Scalable, Sound, and Accurate Jump Table Analysis®

Huan Nguyen
Stony Brook University
Stony Brook, NY, USA
hnnguyen@cs.stonybrook.edu

Abstract

Jump tables are a common source of indirect jumps in binary code.
Resolving these indirect jumps is critical for constructing a complete
control-flow graph, which is an essential first step for most appli-
cations involving binaries, including binary hardening and instru-
mentation, binary analysis and fuzzing for vulnerability discovery,
malware analysis and reverse engineering. Existing techniques for
jump table analysis generally prioritize performance over soundness.
While lack of soundness may be acceptable for applications such as
decompilation, it can cause unpredictable runtime failures in binary
instrumentation applications. We therefore present SJA, a new jump
table analysis technique in this paper that is sound and scalable. Our
analysis uses a novel abstract domain to systematically track the
“structure” of computed code pointers without relying on syntactic
pattern-matching that is common in previous works. In addition,
we present a bounds analysis that efficiently and losslessly reasons
about equality and inequality relations that arise in the context of
jump tables. As a result, our system reduces miss rate by 35X over the
next best technique. When evaluated on error rate based on F1-score,
our technique outperforms the best previous techniques by 3x.

CCS Concepts

« Theory of computation — Program analysis; - Software and
its engineering — Software reverse engineering.

Keywords
static analysis, reverse engineering

ACM Reference Format:

Huan Nguyen, Soumyakant Priyadarshan, and R. Sekar. 2024. Scalable, Sound,
and Accurate Jump Table Analysis. In Proceedings of the 33rd ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA °24), Sep-
tember 16-20, 2024, Vienna, Austria. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3650212.3680301

1 Introduction
Static analysis of binary code plays a central role in software security
[14, 24,33, 34, 38, 41], performance optimization [21, 28], software

“This work was supported by an ONR grant N00014-17-1-2891 and in part by NSF
grants 1918667 and 2153056.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISSTA °24, September 16-20, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACMISBN 979-8-4007-0612-7/24/09

https://doi.org/10.1145/3650212.3680301

Soumyakant Priyadarshan
Stony Brook University
Stony Brook, NY, USA

spriyadarsha@cs.stonybrook.edu

R. Sekar
Stony Brook University
Stony Brook, NY, USA
sekar@cs.stonybrook.edu

reliability [17], binary instrumentation [5, 11, 25, 30, 35, 37, 40], as
well as reverse engineering [1, 2, 7, 8, 10, 27].

Binary analysis tools face a daunting set of challenges, including
the large size and complexity of instruction sets such as the x86, and
the low-level nature of instruction semantics, with numerous side
effects. Compounding this further, many analyses need to be per-
formed even before disassembly is finalized and/or the control-flow
graph is constructed. In particular, many key analyses such as jump
table analysis and function entry identification result in the discovery
of new code or data [18, 23]. Such analyses need to be repeated on the
updated control-flow graph many times until the graph converges.
To cope with these challenges, binary analysis tools (e.g., Dyninst
[11, 18], angr [32], Ghidra [30] and Datalog Disassembly [10], as
well as many other systems based on them [5, 14, 16, 28, 35]), have
been driven by pragmatic considerations such as precision and per-
formance on real-world binaries. Soundness and applicability to all
programs emphasized in static analysis research and compilers, have
not been as much of a priority in these tools. Indeed, for applications
such as decompilation or bug-finding, practical effectiveness is more
important than the loss of soundness in some cases. However, the
calculus is very different in binary instrumentation applications such
as binary hardening and software debloating, where functionality
preservation and applicability to all programs are paramount.

Jump table analysis, a crucial component in many existing tools
[1,2,4,5,8,10,11, 14,18, 21, 23, 24, 26-28, 30, 32-35,37,39-41,41],is
aprime example of where these differences manifest. Note that jump
tables result typically from the translation of high-level language
constructs such as the switch statements in C/C++. The result is
an indirect jump whose target is obtained by indexing into a table
stored within the read-only data of a binary. The index value itself
is an expression.

A sound jump table analysis ensures that all possible targets of
an indirect jump are identified. This will ensure that the control-
flow graph (CFG) is complete, without any missing edges. Complete
CFGs are desirable in most binary analysis applications. Without
a complete CFG, some of the code in a binary won’t be recognized,
leading to incomplete code discovery, incomplete instrumentation,
and unsound inferences about code behavior. Note that for indi-
rect calls, accurately reasoning about their possible targets is very
challenging. However, they can be handled conservatively because
all valid function pointer values appear within the code or in the
read-only data section. By scanning for these constants, we can ob-
tain a superset of the targets [41]. In contrast, jump table pointers
are the result of computation, so their values cannot be determined
unless the analysis is able to identify the exact logic involved in the
computation. This make jump table analysis challenging.

Most jump table analyses first compute a backward slice [36] of
the code with respect to the variable (register) used in the indirect
jump. Then, this slice is analyzed to uncover the base of the jump

ISSTA 24, September 16-20, 2024, Vienna, Austria

table, its size, and the width of each entry. In addition, the analysis
needs to determine the precise expression used to derive the target
address from the jump table entries. This leads to four main sources
of unsoundness and/or precision loss:

o Limiting the length of backward slice: For efficiency and to reduce
precision loss, many techniques limit the length of the backward
slice, e.g., angr [32] restricts it to three basic blocks [23].

e Limiting the number of paths considered: Another common ap-
proach is to limit the number of paths analyzed. For instance,
Ghidra [30] assumes that jump table base and index can only be
derived from a single path [23].

e Pattern-driven analysis: Given that jump tables are typically
generated by compilers, patterns can often be identified in the
computation of the target address. These are often leveraged in
jump table analysis [1, 11, 18, 21, 37]. However, such an approach
can make the analysis compiler-specific.

o Limited capacity to analyze jump table bounds: Underestimating
the bound will lead to missed targets, while overestimation
will degrade precision. As our results show, existing jump table
analyses do not seem to pay sufficient attention to this problem.

To overcome these drawbacks, we present SJA (Static Jump Table
Analysis), a new jump table analysis technique in this paper. In
contrast with previous approaches, our technique is based purely
on a forward analysis. Moreover, it considers all paths, and hence
does not compromise on soundness. At the same time, we achieve
performance that is better than most previous techniques. We also
show that our analysis scales to large binaries, with an analysis rate
of about 300 KB/s.

Our approach is based on abstract interpretation [6]. We introduce
anew abstract domain that can accurately capture the computations
used in jump tables, such as multiplying an index by a constant,
adding an offset, dereferencing memory contents, etc. These compu-
tations are captured without relying on pattern matching. As aresult,
our approach is robust in the face of reordering or refactoring of oper-
ations. In contrast, such changes often cause pattern-matching to fail,
leading to aloss of accuracy. We also present an effective and efficient
bounds analysis for jump tables that leads to much better overall
accuracy. Specifically, our approach reduces false negatives by 35x
over previous techniques’. Based on F1-score, SJA’s error rate is 3x
lower than that of Dyninst, the leader in a recent comparison [23].

In summary, our main contributions are as follows:

e We devise a new abstract domain, together with appropriate
abstract operations, to capture the “structure” of a code pointer.
This approach avoids pattern-matching that is commonly used
in many previous works. Pattern-matching can be reliant on

! A sound analysis should incur zero false negatives, but this applies only if the analysis
is invoked on all code. On complex binaries, contemporary disassembly techniques can
miss a small fraction of the code [23], with the result that our analysis is not even run on
this code. This is the primary source of false negatives (i.e., missed jump table targets).
In addition, we observe a handful of cases where our analysis reports T as the value of a
code pointer — indicating that nothing is known about its value. In conventional static
analyses, this would count as a false positive, with possible targets consisting of every
instruction in the current function. However, previous works in jump table analysis
report it as a false negative — all of them can discover the indirect jump instructions,
but when they have no information about the destination, they report zero indirect
targets [23], and hence treat it as an instance of false negatives. Thus, for consistency,
we report these cases as false negatives as well.

Huan Nguyen, Soumyakant Priyadarshan, and R. Sekar

switch(x) { L1: mov $6000,%r8 L1: R8=6000
case 0: mov $8000,%r9 R9=8000
return y+3; mov %r11,(%r10) *R10=R11
case 1: cmp (%r10),$7 IF (*xR10>,,7)
return 2x*y; ja L3 JMP L3

L2: mov %rl11,%r12 L2: R12=R11
case 7:

shl $2,%r12 R12=R12 <2
return y-4; add %r9,%r12 R12=R9+R12
default: mov (%r12),%r13 R13=xR12
return 0; add %r8,%r13 R13=R8+R13
} jmp *%r13 JMP %R13

L3: ... L3:

Fig. 1: A C/C++ switch statement, its assembly code, and the
associated intermediate representation (IR)

compiler idioms and/or be sensitive to compilers or their ver-
sions. In contrast, a more systematic approach such as ours can
cope better with syntactic changes that preserve semantics, such
as reordering or refactoring of code pointer computation.

e We present a new bounds analysis technique that can handle
assignments and comparisons equally effectively. Its key benefit
is its ability to fully factor the bidirectional and transitive nature
of equalities, whereas previous approaches tended to propagate
constraints only in one direction, namely, from the right-hand
side to the left-hand side of an assignment. We present tech-
niques for representation and propagation of constraints that
achieve efficiency together with increased power.

e We present a detailed experimental evaluation of our approach,
comparing it with several existing systems, e.g., angr, Dyninst,
Ghidra, and Ddisasm.

— Our emphasis on soundness leads to a drastic 35X reduction
in miss rates as compared to the best previous techniques.

- Our false positive rate of 2% is better than all other systems
except Dyninst. Moreover, when we compare on the error
rate based on F1-score, our results are 3X better than the best
among previous work.

— Finally, we show that soundness is achieved without compro-
mising on performance. SJA runs in O(nm), where n is the
number of instructions and m is the number of variables that
have equality relationships with another. As m tends to be very
small in practice, SJA’s runtime performance is comparable
and/or better than most previous systems.

2 Jump Table Overview and Approach Outline

A jump table consists of an array of code pointers/offsets used to
compute the final target of an indirect jump. It results from the com-
pilation of switch statements (or equivalent constructs) in high-level
languages. Jump tables are also frequently used in hand-coded as-
sembly. Fig. 1 illustrates a C/C++ switch statement and the jump
table code resulting from it. This code is shown first in x86 assembly,
and then in an intermediate language used in our analysis. This inter-
mediate language is a register-based language and is similar to those
used in compilers®. Jump table accesses fall into four major types:

e x(TBase+StridexIndex)

e Base+x(TBase+StrideXxIndex)

2The specific IR we use comes from the Lisc [12] assembly-to-IR lifter that we use.

Scalable, Sound, and Accurate Jump Table Analysis

Resolve Indirect Targets

Definite H .
Function Entries : Jump Table :
Expression Analysis H
Intra-CFG :
H Construction
Possible : .
Function Entries : Eclndeignalvsis
T Scan Remaining Gaps

Fig. 2: SJA’s Approach

e Base+StridexIndex
e «(TBase2+Stride2x+(TBasel+Stridel xXIndex))

Here T Base refers to the base of the jump table, which is an array that
appears within read-only data, or in some cases, within code; and “+”
denotes the memory dereferencing operator. In the first form, target
code addresses are directly stored in the jump table. This is possible
in position-dependent code. The second forms is most common
in position-independent code, where a code offset is stored in the
jump table. It is added to Base, a base address in the code region, in
order to obtain the final jump target. Our illustrative example (Fig. 1)
corresponds to this access type, with TBase =8000 and Base =6000.
(TBase and Base are stored in registers R8 and R9 respectively.)

We have found a few instances of the third form in hand-written
assembly. This form is possible only in the special case where code
sizes are identical across all the cases in the jump table. The fourth
form has been called a nested jump table in previous work [18, 37].
Specifically, it corresponds to a 2-level nested jump table where the
first table stores a value that serves as an index in the second level
table. More general cases are possible, i.e., n-level nesting for n > 2.

Most previous works have formulated jump table resolution as
a backward analysis problem: starting from the indirect jump, these
methods follow program control-flow backward to determine how
the target was computed. Often, a pattern-matching approach is
used. Many techniques also restrict the length of backward traversal
in order to reduce the runtime. In contrast, we use a forward analysis
for the following reasons:

e Soundness requires all paths to be analyzed. A purely backward
approach cannot detect if there are incoming branches into a
backward path being explored, since it can be an indirect transfer.
So, a subsequent forward phase would be needed.

o A forward analysis approach is more amenable to a simple im-
plementation in an abstract execution framework such as SJA.
This, in turn, enables us to focus on designing the right abstract
domain that can cope with the complexities of the jump tables
mentioned above.

Fig. 2 illustrates our jump table analysis. First, we gather a set of
definite function entries, e.g., program entry point, entries in the dy-
namic symbol table, and entries of default initialization and cleanup
functions. These are fed into an analysis that discovers all of the
function entry points in the binary. We rely on existing techniques,
specifically function interface analysis [27], in this phase. Note that
errors in function entry identification will cascade into errors in the
output of jump table analysis. Importantly, when function discov-
ery fails to report a legitimate function, that code is not analyzed

ISSTA 24, September 16-20, 2024, Vienna, Austria

at all, which means that the jump tables present in such functions
won’t be identified. These false negatives will occur regardless of
the soundness of analysis techniques used. (As mentioned before,
this is the main source of false negatives in our method.)

For each function entry, we perform a forward intraprocedural
analysis to resolve indirect jump targets. The analysis consists of
two independent techniques: Jump table expression analysis and
Bounds analysis. For jump table expression analysis, we present
a new abstract domain that can handle all four jump table forms,
including multi-level nested jump tables.

Bounds analysis recovers the size of jump tables using control-
flow and dataflow information. Our novelty here is in terms of effi-
cient support for handling equality relations. Specifically, even when
bounds checks are missing on the index variable, our analysis can
typically infer them from checks made on other variables whose
values are related to the index variable.

As our jump table analysis discovers indirect targets and adds
them to the CFG, new code becomes reachable. This new code needs
tobe analyzed for additional jump tables. In general, an n-level nested
switch statement® will require 7 iterations of our analysis. While
this may seem like a performance concern, such nesting is relatively
rare and hence we have not optimized this case further.

In the following sections, we describe our jump table expression
analysis (Sec. 3) and bounds analysis (Sec. 4). As these techniques
rely on abstract interpretation, we include a short overview of this
technique for the benefit of readers new to the topic.

Abstract interpretation [6]. One of the foundational techniques
in program analysis that has formed the basis of most static binary
analysis techniques [3, 7, 8, 27, 31, 32] is abstract interpretation. Dur-
ing normal execution, program variables take values over concrete
domains such as integers. In abstract interpretation, programs are
instead evaluated over abstract domains.

Abstract interpretation is frequently illustrated using the “rule of
signs” example, where each numeric variable is abstracted into the
domain {—ve, 0, +ve}. Here “—ve” stands for all n <0 and +ve for all
n>0, and “0” for the number zero. Thus, each point in the abstract
domain corresponds to a subset of values in the concrete domain.

Based on this abstract domain definition, we can define the ab-
stract equivalents +, and #, of the concrete operations + and *. For
brevity, we omit cases where one of the operands is zero.

[x y x+ay x*ay ||
+ve +ve +ve +ve
+ve —ve T —ve
—ve +ve T —ve
—-ve -—ve —ve +ve

Note how +, introduces approximations: when a positive and
negative number are added, one cannot predict the sign of the output.
(Multiplications don’t introduce approximations in this abstract
domain, but if we merged zero into +ve, this would no longer be true.)

Abstract interpretation can be understood as reevaluating a pro-
gram using these abstract operations, while the variables themselves
assume values from the abstract domain. At conditional branches,
3Note that a nested switch statement isn’t the same as a nested jump table [18, 37].
With nested switch statements, each nesting level can have its own indirect jump

statement. In contrast, a nested jump table uses a single indirect jump (but its target
may be computed from multiple jump tables).

ISSTA 24, September 16-20, 2024, Vienna, Austria

Domain D =:=DU{T,L}
D := B | B+SxI whereBS€Z, S#0, [€ (VUx*D),
V is the set of variables in the program
Expressions e:=c | v | e+e | e—e | exe | exc | xe
(v is a variable, c is a constant)

Base cases
c|c
v | 0+1xv
Recursive cases
X B1+S51 X1 B1+S1 %I
Y By+SyxI By
X+Y (Bl+B2)+(51+52)XI (B1+Bz)+51 xI
X-Y (Bl —Bz)+(51—52)><[(Bl —B2)+51 xXI
XxY T (B1XB32)+(S1XBy)XI
X<y || T (Byx2B2) (S, x2B2) 1
*Y 0+1X#(B2+S2XI) 0+1X*By

Fig. 3: Abstract domain for jump table analysis

there is typically not enough information to determine which side
will be followed, so the typical approach is to follow both branches
and then take the union of abstract values when control flows merge.
By ensuring that abstract domains are lattices, unions (as well as
intersections) of any two abstract values will yield another abstract
value. This also ensures that there is a maximum element T (which
corresponds to every possible concrete value) and a minimum ele-
ment L (which corresponds to the empty set).

An abstract interpretation is sound if the abstract value computed
for every variable corresponds to a superset of the concrete values
that this variable may have in any concrete execution. For instance,
an abstract interpretation that assigns T to every variable is trivially
sound (but not very useful).

3 Jump Table Expression Analysis

Accurate analysis of jump tables is necessary, or else control-flow
graphs would be incomplete, which, in turn, can lead to unsoundness
of all static analyses that use the CFG. For pragmatic reasons, there is
atendency in previous works to use pattern-matching on jump table
analysis. The downside of this approach is that irregular patterns
with similar semantics are not recognized. In fact, none of previous
works systematically evaluate the effectiveness of their techniques.
In this paper, we show that SJA can iteratively recognize many more
jump tables using a principled static analysis.

Our abstract domain and its operations are shown in Fig. 3. The
domain is designed to infer a formula that relates the values of (any)
two variables in the program. In this regard, a variable corresponds to
a definition of a register, i.e., multiple definitions of the same register
will be treated as distinct variables.

We are not trying to capture all possible relations, but just those
thatarise in jump tables — specifically, the four major types discussed
in the last section. For the third form, I corresponds to the index
variable of the jump table. To support the other forms, we permit a
recursive domain, where I is itself a formula. Multiple nesting levels
enable analysis of multi-level nested jump tables.

Huan Nguyen, Soumyakant Priyadarshan, and R. Sekar

L1: R8=6000 R8=6000 B-1
R9=28000 R9=8000 B-1
*R10=R11 #*R10=0+1XR11 B-2

IF (+R10>,7) | [N/A
JMPL3 N/A

L2: R12=R11 R12=0+1xR11 B-2
R12=R12<k2 R12=0+4XxR11 R—-4.2
R12=R9+R12 | |R12=8000+4xR11 R-1.2
R13=%R12 R13:0+1><4<(8000+4><R11) R-5.1
R13=R8+R13 | |R13=6000+1Xx(8000+4xR11) | [R-1.2
JMP R13 N/A

L3: ... N/A

Fig. 4: Illustration of rules in Fig. 3 on our example

Recursive abstract domains have the potential to cause nonter-
mination in the presence of loops. This happens because of fixpoint
iteration. However, since we limit fixpoint iteration to terminate
quickly (Sec. 5.4), recursion does not pose a serious problem.

The specific language subset relevant for this analysis is that of
expressions e as shown in Fig. 3. The abstract interpretation for the
base cases is shown first. It covers the cases of constants (c) and
variables (v). Effectively, the abstraction of a constant or a variable
is itself. The recursive cases are shown next: they correspond to the
application of operators +, —, X, < and * (memory dereferencing).
The table does not show assignments because their semantics is
independent of the domain. (See Sec. 5.3.1 for the details.)

The first two rows of recursive cases table (i.e., the two header
rows) show different combinations of abstract values for the operands
X and Y. The table body shows the result of applying each of the
above-mentioned operators to X and Y. For instance, when X =
B1 +S1 XIand Y = By + Sy X I, their addition results in a point
(B1+B3y)+(S1+8S,) X1, as shown in the table. In other words, the
bases are added, as are the strides. Note that this is applicable only
when the index I matches. Otherwise, the result will be T. To reduce
clutter, Fig. 3 generally omits operand combinations that resultin T.

Fig. 4 illustrates these abstract operations on our running example
from Fig. 1. The first column shows the instructions in their IR form,
while the middle column shows the abstract value of the left-hand
side operand after the execution of the instruction. The third column
identifies the specific cell from Fig. 3 that is used to arrive at this
result. Base case rules are referenced as B-1 and B-2. Recursive cases
are referenced by a combination of row and column in the table body.
For instance, R-1.1 refers to the cell containing (B +Bg)+(S1+S2) XI.

At control-flow merge points, we need to apply the union opera-
tion in the domain. This can result in a loss of precision. To mitigate
this, we extend the domain to D%, i.e., the abstract value can be a set
of points in the domain O shown in Fig. 3. At merge points, we can
define LI as the union of value sets from preceeding branches. In an
implementation, the size of these sets can be capped at a small value,
say, 10, as we have done in our implementation. If a set exceeds the
size limit, its abstract value is setto T.

Based on this analysis, jump table targets can be identified as fol-
lows. At an indirect jump, we retrieve the abstract value associated
with the register that specifies the target. If it matches one of the
forms introduced at the beginning of this section, we check if the
table base and code base (if present) are within the read-only data or
code region. Because jump table consists of contiguous entries, we
iterate over possible concrete values of the index, retrieve the content

Scalable, Sound, and Accurate Jump Table Analysis

*R10=R11 #0 <R11<7,R9=8000

#*R10=R11 R12=R11

IF (+R10 >, 7) JMP L3 #0<R11<7,R9=8000, R12=R11

L2: ... R12=R12x2

#0<%R10<7,*R10=R11|| #0<R11<7,R9=8000,0 <R12 <28
L3:.. R12=R9+R12

#+R10>7,*R10=R11 #0<R11<7,R9=38000, 8000 <R12 <8028

(a) Control-flow (b) Dataflow

Fig. 5: Illustration of bounds analysis on our example

from the table, and compute the target. If the target is within the
code region, we add an edge to the CFG.

Without information on possible bounds, this iteration must con-
tinue until we encounter a jump table entry that fails the above check.
While this will help in terms of soundness, it can lead to considerable
false positives. To mitigate this, we describe a bounds analysis in
Sec. 4 that determines a range of concrete values of the index.

Advantages of abstract domain D. VSA [3] is perhaps the most
widely cited binary analysis technique based on abstract interpre-
tation. It was proposed to compute an over-approximation of the
set of memory addresses. Specifically, its abstract domain consists
of points of the form a+b X [c,d], where a, b, c and d are integer
constants. While VSA’s domain has some similarity with SJA’s, this
is superficial: At its heart, jump table expression analysis is about
the relation between an index variable I and the value of the jump
table target. Meanwhile, VSA is a value analysis to compute the set
of possible values possessed by the jump table target, but cannot
relate it to the contents of the index variable.

One consequence of VSA’s value-based approach is that it loses
alot of information on memory reads, often resulting in T. For in-
stance, consider the instruction R13=*R12 in our working example.
Assume that VSA had the accurate value of R12 as 8000+4 % [0,7].
A sound approximation of the value of R13 would be the union of
contents from memory locations {8000,8004,...,8028}. Even in the
optimistic scenario that the contents of all these locations is available
statically, the union operation cannot, in general, yield a better result
than T. In contrast, our abstract domain D keeps operating on the
relationships without reducing everything to a value, and hence do
not suffer this loss.

4 Bounds Analysis

Bounds analysis gathers constraints on variable values (i.e., contents
of memory and registers) that can be inferred on the basis of branch
directions at conditional branches (control-flow), or arithmetic oper-
ations (dataflow), as illustrated in Fig. 5. Bounds analysis has broader
uses, but in this paper, we primarily apply it for computing jump
table sizes.

rev.ng [8] and OSRA [7] obtain constraints at conditional branches
that follow comparisons with constants. These inequalities are prop-
agated after assignments. However, their techniques do not reason
about equality relationships between variable values and, as a result,
fail to discover some implicit constraints. For instance, in both of the
snippets shown below, the condition x < 5 will never hold. While
these systems can infer this for the snippet on the left, they fail to
do so for the snippet on the right.

ISSTA 24, September 16-20, 2024, Vienna, Austria

U = 7

V = 3.U+4 " "

Y = —X+4 ARAYARAY IZEAYSAYER)
Z = 3.X+42 NI YA RN LANITVACIEY

Fig. 6: Equality representation using equivalence class

if (y < 5) goto ... X=y
x=y if (y < 5) goto ...
if (x<5) ... if(x<5) ...

In contrast, we propose an efficient technique to compute equality
relationships between variables (Sec. 4.1). In addition, we enhance
this technique to incorporate concrete constraints obtained from
relations between variables and constants (Sec. 4.2). Therefore, SJA
can handle both the snippets shown above.

4.1 Efficient Handling of Equality Relations

Affine relations [13] was perhaps the earliest studied analysis to infer
equality relationships between variable values. Affine relations are
of the form cg+c¢1 X1 +c2Xo +-+-+¢cn Xy, =0, where ¢; are constants and
X; correspond to variable values. More recently, such abstractions
have been called symbolic abstractions [9, 29]. The key problem here
is to compute the (strongest) relation that holds at program location
L, given the relations that hold at its predecessors. For affine relations,
this step is expensive in practice [19], and hence the analysis does
not scale. To avoid this complexity, we focus our analysis on the
simpler case of equality relationships involving just two variables:

Xi=a-Xj+b

As confirmed by our experimental results, this form is sufficient to
handle the vast majority of cases that arise in jump tables. Variables
in this regard correspond to registers and memory locations. In
addition to memory locations whose addresses are known statically,
we provide some support for indirect memory accesses (i.e., cases
where the memory address is held in a register). Our memory model
captures the semantics that whatever is stored in a location x will be
returned when x is read back. (However, for soundness, if there is
an intervening write to a location y, and no information is available
to prove that x #y, then a subsequent read of x will return T.)

There are two sources of equality relations in programs: equality
comparisons and assignments. Of these two, assignments are the
more frequent source, but we support both. Our goal is to capture
the symmetric (also called bidirectional) nature of equality and allow
constraint information to propagate in all directions.

Recall that we focus on relations of the form X; =a-X;+b where
a,b € Q and a # 0. Since equality is bidirectional, such X; and X
belong to the same equivalence class where the constraint on one
variable can be inferred from any other variable in the same class.
As aresult, we can inject an extra variable, namely I, into a class
and relate every variable in the class to I. Fig. 6 illustrates two such
equivalence classes. The first class consists of variable U, V and an
extra variable I;. Specifically, line 2 can be rewrittenas U=1-1;+0
and V' =3-I; +4. The relationships between U, V and I; are illustrated
in bubbles, each of which consists of a variable and its parameters.
Note that this representation has many key advantages:

ISSTA 24, September 16-20, 2024, Vienna, Austria

EAWAD

D (0

Fig. 7: An example of merging equivalence classes

Compact representation. Each variable can appear in at most one
equivalence class. In addition, there is no linear relationship between
variables in different classes.

Efficient handling of assignments. An important feature of this
representation is that new assignments to a variable can be pro-
cessed efficiently. For instance, Z initially belongs to the same class
with U and V (line 1). However, after the assignment (line 4), the
relationships between Z and U, V become invalid.*

To invalidate the relations that involve Z, we simply remove Z
fromthe class where itbelongs to. Moreover, if Z appears asamemory
address in some class, this occurrence needs to be replaced by an
equivalent expression onanother variable that appears in the original
class of Z. Finally, we insert Z into the appropriate class based on its
new value, e.g., the second class with X, Y and an extra variable I.

Mitigating the impact of memory aliasing. Note that a memory lo-
cation Z could be aliased to other memory locations. An assignment
to Z invalidates not only the relations involving Z, but also those
involving aliases of Z. Without additional information, it is possible
that Z is aliased to all memory locations, and causes all relations
involving memory to be discarded. This scenario could be detrimen-
tal to precision especially since assignments occur very frequently.
However, it is feasible to rule out some memory aliasing for those ad-
dresses that can be expressed by equivalence class. In particular, sup-
pose that R; and R; are registers in the same class, it is trivial to verify
if the memory location a-R;+b is not aliased to ¢-R j+d. However, if
R; and R; belong to different classes, no linear relation between these
memory addresses is captured. In such cases, for soundness, SJA
assumes that these memory locations can be aliased to each other.

Efficient merge of paths. At branching statements, each branch
starts with a separate copy of the relations from its predecessor
and modifies its own relations while executing its instructions. At
control-flow merge points, we typically compute a disjunction of
possible equalities. However, since our goal is to find the relations
that hold in every merging path, we instead compute a conjunction of
definite equalities. These equalities can be represented by the system
of equivalence classes.

4Note that if a variable is assigned to a function of itself, e.g., Z=a-Z +b, it can still
be inferred from other variables in the original class. In such cases, we do not invalidate
its relations, but rather adjust the parameters and retain the variable in the class.

Huan Nguyen, Soumyakant Priyadarshan, and R. Sekar

Fig. 7 illustrates the merge of two branches. For simplicity, each
branch has only one equivalence class. For instance, the relations Y =
2-X—2and W =2-Z—-1 hold for both paths, and there is no common
relation between X and Z in both paths. Therefore, the merging
output consists of two equivalence classes associated to the extra
variables I3 and I4. A typical approach to derive the outputis to iterate
over each pair of variables: if there is a common relation between
them in both paths, these variables belong to the same equivalence
class; otherwise, they belong to different classes. This approach is
simple — the downside is that its time complexity is quadratic (over
the number of variables) for each merge. In contrast, SJA merges two
paths at linear time complexity for each merge by leveraging the
relationships between extra variables, e.g., I; and Iz in our examples.

Recall that X and Y belong to the same classif 3a,b € Q: Y =a-X+b.

2-h+2=a-(1-I1+2)+b
{4-12+8=a-(2~12+5)+b

It can be seen that Y=a-X+b is satisfied if 2- 11 +2=4-1,+8 and
1-I1+2=2-I,+5 hold. It can be inferred that X and Y are in the same
class because these equations are equivalent. In fact, both of them
can be reduced to the same relationship I; = 2- I + 3. Meanwhile,
the relationship between I and I, is different for Z, specifically,
L=31— % Consequently, X and Z do not belong to the same class.

The key advantage of our design is that we can compute the re-
lationship between I; and I; for each individual variable, thereby
achieving a linear time complexity for each merge. Variables with
equivalent relationship between I; and I are classified to the same
equivalence class.

4.2 Embedding of Concrete Constraints

Most jump tables result from the translation of switch statements,
whose labels are required to be constants in most languages, in-
cluding C/C++. As jump tables consist of constant values known
at compile time, their bounds are also constants. In the code, these
bounds are typically expressed using comparisons with constants.

On x86-64 as well as AArché4 architectures, comparisons are
decoupled from conditional branches: comparisons set flags, with
branches depending only on these flag values. To identify the con-
straints associated with each branch direction, these two pieces of
information need to be combined®. For instance, on x86-64, when
the instruction flag = cmp(X, 3) is followed by a jle (jump if less
or equal) branch, the constraint X <3 is generated. SJA represents
such concrete constraint in a uniform way using ranges, e.g., X <3
can be formulated as X € [—0,3].

Akey feature with our approach is that concrete constraints can be
embedded to the system of equivalence classeslosslessly. Specifically,
since all variables in same class can be derived from its corresponding
I, SJA stores the appropriate range constraint in each Ij.

At merge points, we combine constraints from all predecessors
using disjunction. We consider the example in Fig. 7. Suppose that
I € [-2,5] and I, € [0,2], and our target is to compute I3. It can be
derived that X € [0,7] (left branch) and X € [5,9] (right branch), re-
spectively. Then, the constraint on I3 in each branch can be inferred

5In x86_64 and AArch64, many instructions can affect the flags but in practice, only
a small subset of these instructions are involved in conditional branches, e.g., cmp,
sub, test for x86. We find that this is true even in hand-coded assembly. Therefore,
handling these instructions is sufficient to obtain jump table bounds.

Scalable, Sound, and Accurate Jump Table Analysis

by replacing X with 1-I3+2. In more detail, for the left branch, we
have 0 < 1-I3+2 < 7, which is equivalent to I3 € [-2,5]. Similarly,
I3 €[3,7] can be derived for the right branch. Consequently, we can
compute I3 for the output class as follows:

Le[-2,5]U[3,7] ©3€[-27]

At conditional branches, a new constraint is applied on top of the
current constraint using conjunction. For instance, suppose that the
above merging is followed by a branching statement with condition
X >5. As X >5 can be translated to I3 € [3,00], the new constraint is:

L e[-2,7]MN[3,00] ©I3€[3,7]

5 Implementation

In this section, we describe our analysis framework design and im-
plementation. The framework orchestrates and coordinates all of
the steps involved in program analysis using abstract interpretation.
It first lifts binary code into an architecture-neutral intermediate
format, and then constructs a control-flow graph. It maintains the
abstract store that captures the content of memory. Finally, it pro-
vides support fixpoint iteration, a technique needed to support loops
and recursion. We describe each of these steps in more detail below.
Our framework is modular and extensible, and provides an API for
adding new abstract domains and analyses.

5.1 Lifting to IR

Similar to many previous binary analyses [4, 11, 18, 30, 32, 37], we
first lift assembly instructions into an intermediate representation
(IR) before analysis. This step abstracts most of the architecture
specifics and complexities, thereby simplifying analysis implemen-
tation. We used the LISC system [12] for lifting assembly to GCC’s IR
called RTL. A key benefit of LISC is that it supports recent instruction
set extensions, thus allowing us to handle almost any binary. We per-
form a one-time lifting for all instructions found by a disassembler
of a target program.

5.2 Control Flow Graph (CFG) Construction

Afterlifting to IR, SJA constructs a control-flow graph for each “tenta-
tive” function. For stripped binaries, tentative functions start include
(i) definite function starts, including the binary entry point, functions
listed in the dynamic symbol table, and direct call targets; and (ii)
possible function starts, such as relocated pointers that target a valid
instruction, and “gaps” between other tentative functions that match
function prologue signature.

At this point, indirect control flow targets are not resolved, so only
directly reached basic blocks appear in CFGs. Once SJA resolves more
indirect control flows (Sec. 3), we traverse from their indirect targets
to construct more reachable basic blocks in the subsequent iterations.
This process repeats until all code is identified and analyzed.

5.3 Abstract Store

Our “variables” can refer to either CPU registers or memory loca-
tions. The values of these variables are held in the abstract store.
Similar to previous proposals such as VSA [3], our store is organized
into multiple regions. In particular, our abstract store consists of
registers and stack. Support for heap and global memory are very
limited: the only semantics supported is that of ensuring that a read

ISSTA 24, September 16-20, 2024, Vienna, Austria

of a memory location x produces the same value that was written.
For soundness, we ensure that any intervening write to a location
y invalidates this value that was written to x unless we can prove
x #y. (More details on this handling of side-effects can be found in
Sec. 5.3.3.) Our limited support for heap and global memory is useful
in jump tables because the relevant code is often small in size and
does not make too many memory accesses.

Register handling is largely straightforward — the only complica-
tion is that of the semantics of accessing 8, 16, 32, and 64 bit versions
of the same register. This too is well understood, so the rest of this
section is mainly focused on the abstract stack.

5.3.1 Accurate Modeling of Stack Memory. Stack memory is typi-
cally accessed using constant offsets from the value of SP at func-
tion entry. We leverage the stack analysis technique of Saxena et
al. [31] in this regard. Specifically, their addresses have the value of
Basesp+][c,c], where c is a constant that is derived by our analysis.
Note that local variables are often accessed using an offset from the
base pointer (BP) register. As most of the stack memory accesses
refer to a single location in the abstract stack, this abstract domain
can typically determine the (exact) value of BP as Basesp — [d,d]
where d is another constant.

At function start, SJA initializes the content of each register R with
the abstract value Baseg. Stack locations above the current SP can
also be initialized this way — let us call them Baseps....,Basepy, the
initial values of parameters 1 through n. Stack locations below the SP
are initialized to T.In addition, since the stack frame is just being al-
located, valid references to these locations cannot appear anywhere
else in memory or registers other than the SP. As aresult, if a memory
location is written using an address stored in memory or registers
other than SP, it cannot target the current stack frame. This property
is captured by our abstract store implementation, thus providing
improved accuracy in reasoning about the stack contents. (This prop-
erty is lost if a stack-derived address is subsequently stored in mem-
ory — we revisit this issue under the topic of “weak updates” below.)

5.3.2 Efficient Handling of Large Abstract State. It may seem that
the memory needed for registers and the stack frame is relatively
small. However, note that the abstract state changes with each in-
struction and that we need to be able to access the abstract state at
any program location. As a result, it is necessary to replicate the
abstract store after each instruction in a function. This replication
is costly, so we take the following steps to increase efficiency.

First, we associate an abstract store with each basic block (BB)
rather than every single instruction. When a BB is processed, its
abstract state is updated after the abstract execution of each instruc-
tion in the BB. Second, each BB stores only the variables updated in
that BB. This minimizes the size of the abstract store associated with
that BB. For accessing a variable that wasn’t assigned in a basic block
B, we fetch its value from B’s predecessors. We refer to this as lazy
loading. If there are multiple predecessors, the values from the pre-
decessor blocks are merged using the union operation in the domain.
A lazy-loaded value is cached in B so that future accesses will be fast.

5.3.3 Weak Updates. A weak update occurs when static analysis
fails to capture the exact memory address used in a write operation,
e.g., we are updating a location Basesp+[I,h] with [<h. To handle
this correctly, the entire range of memory locations [through h on

ISSTA 24, September 16-20, 2024, Vienna, Austria

the stack will have to be updated. Moreover, since only one of these
locations will be updated at runtime, and all the other locations will
continue to have their old values, a weak update needs to store the
union of the original and new values in each of these locations. The
net effect is that weak updates can have a significant negative impact
on analysis precision.

Weak updates arise due to three main reasons. First is an update of
an elementin an array thatis allocated on the stack. In many cases, an
analysis of the conditional branches preceding the access can yield
bounds for the access, thereby limiting the scope of the update to a
small region of the stack. A second reason is due to passing a pointer
to a stack location to a callee. In this case, without an analysis of the
callee, a static analysis would have to conservatively assume that the
entire stack frame may be clobbered. This loss of information can be
mitigated by analyzing the callee. A third case is when a stack loca-
tion is stored in global or heap memory. When this happens, because
we maintain no information about these memory regions, future up-
dates involving any pointer stored in global memory can clobber the
entire stack frame. To mitigate the impact of this worst-case outcome,
we assume that if no stack-derived address below Basegp escapes to
untracked memory (e.g., global or heap), the stack frame is preserved
through calls. Moreover, we take the ABI as a specification and con-
clude that the callee-saved registers are also preserved through calls.

A second challenge posed by having weak updates is that it re-
quires multiple memory locations to be updated after processing
just a single instruction, and hence can impact the speed of static
analysis. Based on our stack memory modeling, a write to memory
address that is not derived from SP should not affect stack. However,
a write to memory address that is too imprecise can trigger the entire
stack frame to be clobbered. To bound this overhead, we maintain
clobber operations in a separate “layer” that is superimposed on the
main abstract store to derive the ultimate content of memory. This
allows clobbers to be recorded in constant time, at a slight increase
to the cost of all read operations on the abstract stack (due to the
need to check the clobber layer).

5.4 Fixpoint Iteration

To handle recursion and loops, fixpoint iteration is used. This is an
iterative equation solving technique that begins with L as the initial
approximation for all variables. The n + 1th approximation is ob-
tained by starting with the results of nth approximation. When the
abstract domains are finite (or more accurately, when there are no
infinite ascending chains), this iterative process will terminate. How-
ever, it may take time which is exponential in the size of the program.
For infinite domains, it may not terminate at all. One way to avoid
this complexity explosion is to begin fixpoint iteration at T instead
of L. Such an approach would compute the greatest fixpoint (i.e., the
largest solution). The key benefit of starting with T is that the results
are sound even before a fixpoint is reached, so we can stop after k iter-
ations for some small constant k. As a result, we can limit the overall
analysis complexity to be linear, which is important for scalability.

Although starting from T entails some precision loss, accurate
handling of recursion is not essential for jump table analysis. This
is because jump table is generated by compilers statically, and thus
does not depend on runtime values computed inside loops. Conse-
quently, SJA defaults to starting fixpoint iteration from T unless
configured otherwise for a specific analysis.

Huan Nguyen, Soumyakant Priyadarshan, and R. Sekar

6 Evaluation

Our experiments evaluate SJA in terms of accuracy and performance.
We compare SJA with 4 other tools: Dyninst, angr, Ghidra and Ddis-
asm. We did not include rev.ng in the evaluation because we were
unable to get it to compile and run.

6.1 Experimental Setup

Evaluation platforms. All experiments were carried out on a desk-
top running Ubuntu 20.04 on 12th generation Intel Core i7 processor
with 16 GB main memory and 200 GB SSD.

Benchmarks. Our framework was evaluated with Pang et al’s
benchmarks [23], which contain programs and libraries written in
C/C++ compiled using GCC-8.1.0 and LLVM-6.0.0 on 6 optimization
levels. Since SJA’s implementation is for x86_64 on Linux, we used
only the x86_64 ELF binaries in our evaluation.

Ground truth. Pang et al. extends the approach in CCR [15] to
customize both LLVM and GCC to generate jump table ground truth,
which includes details about jump tables (e.g., base, size and stride)
accessed by each indirect jump. We also reuse the scripts in this
work to generate control-flow graph constructed by angr, Dyninst
and Ghidra. Regarding Ddisasm, we customize an official example
cfg-paths.py to emit control-flow graph. Our custom python script
is very simple and contains only 7 LoCs.

6.2 Accuracy
In this section, we aim to answer the following questions:

e How accurate are CFGs? How many missing edges and spurious
edges are being added based on jump table analysis? (Sec. 6.2.1)

e Suppose there are n jump tables, what fraction of them are iden-
tified by jump table analysis? (Sec. 6.2.2)

6.2.1 Control-Flow Graph Accuracy. Jump table is generally a low-
level construct generated by compilers, so its size can be extracted
using the approach by CCR [15] and Pang et al. [23]. Note that multi-
ple indirect jumps can access the same jump table, with each indirect
jump referencing a different subset of entries in this table. However,
the ground truth does not provide these details on a per-indirect-
jump basis. Instead, it (a) lists the properties of jump tables, and (b)
associates a jump table to each indirect jump. Since all analysis tools
report CFG edges separately for each indirect jump, in order to make
use of the available ground truth, we combine the indirect targets
reported by analysis tools across all uses of the same jump table, and
compare this union against the ground truth. We then evaluate CFG
missing edges and spurious edges through the jump table entries
identified by each analysis tool.

Specifically, for each jump table, we compare the set J7 of edges
reported by an analysis tool against the set of valid edges J reported
in the ground truth for that table. Jg — Jr denotes the set of edges
unrecognized by the tool, and hence are false negatives (FNs). Sim-
ilarly, J7 —Jg is the set of spurious edges reported by a tool that are
not present in the ground truth, so they are false positives (FPs). ®
Precision, Recall and F1-score can be derived from FPs, FNs and TPs

®Pang et al. count false negatives only if the tool reports zero targets at an indirect
jump. This means that a tool that reports only incorrect targets will not incur false
negatives. It is also unclear if their false positives considers the number of spurious
jump targets reported, but may instead be scoring the indirect jump itself. As a result,
the numbers they report are somewhat different from ours. By counting the number
of correct targets, our results are a more accurate reflection of analysis accuracy.

Scalable, Sound, and Accurate Jump Table Analysis

ISSTA 24, September 16-20, 2024, Vienna, Austria

60 [~ - 30 [~

40

T T T
SJA Dyninst angr GhidraDdisasm

(a) 00
! ! !

1L a0k

SJA Dyninst angr GhidraDdisasm SJA Dyninst angr GhidraDdisasm

2| J 1)
0b— — . — | o J
T T T T

(b) 01
|

(c) 02
! !

(=)

111k

SJA Dyninst angr GhidraDdisasm

(do3 (e) Of

fLJJlHJJJlfL

SJA Dyninst angr GhidraDdisasm

SJA Dyninst angr GhidraDdisasm

(f) Os

Fig. 8: Error rates in recognizing jump table entries. Blue and red bars are (1-Precision) and (1-Recall), respectively (%)

Table 1: Accuracy of jump table entries identification (%).
H H Dyninst \ angr \ Ghidra \ Ddisasm \ SJA \

Precision 99.5 | 78.4 98.1 859 | 974
Recall 91.6 | 79.7 74.7 92.7 | 99.8
F1-score 954 | 79.0 84.8 89.2 | 98.6

(as Jg in the ground truth). These measurements reflect the overall
accuracy of our overall techniques (Sec. 3 and Sec. 4) as compared
to other tools.

Note that missing edges, which affect the soundness of analysis
techniques, are reflected in recall rate. Tab. 1 shows that SJA achieves
arecall rate of 99.8%, which is translated to a miss rate of only 0.2% of
jump table entries. Compared to previous techniques, SJA’s miss rate
is at least ~ 35X lower than others. Among SJA’s competitors, Ddis-
asm is comparable with Dyninst at ~ 7% to 8% miss rate, while Ghidra
misses more jump table entries than others, roughly 25.3% on aver-
age. In addition, Fig. 8 shows that Ghidra is also inconsistent across
different optimization levels, e.g., it reaches about 20% miss rate at
02 optimization, but rises up to 32% miss rate at no optimization.

In terms of spurious edges, Tab. 1 shows that SJA achieves a pre-
cision rate of 97.4%. Compared to SJA, Dyninst and Ghidra seem to
reflect a somewhat biased choice with high precision in exchange
of low recall. For instance, Dyninst achieves 99.5% precision rate,
but suffers from a relatively low recall rate of just above 90%. On the
other hand, despite being slightly better than Dyninst at recall rate,
Ddisasm achieves a much lower precision rate, at 86%. Moreover,
Fig. 8 shows that SJA’s error rates are stable, e.g., they fall between 0%
to 4% across different optimization levels. Meanwhile, angr has a very
poor precision rate of under 60% with binaries without optimization
(O0), which brings its overall precision rate down to 78%.

It is important to note that the reported precisions above reflect
our bounds analysis (Sec. 4). Without bounds information, the jump
table size can be overapproximated using the adjacency heuristics
[37], which assumes that jump table entries are placed sequentially.
In other words, we expand a jump table as long as all consecutive

entries target valid instructions with respect to the provided disas-
sembly. However, when applying this heuristics blindly, we found
a very poor precision rate of 20%. Unlike general cases where unifi-
cation often causes imprecision due to abstraction/relaxation of the
actual constraints implied by the code, our bounds analysis captures
true effect of satisfied (or unsatisfied) branches, so it doesn’t lead
to additional imprecision. As a result, our bounds analysis can ef-
fectively improve precision, e.g., increase from 20% to 98%, without
sacrificing our high recall rate.

In terms of F1-score, SJA achieves the highest score of 98.6%. Com-
pared to the other tools, SJA’s error rate is 3X to 15X lower. Among
the competitors, Dyninst achieves the highest F1-score of above 95%
due to its high precision rate. Meanwhile, angr receives the lowest
score of under 80%, where both precision and recall are equally low.

6.2.2 Jump Table Accuracy. Suppose that there are a few very large
jump tables and many small jump tables, correct identification of the
large ones is sufficient to achieve good CFG accuracy. However, this
doesn’t truly reflect the ability to identifying jump tables. Therefore,
we compare analysis tools in terms of the number of jump tables
correctly identified.

Since most tools don’t record details of a jump table, direct com-
parison against ground truth is not possible. Therefore, we present a
metric to evaluate the technique indirectly. Recall that Jg and JT are
the sets of targets reported in the ground truth and by an analysis
tool, respectively. When it fails to resolve an indirect jump, it can
either say (i) any address is a possible targets (FPs), or (ii) there is
no targets (FNs). Based on this observation, we derive a new metric.
Specifically, an analysis tool is considered to be able to identify a
jump table if (a) Jr contains at least a X J; valid targets, and (b)
the number of entries reported is constrained below b x [Sy|. In
other words, we select thresholds (a,b) and report the number of
jump table satisfy the mentioned conditions. To avoid biases against
FPs and FNs, we choose multiple different thresholds, specifically,
(a=50%,b=200%) and (a=90%,b=110%), to show the advantanges
of our techniques over the existing tools.

ISSTA 24, September 16-20, 2024, Vienna, Austria

miss rate (%)

'S
(=]

(3]
(=]

| |HH90% - 110%

B E50% - 200%

Table 2: Accuracy of our techniques and previous techniques

Huan Nguyen, Soumyakant Priyadarshan, and R. Sekar

VSA’s domain Domain D Domain D
Unidirectional | Unidirectional | Bidirectional
Precision 80.4 79.9 97.4
Recall 78.6 99.8 99.8

()
T

SJA Dyninst angr

T T
Ghidra Ddisasm

Fig. 9: Jump tables misses with different thresholds

Fig. 9illustrates the miss rate of different tools in detecting jump ta-
ble bases across different optimizations. It shows that SJA has consis-
tently low miss rates from 0.8% to 1.9% across different thresholds. In
comparison to other tools, we are up to 12X lower miss rates. Among
other tools, only Dyninst misses about 10% of jump table bases, while
Ddisasm is second from 13% to 18%. Meanwhile, Ghidra and angr
miss more than a quarter of all jump table bases. Moreover, Ghidra
is very sensitive to the thresholds, and fluctuates from 30% to 47%.

Additionally, we observed that all the tools were affected by in-
creasing the lower threshold (50%-90%) and not the upper threshold
(200%-110%). This tells us that current systems tend to minimize FP
while sacrificing the FN rate’. In comparision, SJA achieves superior
FN rate while maintaining a comparable FP rate.

6.3 Ablation Evaluation

In this section, we evaluate the key aspects of our approach in Sec. 3
and Sec. 4 and compare with existing techniques below:

o VSA’s abstract domain: used in tracking jump table expressions
by angr and Dyninst [23]. We evaluate the effectiveness of our ab-
stract domain D (Sec. 3) in improving recall rate (See Sec. 6.3.1).

o Unidirectional constraints: only propagate constraints in one
direction, that is from the right-hand side to the left-hand side of
an assignment, i.e., it doesn’t reason about equality relations in
general cases. We measure the effectiveness of bounds analysis
(Sec. 4) in improving precision rate (See Sec. 6.3.2).

6.3.1 Abstract Domain D. Tab. 2 breaks down the effectiveness of
our abstract domain (Sec. 3). As previously explained, VSA’s domain
is a value-based analysis, and hence it loses a lot of information on
memory reads, which is usually a part of jump table expressions. As
aresult, analysis tools such as Dyninst and angr have to compensate
the limitation of VSA with pattern matching and/or ad hoc rules [23].

Instead of incorporating heuristics, we reimplement VSA’s ab-
stract domain, which is capable of tracking regular memory addresses.
Specifically, this domain is expressive enough to track the 1st and 3rd
type of jump table access in Sec. 2. We then combine VSA’s abstract
domain with existing bounds technique. Our experiment shows that
this approach misses about 21.4% of jump table entries. Specifically,
we notice that VSA misses all the jump tables in libc-2.27.so com-
piled by gce in O2 optimization since it only contains the jump tables
of 2nd type in Sec. 2.

In contrast, SJA doesn’t rely on incomplete patterns or limit the
scope analysis: it only misses about 0.2% as D, which is about 100x

7Some of these tools implemented ad hoc rules that exclude jump tables whose size
is beyond certain limit [23].

lower than the miss rates using VSA’s domain. This highlights the
significance of our abstract domain 9 in improving recall rate.

6.3.2 Bidirectional Bounds Analysis. Similar to some previous works
[7,8,11, 18, 37], Unidirectional constraints supports control-flow and
dataflow inequality constraints, and also supports unidirectional
propagation of constraints through assignments, e.g., from right-
hand side to left-hand side [7, 8]. Meanwhile, Bidirectional constraints
supports inferences from equality relations in both directions of as-
signments as well as equality comparisons. Note that for both bounds
analysis techniques, if certain bounds cannot be derived, we fall back
on adhering the adjacency rule [37] for soundness at the cost of low
precision. Despite that, our experiments highlight that full support
for equality relations doesn’t necessarily mean significant precision
loss. In fact, bidirectional propagation of constraints achieves 97.4%
precision rate, as compared to just 80% as in unidirectional prop-
agation of constraints, i.e., the error reduction rate is 8x. Unlike
Dyninst and Ghidra, SJA can achieve this level of precision while
still maintaining a miss rate that is at least 35X lower than that by
any existing tool.

6.4 Scalability

In this section, we aim to break down the evaluation of SJA’s runtime
performance into two different aspects:

e How scalable SJA isin comparison with the other tools? (Sec. 6.4.1)
e An in-depth examination of the runtime performance of the
static analysis engine (Sec. 6.4.2)

6.4.1 Evaluation of Total Runtime. To get an idea if SJA’s complex
analysis will scale to large binaries, we measure the total runtime
performance of jump table identification with respect to code size
and compare it with that of other contemporary works. Fig. 10 sum-
marizes the result. Except for Ghidra, the remaining tools appear to
scale linearly with respect to binary size at different slopes. SJA also
exhibits a linear relation with binary size, e.g., SJA is able to analyze
binaries of size close to 36 MB in approximately 3 minutes.

We break down the performance into different code size range.
Note that Ddisasm performs better than SJA for binaries of size less
than 100 KB. Fig.10 shows that SJA’s runtime performance is con-
stant (= 2 seconds) across these group of binaries. This is mainly
because SJA’s binary lifter consumes this constant time, regardless
the amount of code to be lifted. While SJA performance contin-
ues to be linear in terms of binary size, Ddisasm’s analysis time
increases significantly for binaries of size greater than 100 KB, partly
because their relational analysis that maintains a number of rela-
tions quadratic to the number of < Register,Location >. In addition,
a similar trend is seen for angr as well. For smaller binaries of size
less than 30 KB, angr’s analysis time is close to that of SJA. However,
it increases steeply and takes around 10X more time for binaries of
size greater than 10 MB. Furthermore, Ghidra shows a consistently
higher analysis time (~ 20X) than SJA for binaries of all sizes. This

Scalable, Sound, and Accurate Jump Table Analysis

-angr - Ghidra -Dyninst-SJA ‘ B

—_
(==}
=]

I B 1) 1 11 111 B B MR

et ottt et ———
10! 102 10 10*
program size (KB)

Fig. 10: Runtime performance on Pang et al’s benchmarks

shows that state-of-the-art tools such as Ddisasm do not scale well
with binary size. On the other hand SJA manages to analyze large
binaries in a reasonable time. Dyninst performs better (6x less time),
however its error rates are also much higher than that of SJA.

6.4.2 Evaluation of Analysis Time. We previously report the total
runtime performance of SJA in comparison with the other tools.
SJA consists of a few smaller steps, e.g., (a) disassembly, (b) binary
lifting, (c) CFG construction, and (d) analysis time. Among them, the
analysis task usually stands out as a major contributor to runtime
performance. For instance, Ddisasm incorporates an expensive re-
lational analysis as previously mentioned. Moreover, scalability is
one of the reasons why existing tools do not analyze all paths, e.g.,
angr and Dyninst restricts the backward slicing scope for the same
reason [23]. Therefore, we break down the performance efficiency
of the analysis step. Since our analysis is intraprocedural, we report
the analysis performance with respect to function size.

Recall that in bounds analysis, the complexity of a merge or a
branching is O(m), where m denotes the number of variables that
have equality relationship with another. As a result, the complexity
of analyzing a function is O (nm), where n is the function size. De-
spite that, Fig. 11 shows that SJA’s analysis time is roughly linear
in terms of function size. In fact, SJA can analyze code at the rate
of ~ 300 KB/s. Perhaps, SJA is scalable because m tends to be small
in practice. For instance, memory aliasing can invalidate the rela-
tions involving a lot of memory locations. Meanwhile, there are just
dozens of registers to keep track with.

Fig. 11 shows two linear segments. For functions below 3K bytes,
the slope is less than that for larger functions. We believe this dif-
ference comes from cache performance. With smaller functions, our
analysis uses less memory and hence can more easily fit in the caches.
As the function size increase, more of the accesses go to L3 or main
memory, and this increases the slope of the line. Nevertheless, the
overall trend is linear for larger function sizes as well.

7 Related Work

Accurate jump tables are essential in disassembly and control-flow
graph construction, which provide the basis for binary instrumen-
tation and binary analysis. As a result, jump table has been studied

ISSTA 24, September 16-20, 2024, Vienna, Austria

@ 40| |
E e
Q 20 |) . . -
E it
S ee— I —
0 5,000 10,000 15,000

function size (bytes)

Fig. 11: Scalability of analysis performance per function

extensively by numerous existing works [1, 2, 4, 5, 8, 10, 11, 14, 16,
18, 21, 23, 24, 26-28, 30, 32-35, 37, 39-41, 41].

Pang et al. [23] quantitatively evaluate the disassembly perfor-
mance of numerous tools, including jump table accuracy. However,
since jump table accuracy is one of the many factors considered, they
do not provide detailed justification for the metrics they used. By per-
forming a more rigorous evaluation, we show that state-of-the-art
tools misidentify at least 10% of jump tables.

Most existing works use backward slicing to resolve indirect jump
targets. To improve scalability and/or precision, they tend to analyze
only a part of the control-flow graph, and thus their techniques are
unsound. In particular, angr [32] and Dyninst [11, 18] limit the scope
to a few basic blocks (or a few instructions) by default [23]. Ghidra
[30] assumes that both jump table base and index can be detected
in a single path [23]. Egalito [37], Jima [1] and BOLT [21] use syn-
tactical pattern-based techniques to identify jump tables, so their
results are more platform-specific. In contrast, SJA analyzes all paths
using forward analysis and abstract interpretation. Note that our
approach can also detect nested jump tables that have been reported
by previous tools (e.g., Dyninst and Egalito).

rev.ng [8], OSRA [7] use forward analysis to recognize a simple
form of memory address that captures parts of jump table expres-
sions. However, they either lack of discussion or implement ad hoc
rules to detect jump tables. In addition, rev.ng and OSRA does not
support equality relations, thereby unable to infer the size of jump
table in complex cases. On the other hand, Ddisasm [10] derives
jump table expressions from relations between registers. That said,
their technique fails to capture expressions beyond registers, such
as nested jump tables. Moreover, instead of handling of constraints,
it implements ad hoc rules to determine the size of jump table. The
limited inference capabilities of these approaches result in some
bounds going undetected, which increases FPs. In contrast, SJA ad-
dresses this challenge by using an abstract domain that can represent
equality relations effectively. As a result, our technique can reduce
FPs from over 400% to just around 2%.

8 Conclusions

In this paper, we presented a new jump table analysis technique
that achieves soundness without compromising on performance
and scalability. It is based on a new abstract domain that we de-
signed to capture the computation used to derive a code pointer.
We also presented a new and efficient bounds analysis technique
for determining jump table bounds. By combining these techniques,
we achieve greatly improved false negatives — just 0.2% — while
incurring a low false positive rate of 2%. Compared on the error rates
based on F1-score, our results represent a 3X improvement over the
best results reported in the literature.

ISSTA 24, September 16-20, 2024, Vienna, Austria

9

Data-Availability Statement

The source code of SJA and relevant scripts to reproduce of the re-
sults are available [20]. The dataset and groundtruths, which are
based on a prior work, are also published [22].

References
[1] Jim Alves-Foss and Jia Song. 2019. Function boundary detection in stripped

=

[10

[11]

[12

[13]

[15]

[16

(7

[18

[19]

[20

[21]

binaries. In ACSAC. https://doi.org/10.1145/3359789.3359825

Dennis Andriesse, Asia Slowinska, and Herbert Bos. 2017. Compiler-agnostic
function detection in binaries. In IEEE S&P. https://doi.org/10.1109/EuroSP.2017.11
G. Balakrishnan and T. Reps. 2004. Analyzing memory accesses in x86 executables.
In Compiler Construction. https://doi.org/10.1007/978-3-540-24723-4 2

D. Brumley, I. Jager, T. Avgerinos, and E. Schwartz. 2011. Bap: a binary analysis
platform. In CAV. https://doi.org/10.1007/978-3-642-22110-1_37

Sanchuan Chen, Zhiqiang Lin, and Yingian Zhang. 2021. SelectiveTaint: Efficient
Data Flow Tracking With Static Binary Rewriting. In USENIX Security.

Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a uni-
fied lattice model for static analysis of programs by construction or ap-
proximation of fixpoints. In ACM Principles of programming languages.
https://doi.org/10.1145/512950.512973

Alessandro Di Federico and Giovanni Agosta. 2016. A jump-target identification
method for multi-architecture static binary translation. In Proceedings of the
International Conference on Compilers, Architectures and Synthesis for Embedded
Systems. https://doi.org/10.1145/2968455.2968514

Alessandro Di Federico, Mathias Payer, and Giovanni Agosta. 2017. rev.ng: a
unified binary analysis framework to recover CFGs and function boundaries.
In Proceedings of the 26th International Conference on Compiler Construction.
https://doi.org/10.1145/3033019.3033028

Matt Elder, Junghee Lim, Tushar Sharma, Tycho Andersen, and Thomas
Reps. 2014. Abstract domains of affine relations. ~ACM TOPLAS (2014).
https://doi.org/10.1145/2651361

Antonio Flores-Montoya and Eric Schulte. 2020. Datalog disassembly. In USENIX
Security.

Laune C Harris and Barton P Miller. 2005. Practical analysis of stripped binary
code. ACM SIGARCH (2005). https://doi.org/10.1145/1127577.1127590

Niranjan Hasabnis and R Sekar. 2016. Lifting assembly to intermedi-
ate representation: A novel approach leveraging compilers. In ASPLOS.
https://doi.org/10.1145/2872362.2872380

Michael Karr. 1976. Affine relationships among variables of a program. Acta
Informatica (1976). https://doi.org/10.1007/BF00268497

Sun Hyoung Kim, Cong Sun, Dongrui Zeng, and Gang Tan. 2021. Refining Indirect
Call Targets at the Binary Level. In NDSS. https://doi.org/10.14722/ndss.2021.24386
Hyungjoon Koo, Yaohui Chen, Long Lu, Vasileios P Kemerlis, and Michalis
Polychronakis. 2018. Compiler-assisted code randomization. In Security and
Privacy. https://doi.org/10.1109/SP.2018.00029

Draper Laboratory. 2022. CBAT: A Comparative Binary Analysis Tool. Technical
Report. ONR TPCP.

Fan Long, Stelios Sidiroglou-Douskos, and Martin Rinard. 2014. Automatic
runtime error repair and containment via recovery shepherding. PLDI (2014).
https://doi.org/10.1145/2666356.2594337

Xiaozhu Meng and Barton P Miller. 2016. Binary code is not easy. In ISSTA.
https://doi.org/10.1145/2931037.2931047

Markus Miiller-Olm and Helmut Seidl. 2004. A note on Karr’s algorithm.
In International Colloquium on Automata, Languages, and Programming.
https://doi.org/10.1007/978-3-540-27836-8_85

Huan Nguyen. [n. d.]. Static Jump Table Analysis. https://doi.org/10.5281/zenodo.
12670597

Maksim Panchenko, Rafael Auler, Bill Nell, and Guilherme Ottoni. 2019. Bolt:
a practical binary optimizer for data centers and beyond. In IEEE/ACM CGO.
https://doi.org/10.1109/CGO0.2019.8661201

Huan Nguyen, Soumyakant Priyadarshan, and R. Sekar

Chengbin Pang. [n. d.]. Dataset. https://github.com/junxzm1990/x86-sok.
Chengbin Pang, Ruotong Yu, Yaohui Chen, Eric Koskinen, Georgios Por-
tokalidis, Bing Mao, and Jun Xu. 2021. SoK: All you ever wanted to know
about x86/x64 binary disassembly but were afraid to ask. In IEEE S&P.
https://doi.org/10.1109/SP40001.2021.00012

Vasilis Pappas, Michalis Polychronakis, and Angelos D Keromytis. 2012. Smashing
the gadgets: Hindering return-oriented programming using in-place code
randomization. In Security and Privacy. https://doi.org/10.1109/SP.2012.41
Soumyakant Priyadarshan, Huan Nguyen, Rohit Chouhan, and R Sekar. 2023.
SAFER: Efficient and Error-Tolerant Binary Instrumentation. In USENIX Security.
Soumyakant Priyadarshan, Huan Nguyen, and R. Sekar. 2020. Prac-
tical Fine-Grained Binary Code Randomization. In ACSAC. https:
//doi.org/10.1145/3427228.3427292

Rui Qiao and R Sekar. 2017. A Principled Approach for Function Recog-

nition in COTS Binaries. In Dependable Systems and Networks (DSN).
https://doi.org/10.1109/DSN.2017.29

Nilo Redini, Ruoyu Wang, Aravind Machiry, Yan Shoshitaishvili, Giovanni
Vigna, and Christopher Kruegel. 2019. BinTrimmer: Towards static binary
debloating through abstract interpretation. In Detection of Intrusions and Malware,
and Vulnerability Assessment: 16th International Conference, (DIMVA 2019).
https://doi.org/10.1007/978-3-030-22038-9_23

Thomas Reps, Mooly Sagiv, and Greta Yorsh. 2004. Symbolic implementation
of the best transformer. In VMCAL https://doi.org/10.1007/978-3-540-24622-0_21
Roman Rohleder. 2019. Hands-on Ghidra - A Tutorial about the Software Reverse
Engineering Framework. In Proceedings of the 3rd ACM Workshop on Software
Protection. https://doi.org/10.1145/3338503.3357725

Prateek Saxena, R Sekar, and Varun Puranik. 2008. Efficient fine-grained
binary instrumentation with applications to taint-tracking. In CGO.
https://doi.org/10.1145/1356058.1356069

Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino,
Andrew Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
et al. 2016. Sok:(state of) the art of war: Offensive techniques in binary analysis.
In Security and Privacy (SP). https://doi.org/10.1109/SP.2016.17

Victor Van der Veen, Dennis Andriesse, Enes Goktas, Ben Gras, Lionel Sam-
buc, Asia Slowinska, Herbert Bos, and Cristiano Giuffrida. 2015. Practical
context-sensitive CFL. In ACM CCS. https://doi.org/10.1145/2810103.2813673
Victor Van Der Veen, Enes Goktas, Moritz Contag, Andre Pawoloski, Xi Chen,
Sanjay Rawat, Herbert Bos, Thorsten Holz, Elias Athanasopoulos, and Cristiano
Giuffrida. 2016. A tough call: Mitigating advanced code-reuse attacks at the
binary level. In Security and Privacy (SP). https://doi.org/10.1109/SP.2016.60
Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Aravind Machiry, John Grosen,
Paul Grosen, Christopher Kruegel, and Giovanni Vigna. 2017. Ramblr: Making
Reassembly Great Again. In NDSS. https://doi.org/10.14722/ndss.2017.23225
Mark Weiser. 1984. Program slicing. IEEE TSE (1984). https:
//doi.org/10.1109/TSE.1984.5010248

David Williams-King, Hidenori Kobayashi, Kent Williams-King, Graham
Patterson, Frank Spano, Yu Jian Wu, Junfeng Yang, and Vasileios P Ke-
merlis. 2020. Egalito: Layout-Agnostic Binary Recompilation. In ASPLOS.
https://doi.org/10.1145/3373376.3378470

Miuyin Yong Wong, Matthew Landen, Manos Antonakakis, Douglas M Blough,
Elissa M Redmiles, and Mustaque Ahamad. 2021. An inside look into the practice
of malware analysis. In ACM CCS. https://doi.org/10.1145/3460120.3484759
Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres, Stephen
McCamant, Dawn Song, and Wei Zou. 2013. Practical control flow integrity and ran-
domization for binary executables. In IEEE S&P. https://doi.org/10.1109/SP.2013.44
Mingwei Zhang, Rui Qiao, Niranjan Hasabnis, and R Sekar. 2014. A
platform for secure static binary instrumentation. ACM VEE (2014).
https://doi.org/10.1145/2576195.2576208

Mingwei Zhang and R Sekar. 2013. Control flow integrity for COTS binaries. In
USENIX Security.

Received 2024-04-12; accepted 2024-07-03

	Abstract
	1 Introduction
	2 Jump Table Overview and Approach Outline
	3 Jump Table Expression Analysis
	4 Bounds Analysis
	4.1 Efficient Handling of Equality Relations
	4.2 Embedding of Concrete Constraints

	5 Implementation
	5.1 Lifting to IR
	5.2 Control Flow Graph (CFG) Construction
	5.3 Abstract Store
	5.4 Fixpoint Iteration

	6 Evaluation
	6.1 Experimental Setup
	6.2 Accuracy
	6.3 Ablation Evaluation
	6.4 Scalability

	7 Related Work
	8 Conclusions
	9 Data-Availability Statement
	References

