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A B S T R A C T

We consider the outward-propagating nonlinear concentric water waves within the scope of the
2D Boussinesq system. The problem is axisymmetric, and we derive the slow radius versions
of the cylindrical Korteweg - de Vries (cKdV) and extended cKdV (ecKdV) models. Numerical
runs are initially performed using the full axisymmetric Boussinesq system. At some distance
away from the origin, we use the numerical solution of the Boussinesq system as the ‘‘initial
condition’’ for the derived cKdV and ecKdV models. We then compare the evolution of the waves
as described by both reduced models and the direct numerical simulations of the axisymmetric
Boussinesq system. The main conclusion of the paper is that the extended cKdV model provides
a much more accurate description of the waves and extends the range of validity of the
weakly-nonlinear modelling to the waves of moderate amplitude.

1. Introduction

Concentric water waves are a familiar phenomenon to anyone who has ever thrown a stone into water. They are naturally
enerated in oceans and rivers by some localised disturbances, and they are also important building blocks of more complicated
ave patterns such as the Kelvin ship waves (e.g. [1]). Naturally, there have been considerable efforts, both numerical and analytical,
o model and study the waves.
Theoretical progress was made mainly within the scope of the weakly-nonlinear analysis. The cylindrical (or concentric) Korteweg

de Vries (cKdV) equation

2𝐴𝑅 + 3𝐴𝐴𝜉 +
1
3
𝐴𝜉𝜉𝜉 +

𝐴
𝑅

= 0 (1)

is a universal weakly-nonlinear weakly-dispersive long-wave equation in cylindrical geometry. It was introduced by Iordansky [2]
and Lugovtsov & Lugovtsov [3] for water waves (potential formulation) and Maxon & Viecelli [4] for waves in plasma. Here 𝑅 is
slow variable (it can be a slow time or a slow radius), and 𝜉 is, for example, for an outward-propagating wave, a characteristic
ariable 𝜉 = 𝑟 − 𝑡, where 𝑟 and 𝑡 are the fast radial and time variables. Iordansky’s model has a similar form, but is written in
erms of both characteristic variables of the linear wave equation. Therefore, it is not exactly the same cKdV equation as derived for
ater waves by Miles [5] from the Boussinesq system and by Lugovtsov & Lugovtsov and Johnson [6] from the full Euler equations,
ut it is an asymptotically equivalent model. The cKdV equation is an integrable model. Its Lax pair was found by Druma [7] and
alogero & Degasperis [8], and interesting exact solutions involving the Airy functions were constructed in the latter paper and
y Nakamura & Chen [9]. Considerable efforts were directed towards studying the decay rate of the amplitude of the KdV-type
ulses due to cylindrical divergence by Stepanyants [10]. Adiabatic approximations for the slowly varying pulses in the far field
large 𝑅) were developed in [11–13], where the cylindrical divergence term has been treated as a perturbation of the KdV equation.
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Fig. 1. The schematic showing 2D surface waves. The fluid has the unperturbed depth ℎ0 and the free surface elevation 𝜂(𝑥, 𝑦, 𝑡). The depth-averaged horizonal
peeds in 𝑥 and 𝑦 directions are 𝑢 and 𝑣, respectively.

n approach to finding suitable initial conditions for the cKdV equation by solving the initial-value problem for the corresponding
inear long-wave model was developed by Grimshaw [14]. Recent review of the studies of stability of axisymmetric solitons can be
ound in [15].
The cKdV-type models have also been developed in other physical contexts. In particular, the equation was derived for the

oncentric internal waves by Lipovskii [16] and Weidman & Velarde [17]. Important extensions of the models allowing for the
resence of a background parallel shear flow were made by Johnson [18] for surface waves and Khusnutdinova & Zhang [19] for
internal waves (see also the applications to the modelling of the ring waves in two- and three-layer flows [20,21]).

An extended KdV equation with higher-order nonlinear and dispersive terms was first introduced by Koop and Butler [22] for
lane internal waves in a two-layer fluid in the situation when the quadratic nonlinearity coefficient is small or vanishing [22]. This
as followed by extensive studies of related models, including the Gardner equation (e.g. [23,24] and references therein). Recently,
similar equation was also derived for the strain waves in an elastic rod by Garbuzov et al. [25]. In that context, it was shown
hat even when the quadratic nonlinearity coefficient was not small, the extended KdV equation had advantage compared to the
dV equation in the sense that it could accurately describe not only the small amplitude waves, but also the waves of moderate
mplitude. Moreover, its soliton solution constructed using the reduction of the extended KdV equation to the Gardner equation
y a suitable Kodama-Fokas-Liu near-identity transformation [26,27] provided a useful initial condition for the modelling of even
trongly-nonlinear waves (e.g. table-top solitons). We note that the use of near-identity transformations in the studies of soliton and
ndular bore solutions of the extended KdV equation was pioneered by Marchant and Smyth, who reduced the equation to the KdV
odel (e.g. [28,29]), and that the extended KdV equation has been recently used to describe undular bores in different physical
ontexts (see, for example, [30,31] and references therein).
For concentric waves, a slow-time version of an extended cKdV (ecKdV) equation was recently derived from the potential water

aves formulation by Horikis et al. [32] (see also the relevant reviews [33,34]). A natural question that can be asked is how
ccurately the ecKdV equation describes concentric water waves in comparison with the cKdV equation, in particular when the
ave amplitudes are no longer small. This can be effectively answered by comparing the numerical solutions of the cKdV and
cKdV equations with those of their parent systems.
In this paper, we adopt the classical 2D Boussineq equations as a parent model and derive the cKdV and ecKdV equations.

hese reduced models are then solved numerically and their solutions are compared with the numerical solutions of the Boussinesq
quations to investigate the range of validity of the reduced models. As discussed in Appendix, different long-wave models could
e used, but might be computationally challenging for axisymmetric wave problems. On the other hand, the Boussinesq equations
an be solved accurately using, for example, a pseudospectral method, and provide a good testing ground.
The rest of the paper is organised as follows. We introduce the axisymmetric Boussinesq system in Section 2 and derive a slow

adius version of the extended cKdV equation in Section 3. Unlike the leading-order cKdV equation, the slow time and slow radius
ersions of the ecKdV equation differ. The numerical methods used to integrate axisymmetric Boussinesq, cKdV and ecKdV models
re described in Section 4. In Section 5 we compare the predictions of Johnson’s asymptotic solution for the cKdV equation [6] with
the results of our direct numerical simulations and clarify the range of validity of this approximation. In Section 6, we then consider
the same initial value problem and compare the results of direct numerical simulations of the axisymmetric Boussinesq system and
the results obtained using both the cKdV and extended cKdV equations. More precisely, in the latter cases the reduced models are
solved starting at some distance from the origin using the Boussunesq solution at that distance as an initial condition. We clarify
the range of validity of the models by carefully examining the difference between the results of direct numerical simulations of the
parent system and those obtained using the reduced models. Lastly, we conclude in Section 7, and derivation of the slow radius and
slow time versions of the ecKdV equation from the strongly-nonlinear long-wave models (both for outward- and inward-propagating
waves) is discussed in Appendix.
2



Wave Motion 128 (2024) 103295N. Sidorovas et al.

2

b
b
w
t
t
w

w

w
o
𝛿

Fig. 2. Conversion from Cartesian coordinates 𝑥̃, 𝑦̃ (with speeds 𝑢̃, 𝑣̃) to cylindrical coordinates 𝑟, 𝜃 (with radial and tangential speeds as 𝑈̃ , 𝑉 , respectively).

. Boussinesq equations

For our study of concentric water waves, we use the following 2D Boussinesq system (see, for example, [35,36])

⎧

⎪

⎨

⎪

⎩

ℎ𝑡 + ∇ ⋅ (ℎ𝐮) = 0,

𝐮𝑡 + (𝐮 ⋅ ∇)𝐮 + 𝑔∇ℎ =
ℎ20
3
∇(∇ ⋅ 𝐮𝑡),

(2)

where 𝐱 = (𝑥, 𝑦)𝑇 are the independent horizontal coordinates. The function ℎ = ℎ(𝐱, 𝑡) denotes the local depth of the fluid with ℎ0
eing the equilibrium depth, and 𝐮 = (𝑢(𝐱, 𝑡), 𝑣(𝐱, 𝑡))𝑇 being the depth-averaged horizontal velocity vector. The water depth is given
y ℎ = ℎ0+𝜂 with 𝜂 = 𝜂(𝐱, 𝑡) denoting the displacement of the surface from the equilibrium (see the schematic in Fig. 1). We use this
eakly-nonlinear model in cylindrical coordinates as a testing ground and perform the accurate long-time numerical simulations of
he propagation of axisymmetric concentric waves using a pseudo-spectral method. Relevant to our current study, perhaps one of
he earliest attempts to model concentric water waves was undertaken by Chwang and Wu [37] in their study of inward-propagating
aves within the scope of an axisymmetric Boussinesq system. This study was, however, limited to relatively short time intervals.
We non-dimensionalise system (2) using

𝜂 = 𝜂0𝜂̃, ℎ = ℎ0ℎ̃ = ℎ0

(

1 +
𝜂0
ℎ0
𝜂̃
)

, 𝐱 = 𝑥0𝐱̃, 𝑡 = 𝑡0𝑡, 𝐮 =
𝜂0
ℎ0

⋅
𝑥0
𝑡0

𝐮̃, (3)

ith 𝜂0, ℎ0, 𝑥0, and 𝑡0 being the typical amplitude, depth, length, and time scales, respectively, and also 𝑥0∕𝑡0 =
√

𝑔ℎ0 being the
linear long-wave speed. System (2) takes the following dimensionless form:

⎧

⎪

⎨

⎪

⎩

𝜂̃𝑡 + ∇̃ ⋅ [(1 + 𝜀𝜂̃)𝐮̃] = 0,

𝐮̃𝑡 + 𝜀(𝐮̃ ⋅ ∇̃)𝐮̃ + ∇̃𝜂̃ = 𝛿2

3
∇̃(∇̃ ⋅ 𝐮̃𝑡),

(4)

here 𝛿 = ℎ0∕𝑥0 and 𝜀 = 𝜂0∕ℎ0 are the usual long-wavelength and small-amplitude parameters, and the Boussinesq system retains
nly the leading-order corrections in either of them. In our weakly-nonlinear analysis we will impose the maximal balance condition
2 = 𝜀 in order to retain both the nonlinear and dispersive effects.
We consider axisymmetric ring waves in the cylindrical coordinate system, and therefore we change variables in (4) as follows

(see Fig. 2):

𝐱̃ =
(

𝑥̃
𝑦̃

)

=
(

𝑟 cos 𝜃
𝑟 sin 𝜃

)

, 𝐮̃ =
(

𝑈̃ cos 𝜃 − 𝑉 sin 𝜃
𝑈̃ sin 𝜃 + 𝑉 cos 𝜃

)

. (5)

Here, 𝑟 =
√

𝑥̃2 + 𝑦̃2 > 0 is the distance from the origin, 𝜃 ∈ [0, 2𝜋) is the polar angle, and 𝑈̃ and 𝑉 are the radial and transverse
projections of the velocity vector, respectively. Note that 𝑈̃ , 𝑉 are functions of 𝑟, 𝜃, 𝑡. For axisymmetric waves, we let 𝑉 = 0 and
omit dependence of 𝑈̃ on the angle 𝜃, which implies

𝜂̃ = 𝜂̃(𝑟, 𝑡), 𝑈̃ = 𝑈̃ (𝑟, 𝑡), 𝐮̃ = 𝑈̃ 𝐞̂𝑟, (6)

where 𝐞̂𝑟 is the unit radial vector. Thus, we reduce system (4) to the form of the axisymmetric Boussinesq system [37]:

⎧

⎪

⎨

⎪

𝜂̃𝑡 +
1
𝑟

[

𝑟(1 + 𝜀𝜂̃)𝑈̃
]

𝑟
= 0,

𝑈̃̃ + 𝜀𝑈̃𝑈̃ + 𝜂̃ − 𝜀 [

𝑈̃̃ + 1 𝑈̃̃ − 1 𝑈̃̃
]

= 0.
(7)
3

⎩

𝑡 𝑟 𝑟 3 𝑡𝑟𝑟 𝑟 𝑡𝑟 𝑟2 𝑡



Wave Motion 128 (2024) 103295N. Sidorovas et al.

a
c
i
r
A
a
c
t
(
w

d
S
b

3

w
𝑂

w

Fig. 3. Boussinesq 𝜂 (left) and 𝑈 (right) solutions at varying 𝜏 for 𝜀 = 0.1, 𝜏 ∈ [100, 2100], 𝜉 ∈ [−40, 40] (with the full computational domain 𝜉 ∈ [−90, 60]) and
initial condition 𝜂0 = sech2(𝜉). Physically, the initial condition is a wave which is placed at the distance 𝑟0 = 𝜏min = 100 from the origin and it is then observed
around distances 𝑟 ∈ {525, 2100}. All visible waves are outward-propagating.

For the long-time simulations of an outward propagating wave it is desirable to switch to a moving reference frame by making
the change of variables (𝜉, 𝜏) = (𝑟− 𝑡, 𝑡) so that the observer moves outward in the radial direction with the linear long-wave speed.
This brings system (7) to the following form useful for numerical simulations:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜂̃𝜏 − 𝜂̃𝜉 +
1

𝜉 + 𝜏

[

(𝜉 + 𝜏)(1 + 𝜀𝜂̃)𝑈̃
]

𝜉
= 0,

𝑈̃𝜏 − 𝑈̃𝜉 + 𝜀𝑈̃𝑈̃𝜉 + 𝜂̃𝜉 −
𝜀
3

[

𝑈̃𝜏𝜉𝜉 − 𝑈̃𝜉𝜉𝜉 +
𝑈̃𝜏𝜉 − 𝑈̃𝜉𝜉
𝜉 + 𝜏

−
𝑈̃𝜏 − 𝑈̃𝜉
(𝜉 + 𝜏)2

]

= 0.
(8)

The initial condition has the form of a localised outward-propagating wave. The condition needs to be sufficiently accurate, since
ny waves that are inward-propagating in the fixed reference frame – however small they are initially – will grow due to cylindrical
onvergence, which may lead to numerical instability. We use the 𝑂(𝜀) correction following from the uni-drectional model discussed
n the next section in order to formulate a suitable initial condition. As the wave propagates, a shelf and an oscillatory transition
egions develop behind the lead pulse, both in the free-surface elevation and in the radial velocity, which can be seen in Fig. 3.
ll visible waves in this Fig. 3 are outward-propagating, but the oscillatory wave train moves slower than the linear long waves
nd therefore it appears to be inward-propagating in this moving coordinate frame. The typical topdown view of the simulated
oncentric waves of the axisymmetric Boussinesq system is shown in Fig. 4. The bright lead ring wave of elevation is followed by
he dark ring wave of depression (the shelf), which is then connected to the undisturbed medium by the oscillatory transition region
a transient ring dispersive shock wave). The visible inner circle corresponds to the boundary of the effective computational domain,
hich is discussed in detail in Section 4.
Instead of the weakly-nonlinear Boussinesq equations, one can adopt long-wave models with higher-order nonlinear and

ispersive terms, such as the higher-order 2D Boussinesq models: Serre-Green–Naghdi (SGN) [38–40] or Matsuno (extended
GN) [36,41] equations. However, it should be pointed out that the initial value problems for these higher-order models have
een known to be ill-posed [36,42] and, therefore, cannot be used for numerical simulations without a suitable regularisation.

. Extended cylindrical Korteweg–de Vries (ecKdV) equation

We now look for solutions of the Boussinesq system (7) in the form of asymptotic multiple-scale expansions

𝜂̃ = 𝜂(0) + 𝜀𝜂(1) + 𝜀2𝜂(2) + 𝑂(𝜀3), (9)

𝑈̃ = 𝑈 (0) + 𝜀𝑈 (1) + 𝜀2𝑈 (2) + 𝑂(𝜀3), (10)

here all functions 𝜂(𝑖), 𝑈 (𝑖) depend on the characteristic fast variable 𝜉 = 𝑟− 𝑡, and the slow radial variable 𝑅 = 𝜀𝑟. At leading order,
(1), we obtain

{

−𝜂(0)𝜉 + 𝑈 (0)
𝜉 = 0,

−𝑈 (0)
𝜉 + 𝜂(0)𝜉 = 0,

(11)

hich implies that
(0) (0)
4

𝑈 = 𝜂 + 𝑓 (𝑅). (12)
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Fig. 4. Top-down view of the 𝜂 solution to the axisymmetric 2D Boussinesq model for 𝜀 = 0.1 at varying 𝜏. The initial condition is 𝜂0 = sech2 𝜉 at 𝜏 = 100
corresponding to a wave being placed at a distance 𝑟0 = 100 from the origin. The shelf and oscillatory tail develop quite quickly. The suppression of waves near
the boundaries of the computational domain is represented by the dark annulus behind the main ring. The modelled solution is contained between the dark
annulus and the bright lead ring wave.

We let 𝑓 (𝑅) = 0 under the assumption that all disturbances are produced only by the propagating waves. Physically this means
we impose undisturbed conditions ahead of the outward-propagating ring waves. At a fixed 𝑟, before any waves reach this point
(i.e. 𝑡→ −∞ so that 𝜉 → ∞), both functions must satisfy 𝑈 (0), 𝜂(0) → 0.

Next, at 𝑂(𝜀), we have

⎧

⎪

⎨

⎪

⎩

−𝜂(1)𝜉 + 𝑈 (1)
𝜉 + 𝑈 (0)

𝑅 + [𝜂(0)𝑈 (0)]𝜉 +
1
𝑅
𝑈 (0) = 0,

𝜂(1)𝜉 − 𝑈 (1)
𝜉 + 𝜂(0)𝑅 + 1

2
[𝑈 (0)𝑈 (0)]𝜉 +

1
3
𝑈 (0)
𝜉𝜉𝜉 = 0,

(13)

and here we add the two equations, and also substitute the result (12) to obtain the cKdV equation:

𝜂(0)𝑅 + 3
2
𝜂(0)𝜂(0)𝜉 + 1

6
𝜂(0)𝜉𝜉𝜉 +

1
2𝑅

𝜂(0) = 0. (14)

From the first equation of (13), we find

𝑈 (1)
𝜉 = 𝜂(1)𝜉 − 𝜂(0)𝑅 − 2𝜂(0)𝜂(0)𝜉 − 1

𝑅
𝜂(0). (15)

Using the cKdV equation (14) and integrating over 𝜉′ ∈ (𝜉,∞), we obtain

𝑈 (1) = 𝜂(1) − 1
4
[

𝜂(0)
]2 + 1

6
𝜂(0)𝜉𝜉 − 1

2𝑅
𝜙(0), 𝜙(0) = −∫

∞

𝜉
𝜂(0)(𝜉′, 𝑅) 𝑑𝜉′. (16)

ere, we implicitly assumed that the waves propagate into the unperturbed medium, which is a natural condition for the problems
ith localised initial data.
Finally, at 𝑂(𝜀2), we have

⎧

⎪

⎨

⎪

⎩

−𝜂(2)𝜉 + 𝑈 (2)
𝜉 + 𝑈 (1)

𝑅 + [𝜂(0)𝑈 (0)]𝑅 + [𝜂(0)𝑈 (1)]𝜉 + [𝜂(1)𝑈 (0)]𝜉 +
1
𝑅
[𝜂(0)𝑈 (0) + 𝑈 (1)] = 0,

𝜂(2)𝜉 − 𝑈 (2)
𝜉 + 𝜂(1)𝑅 + 2

3
𝑈 (0)
𝑅𝜉𝜉 + 𝑈

(0)𝑈 (0)
𝑅 + 1

3
𝑈 (1)
𝜉𝜉𝜉 + [𝑈 (0)𝑈 (1)]𝜉 +

1
3𝑅

𝑈 (1)
𝜉𝜉 = 0.

(17)

We add these two equations to eliminate 𝜂(2), 𝑈 (2) terms, and use the following relations:

𝑈 (0) = 𝜂(0), (18a)

𝑈 (1) = 𝜂(1) − 1
4
[𝜂(0)]2 + 1

6
𝜂(0)𝜉𝜉 − 1

2𝑅
𝜙(0), (18b)

𝜂(0)𝑅 = −3
2
𝜂(0)𝜂(0)𝜉 − 1

6
𝜂(0)𝜉𝜉𝜉 −

1
2𝑅

𝜂(0), (18c)

𝜂(0)𝑅𝜉𝜉 = −9
2
𝜂(0)𝜉 𝜂(0)𝜉𝜉 − 3

2
𝜂(0)𝜂(0)𝜉𝜉𝜉 −

1
6
𝜂(0)𝜉𝜉𝜉𝜉𝜉 −

1
2𝑅

𝜂(0)𝜉𝜉 , (18d)

𝜙(0) = 𝜂(0), (18e)
5

𝜉
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𝜙(0)
𝑅 = −∫

∞

𝜉
𝜂(0)𝑅 (𝜉′, 𝑅) 𝑑𝜉′ = −3

4
[

𝜂(0)
]2 − 1

6
𝜂(0)𝜉𝜉 − 1

2𝑅
𝜙(0). (18f)

The resulting equation takes the form

𝜂(1)𝑅 + 3
2
[

𝜂(0)𝜂(1)
]

𝜉 +
1
6
𝜂(1)𝜉𝜉𝜉 +

1
2𝑅

𝜂(1) − 21
8
[

𝜂(0)
]2𝜂(0)𝜉 − 47

24
𝜂(0)𝜉 𝜂(0)𝜉𝜉 − 3

4
𝜂(0)𝜂(0)𝜉𝜉𝜉 −

1
24
𝜂(0)𝜉𝜉𝜉𝜉𝜉

− 1
16𝑅

[

9
[

𝜂(0)
]2 + 8𝜂(0)𝜉 𝜙(0)

]

+ 1
8𝑅2

𝜙(0) = 0. (19)

We now consider the truncated expansion (9) and let 𝜂̂ = 𝜂(0) + 𝜀𝜂(1). Multiplying Eq. (19) through by 𝜀, adding this to Eq. (14), and
oting that

𝜂̂𝜂̂𝜉 = 𝜂(0)𝜂(0)𝜉 + 𝜀
[

𝜂(0)𝜂(1)
]

𝜉 + 𝑂(𝜀
2), (20)

e obtain the extended cKdV (ecKdV) equation

𝜂̂𝑅 + 3
2
𝜂̂𝜂̂𝜉 +

1
6
𝜂̂𝜉𝜉𝜉 +

1
2𝑅

𝜂̂ − 𝜀
(

21
8
𝜂̂2𝜂̂𝜉 +

47
24
𝜂̂𝜉 𝜂̂𝜉𝜉 +

3
4
𝜂̂𝜂̂𝜉𝜉𝜉 +

1
24
𝜂̂𝜉𝜉𝜉𝜉𝜉 +

1
16𝑅

[

9𝜂̂2 + 8𝜂̂𝜉 𝜙̂
]

− 1
8𝑅2

𝜙̂
)

= 0, (21)

here we have omitted any 𝑂(𝜀2) terms and defined

𝜙̂ = −∫

∞

𝜉
𝜂̂(𝜉′, 𝑅) 𝑑𝜉′. (22)

It should be noted that the coefficients of the ecKdV equation depend on its parent long wave model. In the Appendix, a slow
adius version of the ecKdV equation is derived from Matsuno’s 2D extended SGN model [36] in the form

𝜂̂𝑅 + 3
2
𝜂̂𝜂̂𝜉 +

1
6
𝜂̂𝜉𝜉𝜉 +

1
2𝑅

𝜂̂ − 𝜀
(

21
8
𝜂̂2𝜂̂𝜉 +

7
12
𝜂̂𝜂̂𝜉𝜉𝜉 +

31
24
𝜂̂𝜉 𝜂̂𝜉𝜉 +

11
360

𝜂̂𝜉𝜉𝜉𝜉𝜉 +
1

16𝑅

[

9𝜂̂2 + 8𝜂̂𝜉 𝜙̂
]

− 1
8𝑅2

𝜙̂
)

= 0. (23)

The difference in nonlinearity and dispersive coefficients is clear when comparing this to (21). Also, in the Appendix we show that
the 2D SGN equations [38–40] yield the extended cKdV equation in the form

𝜂̂𝑅 + 3
2
𝜂̂𝜂̂𝜉 +

1
6
𝜂̂𝜉𝜉𝜉 +

1
2𝑅

𝜂̂ − 𝜀
(

21
8
𝜂̂2𝜂̂𝜉 +

7
12
𝜂̂𝜂̂𝜉𝜉𝜉 +

31
24
𝜂̂𝜉 𝜂̂𝜉𝜉 +

1
24
𝜂̂𝜉𝜉𝜉𝜉𝜉 +

1
16𝑅

[

9𝜂̂2 + 8𝜂̂𝜉 𝜙̂
]

− 1
8𝑅2

𝜙̂
)

= 0, (24)

hich differs from (23) only in the coefficient of the higher-order dispersive term 𝜂̂𝜉𝜉𝜉𝜉𝜉 , while the difference with the ecKdV
quation (21) derived from the 2D Boussinesq system is much more significant. Thus, all three of these models have their own ecKdV
quations which describe outward-propagating surface ring waves. We also derived similar versions for the inward-propagating
aves (see the Appendix).
It is also instructive to compare the slow radius 𝑅 = 𝜀𝑟 version of the extended cKdV equation (23) derived from Matsuno’s
odel [36] to a slow time 𝑇 = 𝜀𝑡 version derived by Horikis et al. [32,34] from the potential formulation of the Euler equations.

Using the change of variable 𝑅 = 𝑇 + 𝜀𝜉, followed by asymptotically equivalent transformations by virtue of the derived Eq. (23),
we obtain

𝜂̂𝑇 + 3
2
𝜂̂𝜂̂𝜉 +

1
6
𝜂̂𝜉𝜉𝜉 +

1
2𝑇

𝜂̂ + 𝜀
[

−3
8
𝜂̂2𝜂̂𝜉 +

5
12
𝜂̂𝜂̂𝜉𝜉𝜉 +

23
24
𝜂̂𝜉 𝜂̂𝜉𝜉 +

19
360

𝜂̂𝜉𝜉𝜉𝜉𝜉

+ 1
𝑇

( 3
16
𝜂̂2 + 1

4
𝜂̂𝜉𝜉 −

1
2
𝜙̂𝜂̂𝜉

)

+ 1
𝑇 2

( 1
8
𝜙̂ − 1

2
𝜉𝜂̂
)]

= 0, where 𝜙̂ = −∫

∞

𝜉
𝜂̂(𝜉′, 𝑇 ) 𝑑𝜉′. (25)

The model is asymptotically equivalent to that in [32,34] provided that ∫ ∞
𝜉 𝜙̂𝑇 𝑑𝜉 is bounded, up to the definition of 𝜙̂ which in

their version is defined to be

𝜙̂ = ∫

𝜉

0
𝜂̂(𝜉′, 𝑇 ) 𝑑𝜉′,

orresponding to the absence of waves at the origin. We believe that it is more natural to assume that the waves propagate into an
nperturbed medium, and this is what has led to the form of the non-local term in our version of the model. Also, a slow radius
orm of the equation is a more natural choice from the viewpoint of experiments and observations, since it is unlikely that one will
now the state of the entire fluid at some moment of time, while the state at some distance around the origin can be registered by
uoys (see [14,43]). Note that unlike the leading order cKdV equation, the slow-time and the slow-radius versions of the extended
KdV equation are significantly different.

. Numerical modelling of outward-propagating concentric waves

In this section, we discuss the practical aspects of using the reduced cKdV-type models to accelerate numerical modelling of
utward-propagating concentric waves for a given initial condition. We experiment with localised initial conditions placed away
rom the origin and generating an outward-propagating ring wave, but the approach can be used with other initial data and other
6

arent systems.
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Fig. 5. Integration domains for the axisymmetric Boussinesq system in the moving reference frame (8) and the ecKdV model (21).

Numerical runs for the axisymmetric Boussinesq system have been initialised at 𝜏 = 𝜏min with initial profiles 𝜂̂0, 𝑈̂0 over the
domain

𝜉 ∈ [𝜉min, 𝜉max].

After integrating this model up to 𝜏 = 𝜏max, we extract initial data for cKdV and ecKdV models at fixed

𝑅 = 𝑅min = 𝜀(𝜉max + 𝜏min)

and simulate these up to

𝑅 = 𝑅max = 𝜀(𝜉min + 𝜏max).

The cKdV equation is a far-field model and, therefore, 𝑅min and 𝑅max cannot be too small. In our current modelling, we do not
have a fully defined solution across our entire 𝜉-domain if we impose the initial condition to be at an 𝑅 value smaller than 𝑅min,
which is clarified in Fig. 5. Indeed, the axisymmetric Boussinesq system (7) is integrated over the region 𝛺 = [𝜉min, 𝜉max]×[𝜏min, 𝜏max].
he initial data for cKdV-type models must be extracted at a particular 𝑅 where 𝑅 = 𝜀𝑟 = 𝜀(𝜉 + 𝜏) (or 𝜏 = 𝑅∕𝜀− 𝜉) since 𝜉 = 𝑟− 𝜏. In
𝜉, 𝜏)-space the curves corresponding to constant 𝑅 are straight lines which must fit entirely on 𝛺 for the 𝜂 profiles to be extracted
nd compared over the entire 𝜉-region. The minimum such 𝑅 = 𝑅min corresponds to a straight line passing through (𝜉max, 𝜏min)
represented by dashed line) hence giving 𝑅min = 𝜀(𝜉max+𝜏min), and likewise 𝑅max = 𝜀(𝜉min+𝜏max) is a relation satisfied when passing
hrough (𝜉min, 𝜏max) instead (represented by dotted line). This explains the choice of the 𝑅min and 𝑅max values used in the majority
f our numerical runs. However, we will also consider simulations over the region much closer to the origin, at the expense of
escribing the solution in a smaller 𝜉 domain.
We then compare the cKdV and ecKdV solutions at 𝑅 = 𝑅̂, where

𝑅̂ ∈ [𝑅min, 𝑅max],

nd also compare with the full Boussinesq solution at this value. We shall denote the approximate solutions to 𝜂 given by cKdV and
cKdV equations using 𝜂̂ckdv and 𝜂̂eckdv, respectively. Exact Boussinesq solutions 𝜂 will be denoted by 𝜂̂bouss.
All three models are solved using pseudospectral schemes with 𝑁 nodes for 𝜉 derivatives and the 4th-order Runge–Kutta scheme

or 𝜏 and 𝑅 derivatives with step-sizes 𝛥𝜏 and 𝛥𝑅, respectively. The parameters are fixed as follows:

(𝜉min, 𝜉max) = (−90, 60), (𝜏min, 𝜏max) = (100, 2100), 𝑁 = 3 × 29, 𝛥𝜏 = 5 × 10−2, 𝛥𝑅 = 10−4.

The initial data for the Boussinesq system is given by

𝜂0 = 𝐴 sech2 𝜆𝜉, 𝑈0 = 𝑈 (0) + 𝜀𝑈 (1) = 𝜂0 +
1

2(𝜉 + 𝜏min) ∫

𝜉max

𝜉
𝜂0 𝑑𝜉 − 𝜀

(1
4
𝜂20 −

1
6
𝜂0𝜉𝜉

)

, (26)

here 𝐴, 𝜆 > 0 define the amplitude and width of our initial pulse, respectively. The weakly-nonlinear approximation for 𝑈0 is based
n the relations for 𝑈 (0), 𝑈 (1) as found in (12), (16). We note that it was important to use this improved initial condition to simulate
the outward-propagating waves. Indeed, it reduces the amplitude of the inward-propagating wave, which inevitably starts growing
due to cylindrical convergence and may lead to instability.

In the numerical work, we employ MATLAB [44] to solve the moving-frame, axisymmetric (𝜉, 𝜏)-Boussinesq system (8) as well
as the related cKdV and ecKdV models in the (𝜉, 𝑅)-space (14) and (21) for the variable 𝜂̂ (equal to 𝜂(0) + 𝜀𝜂(1)). We solve these
models over spatial domain 𝜉 ∈ [𝜉min, 𝜉max] and ‘‘temporal’’ domains 𝜏 ∈ [𝜏min, 𝜏max] and 𝑅 ∈ [𝑅min, 𝑅max]. The spatial 𝜉-derivatives
in all cases are computed using the fast Fourier transform algorithm provided by MATLAB. The Boussinesq system has two initial
conditions 𝜂̂0, 𝑈̂0 producing the outputs 𝜂̂, 𝑈̂ at a fixed time 𝜏. The initial data given by (26) was modified near the ends of the 𝜉

̂

7

domain in order to maintain periodicity. Indeed, using Fourier transforms requires the dependent variables 𝜂̂, 𝑈 to be periodic on
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Fig. 6. Initial conditions 𝜂0 , 𝑈0 are modified using multiplication by the function 𝐹 to bring them to zero at the ends of the interval. The modified functions
𝐹𝜂0 , 𝐹𝑈0 can be treated as periodic over the computational domain. The modification of 𝜂0 , 𝑈0 are shown for 𝐴 = 𝜆 = 1 and 𝜀 = 0.1.

the specified 𝜉 domain. However, this condition is violated by the way 𝑈0 depends on 𝜂0. To address this issue, we introduce a
unction 𝐹 to modify this initial data 𝜂0, 𝑈0 into periodic data 𝜂̂0, 𝑈̂0 across our 𝜉 domain. Here 𝐹 is defined as

𝐹 = 𝐹 (𝜉) = 1
2

(

tanh
[

𝜅𝐹

(

𝜉 − 𝜉min −
𝜉span
10

)]

− tanh
[

𝜅𝐹

(

𝜉 − 𝜉max +
𝜉span
10

)])

, (27)

where 𝜉span = 𝜉max − 𝜉min and 𝜅𝐹 > 0 is a constant. Then we can consider the periodic data

(𝜂̂0, 𝑈̂0) = (𝐹𝜂0, 𝐹𝑈0)

which coincides with (𝜂0, 𝑈0) over most of the domain except near the boundaries 𝜉 ∈ {𝜉min, 𝜉max} where the function 𝐹 (filter)
brings the solutions to 0. The parameter 𝜅𝐹 denotes the rate of the suppression which we set as 𝜅𝐹 = 1.5 in the majority of our
experiments. Fig. 6 shows this modification.

To numerically integrate in time, we apply the 4th-order Runge–Kutta (RK4) scheme with timestep ℎ ∈ {𝛥𝜏, 𝛥𝑅}. The RK4
scheme has been adjusted to include multiplication by 𝐹 at every timestep. Hence, if the Cauchy problem is to solve 𝜂𝑡 = 𝜓(𝑡, 𝜂)
then the RK4 scheme for integrating in 𝑡 is defined as:

𝜂(𝑡𝑛+1, 𝜉) = 𝐹 ⋅
[

𝜂(𝑡𝑛, 𝜉) +
ℎ
6
(𝑘1 + 𝑘2 + 𝑘3 + 𝑘4)

]

, 𝑡𝑛+1 = 𝑡𝑛 + ℎ, 𝑡 ∈ {𝜏, 𝑅}, (28)

where

𝑘1 = 𝜓(𝑡𝑛, 𝜂𝑛), (29a)

𝑘2 = 𝜓
(

𝑡𝑛 +
ℎ
2
, 𝜂𝑛 + ℎ

𝑘1
2

)

, (29b)

𝑘3 = 𝜓
(

𝑡𝑛 +
ℎ
2
, 𝜂𝑛 + ℎ

𝑘2
2

)

, (29c)

𝑘4 = 𝜓(𝑡𝑛 + ℎ, 𝜂𝑛 + ℎ𝑘3). (29d)

Hence, any waves which get too close to the boundaries of the 𝜉 domain are suppressed.
For the cKdV-type models, the numerical approach is somewhat different. Firstly, it is important to note that these models are

stiff requiring, with the direct head-on approach, 𝛥𝑅 ∼ 𝑂(10−5) − 𝑂(10−6) which results in simulations almost as expensive as the
parent axisymmetric Boussinesq system in our present runs. Stiffness is a characteristic property of some PDEs requiring the use of
additional tools. There are several methods one can apply for stiff PDEs, including the integrating factor method (e.g. [45]). Here,
we adapt the integrating factor method for the KdV equation to our cKdV-type models. To do so, we write the ecKdV equation in
the form

𝜂̂𝑅 + 𝛾2𝜂̂𝜉𝜉𝜉 − 𝜀𝛾7𝜂̂𝜉𝜉𝜉𝜉𝜉 = −𝛾1𝜂̂𝜂̂𝜉 −
𝛾3
2𝑅

𝜂̂ + 𝜀
(

𝛾4𝜂̂
2𝜂̂𝜉 + 𝛾5𝜂̂𝜉 𝜂̂𝜉𝜉 + 𝛾6𝜂̂𝜂̂𝜉𝜉𝜉 +

1
𝑅

[

𝛾8𝜂̂
2 + 𝛾9𝜂̂𝜉 𝜙̂

]

+
𝛾10
𝑅2

𝜙̂
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
= (𝑅,𝜂̂)

, (30)

where we have separated linear terms from nonlinear and non-local terms (denoted by  ). We now apply the Fourier transform
to both sides using the notation 𝜂̂∗ =  [𝜂̂] and the property  [𝜂̂𝑛𝜉 ] = (𝐢𝑘)𝑛𝜂̂∗ (where the subscript 𝑛𝜉 denotes the order of the 𝜉
erivative) giving us

𝜂̂∗ + 𝛬𝜂̂∗ =  [ (𝑅,−1[𝜂̂∗])], where 𝛬 = −𝐢𝑘3(𝛾 + 𝜀𝑘2𝛾 ), (31)
8
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where −1 denotes the inverse Fourier transform. Next, we define 𝑒𝛬𝑅 as our integrating factor allowing us to introduce the variable
𝜈 = 𝑒𝛬𝑅𝜂̂∗ and rewrite the previous equation in the following form

𝜈𝑅 = 𝑒𝛬𝑅 [ (𝑅,−1[𝑒−𝛬𝑅𝜈])], (32)

with the initial data

𝜈(𝑅min, 𝜉) = 𝑒𝛬𝑅min [𝜂̂(𝑅min, 𝜉)]. (33)

The term 𝜂̂(𝑅min, 𝜉) denotes the initial data which we pass to the cKdV and ecKdV models from our axisymmetric Boussinesq runs
at 𝑅 = 𝑅min.

We want to integrate (33) however, as 𝜈 is a Fourier space variable, we are unable to simply use 𝐹 as defined by (27) at each
time-step of the RK4 algorithm. To get around this, we turn off spatial suppression in RK4 by setting 𝐹 = 1 and instead introduce
the sponge layer 𝑠 defined as

𝑠 = 𝑠(𝜉) = 𝜎
[

1 − 1
2

(

tanh
[

𝜅𝑠

(

𝜉 − 𝜉min −
𝜉span
10

)]

− tanh
[

𝜅𝑠

(

𝜉 − 𝜉max +
𝜉span
10

)])]

, (34)

which behaves like 0 in the middle of the domain and activates to strength 𝜎 and rate 𝜅𝑠 near the domain boundaries. The purpose
of this sponge layer is to absorb any waves which get too close to the boundary. In our simulations we set 𝜅𝑠 = 𝜅𝐹 = 1.5 and 𝜎 = 750
which ensures that no waves cross the boundary. The choice for 𝜎 ensures that waves corresponding to large 𝜀 = 0.5 do not pass the
boundary. However, it can be reduced when considering smaller 𝜀 waves. The sponge layer is inserted into the cKdV-type models
by making the change 𝜂̂𝑅 ↦ 𝜂̂𝑅 + 𝑠𝜂̂ which means an additional term to occur alongside  . Thus, (33) is adjusted to

𝜈𝑅 = 𝑒𝛬𝑅 [ (𝑅,−1[𝑒−𝛬𝑅𝜈]) − 𝑠−1[𝑒−𝛬𝑅𝜈]]. (35)

The solutions can then be easily inverted back to the real space by virtue of the transformation 𝜂̂ = −1[𝑒−𝛬𝑅𝜈].
Lastly, the non-local term 𝜙̂ is computed numerically via composite Boole’s rule [46] which is a high-order, finite-difference

numerical integration scheme. The aim is to use Boole’s rule on the majority of the 𝜉 domain followed by lower-order methods at
the right boundary as our quantity of nodes decreases. We define the mesh points

𝜉𝑛 ∶= 𝜉min + (𝑛 − 1)𝛥𝜉, 𝜂̂𝑛 ∶= 𝜂̂(𝑅, 𝜉𝑛),

where 𝑛 = 1, 2,… , 𝑁 . (Note that due to periodicity in our numerical implementation we exclude 𝜉𝑁+1 = 𝜉max whereby 𝜂̂𝑁+1 = 𝜂̂1.)
ince Boole’s rule requires the number of strips to be a multiple of 4, we apply it to the first 4𝐾 strips, where 𝐾 = ⌊(𝑁 + 1 − 𝑛)∕4⌋,
nd use a lower-order method for the remaining strips. Then the non-local term at the mesh points is expressed as follows:

𝜙̂𝑛 ∶= 𝜙̂(𝑅, 𝜉𝑛) = ∫

𝜉𝑁+1

𝜉𝑛
𝜂̂ 𝑑𝜉 = ∫

𝜉𝑛+4𝐾+1

𝜉𝑛
𝜂̂ 𝑑𝜉 + ∫

𝜉𝑁+1

𝜉𝑛+4𝐾+1

𝜂̂ 𝑑𝜉

= 2
45
𝛥𝜉

[

7(𝜂̂𝑛 + 𝜂𝑛+4𝐾+1) + 32
∑

𝑖∈𝐼1

𝜂̂𝑖 + 12
∑

𝑖∈𝐼2

𝜂̂𝑖 + 14
∑

𝑖∈𝐼3

𝜂̂𝑖

]

+ ∫

𝜉𝑁+1

𝜉𝑛+4𝐾+1

𝜂̂ 𝑑𝜉 + (error), (36)

here

𝐼1 = {𝑛 + 1, 𝑛 + 3, 𝑛 + 5,… , 𝑛 + 4𝐾 + 1}, (37a)

𝐼2 = {𝑛 + 2, 𝑛 + 6, 𝑛 + 10,… , 𝑛 + 4𝐾}, (37b)

𝐼3 = {𝑛 + 4, 𝑛 + 8, 𝑛 + 12,… , 𝑛 + 4𝐾 − 2}. (37c)

The error term in this approximation is at least 𝑂(𝛥𝜉7) (which is the error for Boole’s rule). However, if 𝑁 + 1 − 𝑛 ≢ 0 (mod 4)
hen the error is higher as we need to use a lower-order method for the remaining strips. With three strips leftover we use Simpson’s
/8 rule with error 𝑂(𝛥𝜉5). With two strips leftover we use Simpson’s 1/3 rule having the same error order 𝑂(𝛥𝜉5), and when we
ave only one strip leftover we approximate the area with a trapezium giving error 𝑂(𝛥𝜉3). This way of calculating our integrals
ased on number of available strips (as we take larger 𝜉𝑛 to be the lower bound) allows us to calculate the non-local term 𝜙̂ to a
igh precision in the region away from the boundaries where waves are not being suppressed, with the lower-order methods being
mployed only at the right-most boundary of the domain, where the solution is exponentially small in size and variation due to
ave suppression.
This choice of numerical schemes allows us to solve a typically very stiff PDE (the ecKdV) significantly more quickly by permitting

arger time-steps 𝛥𝑅. In the numerical simulation for waves under the parameters

𝜀 = 0.1, [𝜉min, 𝜉max] = [−90, 60], [𝜏min, 𝜏max] = [100, 2100], 𝑁 = 3 × 29,

he time-step 𝛥𝜏 for the axisymmetric 2D Boussinesq system could not be taken larger than 5 × 10−2 which can be validated via the
inear stability analysis. This resulted in Boussinesq simulation taking 11.6 h to fully complete. These Boussinesq computations (along
ith the cKdV-type model computations as discussed later) were performed on a single machine with the 16-core AMD Ryzen™ 9
950X processing unit. The 3D surface of 𝜂̂ solutions for this Boussinesq simulation can be approximated via the cKdV-type models
9

y taking the following steps:
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1. Simulate the Boussinesq model from 𝜏 = 𝜏min to 𝜏 = 𝑅min∕𝜀 − 𝜉min where 𝑅min = 𝜀(𝜉max + 𝜏min).
2. Extract the 𝜂̂ profile from Boussinesq solution at 𝑅 = 𝑅min, and omit Boussinesq data in the region 𝑅 > 𝑅min.
3. Simulate cKdV-type models from 𝑅 = 𝑅min up to 𝑅 = 𝜀(𝜉max + 𝜏max) using the extracted profile as initial data.
4. Transform the cKdV surface of 𝜂̂ solutions from (𝑅, 𝜉)-space to (𝜏, 𝜉)-space and append this surface to the adjusted Boussinesq
surface resulting from step 2. Omit any data in the region 𝜏 > 𝜏max.

This approach yields exact Boussinesq solutions in the (𝜏, 𝜉)-region where 𝑅 < 𝑅min and cKdV-approximated solutions where
𝑅 > 𝑅min. Step 1 takes 50 min to complete. Step 3 can be done with, or without, the integrating factor. Without it the ecKdV
is constrained to have small time-step 𝛥𝑅 = 10−5 resulting in step 3 taking 16.6 min via the cKdV, or 6.6 h via the ecKdV. When
the integrating factor is involved, we can take 𝛥𝑅 = 10−3 which means step 3 is completed in 3 min via the cKdV, or 40 min via
the ecKdV. This indicates a substantial decrease in computation time when using the integrating factor, overall reducing the time
taken to approximate Boussinesq 𝜂̂ surface from 11.6 h to just 1.5 h using the ecKdV model. In the present runs, aliasing errors
were negligible due to the use of a sufficiently large number of harmonics. Computations with a smaller number of harmonics with
de-aliasing [47,48] could be tried to reduce the computational time for all models. Finally, we note that higher-order systems such
as SGN or Matsuno’s models are significantly more challenging computationally compared to the Boussinesq system whereas their
asymptotic models at ecKdV level differ merely in some coefficients which means that improvement in computation time and effort
can be expected to be even greater.

5. Asymptotic solution for cKdV equation vs numerical simulations

In this section, we first examine validity of the cKdV equation and its asymptotic solution obtained by Johnson [13] in comparison
with the solution of the Boussinesq system. Johnson considers the following initial-value problem:

𝜂𝑅 + 3
2
𝜂𝜂𝜉 +

1
6
𝜂𝜉𝜉𝜉 +

1
2𝑅

𝜂 = 0, (38)

𝜂(𝑅min, 𝜉) = 𝐴 sech2
(
√

3𝐴
2

𝜉

)

, (39)

assuming that the initial condition is placed sufficiently far from the origin so that the cylindrical divergence term can be treated
as a perturbation of the KdV solitary wave, defining the initial condition.

The approximate solution consists of three wave components: primary wave, shelf, and transition region back to the undisturbed
state. To give the full description, we first introduce the following new variables

𝛼 = 𝑅−1
min, 𝑋 = 𝛼𝑅,  = 1

2

√

3𝐴𝑋−2∕3, 𝑓 (𝑋) = 3
2
𝐴(𝑋1∕3 − 1), (40)

𝛩 = 𝜉 − 𝛼−1𝑓 (𝑋), 𝑠̄ = sech( 𝛩), 𝑡 = tanh( 𝛩). (41)

The primary wave is then given by

𝜂primary = 𝜂1 + 𝛼𝜂2, (42)

where

𝜂1 = 𝐴𝑋−2∕3𝑠̄2, 𝜂2 =
2
3
𝑋−2∕3
√

3𝐴

[

−1 + 𝑡 + (3 + 2 𝛩)𝑠̄2 −
(

35
12

+ 3 𝛩 +  2𝛩2
)

𝑡𝑠̄2
]

. (43)

The shelf has the form

𝜂shelf = 𝜂1 + 𝛼𝐹1, where 𝐹1 = −4
3
(3𝐴 + 2𝛼𝜉)−1∕2. (44)

The oscillatory region is given by

𝜂oscill = 𝜂1 + 𝛼𝐹2, where 𝐹2 = −4
3
(3𝐴)−1∕2

(

1 − ∫

∞

𝜉(2𝛼∕𝑋)1∕3
Ai(𝜉′) 𝑑𝜉′

)

(45)

and Ai is the Airy function. Together these three components describe the cKdV evolution of a KdV soliton initial condition in
(𝑅, 𝜉)-space. The small parameter 𝛼 depends on where we place the initial data, 𝑅min, with the asymptotics being better with smaller
𝛼.

To compare these asymptotics to the numerical solutions of the cKdV and Boussinesq models, we convert away from (𝑅, 𝜉)-space
to (𝑇 , 𝜉)-space in the same way as we did to compare against the work by Horikis et al. [32]. At leading order, the cKdV equation
retains its form with 𝑇 playing the role of 𝑅. This allows us to use the same initial data for Johnson’s approximate solution, the
cKdV equation, and the Boussinesq system. In other words, we redefine Johnson’s problem to be the slow time problem, and replace
the 𝑅 with 𝑇 in Johnson’s solution above.

Fig. 7 shows a comparison between Johnson’s asymptotics viewed as a slow radius asymptotics (left column) vs a slow time
asymptotics (right column). We see that the agreement is better in the second case. This is understandable because the axisymmetric
Boussinesq problem has been solved as a time evolution problem. Therefore, in the second case the initial conditions for the cKdV
10

equation and the Boussinesq system are the same. In the first case, the initial conditions agree only approximately.
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a

Fig. 7. Comparisons between axisymmetric Boussinesq, cKdV, and Johnson solutions for the cases 𝜀 ∈ {0.01, 0.1} and 𝛼 = 0.01 over the domain 𝜉 ∈ [−90, 60] with
initial condition 𝜂̂ = sech2

(
√

3𝜉∕2
)

for all cases. Left column shows the comparisons in (𝑅, 𝜉)-space with 𝑅 ∈ [𝑅min , 𝑅max] = [𝛼−1 , 𝛼−1 + 50] and the comparisons
are made at 𝑅̂ ∈ {110, 150}. Right column shows these comparisons in (𝑇 , 𝜉)-space with 𝑇 ∈ [𝑅min , 𝑅max] (which implies 𝜏 ∈ [𝜀−1𝛼−1 , 𝜀−1𝑅max]). The comparisons
are also made at 𝑇̂ ∈ {110, 150}. Physically, the initial data for the axisymmetric Boussinesq model is placed at distance 𝑟0 = 10000 away from the origin in the
top comparisons, or 𝑟0 = 1000 in the bottom comparisons.

There are two small parameters in this problem formulation; 𝛼 (which drives agreement between cKdV and Johnson’s far-field
asymptotics) and 𝜀 (which drives agreement between the weakly-nonlinear cKdV model and original Boussinesq system). Overall,
Johnson’s asymptotics gives good agreement only when both of these parameters are small enough, i.e. the waves are weakly-
nonlinear, and the initial condition is placed sufficiently far away from the origin. As shown in Fig. 8 for 𝜀 = 0.01 and the two
values of 𝛼 ∈ {0.01, 0.04}, Johnson’s solution starts to deviate from other solutions at an earlier time for a greater value of 𝛼. In
particular, the oscillatory transition region approximation is valid only at large distances away from the initial position of the pulse.
This is understandable, because the approximation is based only on the known level of the shelf, and not on its slope. The long-time
asymptotics of the emerging undular bore does not depend on the slope [49], and hence the approximation works sufficiently far
away from the initial position of the pulse. When 𝜀 or the wave amplitude is increased, it can be observed that the cKdV solution
nd, therefore, its asymptotic solution become invalid at a much earlier time in comparison with the Boussinesq equations.
Finally, Fig. 9 shows a comparison between the Boussinesq, cKdV and Johnson’s solutions for 𝜀 = 0.1 and 𝛼 ∈ {0.01, 0.04}. The

agreement between the solutions of the axisymmetric Boussinesq system and the cKdV equation is now much worse than in Fig. 8.
Johnson’s asymptotics continues to be a rather good approximation to the solution of the cKdV equation for the primary wave and
the shelf, but there is a significant phase shift and amplitude difference compared to the solution of the full Boussinesq system.
As before, the behaviour of the oscillatory tail region is captured well only at very large values of 𝑇 due to the nature of this
approximation.

6. Numerical simulations: cKdV vs ecKdV models

In this section we perform a detailed comparison of the accuracy of the cKdV and ecKdV models when they are used to speed
11

up the solution of an initial-value problem for the axisymmetric Boussinesq system, as detailed in Section 4.
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Fig. 8. Comparisons between axisymmetric Boussinesq, cKdV, and Johnson solutions for fixed 𝜀 = 0.01 and 𝛼 ∈ {0.01, 0.04} over the region (𝜉, 𝑇 ) ∈
[−90, 60] × [𝛼−1 , 𝛼−1 + 40] with initial condition 𝜂̂ = sech2

(
√

3𝜉∕2
)

in all cases. The axisymmetric Boussinesq model is evaluated over 𝜏 ∈ [𝜀−1𝛼−1 , 𝜀−1(𝛼−1 + 40)]
ith initial data is placed at distance 𝑟0 = 10000 away from the origin in the top comparisons, or at 𝑟0 = 2500 in the bottom comparisons.

We first investigate the case of 𝜀 = 0.1 and observe the evolution of 𝜂, 𝑈 for long times 𝜏. There is very little observable
difference between 𝜂, 𝑈 at the later stages of evolution, and we see that a long shelf behind the decaying wave-front develops
before transitioning into the oscillatory region. Once the model is fully evaluated, we can then plot a surface of all 𝜂 profiles in the
𝜉, 𝜏)-space. In fact, using the relation

𝑅 = 𝜀𝑟 = 𝜀(𝜏 + 𝜉), (46)

we plot this surface in the (𝜉, 𝑅)-space instead as shown in Fig. 10. We can extract a cut of this surface along 𝑅 = 𝑅min (the solid red
line) using cubic spline interpolation before using this as initial data for cKdV (14) and ecKdV (21) models. We can then numerically
ntegrate these two models up to 𝑅 = 𝑅̂ before making a comparison between all three at this point.
The detailed comparisons between all three models have been made for 𝑅̂ ∈ {20, 50, 100, 201}, and Fig. 11 shows the comparisons

t 𝑅̂ ∈ {20, 201}. A key observation we could make was that the ecKdV equation was much closer to the solution of the full
xisymmetric 2D Boussinesq model than the solution of the cKdV equation for all sampled 𝑅 values. The three key regions of
he wave, i.e. primary wave, shelf and oscillatory region, are all well described by the ecKdV equation. The cKdV equation
nderestimates the amplitude of the solution within the primary wave region, which is a consistent discrepancy. On the other hand,
he ecKdV model retains no visual difference from the axisymmetric 2D Boussinesq system over the entire computational domain.
oreover, the difference between the cKdV and ecKdV 𝜂̂ solutions and the corresponding solution obtained using direct numerical
imulations of the axisymmetric Boussinesq system across the 𝜉 domain can be tracked via the right-hand panels of Fig. 11, which
how that the ecKdV models give a much smaller error, and this was true for all the sampled cases. The difference between the cKdV
nd ecKdV models is rather significant as is illustrated for 𝑅̂ = 20 and 𝑅̂ = 201. Naturally, both errors reduce with the distance.
imilar comparisons for the radial velocity 𝑈̂ are shown in Fig. 12 for 𝑅̂ ∈ {20, 50, 100, 201}, and the errors are again much smaller
hen we use the ecKdV model.
In Figs. 13 and 14 we show a comparison between the Boussinesq, cKdV and ecKdV models for the cases when the waves have
12

ot small but moderate amplitude (𝜀 ∼ 0.3 − 0.5). Fig. 13 shows the results for 𝜂 related to the comparison of solutions of the three
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Fig. 9. Comparisons between axisymmetric Boussinesq, cKdV, and Johnson solutions for fixed 𝜀 = 0.1 and 𝛼 ∈ {0.01, 0.04} over the region (𝜉, 𝑇 ) ∈
−90, 60] × [𝛼−1 , 𝛼−1 + 40] with initial condition 𝜂̂ = sech2

(
√

3𝜉∕2
)

in all cases. The axisymmetric Boussinesq model is evaluated over 𝜏 ∈ [𝜀−1𝛼−1 , 𝜀−1(𝛼−1 + 40)]
ith initial data is placed at distance 𝑟0 = 1000 away from the origin in the top comparisons, or at 𝑟0 = 250 in the bottom comparisons.

Fig. 10. Boussinesq 𝜂, 𝑈 surfaces in the (𝑅, 𝜉)-space with 𝜀 = 0.1, 𝜏 ∈ [𝜏min , 𝜏max] = [100, 2100], 𝜉 ∈ [−90, 60] and initial condition 𝜂0 = sech2(𝜉). The solid red line
denotes the initial condition for cKdV and ecKdV models taken at 𝑅min = 𝜀(𝜉max + 𝜏min) = 16, whereas the solid green line denotes the maximum distance from
he origin where the comparison of the models can be made. This is calculated as 𝑅max = 𝜀(𝜉min + 𝜏max) = 201. The initial condition for Boussinesq system has
een placed at the physical distance 𝑟0 = 𝜏min = 100 away from the origin, with cKdV and ecKdV models being used once the wave passes the distance mark of
= 160.
13
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𝑅

Fig. 11. Comparison between axisymmetric Boussinesq, cKdV, and ecKdV models for the case 𝜀 = 0.1 with Boussinesq having initial data 𝜂0 = sech2 𝜉 and being
integrated over the region (𝜉, 𝜏) ∈ [−90, 60] × [100, 2100]. This implies placement of cKdV-type initial data at 𝑅 = 𝑅min = 16 with comparisons taking place at

= 𝑅̂ ∈ {20, 201}. Physically, the Boussinesq initial data here is placed at distance 𝑟0 = 100 from the origin, and cKdV-type models are employed at distance
𝑟 = 160.

models for the case when the Boussinesq run has been initiated at 𝑟0 = 100 with 𝜀 ∈ {0.3, 0.5}. Such relatively large values of the
amplitude parameter are clearly outside of the range of validity of the cKdV equation, which develops large spurious oscillations in
the shelf region already for 𝜀 = 0.3. The differences are even more significant for 𝜀 = 0.5. The ecKdV equation captures the solution
rather well in both cases, and visibly better than the cKdV equation. Next, Fig. 14 shows a similar and more detailed comparisons
for simulations related to the case when the Boussinesq run was initiated much closer to the origin, at 𝑟0 = 25 with 𝜀 = 0.5. In these
runs 𝑅min = 25 and comparisons are shown up to 𝑅̂ = 50. The ecKdV model stays on top of the Boussinesq solution at all times,
while the cKdV solution has visible discrepancies. We do not show the error plots for these large values of 𝜀 since the differences
between the solutions are clearly visible in the main plots.

The next natural question to ask is what happens if we vary the parameters of the initial profile for the Boussinesq system. By
changing from (𝐴, 𝜆) = (1, 1) to (𝐴, 𝜆) = (0.5, 0.25), we can see the results in Fig. 15. For this wide initial profile we observe fission,
i.e. the primary wave splits into two; with one fast pulse ahead, and another slower pulse behind. This is a complicated process
which cKdV-type models should replicate. We see that at the smallest value 𝑅̂ = 50 the cKdV model is already having significant
problems trying to match the Boussinesq system. Both pulses are underestimated in amplitude and mismatched in phase. The same
can be said about the oscillatory region, and this discrepancy is present for all sampled 𝑅 values. On the other hand, the ecKdV
equation captures the solution of the Boussinesq model very well once again with no noticeable difference.

In our studies, we experimented with different values of the small-amplitude parameter. The main features of the solution mainly
remain the same as shown in Fig. 16, i.e. the primary wave is followed by a shelf and an oscillatory region. The behaviour of the
primary wave is qualitatively similar to that described by the Inverse Scattering Transform for the Korteweg - de Vries equation [50],
i.e. depending on the amplitude and the width of the initial condition it might fission into a number of solitons and radiation, which
then evolve under the mutual action of nonlinear, dispersive and cylindrical divergence terms. We note that, in the cases considered
by us, the discrete spectrum of the Schrödinger equation associated with the relevant KdV equation (see [50]) gave rather good
predictions for the initial fission of the primary wave.

By emulating the axisymmetric 2D Boussinesq system up to 𝜏 = 2100 for an initial profile with (𝐴, 𝜆) = (1, 1), we see that
14

large 𝜀 leave a longer shelf behind and the wavelength of the oscillatory region is reduced. The amplitudes of the primary waves
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Fig. 12. Error plots for 𝑈̂ between axisymmetric Boussinesq, cKdV, and ecKdV models for the case 𝜀 = 0.1 with Boussinesq system having initial condition
𝜂0 = sech2 𝜉 and being integrated over the region (𝜉, 𝜏) ∈ [−90, 60]×[100, 2100]. This implies placement of cKdV-type initial data at 𝑅 = 𝑅min = 16 with comparisons
taking place at 𝑅 = 𝑅̂ ∈ {20, 50, 100, 201}. Here we compare exact 𝑈̂ from Boussinesq system against 𝑈̂ as given by the relation 𝑈̂ = 𝜂̂+ 𝜀

2𝑅̂
∫ 𝜉max
𝜉 𝜂̂ 𝑑𝜉−𝜀

( 1
4
𝜂̂2 − 1

6
𝜂̂𝜉𝜉

)

where 𝜂̂ ∈ {𝜂̂ckdv , 𝜂̂eckdv}.

Fig. 13. Comparison between axisymmetric Boussinesq, cKdV, and ecKdV models for the cases 𝜀 ∈ {0.3, 0.5} with Boussinesq system having initial condition
0 = sech2 𝜉 and being integrated over the region (𝜉, 𝜏) ∈ [−90, 60] × [100, 500]. This implies placement of cKdV-type initial data at 𝑅 = 𝑅min = 48 (when 𝜀 = 0.3)
r 𝑅 = 𝑅min = 80 (when 𝜀 = 0.5) with comparisons taking place at 𝑅 = 𝑅̂ = 𝑅min + 10. The initial condition for Boussinesq system has been placed at the physical
istance 𝑟0 = 100 away from the origin, and cKdV-type models are employed at distance 𝑟 = 𝜀−1𝑅min = 160 in both cases.
15
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Fig. 14. Simulations of the three models with 𝜀 = 0.5 on the adjusted Boussinesq region (𝜉, 𝜏) ∈ [−24, 25] × [25, 154] to allow comparisons to be made at
ignificantly smaller 𝑅̂ ≥ 25 values. The initial condition for Boussinesq system remains as 𝜂0 = sech2 𝜉, with suppression functions 𝐹 , 𝑠 requiring adjusting
𝜅𝐹 = 𝜅𝑠 = 10 and 𝜉span factor increasing from 1∕10 to 2∕10 which allows waves near the boundaries of this shorter domain to be suppressed in good time.
Physically, the Boussinesq initial data here is placed at distance 𝑟0 = 25 from the origin, and cKdV-type models are employed at distance 𝑟 = 𝜀−1𝑅min = 50.

ecay, which was extensively studied (e.g. [10] and references therein). Our numerical results are in agreement with these studies
s shown in Fig. 17. For smaller waves, the initial decay rate is closer to ∼ 𝑟−1∕2, which corresponds to the dominant effect of
ylindrical divergence. For larger waves of the same width, it is closer to ∼ 𝑟−1, which corresponds to the combined cylindrical
ivergence and dispersive effects (waves are steeper). However, at a later time, all decay rates approach the ∼ 𝑟−2∕3 power law,
orresponding to the leading-order balance of the nonlinear, dispersive and cylindrical divergence terms.
Finally, we note that when we reduce 𝜀, we observe much less difference between all three models (as one might expect based

n the theoretical results). This means that for small 𝜀 values which describe small-amplitude cylindrical waves, while the ecKdV
16
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Fig. 15. Comparison between axisymmetric Boussinesq, cKdV, and ecKdV models for the case 𝜀 = 0.1 with Boussinesq system having initial condition
𝜂0 = 0.5 sech2(0.25𝜉) and being integrated over the region (𝜉, 𝜏) ∈ [−90, 60] × [100, 2100]. This implies placement of cKdV-type initial data at 𝑅 = 𝑅min = 16
with comparisons taking place at 𝑅 = 𝑅̂. In particular, this choice of initial data 𝜂0 generates fission within the simulation, and comparisons are made at
𝑅̂ ∈ {50, 201}. The initial condition for Boussinesq system has been placed at the physical distance 𝑟0 = 100 away from the origin.

Fig. 16. The final axisymmetric Boussinesq profiles at 𝜏 = 2100 for different 𝜀 cases. The initial condition is 𝜂0 = sech2(𝜉) across all cases. Physically, all initial
rofiles were placed at distance 𝑟0 = 100 away from the origin with cKdV-type models being employed at 𝑟 = 160.

quation is still more accurate than the cKdV model, the accuracy of the cKdV model might be enough for practical applications.
owever, we would like to emphasise that the ecKdV model performs significantly better for larger values of 𝜀, describing waves
f moderate amplitude.

. Concluding remarks

In this paper, we have considered nonlinear outward-propagating concentric waves in shallow water using the 2D Boussinesq
ystem and the reduced models. Our main aim is to investigate how good the extended cKdV equation is in comparison with the
eading-order cKdV equation in the generic situation, i.e. when all coefficients of the leading-order equation are 𝑂(1).
In order to do that, we have chosen the axisymmetric Boussinesq system previously modelled numerically for inward-propagating

aves by Chwang and Wu [37] as our primitive equations. A pseudospectral method has been used to accurately solve the system
or a relatively long period of time. A filter has been applied to the localised initial conditions and computed numerical solutions
n order to suppress any disturbances near the boundaries of the computational domain.
For the reduced models, a filter has been applied only to the initial condition, and a sponge layer was implemented instead to

nsure periodicity of the problem.
In all the cases considered in our study, we confirm that the extended cKdV equation performs much better than the leading-order

KdV model. This is especially noticeable in the case of moderate amplitudes, with the amplitude parameters 𝜀 = 0.3 and 𝜀 = 0.5.
ence, the ecKdV equation extends the range of validity of the weakly-nonlinear modelling to the waves of moderate amplitude,
hich is the main conclusion of our study.
As a by-product of our study, we compared the predictions of Johnson’s asymptotic solution for the cKdV equation with the

esults of our direct numerical simulations and clarified the range of validity of this approximation. Overall, the asymptotics gives
17
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Fig. 17. The amplitude of 𝜂 pulse in axisymmetric Boussinesq system as 𝜏 ∈ [100, 2100] varies for different 𝜀 cases. There are three theoretical power laws for
comparison: lines with gradients −1∕2,−2∕3 and −1. The three initial slopes are {−0.5263,−0.6316,−0.7895} in order from top to bottom.

good agreement only when the waves have sufficiently small amplitude (to ensure the applicability of the cKdV model), and the
initial condition is placed sufficiently far away from the origin (to ensure that the cylindrical divergence term can be treated as a
perturbation of the KdV equation). In addition, the oscillatory transition region approximation is valid only at very large distances
away from the initial position of the pulse (indeed, the approximation corresponds to the long-time limit of an undular bore, which
depends only on the hight of the shelf), while the approximations to the primary wave and the shelf do not have this limitation.

We also have derived the slow radius and slow time versions of the ecKdV equation from the strongly-nonlinear Serre-Green–
Naghdi (SGN) and Matsuno models, both for outward and inward propagation, which can be found in Appendix.

We hope that our results will stimulate a renewed interest to the cKdV and extended cKdV models in order to study them
from the viewpoint of Hamiltonian structures, near-identity transformations and exact and approximate solutions, similar to those
developed for the KdV and extended KdV equations [26,27,51–54], with subsequent applications to the modelling of concentric
waves in various physical contexts. Indeed, these universal models are applicable in all situations with the dominant balance of
nonlinearity, dispersion and cylindrical divergence (and similarly, cylindrical convergence for the inward-propagating waves).
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ppendix

In this appendix, we derive the extended cKdV models for stronger nonlinear regimes. Hence, we extend the considerations
f our paper to the strongly nonlinear long-wave SGN [38–40] and Matsuno’s [36,41] models for surface waves. The extended
eakly-nonlinear models of the type examined in our paper are more amenable to analysis, and they are likely to provide useful
nitial conditions for the strongly nonlinear models, similarly to their plane waves counterparts [25].
The dimensionless Matsuno 𝛿4 model is given by

{

𝜂̃𝑡 + ∇̃ ⋅ [(1 + 𝜀𝜂̃)𝐮̃] = 0,
̃ ̃ 2 4

(A.1)
18

𝐮̃𝑡 + 𝜀(𝐮̃ ⋅ ∇)𝐮̃ + ∇𝜂̃ = 𝛿 𝑆1 + 𝛿 𝑆2,
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where

𝑆1 =
1

3(1 + 𝜀𝜂̃)
∇
[

(1 + 𝜀𝜂̃)3{∇ ⋅ 𝐮̃𝑡 + 𝜀(𝐮̃ ⋅ ∇)(∇ ⋅ 𝐮̃) − 𝜀(∇ ⋅ 𝐮̃)2}
]

,

𝑆2 =
1

45(1 + 𝜀𝜂̃)
∇[∇ ⋅ {(1 + 𝜀𝜂̃)5∇(∇ ⋅ 𝐮̃𝑡) + 𝜀(1 + 𝜀𝜂̃)5(∇2(∇ ⋅ 𝐮̃))𝐮̃ − 5𝜀(1 + 𝜀𝜂̃)5(∇ ⋅ 𝐮̃)∇(∇ ⋅ 𝐮̃)

+ 𝜀∇ℎ5 × (𝐮̃ × ∇(∇ ⋅ 𝐮̃))} − 3𝜀ℎ5{∇(∇ ⋅ 𝐮̃)}2]

− 𝜀
45(1 + 𝜀𝜂̃)

[

∇ ⋅ {(1 + 𝜀𝜂̃)5∇(∇ ⋅ 𝐮̃)}∇(∇ ⋅ 𝐮̃) + (1 + 𝜀𝜂̃)5

2
∇{∇(∇ ⋅ 𝐮̃)}2

]

.

Repeating the steps described in Section 3 with the help of symbolic computations in Mathematica [55] we can derive the ecKdV
equation for axisymmetric surface waves. Writing this system is very cumbersome, however (after omitting tildes for brevity) we
can convert it to axisymmetric coordinates (𝑟, 𝑡) and write it as follows:

⎧

⎪

⎨

⎪

⎩

𝜂𝑡 +
1
𝑟
[𝑟(1 + 𝜀𝜂)𝑈 ]𝑟 = 0,

𝑈𝑡 + 𝜀𝑈𝑈𝑟 + 𝜂𝑟 = 𝜀1 + 𝜀22,
(A.2)

where 𝑆1, 𝑆2 transform into the following:

1 =
1 + 𝜀𝜂
3𝑟3

[

3𝑟3𝜀2𝜂𝑟𝑈𝑈𝑟𝑟 − 3𝑟3𝜀2𝜂𝑟𝑈2
𝑟 − 𝑟3𝜀2𝜂𝑈𝑟𝑈𝑟𝑟 + 𝑟3𝜀2𝜂𝑈𝑈𝑟𝑟𝑟 + 3𝑟3𝜀𝜂𝑟𝑈𝑡𝑟

+ 𝑟3𝜀𝜂𝑈𝑡𝑟𝑟 − 𝑟3𝜀𝑈𝑟𝑈𝑟𝑟 + 𝑟3𝜀𝑈𝑈𝑟𝑟𝑟 + 𝑟3𝑈𝑡𝑟𝑟 − 3𝑟2𝜀2𝜂𝑟𝑈𝑈𝑟 − 𝑟2𝜀2𝜂𝑈2
𝑟

− 𝑟2𝜀2𝜂𝑈𝑈𝑟𝑟 + 3𝑟2𝜀𝜂𝑟𝑈𝑡 + 𝑟2𝜀𝜂𝑈𝑡𝑟 − 𝑟2𝜀𝑈2
𝑟 − 𝑟2𝜀𝑈𝑈𝑟𝑟 + 𝑟2𝑈𝑡𝑟

− 3𝑟𝜀2𝜂𝑈𝑈𝑟 − 𝑟𝜀𝜂𝑈𝑡 − 3𝑟𝜀𝑈𝑈𝑟 − 𝑟𝑈𝑡 − 6𝑟𝜀2𝜂𝑟𝑈2 + 4𝜀2𝜂𝑈2 + 4𝜀𝑈2
]

,

and

2 = −
(1 + 𝜀𝜂)2

45𝑟5

[

− 70𝜀2𝜂𝑟𝑈2
𝑟𝑟𝑟

5 − 70𝜀3𝜂𝜂𝑟𝑈2
𝑟𝑟𝑟

5 − 100𝜀3𝑈𝑟𝜂2𝑟𝑈𝑟𝑟𝑟
5 − 25𝜀2𝑈𝑟𝑈𝑟𝑟𝜂𝑟𝑟𝑟5

− 25𝜀3𝜂𝑈𝑟𝑈𝑟𝑟𝜂𝑟𝑟𝑟5 + 20𝜀2𝜂2𝑟𝑈𝑡𝑟𝑟𝑟
5 + 5𝜀𝜂𝑟𝑟𝑈𝑡𝑟𝑟𝑟5 + 5𝜀2𝜂𝜂𝑟𝑟𝑈𝑡𝑟𝑟𝑟5

+ 20𝜀3𝑈𝜂2𝑟𝑈𝑟𝑟𝑟𝑟
5 − 40𝜀2𝑈𝑟𝜂𝑟𝑈𝑟𝑟𝑟𝑟5 − 40𝜀3𝜂𝑈𝑟𝜂𝑟𝑈𝑟𝑟𝑟𝑟5 − 22𝜀3𝜂2𝑈𝑟𝑟𝑈𝑟𝑟𝑟𝑟5

− 22𝜂𝑈𝑟𝑟𝑈𝑟𝑟𝑟𝑟5 − 44𝜀2𝜂𝑈𝑟𝑟𝑈𝑟𝑟𝑟𝑟5 + 5𝜀2𝑈𝜂𝑟𝑟𝑈𝑟𝑟𝑟𝑟5 + 5𝜀3𝑈𝜂𝜂𝑟𝑟𝑈𝑟𝑟𝑟𝑟5

+ 10𝜀𝜂𝑟𝑈𝑡𝑟𝑟𝑟𝑟5 + 10𝜀2𝜂𝜂𝑟𝑈𝑡𝑟𝑟𝑟𝑟5 − 3𝜀3𝜂2𝑈𝑟𝑈𝑟𝑟𝑟𝑟𝑟5 − 3𝜂𝑈𝑟𝑈𝑟𝑟𝑟𝑟𝑟5

− 6𝜀2𝜂𝑈𝑟𝑈𝑟𝑟𝑟𝑟𝑟5 + 10𝜀2𝑈𝜂𝑟𝑈𝑟𝑟𝑟𝑟𝑟5 + 10𝜀3𝑈𝜂𝜂𝑟𝑈𝑟𝑟𝑟𝑟𝑟5 + 𝜀2𝜂2𝑈𝑡𝑟𝑟𝑟𝑟𝑟5

+ 2𝜀𝜂𝑈𝑡𝑟𝑟𝑟𝑟𝑟5 + 𝑈𝑡𝑟𝑟𝑟𝑟𝑟5 + 𝜀3𝑈𝜂2𝑈𝑟𝑟𝑟𝑟𝑟𝑟5 + 𝜂𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟5 + 2𝜀2𝑈𝜂𝑈𝑟𝑟𝑟𝑟𝑟𝑟5

− 100𝜀3𝑈2
𝑟 𝜂

2
𝑟 𝑟

4 − 27𝜀3𝜂2𝑈2
𝑟𝑟𝑟

4 − 27𝜂𝑈2
𝑟𝑟𝑟

4 − 54𝜀2𝜂𝑈2
𝑟𝑟𝑟

4 + 20𝜀2𝜂2𝑟𝑈𝑡𝑟𝑟
4

− 60𝜀3𝑈𝜂2𝑟𝑈𝑟𝑟𝑟
4 − 195𝜀2𝑈𝑟𝜂𝑟𝑈𝑟𝑟𝑟4 − 195𝜀3𝜂𝑈𝑟𝜂𝑟𝑈𝑟𝑟𝑟4 − 25𝜀2𝑈2

𝑟 𝜂𝑟𝑟𝑟
4

− 25𝜀3𝜂𝑈2
𝑟 𝜂𝑟𝑟𝑟

4 + 5𝜂𝑈𝑡𝑟𝜂𝑟𝑟𝑟4 + 5𝜀2𝜂𝑈𝑡𝑟𝜂𝑟𝑟𝑟4 − 15𝜀2𝑈𝑈𝑟𝑟𝜂𝑟𝑟𝑟4

− 15𝜀3𝑈𝜂𝑈𝑟𝑟𝜂𝑟𝑟𝑟4 + 15𝜀𝜂𝑟𝑈𝑡𝑟𝑟𝑟4 + 15𝜀2𝜂𝜂𝑟𝑈𝑡𝑟𝑟𝑟4 − 28𝜀3𝜂2𝑈𝑟𝑈𝑟𝑟𝑟𝑟4

− 28𝜂𝑈𝑟𝑈𝑟𝑟𝑟𝑟4 − 56𝜀2𝜂𝑈𝑟𝑈𝑟𝑟𝑟𝑟4 − 25𝜀2𝑈𝜂𝑟𝑈𝑟𝑟𝑟𝑟4 − 25𝜀3𝑈𝜂𝜂𝑟𝑈𝑟𝑟𝑟𝑟4

+ 2𝜀2𝜂2𝑈𝑡𝑟𝑟𝑟𝑟4 + 4𝜀𝜂𝑈𝑡𝑟𝑟𝑟𝑟4 + 2𝑈𝑡𝑟𝑟𝑟𝑟4 − 2𝜀3𝑈𝜂2𝑈𝑟𝑟𝑟𝑟𝑟4 − 2𝜂𝑈𝑈𝑟𝑟𝑟𝑟𝑟4

− 4𝜀2𝑈𝜂𝑈𝑟𝑟𝑟𝑟𝑟4 − 20𝜀2𝑈𝑡𝜂2𝑟 𝑟
3 − 20𝜀3𝑈𝑈𝑟𝜂2𝑟 𝑟

3 − 5𝜀2𝑈2
𝑟 𝜂𝑟𝑟

3 − 5𝜀3𝜂𝑈2
𝑟 𝜂𝑟𝑟

3

− 15𝜀𝜂𝑟𝑈𝑡𝑟𝑟3 − 15𝜀2𝜂𝜂𝑟𝑈𝑡𝑟𝑟3 + 21𝜀3𝜂2𝑈𝑟𝑈𝑟𝑟𝑟3 + 21𝜂𝑈𝑟𝑈𝑟𝑟𝑟3 + 42𝜀2𝜂𝑈𝑟𝑈𝑟𝑟𝑟3

+ 45𝜀2𝑈𝜂𝑟𝑈𝑟𝑟𝑟3 + 45𝜀3𝑈𝜂𝜂𝑟𝑈𝑟𝑟𝑟3 − 5𝜂𝑈𝑡𝜂𝑟𝑟𝑟3 − 5𝜀2𝜂𝑈𝑡𝜂𝑟𝑟𝑟3 − 5𝜀2𝑈𝑈𝑟𝜂𝑟𝑟𝑟3

− 5𝜀3𝑈𝜂𝑈𝑟𝜂𝑟𝑟𝑟3 − 3𝜀2𝜂2𝑈𝑡𝑟𝑟𝑟3 − 6𝜀𝜂𝑈𝑡𝑟𝑟𝑟3 − 3𝑈𝑡𝑟𝑟𝑟3 + 9𝜀3𝑈𝜂2𝑈𝑟𝑟𝑟𝑟3

+ 9𝜂𝑈𝑈𝑟𝑟𝑟𝑟3 + 18𝜀2𝑈𝜂𝑈𝑟𝑟𝑟𝑟3 + 30𝜀3𝜂2𝑈2
𝑟 𝑟

2 + 30𝜂𝑈2
𝑟 𝑟

2 + 60𝜀2𝜂𝑈2
𝑟 𝑟

2

+ 120𝜀3𝑈2𝜂2𝑟 𝑟
2 + 15𝜂𝑈𝑡𝜂𝑟𝑟2 + 15𝜀2𝜂𝑈𝑡𝜂𝑟𝑟2 + 175𝜀2𝑈𝑈𝑟𝜂𝑟𝑟2 + 175𝜀3𝑈𝜂𝑈𝑟𝜂𝑟𝑟2

+ 3𝜀2𝜂2𝑈𝑡𝑟𝑟2 + 6𝜀𝜂𝑈𝑡𝑟𝑟2 + 3𝑈𝑡𝑟𝑟2 + 9𝜀3𝑈𝜂2𝑈𝑟𝑟𝑟2 + 9𝜂𝑈𝑈𝑟𝑟𝑟2 + 18𝜀2𝑈𝜂𝑈𝑟𝑟𝑟2

+ 30𝜀2𝑈2𝜂𝑟𝑟𝑟
2 + 30𝜀3𝑈2𝜂𝜂𝑟𝑟𝑟

2 − 3𝜀2𝜂2𝑈𝑡𝑟 − 6𝜀𝜂𝑈𝑡𝑟 − 3𝑈𝑡𝑟 − 93𝜀3𝑈𝜂2𝑈𝑟𝑟

− 93𝜂𝑈𝑈𝑟𝑟 − 186𝜀2𝑈𝜂𝑈𝑟𝑟 − 170𝜀2𝑈2𝜂𝑟𝑟 − 170𝜀3𝑈2𝜂𝜂𝑟𝑟 + 63𝜂𝑈2 + 63𝜀3𝑈2𝜂2

+ 126𝜀2𝑈2𝜂
]

.

We now seek solutions in the asymptotic form

𝜂 = 𝜂(0) + 𝜀𝜂(1) + 𝜀2𝜂(2) +⋯ , (A.3)
(0) (1) 2 (2)
19

𝑈 = 𝑈 + 𝜀𝑈 + 𝜀 𝑈 +⋯ , (A.4)
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where all functions 𝜁 (𝑖), 𝑈 (𝑖) depend on the fast and slow variables

𝜉 = 𝑟 − 𝑡 (fast variable), 𝑅 = 𝜀𝑟 (slow variable). (A.5)

We proceed by substituting these expansions into (A.2) and collecting the terms at increasing orders of 𝜀.
At 𝑂(1) we obtain the following linearised system for 𝜂(0), 𝑈 (0):

⎧

⎪

⎨

⎪

⎩

−𝜂(0)𝜉 + 𝑈 (0)
𝜉 = 0,

𝜂(0)𝜉 − 𝑈 (0)
𝜉 = 0,

(A.6)

and from this relation we obtain

𝑈 (0) = 𝜂(0) + 𝑓 (𝑅)
⏟⏟⏟

≡0

, (A.7)

where the arbitrary function 𝑓 (𝑅) must be zero in the framework of rapidly decaying functions such that 𝑈 (0), 𝜂(0) → 0 as 𝜉 → ∞
for any fixed 𝑟.

At 𝑂(𝜀) we obtain the following system for 𝜂(1), 𝑈 (1):

⎧

⎪

⎨

⎪

⎩

−𝜂(1)𝜉 + 𝑈 (1)
𝜉 = −𝑈 (0)

𝑅 −
[

𝜂(0)𝑈 (0)]
𝜉 −

1
𝑅
𝑈 (0),

𝜂(1)𝜉 − 𝑈 (1)
𝜉 = −𝜂(0)𝑅 − 1

3
𝑈 (0)
𝜉𝜉𝜉 − 𝑈

(0)𝑈 (0)
𝜉 ,

(A.8)

where we can now take the sum (A.8)1 + (A.8)2 and obtain

0 = −𝑈 (0)
𝑅 − [𝜂(0)𝑈 (0)]𝜉 −

1
𝑅
𝑈 (0) − 𝜂(0)𝑅 − 1

3
𝑈 (0)
𝜉𝜉𝜉 − 𝑈

(0)𝑈 (0)
𝜉 , (A.9)

and here we can substitute (A.7) to deduce the cKdV equation as

𝜂(0)𝑅 + 3
2
𝜂(0)𝜂(0)𝜉 + 1

6
𝜂(0)𝜉𝜉𝜉 +

1
2𝑅

𝜂(0) = 0. (A.10)

The last term describes the cylindrical divergence. It becomes less significant the further away from the origin the waves travel. We
can use the cKdV equation in conjunction with (A.8)1 to deduce that

𝑈 (1)
𝜉 = 𝜂(1)𝜉 − 1

2
𝜂(0)𝜂(0)𝜉 + 1

6
𝜂(0)𝜉𝜉𝜉 −

1
2𝑅

𝜂(0). (A.11)

For the next order, we require to know 𝑈 (1) and this equation must be integrated through over the region 𝜉′ ∈ (𝜉,∞) which provides
us with the non-local term

𝜙(0)(𝜉, 𝑅) ∶= −∫

∞

𝜉
𝜂(0)(𝜉′, 𝑅) d𝜉′, (A.12)

thus putting (A.11) in the form

𝑈 (1) = 𝜂(1) − 1
4
𝜂(0)𝜂(0) + 1

6
𝜂(0)𝜉𝜉 − 1

2𝑅
𝜙(0). (A.13)

At 𝑂(𝜀2) we obtain the following system:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−𝜂(2)𝜉 + 𝑈 (2)
𝜉 = −𝑈 (1)

𝑅 −
[

𝜂(0)𝑈 (0)]
𝑅 −

[

𝜂(0)𝑈 (1) + 𝜂(1)𝑈 (0)]
𝜉 −

1
𝑅
𝜂(0)𝑈 (0) − 1

𝑅
𝑈 (1),

𝜂(2)𝜉 − 𝑈 (2)
𝜉 = −𝜂(1)𝑅 − 𝑈 (0)𝑈 (0)

𝑅 − 2
3
𝑈 (0)
𝑅𝜉𝜉 −

[

𝑈 (0)𝑈 (1)]
𝜉 +

1
3
𝑈 (0)𝑈 (0)

𝜉𝜉𝜉 −
2
3
𝜂(0)𝑈 (0)

𝜉𝜉𝜉

− 1
45
𝑈 (0)
𝜉𝜉𝜉𝜉𝜉 −

1
3
𝑈 (1)
𝜉𝜉𝜉 − 𝜂

(0)
𝜉 𝑈 (0)

𝜉𝜉 − 1
3
𝑈 (0)
𝜉 𝑈 (0)

𝜉𝜉 − 1
3𝑅

𝑈 (0)
𝜉𝜉 .

(A.14)

As before, we take the sum (A.14)1 + (A.14)2, and then substitute the following:

From (A.7) ∶ 𝑈 (0) = 𝜂(0), (A.15a)

From (A.13) ∶ 𝑈 (1) = 𝜂(1) − 1
4
[𝜂(0)]2 + 1

6
𝜂(0)𝜉𝜉 − 1

2𝑅
𝜙(0), (A.15b)

From (A.10) ∶ 𝜂(0)𝑅 = −3
2
𝜂(0)𝜂(0)𝜉 − 1

6
𝜂(0)𝜉𝜉𝜉 −

1
2𝑅

𝜂(0), (A.15c)

From (A.10) ∶ 𝜂(0)𝑅𝜉𝜉 = −9
2
𝜂(0)𝜉 𝜂(0)𝜉𝜉 − 3

2
𝜂(0)𝜂(0)𝜉𝜉𝜉 −

1
6
𝜂(0)𝜉𝜉𝜉𝜉𝜉 −

1
2𝑅

𝜂(0)𝜉𝜉 , (A.15d)

From (A.12) ∶ 𝜙(0)
𝜉 = 𝜂(0), (A.15e)

From (A.12) ∶ 𝜙(0)
𝑅 = −∫

∞

𝜉
𝜂(0)𝑅 (𝜉′, 𝑅) 𝑑𝜉′ = −3

4
[

𝜂(0)
]2 − 1

6
𝜂(0)𝜉𝜉 − 1

2𝑅
𝜙(0). (A.15f)
20
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𝜀

This significantly reduces the sum (A.14)1 + (A.14)2 and yields the equation

𝜂(1)𝑅 + 3
2

[

𝜂(0)𝜂(1)
]

𝜉
+ 1

6
𝜂(1)𝜉𝜉𝜉 +

1
2𝑅

𝜂(1) −
(

21
8
[

𝜂(0)
]2𝜂(0)𝜉 + 31

24
𝜂(0)𝜉 𝜂(0)𝜉𝜉 + 7

12
𝜂(0)𝜂(0)𝜉𝜉𝜉 +

11
360

𝜂(0)𝜉𝜉𝜉𝜉𝜉

+ 1
16𝑅

[

9
(

𝜂(0)
)2 + 8𝜙(0)𝜂(0)𝜉

]

− 1
8𝑅2

𝜙(0)
)

= 0. (A.16)

We proceed to multiply Eq. (A.16) by 𝜀 and add on Eq. (A.10). It prompts us to consider 𝜂̂ = 𝜂(0) + 𝜀𝜂(1) and omit any terms of order
2 or higher. Doing so yields the ecKdV model in the form

𝜂̂𝑅 + 3
2
𝜂̂𝜂̂𝜉 +

1
6
𝜂̂𝜉𝜉𝜉 +

1
2𝑅

𝜂̂ − 𝜀
(

21
8
𝜂̂2𝜂̂𝜉 +

31
24
𝜂̂𝜉 𝜂̂𝜉𝜉 +

7
12
𝜂̂𝜂̂𝜉𝜉𝜉 +

11
360

𝜂̂𝜉𝜉𝜉𝜉𝜉 +
1

16𝑅

[

9𝜂̂2 + 8𝜂̂𝜉 𝜙̂
]

− 1
8𝑅2

𝜙̂
)

= 0. (A.17)

By omitting all 𝑂(𝛿4) terms from (A.1), we obtain the SGN equations and the ecKdV is derived in the form

𝜂̂𝑅 + 3
2
𝜂̂𝜂̂𝜉 +

1
6
𝜂̂𝜉𝜉𝜉 +

1
2𝑅

𝜂̂ − 𝜀
(

21
8
𝜂̂2𝜂̂𝜉 +

31
24
𝜂̂𝜉 𝜂̂𝜉𝜉 +

7
12
𝜂̂𝜂̂𝜉𝜉𝜉 +

1
24
𝜂̂𝜉𝜉𝜉𝜉𝜉 +

1
16𝑅

[

9𝜂̂2 + 8𝜂̂𝜉 𝜙̂
]

− 1
8𝑅2

𝜙̂
)

= 0. (A.18)

We can take the reduction even further by omitting 𝑂(𝜀𝛿2) terms from (A.1) instead to obtain the Boussinesq system (4), and
the corresponding ecKdV equation was derived in Section 3. In all equations 𝜙̂ = − ∫ ∞

𝜉 𝜂̂(𝜉′, 𝑅) 𝑑𝜉′.
We also note that the inward-propagating ecKdV models for the axisymmetric versions of 2D Boussinesq, SGN, and Matsuno

systems require introduction of another characteristic variable 𝜉 = 𝑟 + 𝑡 and with the slow radius variable 𝑅 give rise to the same
equation as for the outward propagation (with 𝜙̂ = − ∫ ∞

𝜉 𝜂̂(𝜉′, 𝑅) 𝑑𝜉′):

𝜂̂𝑅 + 3
2
𝜂̂𝜂̂𝜉 +

1
6
𝜂̂𝜉𝜉𝜉 +

1
2𝑅

𝜂̂ − 𝜀
(

21
8
𝜂̂2𝜂̂𝜉 + 𝐴1𝜂̂𝜉 𝜂̂𝜉𝜉 + 𝐴2𝜂̂𝜂̂𝜉𝜉𝜉 + 𝐴3𝜂̂𝜉𝜉𝜉𝜉𝜉 +

1
16𝑅

[

9𝜂̂2 + 8𝜂̂𝜉 𝜙̂
]

− 1
8𝑅2

𝜙̂
)

= 0. (A.19)

The constants (𝐴1, 𝐴2, 𝐴3) take on the values of (47∕24, 3∕4, 1∕24) in the case of Boussinesq system, (31∕24, 7∕12, 1∕24) for the SGN
system, and (31∕24, 7∕12, 11∕360) for the Matsuno system. On the other hand, some terms in the inward-propagating ecKdV equation
with the slow time variable 𝑇 have different signs compared to the equation for the outward propagation (which can be recovered
from the inward-propagating ecKdV equation shown below with the help of the mapping 𝑡→ −𝑡):

𝜂̂𝑇 − 3
2
𝜂̂𝜂̂𝜉 −

1
6
𝜂̂𝜉𝜉𝜉 +

1
2𝑇

𝜂̂ + 𝜀
[ 3
8
𝜂̂2𝜂̂𝜉 − 𝐵1𝜂̂𝜉 𝜂̂𝜉𝜉 − 𝐵2𝜂̂𝜂̂𝜉𝜉𝜉 − 𝐵3𝜂̂𝜉𝜉𝜉𝜉𝜉

+ 1
𝑇

( 3
16
𝜂̂2 + 1

4
𝜂̂𝜉𝜉 −

1
2
𝜙̂𝜂̂𝜉

)

− 1
𝑇 2

( 1
8
𝜙̂ − 1

2
𝜉𝜂̂
)]

= 0. (A.20)

Here, the constants (𝐵1, 𝐵2, 𝐵3) take on the values (7∕24, 1∕4, 1∕24) in the case of Boussinesq system, (23∕24, 5∕12, 1∕24) for the SGN
system, and (23∕24, 5∕12, 19∕360) for the Matsuno system. In all equations 𝜙̂ = − ∫ ∞

𝜉 𝜂̂(𝜉′, 𝑇 ) 𝑑𝜉′.
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