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Abstract

Neutron stars (NSs) provide a unique laboratory to study matter under extreme densi-
ties. Recent observations from gravitational and electromagnetic waves have enabled
constraints on NS properties, such as tidal deformability (related to the tidal Love
number) and stellar compactness. Although each of these two NS observables depends
strongly on the stellar internal structure, the relation between them (called the Love–C

relation) is known to be equation-of-state insensitive. In this study, we investigate the
effects of a possible crystalline phase in the core of hybrid stars (HSs) on the mass–
radius and Love–C relations, where HSs are a subclass of NS models with a quark
matter core and a nuclear matter envelope with a sharp phase transition in between.
We find that both the maximum mass and the corresponding radius increase as one
increases the stiffness of the quark matter core controlled by the speed of sound, while
the density discontinuity at the nuclear-quark matter transition effectively softens the
equations of state. Deviations of the Love–C relation for elastic HSs from that of fluid
NSs become more pronounced with a larger shear modulus, lower transition pressure,
and larger density gap and can be as large as 60%. These findings suggest a potential
method for testing the existence of distinct phases within HSs, though deviations are
not large enough to be detected with current measurements of the tidal deformability
and compactness.
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1 Introduction

The state of cold matter at extremely high densities remains a major unresolved prob-
lem over the past decades. The lack of terrestrial experiments at relevant energy scales
and the nonperturbative nature of the nuclear interactions form the main obstacles
to obtaining a unified equation of state (EOS). Observations of neutron stars (NSs),
therefore, provide an indirect but essential probe of the physics in this regime.

Electromagnetic (EM) observations of pulsars allow one to probe the EOSs, focus-
ing mainly on the mass, radius and spin properties. X-ray observations of millisecond
pulsars provide independent constraints on the masses and radii through pulse pro-
file modeling [1–6]. Radio pulsar timing also constrains the EOS through the mass
measurements (e.g., [7]).

Gravitational wave (GW) observations of binary NS coalescences can constrain
EOSs from the tidal deformability measurement. This was demonstrated for the first
binary NS merger event, GW170817 [8–10]. The EM counterparts, including the short
gamma-ray burst event, GRB 170817A, and the astronomical transient, AT2017gfo,
also opened up multimessenger astronomical analysis of the same source [11–13].
With the addition of the next-generation GW detectors in the coming decades, the
detection horizon of binary NS mergers extends to the redshift of z ∼ 3, and more
than 104 events are expected to be found per year with moderate to high signal-to-
noise ratios [14, 15]. The finite-size effects of NSs can be probed not only from the late
inspiral phase but also from the postmerger signal. This offers further insights into the
internal structure of NSs through, e.g., the stellar oscillation modes [16], and hence
leading to stronger constraints on the EOS within the pressure-density plane [17, 18].

The EOS of the core of an NS is the most uncertain region due to the various
possible phases of matter emerging, like pions, hyperons, and deconfined quarks [19,
20]. In particular, deconfinement is a consequence of the asymptotic freedom in quan-
tum chromodynamics (QCD). An astrophysical compact object with these deconfined
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quarks inside its core is called a hybrid star (HS), featuring a transition region between
the quark matter (QM) core and nuclear matter (NM) envelope.

How the transition between NM and QM occurs is still uncertain. The transition can
have a density discontinuity across the interface between the two phases, known as the
sharp transition scenario, following the Maxwell construction. In contrast, Glenden-
ning [21] proposed a type of soft transition through the Gibbs construction, leaving a
mixed phase between the NM and QM phases, which smoothens the density profile
of an HS. Both scenarios correspond to a self-consistent treatment of a first-order
phase transition, imposing different equilibrium conditions that depend on the sur-
face tension between the two phases (e.g., [22]). Recent work has also considered
smooth crossover transitions [23–25] constructed from an interpolation between the
two phases without assuming the equilibrium conditions, which also imply a mixed
phase between the NM and QM phases. While the first-order phase transitions (either
soft or sharp) soften the EOS in general, the crossover transition causes stiffening if
the QM part is stiff enough [23]. Although the true nature of the transition is poorly
known, we focus on the sharp phase transition scenario in the following, where the
density discontinuity is expected to impact the HS properties.

Various scenarios have been proposed on HSs with solid QM cores. One possibility
is the crystalline color superconducting (CCS) phase [26–29], in which Cooper pairs
of color charges attain non-zero momenta and form a condensate with broken transla-
tional and rotational symmetries, i.e., a crystal. In condensed matter conventions, this
is known as a “LOFF" state [30, 31]. Another possibility has been discussed in [32],
where the QM solidifies by forming “quark clusters" [33]. In this paper, we define HSs
with a solid core and a fluid envelope as elastic HSs, while those with a fluid core are
termed fluid HSs.

The presence of elasticity is known to have an impact on observables, such as tidal
deformability. Lau et al. [34] showed that a quark star composed entirely of solid
matter could have tidal deformability 60% lower than a perfect fluid quark star (see
also [35, 36] for related works). Pereira et al. [37] computed the tidal deformability of
HS models with a solid layer, either from the NM crust or the mixed phase of the NM-
QM phase transition. They demonstrated that the tidal deformability can change by
∼ 5% from the NS case if the thickness of the solid layer is more than half of the stellar
radius, and this amount of change may be detectable with future GW observations.
Previous work has also studied the effect of elastic HSs on asteroseismology [38–40].

The Love–C relation, relating the tidal deformability (related to the tidal Love
number) and the compactness (C) in NSs and HSs, are known to be EOS-insensitive
[41–43]. Many other universal relations are known to exist, but the Love–C relation
is particularly interesting from observational viewpoint as the tidal deformability has
been measured through GW observations with LIGO/Virgo (GW170817 [44]) while
the compactness has been measured through X-ray observations with NICER and
XMM-Newton (PSR J0030+0451 [3] and PSR J0740+6620 [5]). In [42, 45, 46], fit-
ting formulas are provided for NSs and HSs with sharp phase transitions, where the
fractional deviations of the various EOSs considered are all within 10%. Such approx-
imate universal relations are particularly useful in inferring the compact star properties
through NS observations [42, 44, 45, 47]. For instance, it provides a way to estimate
the radius from a simultaneous measurement of the mass and tidal deformability, as
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Fig. 1 Love–C relations for HSs with the varied speed of sound cs . We fix the transition pressure as
Pt = 2 × 1034 dyn cm−2 (left) and Pt = 2 × 1033 dyn cm−2 (right) while we set the energy density
discontinuity as Δρ = 1 × 1014 g cm−3. NM is assumed to follow the APR EOS. We present the results
for both HSs with solid (open symbols) and fluid (crosses) QM cores. We also present the fit (Eq. (23))
for the Love–C relation for fluid NSs in [42] (solid line). The EOS variation for this relation is taken from
[48] (grey-shaded region). The measurement uncertainties on the stellar compactness from NICER [49]
and tidal deformability from LIGO/Virgo [8] for a star with 1.4M� are also overlaid (blue shaded region)

in [44]. Alternatively, simultaneous measurements of both the tidal deformability and
the compactness allow us to test the nature of astrophysical compact stars.

In this paper, we study elasticity within HSs on the Love–C relation. Given the
uncertainty in the NM-QM transition, an HS could contain a thick, solid QM core
that can induce a significant difference in the Love–C relation from the NS case. We
start by constructing static spherically symmetric background solutions of HSs using
a parametrized EOS model for the QM and realistic EOS tables for NM, assuming the
background is unstrained. We then statically perturb the star, including the elasticity
effect in the QM phase, to obtain the tidal deformability. Our result demonstrates that
the elasticity causes substantial deviations in the Love–C relation from the NS relation.
However, the deviations are unfortunately not large enough to be distinguishable by the
current measurement uncertainties of the tidal deformability and compactness from
LIGO/Virgo and NICER/XMM-Newton. Our main findings are summarized in Fig. 1.

The rest of this paper is organized as follows: In Sect. 2, we describe the construction
of the equilibrium HS models. Then, we briefly describe the formalism to compute
the tidal deformability in Sect. 3. We present our numerical results in Sect. 4. Finally,
we provide a summary in Sect. 5. Unless otherwise specified, we use the geometrized
unit system with G = c = 1.

2 Equilibrium background

To calculate the structure and the relativistic tidal deformability of elastic HSs, we
start by solving the Tolman–Oppenheimer–Volkoff (TOV) equations for the static
spherically symmetric background [50, 51]. We assume the background configuration
is unstrained so that the effect of elasticity does not affect the background solution.
The method is standard, and we provide a brief review below.
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2.1 TOV equations

We begin by providing the line element for a spherically symmetric spacetime in the
standard Schwarzschild coordinates:

ds2 = −eν(r)dt2 + eu(r)dr2 + r2dθ2 + r2 sin2 θdφ2. (1)

One can derive the TOV equations by plugging in the above metric ansatz to the
Einstein equations:

ν′ = 2
m + 4πr3 p

r2
eu, (2)

p′ = −(ρ + p)
ν′

2
, (3)

u′ = 2
−m + 4πr3ρ

r2
eu, (4)

eu =
(

1 − 2m

r

)−1

, (5)

where p is the pressure, ρ is the energy density, m is the gravitational mass contained
within a sphere of radius r , and the prime symbol denotes the derivative with respect
to r . The quantities ν, u, m, p, ρ are all functions of r . The pressure and the energy
density are related through the EOS, which gives ρ = ρ(p) in the static equilibrium
background (see Sect. 2.2 for more details).

We can numerically solve the above TOV equations as follows. By choosing a
central value of the pressure pc or energy density ρc, we integrate the equations at
some small r with the following boundary condition:

p = pc + O(r2), ν = ν0r2 + O(r4), m = 4π

3
ρcr3 + O(r5). (6)

Here, ν0 is initially an arbitrary constant that will be fixed with another boundary
condition

ν(R) = ln

(

1 − 2M

R

)

. (7)

Here, R is the stellar radius determined by the condition p(R) = 10−12 pc while
M = m(R) is the stellar gravitational mass. This allows us to determine the static
profile p(r), m(r), ν(r) for each EOS with a chosen central pressure or density. In
particular, we obtain the compactness of a star, defined by

C = M

R
. (8)
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2.2 Equation of state

To obtain the solution of the Einstein equations, we need the EOS that relates the
thermodynamic quantities. For cold NSs at equilibrium, the EOS is given as a relation
between ρ and p. For the NM component, we employ the tabulated EOS APR [52]. In
“Appendix A”, we also use a tabulated EOS NL3 [53, 54] and MPa [55] for reference.
For the QM region, we employ a parametrized model known as the constant speed of
sound (CSS) model [56]. This model is inspired by the results from perturbative QCD
in the asymptotic regime, where the speed of sound of QM is almost independent of
the density. The resulting EOS is given by [56]

ρ(p) =
{

p−Pt

c2
s

+ ρNM(Pt ) + Δρ, if p > Pt

ρNM(p), if p ≤ Pt ,
(9)

where ρNM(p) is the NM EOS obtained by a log-linear interpolation from the corre-
sponding EOS table, cs is the speed of sound that is assumed to be constant, Pt is the
transition pressure, and Δρ is the energy density gap between NM and QM. We treat
c2

s , Pt , and Δρ as the model parameters, with c2
s ≤ 1, and all these parameters are

arbitrary (see [56] for the effect of varying cs and Δρ on the HS mass-radius relations).
The QM and NM EOSs are joined by assuming a continuous pressure to obtain a sharp
phase transition that contains a density gap.

The theoretical bounds on the CSS parameters deserve some clarifications. The
CSS model can be considered as the leading order expansion of the QM EOS in the
high-density limit. A similar and well-known EOS is the MIT Bag model [57], which
describes massless, non-interacting quarks and is related to the CSS parametrization
with c2

s = 1/3. This model contains a phenomenological parameter, the ‘bag con-
stant’, to account for the nonperturbative effects that give rise to confinement. This
effectively describes the vacuum pressure exerted on the QCD vacuum. The range
of this parameter is highly uncertain. If we assume the strange matter hypothesis to
hold, i.e., a matter formed from up, down, and strange quarks is absolutely stable, the
value of the bag constant then lies between 58.9 to 91.8 MeV fm−3 [20, 58, 59]. In
the CSS model, the effect of this vacuum pressure is encapsulated in Δρ, and one
can restrict the CSS parameters through this theoretical bound. However, the mapping
between Δρ and the MIT bag model depends on additional parameters related to the
quark interactions other than just the bag constant (see, e.g., the quartic term in [60]).
In addition, variants of the bag model, like the quadratic terms introduced in [60] or
density-dependent bag constants [61, 62], further widen the range of the theoretical
constraints on c2

s and Δρ. Therefore, We allow the CSS parameters to vary in a wide
range of values.

Figure 2 illustrates several examples of EOSs for different values of the speed of
sound (c2

s ) and the density gap (Δρ) at a transition pressure Pt = 2 × 1033 dyn cm−2.
The APR EOS, shown in a black solid line, represents the baseline NS model, while
the HS models, depicted in red, grey, and blue, highlight the effects of varying the
speed of sound and density gap on the pressure-density relation. We will discuss the
implications of these variations on the structure of HSs in detail in Sect. 4.1.
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Fig. 2 The EOSs for NSs and HSs. The pressure-density relation is shown for the NS APR EOS (black)
and for HSs (colored) with different values of the speed of sound (c2

s ) and the energy density gap (Δρ).

The transition pressure is fixed at 2 × 1033 dyn cm−2

2.3 Shear modulus model

We next describe the EOS of the shear modulus μ for the QM phase used in this
paper. This quantity measures the material’s ability to resist shearing, affecting how
NSs deform in response to tidal forces. Its relation with the stress and strain variables
is described in Sect. 3. Here, we adopt the following parametrized model

μ = μref

(

ρ

ρref

)N

, (10)

where μref is the shear modulus at a reference energy density that we set as ρref =
2 × 1015 g cm−3 while the index N characterizes the energy-density dependence of
the shear modulus.

The above power-law relation is inspired by the shear modulus of the CCS phase
derived in [29], given by

μCCS = 2.47 MeV fm−3
(

Δ

10 MeV

)2
( μq

400 MeV

)2
, (11)

where μq is the quark chemical potential, and Δ is the gap parameter of the CCS phase,
which is estimated to range from 5 to 25 MeV. In the high-density limit, μCCS ∝ μ2

q ,

and ρ ∝ μ4
q as for the ultrarelativistic free Fermi gas. Hence, we have μCCS ∝ √

ρ,
which corresponds to N = 0.5 in Eq. (10).
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3 Tidal deformability

We now describe how to compute the tidal deformability of HSs. A tidally deformed
star can be constructed by solving the perturbed Einstein equations, which relate
the perturbed metric to the perturbed stress-energy tensor. The even-parity time-
independent metric perturbation in the Regge–Wheeler gauge [63] is written as

δgabdxadxb =
∑

l,m

[

− eν H0(r)dt2 + eu H2(r)dr2

+ r2 K (r)
(

dθ2 + sin2 θdφ2
) ]

Ylm(θ, φ), (12)

where Ylm is the spherical harmonics. Hereafter, we consider modes of perturbations
with specific l and m, particularly on the l = 2 perturbations for the tidal problem.

On the other hand, the perturbed stress-energy tensor contains the contribution from
elasticity:

δTab = δT bulk
ab + δT shear

ab , (13)

where

δT bulk
ab = δ(ρuaub + phab), (14)

δT shear
ab = −2μδΣab. (15)

Here, μ is the shear modulus, ua is the four-velocity of the bulk, hab = gab + uaub is
the projection tensor perpendicular to ua , δX denotes an Eulerian perturbation of the
physical quantity X . δΣab is the Eulerian perturbation of the constant-volume strain
tensor (shear tensor), which is the same as its Lagrangian perturbation ΔΣab under
the assumption that the background is unstrained and is given by [37, 64–67]

δΣab =ΔΣab = 1

2

(

hca hdb − 1

3
habhcd

)

Δgcd . (16)

Here the Lagrangian perturbation of the metric gab is given by [68]

Δgab = δgab + ∇aξb + ∇bξa . (17)

The symbol ∇a is the covariant derivative, while the (even-parity) Lagrangian dis-
placement vector components are

ξ r =
∑

l,m

W (r)

r
Ylm(θ, φ), (18)

ξA =
∑

l,m

V (r)∂AYlm(θ, φ), (19)
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where the index A runs between θ andφ. The perturbations δρ and δ p are also expanded
in terms of spherical harmonics. For static perturbations,

δρ = dρ

dp
δ p = δ p

c2
s

. (20)

Note that δua = δ(gabub) = δgabub + gabδub.
The above equations allow us to construct a set of six coupled ordinary differential

equations (ODEs) that govern the perturbed solid core. The perturbations in the fluid
envelope can be obtained by setting μ = 0. We follow the formalism in [36] for the
ODEs in the solid core (which is consistent with the one in [37, 66] but written in
terms of different variables) and the formalism in [69, 70] for the fluid part. We follow
the formalism and method in [36] for solving the ODEs. See “Appendices B and C”
for more details, including the procedure for deriving the tidal deformability of elastic
HSs and the computation method.

Solving the boundary value problem allows us to determine the tidal deformability,
λ, defined as

Qi j = −λEi j , (21)

where the quadrupole moment Qi j and the external tidal field Ei j are defined from the
asymptotic behavior of the (t, t) component of the metric [71]:

gt t = − 1 + 2M

r
+ 3

Qi j

r3

(

x i x j

r2
− 1

3
δi j

)

+ O

(

R4

r4

)

− Ei j x i x j + O

(

r3

L3

)

, (22)

where L 	 r 	 R, with L being the length scale associated with the radius of
curvature from the external gravitational source, x i is the position vector in Cartesian
coordinates, and δi j is the Kronecker delta symbol. The tidal deformability quantifies
how much a celestial body deforms in response to the external tidal field. In the
following, we also introduce a dimensionless tidal deformability, λ̄ = λ/M5 [45],
when studying universal relations.

Before we discuss the results, here is a caveat about the QM-NM interface under
perturbation. In our formalism, we have employed the “slow conversion condition"
between the solid core and fluid envelope, which assumes the two phases at the two
sides of the interface stay intact after perturbations [37, 72, 73]. Since the tidal pertur-
bations occur in finite timescales set by the process (e.g., the inspiral timescale), the
boundary condition at the interface depends on the phase conversion rate against the
perturbation timescale. The slow conversion condition assumes that the conversion is
much slower than the perturbation process. In another limit where the phase conver-
sion between the two phases is much faster than the perturbation timescale, a different
boundary condition should be used. The actual boundary condition may lie between
these two limits and depend on the QM-NM conversion rate. We discuss it briefly in
“Appendix D” and leave further investigation as future work.
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4 Numerical results

In this section, we present the M–R relations and Love–C relations for elastic HSs by
varying the EOS parameters, which include cs , Δρ, and N .

4.1 Mass-radius relations

First, we consider the existing observational constraints on the mass and radius of
the equilibrium background of the elastic HS models where the NM part employs
APR (see “Appendix A” for NL3 and MPa). We numerically construct the models as
described in Sect. 2 to obtain the M–R relations for a set of EOS parameters.

4.1.1 Dependence on the stiffness of quark matter

Let us first focus on varying cs . The speed of sound quantifies the stiffness of the
QM core, which plays an essential role in determining the mass and size of the HS.
However, the speed of sound of QM is highly uncertain within the high-density and
nonperturbative region. Perturbative QCD predicts that c2

s approaches the free rela-
tivistic gas limit of 1/3 from below, known as the conformal limit [74]. Despite this,
there is no guarantee that the NS or HS interior cannot exceed this limit [75]. Therefore,
we consider QM within the constant sound speed model with 0 < c2

s ≤ 1, with the
upper bound set by the causality limit, while observations of high-mass NSs restrict
c2

s from below.
In Fig. 3, we show the M–R relations for two sets of EOSs with Δρ = 5 ×

1012 g cm−3 and Pt at 2 × 1034 dyn cm−2 (left panel) and 2 × 1033 dyn cm−2 (right
panel) respectively. These values of Δρ and Pt are just reference values and are
chosen somewhat arbitrarily (See Sect. 2.2 for detailed explanation). We choose APR
for the NM EOS and vary the stiffness of the QM phase by increasing c2

s from 0.11
to 0.88. Note that since we assume that the core at equilibrium is unstrained, the
mass-radius relations are not affected by the presence of a solid core. The numerical
results demonstrate that HS EOSs support a larger maximum mass and radius as we
increase the stiffness of the core. This is evident from Fig. 2, where the value of c2

s

corresponds to the slope of the EOS function in the core region on a linear scale. With
a higher value of c2

s , as represented by the red line, the pressure corresponding to a
given density is higher. The effect is larger for the lower Pt case due to the larger size
of the QM core.

In the same figure, we also overlay the observational constraints on the M–R

relations. These include the mass measurement of PSR J0740+6620 [7], as well as
inferred mass and radius bounds from the binary NS merger event GW170817 [44],
PSR J0030+0451 [3] with NICER, and PSR J0740+6620 [5] with NICER and XMM-
Newton. These constraints, in particular PSR J0740+6620, rule out part of the soft HS
EOSs with a smaller cs for higher Pt . For lower Pt , the HS EOSs are less likely to
satisfy the observation bounds, either the maximum mass being too low or the radius
being too large. These results suggest that for a relatively small Δρ, lower Pt is not
favoured, and cs has to be large for higher Pt due to the M–R constraints.
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Fig. 3 M–R relations for the HS models constructed with the EOS described in Sect. 2.2. We vary c2
s

while fixing Pt = 2 × 1034 dyn cm−2 (left) and Pt = 2 × 1033 dyn cm−2 (right). We choose Δρ =
5 × 1012 g cm−3 while using APR as the NM EOS. We also present the relation for NSs with APR as the
NM EOS. Various observation bounds are shown with shaded regions, including the mass measurement
of J0740+6620 from pulsar timing [7] (68.3% confidence interval, grey horizontal band), and the mass
and radius measurement of GW170817 [44] (90% confidence interval, orange and blue regions separated
by a horizontal blue line), J0030+0451 with NICER (95% confidence interval, maroon region) [3], and
J0740+6620 with NICER and XMM-Newton (95% confidence interval, indigo region) [5]

Fig. 4 Similar to Fig. 3 but varying Δρ with (Pt , c2
s ) = (2 × 1034 dyn cm−2, 0.48) (left) and (Pt , c2

s ) =
(2 × 1033 dyn cm−2, 0.33) (right)

4.1.2 Dependence on the energy density discontinuity

Next, we focus on the effect of Δρ on the M–R relations for HSs. Figure 4 presents
such M-R relations by increasing the density gap starting from the value used in Fig. 3
up to ∼ 2×1014 g cm−3, for the higher (lower) Pt in the left (right) panel. This causes
the M–R curves to shift towards the lower left corner, resulting in a smaller maximum
mass and radius. In other words, the density gap effectively softens the EOSs, indicated
by the reduction in pressure at the same density (see Fig. 2).

Combining the results in Figs. 3 and 4, we conclude that the M-R constraints favour
HS EOSs with larger cs and smaller Δρ for high Pt . For the lower Pt case, a larger
Δρ with an intermediate cs is more likely to satisfy the constraints.
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4.2 Love–C relations

Let us next study the Love–C relations for HSs, accounting for the elasticity in the
QM core. For NSs, the relation can be fitted with a form [42]

C = a0 + a1 ln λ̄ + a2(ln λ̄)2, (23)

with a0 = 0.360, a1 = −0.0355, and a2 = 0.000705 (see also [46] for a similar
fit). The NS relation is found to be EOS-insensitive up to a 10% variation [42]. In
this section, we use APR for the NM EOS. In “Appendix A”, we present the Love–C

relations for HSs with NL3 and MPa as the NM EOS and demonstrate that the results
are qualitatively the same between the two EOSs.

4.2.1 Dependence on the stiffness of quark matter

We begin by studying how the Love–C relations for HSs depend on cs . For the tidal
deformability calculation, we employ the shear modulus model described in Eq. (10),
with the parameters μref = 3.13×1034 dyn cm−2 = 19.54 MeV fm−3, and N = 0.5.

In Fig. 1, we show the Love–C relations for elastic/fluid HSs with various c2
s ,

together with the NS relation and its EOS variation that covers the EOSs studied
in [48]. We observe that the deviation from the NS relation becomes larger as one
decreases c2

s . This is because, in such a case, HSs with a fixed mass generally have
smaller radii (see Fig. 3), leading to smaller compactness and larger tidal deformability.
In both high and low Pt cases, the deviations from the NS case can be larger than the
EOS variation.

These deviations in the HS Love–C relations from the NS case are compared with
the measurement uncertainties from current multimessenger observations of NSs in
Fig. 1. The light-blue rectangular region represents the estimate of the measurement
error of C and λ̄. The error on C for a 1.4 M� NS, C = 0.159+0.025

−0.022, is obtained
in [49] using pulsar observations with NICER, while that on the tidal deformability,
λ̄ = 190+390

−120, is obtained from GW170817 with LIGO/Virgo [8, 44]. We observe that
the deviations for the HS Love–C relation from the NS case are much smaller than the
current measurement uncertainties, making the two relations indistinguishable from
current observations. Furthermore, elastic HSs giving larger deviations in the Love–C

relations tend to have a smaller maximum mass and are thus inconsistent with the
presence of high-mass pulsars like J0740+6620.

To see these deviations more clearly, we show the fractional difference of the tidal
deformability for HSs from the NS fit against compactness in Fig. 5. In the low Pt case
(the right panel), the deviation in λ̄ can be as large as 60% (35%) for elastic (fluid)
HSs. For high Pt (the left panel), they have deviations of similar size, around 50% and
45% for elastic and fluid HSs, respectively.

4.2.2 Dependence on the energy density discontinuity

As in Sect. 4.1, we next check how Δρ affects the Love–C relations for the elastic HSs.
Similar to the Earth’s tides, a tidally deformed body in the fluid envelope can create
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Fig. 5 Fractional difference of the tidal deformability for HSs from the NS fit in [42] against compactness.
Similar to Fig. 1, we vary c2

s and fix Pt = 2 × 1034 dyn cm−2 (left) or Pt = 2 × 1033 dyn cm−2 (right)

a load that contributes to deforming the solid layer underneath. This fluid load acts
against the tidal deformation of the solid core and reduces its overall tidal deformation.
As a result, the presence of a dense fluid envelope is expected to effectively screen
away the external tidal field acting on the core, reducing the effect of shear modulus
on the overall tidal deformability [36, 76]. The effect of this screening depends on
the thickness and the density of the envelope fluid layer and, therefore, is influenced
by Δρ. In the following, we demonstrate that Δρ affects the Love–C relations in a
non-monotonic way.

In the left panel of Fig. 6, the Love–C relations of five elastic HS models with various
Δρ are compared with the fluid NS relations, showing certain deviations for large λ̄.
Notice that the HS model with the largest deviation has Δρ = 4×1014 g cm−3, which
is the intermediate value among the five HS models. With such deviations, the Love–C

relations for elastic HSs can be distinguished from the NS relation whose EOS variation
is shown by the grey band. As indicated in Fig. 1, however, this difference is much
smaller than the current measurement uncertainties of λ̄ and C from multimessenger
observations.

The right panel of Fig. 6 illustrates the λ̄ dependence on Δρ for HS models with high
and low Pt values. λ̄ of fluid HSs is also shown to study the effect of shear modulus.
For higher Pt , λ̄ monotonically decreases as we increase Δρ. In the lower Pt case,
however, λ̄ for elastic HSs decreases when Δρ increases from 1013 to 1014 g cm−3

but increases afterwards, denoting a non-montonic behavior. Comparing with the fluid
HS models, we see that the effect of reduction in λ̄ due to the solid QM core increases
initially with Δρ, and gradually saturates and starts decreasing at Δρ ∼ 1014 g cm−3.

Such a non-monotonic dependence on Δρ is not surprising and can also be seen in
a simpler model within Newtonian gravity. Here, we consider a two-layer incompress-
ible model with a solid core with uniform density ρc and a fluid envelope of density
ρ f = ρc −Δρ. The interface separating the two layers again has a transition pressure
Pt . The solid core has a constant shear modulus μm . The tidal deformability of this
model has an analytical form [76–78] (see also “Appendix E”).

The corresponding Love–C relation for this two-layer incompressible model is
illustrated in the left panel of Fig. 7. As we increase Δρ, the Love–C relations pro-
gressively deviate towards smaller compactness and tidal deformability from the case
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Fig. 6 (Left panel) Love–C relations of elastic HSs for various energy density gaps with fixed (Pt , c2
s ) =

(2 × 1033 dyn cm−2, 0.48) and using APR for the NM EOS. The solid line and grey region are the same
as Fig. 1. (Right panel) Relation between the dimensionless tidal deformability and the energy density
gap for the high and low transition pressure with fixed (C, c2

s ) = (0.22, 0.48). We present the results for
elastic (dashed) and fluid (dotted) HSs. The horizontal solid line represents the corresponding value of
the dimensionless tidal deformability for the NS. In both panels, we use the shear modulus parameters as
(μref , N ) = (3.13 × 1034 dyn cm−2, 0.5)

Fig. 7 (Left panel) Newtonian Love–C relation for the two-layer incompressible model. We choose the
density of the core and the constant shear modulus as ρc = 2 × 1015 g cm−3 and μm = 2.47 MeV fm−3,
respectively. The density of the envelope is adjusted by tuning the density gap Δρ. The Newtonian Love–C

relation of a single-layer elastic incompressible star (where we set y = 1 in Eq. (50)), and fluid polytropic
stars with polytropic index n = 0 are shown with a solid line. (Right panel) Relation between λ̄ and Δρ for
the Newtonian two-layer incompressible star for various μm with fixed compactness of C = 0.22

for Newtonian incompressible stars with n = 0, λ̄ = 1/(2C5) (see, e.g., [45]). Eventu-
ally, a “U-shaped” Love–C relation emerges, as represented by the last two color-coded
models in this figure. This demonstrates that the dependence of the Love–C relation
on Δρ is not simply monotonic.

The non-monotonic dependence is further illustrated in the right panel of Fig. 7,
where we show λ̄ versus Δρ for μm = 0, 2.47 MeV fm−3, and ∞ at C = 0.22 (we
only show smaller λ̄ if it takes two values at this compactness). As we increase Δρ, λ̄

decreases until it reaches a minimum at large Δρ. When we further increase Δρ, the
“U-shape” behavior appears (as shown in the left panel of Fig. 7).

Lastly, we show the M-R relations of this analytical Newtonian model in Fig. 8,
which are quite different from the HS models. At smaller Δρ, the relations are close
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Fig. 8 M–R relation for the Newtonian two-layer incompressible models with various Δρ

Fig. 9 Love–C relations for elastic HSs with a shear modulus profile index of N = 0 (left) and N = 1
(right). We set other parameters as (Pt , Δρ, c2

s ) = (2 ×1034 dyn cm−2, 3.13×1034 dyn cm−2, 0.33) and
use APR for the NM EOS. We also present the NS fit in Eq. (23) for comparison

to a simple power law with an index of 3 (as expected from the case for single-layer
incompressible stars, M ∝ R3), while the relations become non-monotonic for larger
Δρ. This also contributes to the “U-shape” behavior in Fig. 7.

4.2.3 Dependence on the shear modulus profile

Lastly, we study the effect of the shear modulus profile index, N (see Eq. (10)). In
the previous sections, we mainly adopted N = 0.5, corresponding to the high-density
limit of the shear modulus of the CCS phase. Here, we also consider the cases N = 0
(constant shear modulus) and N = 1 (linear shear modulus). Figure 9 presents the
Love–C relations for elastic HSs for these choices of N .

For N = 0, the deviation from the NS case once again has a non-monotonic
behavior. The deviation at first increases as one increases Δρ, but it starts to decrease
after Δρ ∼ 3 × 1014 g cm−3. On the other hand, for N = 1, both compactness and
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tidal deformability decrease monotonically as one increases Δρ. This demonstrates
a different dependence of the Love–C relation on Δρ for different shear modulus
profiles. Nevertheless, the maximum deviation of the two cases is of similar size.

5 Conclusions

In this paper, we studied the effect of a solid QM core on HS observables via EM and
GW measurements. We constructed the QM part of the HSs using the CSS EOS and
the NM part with realistic nuclear EOSs. These two phases were separated by a sharp
phase transition with a density discontinuity. The shear modulus of the QM, which
follows a power-law relation with density, was assumed to have no effect on the static
spherically symmetric configuration, i.e., only affecting the perturbed quantities such
as the tidal deformability.

We first compared the M-R relations of the HS models with the observational
constraints from EM and GW measurements. We found the maximum mass and the
corresponding radius of the HS models to increase with the stiffness of the QM core,
parametrized by the speed of sound (cs). Meanwhile, a higher density discontinuity
(Δρ) effectively softened the EOS.

We then considered the Love–C relations for elastic HSs. We numerically solved
for λ̄ of elastic HSs using the perturbation equations in [36, 66] to obtain the Love–C

relations. The presence of a solid core generally caused λ̄ to be lower than fluid HSs.
We found the following regarding the dependence of the Love–C relations on the QM
EOS parameters:

1. dependence on the speed of sound cs : The Love–C relations of elastic HSs showed
significant deviations from the NS relation in contrast to fluid HSs. The deviations
were larger for models with low Pt . In particular, some models showed deviations
up to 60%, while those with a fluid core only had deviations by less than 35%.

2. dependence on the energy density gap Δρ: Deviations in the Love–C relations
for elastic HSs from the NS case showed a non-monotonic behavior in Δρ. To
reinforce our results, we demonstrated a similar non-monotonic behavior of the
Love–C relations in Newtonian two-layer incompressible models with a solid core.

3. dependence on the index N for the shear modulus profile: We found the maximum
deviation is of similar size for N = 0, 0.5, 1, but the dependence of the Love–C

relations on Δρ is affected by the value of N .

Our results showed substantial deviations in the Love–C relations for elastic HSs
from the fluid NS case when the shear modulus is large, the transition pressure is low,
and the density gap is large. However, the deviations are unlikely to be detectable
from existing NS observations. Moreover, the deviations in the Love–C relations are
suppressed if we restrict the QM EOS parameter space to satisfy the constraints from
the mass-radius measurements. Thus, it may be challenging to probe elastic HSs with
the Love–C relations alone, even with future NS observations. One can still expect,
however, to distinguish HSs and NSs with future GW observations from the improved
measurement of the tidal deformability. For example, the recent work by [79] has
shown the possibility of detecting the presence of a strong first-order phase transition
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with future GW detectors. This can be further extended to investigate the measurability
of the elasticity in HSs with solid QM cores.

Note again that the above conclusion on the Love-C relations is based on the “slow
conversion condition" at the QM-NM interface under perturbations. We provide a brief
discussion on the other extreme where the QM-NM conversion happens immediately
under perturbations in “Appendix D”. The resulting deviations of the Love-C relations
of elastic HSs from that of the fluid NSs are significantly smaller in this case.

A Elastic HSs with NL3 or MPa for NM EOS

To see how our main results change if we use a different NM EOS, in this appendix,
we consider NL3 and MPa as the NM EOS, which exhibit different characteristics
in stiffness compared to APR. As we will see below, these EOSs do not satisfy the
bounds from GW170817. Therefore, the results presented in this appendix should
only be considered as a reference and not be taken seriously from the observation
viewpoint.

Figure 10 presents the M–R relations for HSs with NL3 (a) and MPa (b). Similar
to those in Sect. 4.1 with APR, the stellar mass increases as one increases c2

s and
decreases Δρ. Both NL3 and MPa are stiffer EOSs than APR, leading to a higher
maximum mass and larger radius for HSs. MPa is slightly softer than NL3 due to the
effects of hyperons at high densities. Notice that most astrophysical bounds can be
satisfied for HSs with these stiff NM EOSs if c2

s is larger or Δρ is small, except for
the bounds from GW170817, which prefer softer EOSs.

Figure 11 shows the Love–C relations for elastic/fluid HSs with NL3 (left) and
MPa (right). Despite the difference in the M–R relations, the Love–C relations are
very similar to those in the left panel of Fig. 1 for HSs with APR for similar choices
of EOS parameters. These results demonstrate that our main results with APR are
qualitatively valid even for other NM EOSs.

B Tidal perturbation formalism

This appendix summarizes the formalism in [36] for the time-independent perturbation
problem of the solid core of an HS. This formalism is rewritten from the one in [65]
after correcting some typos. We also note that [37, 66] also provided the amended
formalism with the same choice of dependent variables as [65], which we have verified
to be consistent with our equations.

Let us define some new perturbation functions. Following [80, 81], the strain tensor
in Eq. (15) contains two independent components, which can be expressed in terms
of the perturbed metric and Lagrangian displacement through Eq. (16):

Sr (r)Ylm ≡ δΣr
r = 1

3

[

−K (r) + H2(r) + l(l + 1)

r2
V (r)

+2

r

dW (r)

dr
−

(

4

r2
− u′

r

)

W (r)

]

Ylm, (24)
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S⊥(r)∂AYlm ≡ δΣr
A = e−u

2r

[

dV (r)

dr
− 2V (r)

r
+ eu W (r)

r

]

∂AYlm, (25)

where the index A runs between θ and φ.
In our formalism, we introduce the stress variables Zr , and Z⊥, denoting the

Lagrangian perturbation of the stress in the radial and tangential directions, respec-
tively:

Zr (r) ≡ Δp(r) − 2μSr (r), (26)

Z⊥(r) ≡ −2μS⊥(r), (27)

where Δp(r) is the radial component of the expansion of the Lagrangian pressure
perturbation in terms of spherical harmonics. We also define the variable J as

J (r) ≡ H ′
0(r) − 8πeu(ρ + p)

W (r)

r
+ 16πν′μV (r), (28)

(a)

(b)

Fig. 10 Similar to Figs. 3 and 4 but with NL3 (a) and MPa (b) for the NM EOS. We vary c2
s with Δρ =

5×1012 g cm−3 (left) and vary Δρ with c2
s = 0.33 (right). In both panels, we fix Pt = 2×1034 dyn cm−2
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Fig. 11 Similar to Fig. 1 but with NL3 (left) and MPa (right) as the NM EOS. We vary c2
s while

fix (Pt , Δρ) = (2 × 1034 dyn cm−2, 1.08 × 1014 g cm−3). We use the shear modulus parameters as
(μref , N ) = (3.13 × 1034 dyn cm−2, 0.5)

which replaces H ′
0 as one of the dependent variables in our formalism. This quantity is

continuous across the density discontinuity at the QM-NM transition in the HS, unlike
H ′

0 or V , as long as W is continuous.
The complete set of equations governing the perturbations is given by [36]

dW

dr
=

(

1 − 2α2

α3
− ru′

2

) W

r
− r

α3
Zr + α2

α3
l(l + 1)

V

r
− α2

α3
r K − 1

2
r H2, (29)

d Zr

dr
=

[

p′
(

rν′′

ν′ − ru′

2
− 2

)

− 4

r

α1

α3

(

α3 + 2α2
)

]

W

r2

−
(

rν′

2
+ 4α1

α3

)

Zr

r
+

[

p′ + 2

r

α1

α3

(

α3 + 2α2

)

]

l(l + 1)V

r2
+ l(l + 1)

r
eu Z⊥

+ 1

2
(ρ + p)H ′

0 −
[

p′ + 2

r

α1

α3

(

α3 + 2α2
)

]

K − p′

2
H2, (30)

dV

dr
= − eu W

r
+ 2V

r
− reu

α1
Z⊥, (31)

d Z⊥
dr

=
[

p′ + 2

r

α1

α3

(

α3 + 2α2
)

]

W

r2
− α2

α3

Zr

r

+
[

2α1

r
− 2α1

(

1 + α2

α3

) l(l + 1)

r

]

V

r2
−

[

ru′

2
+ rν′

2
+ 3

]

Z⊥
r

+ 1

2
(ρ + p)

H0

r
+ α1

α3

(

α3 + 2α2

) K

r
, (32)

d H0

dr
=J + 1

r2
(ν′ + u′)W − 16πα1ν

′V , (33)

d J

dr
=

[

32πeu

r2

α1

α3

(

α3 + 2α2
)

− 3

2r2
ν′(u′ + ν′)

]

W − 8πeu 1

α3

(

α3 + 2α2

)

Zr

− 8π

r2

[

(

ρ + p
)

eul(l + 1) + 2α1

α3

(

α3 + 2α2
)

eul(l + 1) + 4α1
(

1 − eu
)

− 2α1
(

rν′)2
]

V

− 16πeu
(

rν′)Z⊥ +
[

l(l + 1)eu + 2
(

eu − 1
)

− r
(u′

2
+ 5ν′

2

)

+
(

rν′)2
] H0

r2

+
[ r

2

(

u′ − ν′) − 2
] J

r
+

[1

r

(

u′ + ν′) + 16πeu α1

α3

(

α3 + 2α2
)

]

K . (34)
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The above equations are formulated in a way to be compared with the Newtonian
linear perturbation problems (e.g., [82]). The quantities α1, α2, α3 are defined to
represent different elastic moduli in an isotropic solid:

α1 = μ, α2 = c2
s (ρ + p) − 2

3
μ, α3 = c2

s (ρ + p) + 4

3
μ, (35)

where α2 and α3 represent the relativistic generalization of the Lamé coefficient and
the P-wave modulus defined in linear elastic theory, respectively (see e.g., [83, 84]).
The (equilibrium) speed of sound cs is defined in Eq. (20).

The variable K is expressed in terms of the new set of dependent variables by
combining the (r , r ) & (r , θ ) components of the Einstein equations:

(l + 2)(l − 1) eu K = − 16πeur2 Zr − 16πeu
(

2 + rν′
)

r2 Z⊥

+
[

l(l + 1)eu − 2 +
(

rν′)2
]

H0 + r2ν′ J . (36)

Equations (29)–(32) can be derived solely from the energy-momentum conserva-
tion, while the remaining two are obtained from the Einstein equations.

Equations (29)–(34), together with the algebraic relation for K (Eq. (36)) form a

set of six coupled ODEs with six dependent variables
(

W , Zr , V , Z⊥, H0, J
)

. Note

that H2 is algebraically related to other variables through

H2 = H0 + 32πμV . (37)

The perturbations of the fluid envelope are described by a second-order ODE in H0

[69, 70, 85], which correspond to the μ → 0 limit of Eqs. (29)-(34):

H ′′
0 +

{

2

r
+ eu

[

2m

r
+ 4πr(p − ρ)

]}

H ′
0

+
[

− l(l + 1)

r2
+ 4πeu

(

5ρ + 9p + ρ + p

c2
s

)

− ν′2
]

H0 = 0. (38)

C Computationmethod

Let us next describe a procedure to solve Eqs. (29)–(34) numerically. We start inte-
grating these equations from the stellar center towards the solid–fluid interface. By
expanding the variables to the second order in r about r = 0, the dependent variables
are written in the form [80]

Y (r) = Y (0)rn + Y (2)rn+2 + O(rn+4), (39)
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where n = l for (W , V , H0), l − 2 for (Zr , Z⊥) and (l − 1) for (J ). Here we consider
the quadrupolar tidal perturbation with l = 2. Inserting this ansatz into Eqs. (29)–(34),
we obtain nine independent constraints whose explicit forms are given by Eqs. (A4)–
(A12) in [36]. This leaves us with three independent regular solutions.

The Israel junction conditions require the continuities of (W , Zr , Z⊥, H0, J ) across
the solid–fluid interface [36, 65, 86, 87]. With three independent solutions within the
solid, we need to impose two constraints from interface boundary conditions such that
there remains one independent solution in the fluid layer. Since Z⊥ = 0 in the fluid
layer, the continuity condition requires Z⊥ to vanish at the solid side of the interface,
providing one constraint. The other constraint can be derived from the continuity of
W , Zr , and H0. Explicitly, we write the constraints as

Z (s)
r = Z (f)

r = ρ(f) + p

2

(

H0 − ν′ W

Rc

)

, (40)

Z
(s)
⊥ = 0, (41)

where the quantities are evaluated at r = Rc, with Rc being the radius of the solid
core. We use superscripts (s) and (f) to indicate the solid or fluid side value of the
quantity if it is discontinuous.

The dimensionless tidal deformability, λ̄, can then be computed as follows. The
above two constraints allow us to determine the solution within the solid core up
to an arbitrary constant factor, which comes from the fact that the amplitude of the
perturbations has not been specified. We then use the continuity of (W , H0, J ) to
determine the values of H0 and H ′

0 on the fluid side of the interface. In particular,
using Eq. (28),

H ′
0
(f) = J + 8πeu(ρ(f) + p)

W

Rc

. (42)

In the fluid envelope, we integrate Eq. (38) towards the stellar surface. The metric
perturbations are matched with the exterior solution. The dimensionless tidal deforma-
bility of l = 2, λ̄, is then given by

λ̄ =16

15
(1 − 2C)2 [2 + 2C(y − 1) − y]

{

2C

[

4(1 + y)C4

+ (6y − 4)C3 + (26 − 22y)C2 + 3C(5y − 8) − 3y + 6

]

+ 3(1 − 2C)2[2 − y + 2C(y − 1)
]

log(1 − 2C)

}−1

, (43)

where y = RH ′
0(R)/H0(R).

When solving for the tidal deformability of a fluid HS, we integrate Eq. (38) near
r = 0 with the regularity condition

H0 = ar l + O(r l+2), (44)
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for some arbitrary constant a. Across the interface, we have the junction condition

H
(+)
0 =H

(−)
0 , (45)

H
′(+)
0 =H

′(−)
0 + 4π R2

c

m + 4π R3
c Pt

(

ρ(+) − ρ(−)
)

H0, (46)

where the quantities with superscripts (+) and (−) are evaluated at Rc + δ and Rc − δ

respectively for 0 < δ � Rc. The quantities without the subscripts are continuous
across the interface. λ̄ can then be determined from Eq. (43).

D Rapid conversion in phase transition

In this paper, we focus on the scenario in which the Lagrangian displacement is always
continuous in the radial direction in the perturbed configuration, i.e., W is continuous
across the interface. An underlying assumption for this condition is that the phase
conversion timescale is much longer than that of the perturbation process, e.g., the tidal
forcing during a binary inspiral. This condition has been assumed in some previous
studies [65, 80]. Another possibility is that the phase conversion happens fast enough
such that part of the perturbed matter near the interface undergoes a phase transition,
resulting in a different junction condition [72, 73, 88]:

W (s) + Rc Z
(s)
r

p′(s) = W (f) + RcΔp(f)

p′(f) . (47)

Equations (40) and (42) are then replaced by

Z (s)
r =ρ(s) + p

2

(

H0 − ν′ W (s)

Rc

)

, (48)

H ′
0
(f) =J + 8πeu(ρ(f) + p)

W (f)

Rc

=J + 8πeu(ρ(f) + p)
W (s)

Rc

− 16πeu

ν′

(

1 − ρ(f) + p

ρ(s) + p

)

Zr

=J − 16πeu

ν′ Z (s)
r + 8πeu

ν′

(

ρ(f) + p
)

H0. (49)

Note that the junction conditions at the interface for H0 and H ′
0 are the same for fluid

HSs, and therefore the tidal deformability is the same for the slow conversion and
rapid conversion scenarios for such HSs.

In Fig. 12, we compare the Love–C relation of the original (slow) junction condition
to the rapid condition for two different elastic HS models. The deviations from the
fluid HSs are significantly smaller for the rapid conversion condition. This suggests
the overall shear strain of the solid core is reduced under this condition, and hence
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Fig. 12 Love–C relations for HSs with different boundary conditions. We use the same EOS parameters
as the right panel of Fig. 4, i.e., (Pt , c2

s ) = (2 × 1033 dyn cm−2, 0.33) and APR EOS. We also choose

Δρ = 7.92 × 1013 g cm−3 (left) and Δρ = 5 × 1012 g cm−3 (right). The black solid lines represent the
NS fit, and the grey-shaded regions indicate the NS EOS variation. The blue-shaded regions correspond to
the multimessenger constraints. The data points represent different models: fluid HS (crosses), elastic HS
in slow conversion (squares), and elastic HS in rapid conversion (open circles)

the effect of elasticity is smaller. Also, as seen from Eq. (47), the discontinuity in
W is proportional to the difference of the inverse of the density at the two sides of
the interface. Hence, the deviation in Love–C relations between the slow and rapid
conditions is much smaller in the right panel with a smaller Δρ. A thorough study of
the condition at the phase transition is required to reveal the effect of the reaction rate
on the tidal deformability, which we leave for future work.

E Newtonian two-layer incompressible model

To understand the non-trivial dependence of the Love–C relation on the density gap,
we consider a simpler but related model consisting of a solid core and a fluid envelope,
both of constant densities, in the Newtonian limit. Analytic expression exists for both
λ̄ and C .

For a two-layer incompressible model with a core density ρc, a core shear modulus
μm , a central pressure pc, a transition pressure Pt , and an envelope composed of fluid
with density ρ f = ρc − Δρ, the tidal deformability is given by [76–78]

λ̄ = 1

2C5

{

1 +
(1 − y)

[

n0(y) + n1(y)ρ̂ + n2(y)ρ̂2
]

+ 19

2
y4μ̂c

y5 + 2

5
(1 − y)

[

n0(y)ρ̂ − n2(y)ρ̂2
]

+ 19

5
γ̂ y4μ̂c

}−1

, (50)

where

y = Rc

R
, (51)

ρ̂ = R3ρ f

M
, (52)
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γ̂ = ρ̂

1 − ρ̂
, (53)

n0(y) =1 + y + y2 + y3 + y4, (54)

n1(y) = − 1

2

(

4 + 4y + 4y2 − y3 − y4
)

, (55)

n2(y) =1

2

(

2 + 2y + 2y2 − 3y3 − 3y4
)

. (56)

Here, Rc is the radius of the core, which corresponds to p(Rc) = Pt .
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