)≤ S((𝜓output)A)+poly logn.

4.3.3 Learning ground state entanglement structure for 2D geometrically local Hamiltonians

We can now use the padded circuit-to-2D-Hamiltonian construction to convert the pseudoentangled states
ensembles we constructed in Section 3.3 into families of 2D Hamiltonians for which it is difficult to decide
whether the ground state has low entanglement (i.e., poly logn) or high entanglement (i.e., Ω(n)) entangle-
ment across horizontal cuts through the n×poly(n) grid. Formally, we show the following.

Theorem 4.19. For every n∈N, there exist two familiesHlow
n andHhigh

n of geometrically 2D-local Hamilto-
nians on (n× polyn) qudits arranged in an n× poly(n) grid with spectral gap Ω(1/poly(n)), and there
are efficient procedures that sample (classical descriptions of) Hamiltonians from either family (denoted
H←Hlow

n and H←Hhigh
n ) with the following properties:

(i) Hamiltonians sampled according to H←Hlow
n and H←Hhigh

n are computationally indistinguishable
under Assumption 2.19.

(ii) With overwhelming probability, the ground states of Hamiltonians H ←Hlow
n have poly logn entan-

glement across horizontal cuts through the grid that are at least 𝜔(logn) far from the boundary, and
Hamiltonians H←Hlow

n have Ω(n) entanglement across the same cuts.

Proof. We consider the same construction ofHlow
n andHhigh

n as in Theorem 4.2, except that we now use the
2D circuit-to-Hamiltonian construction described in Section 4.3.1. With this, we only need to show Item (ii)
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as the condition on the spectral gap follows from [AVDK+08] and the other properties follow in exactly the
same way as in the proof of Theorem 4.2

Consider a Hamiltonian H ←Hlow
n or H ←Hhigh

n . Let |𝜓ground⟩ be the history state of the circuit as
defined in Equation (4.5). By Lemma 4.11 any ground state of H is 𝜖-close for any 𝜖 = 1/poly(n) that
we can choose. Therefore, choosing 𝜖 small enough and using the continuity bound for the von Neumann
entropy (Lemma 2.7), we can ensure that any ground state of H only differs in entanglement entropy from
|𝜓ground⟩ by 1/poly(n). It therefore suffices to show Item (ii) for |𝜓ground⟩. This follows directly from
Lemma 4.18 and the fact that the states |𝜓output⟩ are pseudoentangled with entanglement gap O(poly logn)
vs Ω(n) by our pseudoentanglement construction (Theorem 3.18).

Remark 4.20. Just as in Remark 4.3, under the standard LWE assumption (Assumption 2.18) Theorem 4.19
still holds, but with the smaller entanglement gap O(n𝛿) vs Ω(n) for any 𝛿 > 0.
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