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The response of black holes to small perturbations is known to be partially described by a superposition
of quasinormal modes. Despite their importance to enable strong-field tests of gravity, little to nothing is
known about what overtones and quasinormal-mode amplitudes are like for black holes in extensions to
general relativity. We take a first step in this direction and study what is arguably the simplest model that
allows first-principle calculations to be made: a nonrotating black hole in an effective-field-theory
extension of general relativity with cubic-in-curvature terms. Using a phase-amplitude scheme that uses
analytical continuation and the Priifer transformation, we numerically compute, for the first time, the
quasinormal overtone frequencies (in this theory) and quasinormal-mode excitation factors (in any theory
beyond general relativity). We find that the overtone quasinormal frequencies and their excitation factors
are more sensitive than the fundamental mode to the length scale / introduced by the higher-derivative terms
in the effective field theory. We argue that a description of all overtones cannot be made within the regime
of validity of the effective field theory, and we conjecture that this is a general feature of any extension to
general relativity that introduces a new length scale. We also find that a parametrization of the
modifications to the general-relativistic quasinormal frequencies in terms of the ratio between / and
the black hole’s mass is somewhat inadequate, and we propose a better alternative. As an application, we
perform a preliminary study of the implications of the breakdown, in the effective field theory, of the
equivalence between the quasinormal mode spectra associated to metric perturbations of polar and axial
parity of the Schwarzschild black hole in general relativity. We also present a simple justification for the
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loss of isospectrality.
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I. INTRODUCTION

The study of the response of black holes to external
perturbations has a long history that dates back to the
seminal work of Regge and Wheeler on the stability of the
“Schwarzschild singularity” against linear perturbations in
the 1950s [1]. Numerical scattering experiments performed
by Vishveshwara [2] showed that the response in time of
the black hole to incident Gaussian wave packets exhibits,
after an initial prompt response, a characteristic damped
oscillation, i.e., a “ringdown.” The ringdown was also
observed in the gravitational-waves signals produced by
test particles plunging radially into black holes by Davis
et al. [3-5] and in stellar collapse by Cunningham, Price
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and Moncrief [6,7]. The latter showed that the ringdown
has oscillation frequency and damping time in conformity
with the quasinormal frequencies of a Schwarzschild black
hole calculated by Chandrasekhar and Detweiler [8].
Chandrasekhar and Detweiler also proved a remarkable
result: the spectrum of quasinormal modes associated to
metric perturbations of axial parity (described by Regge-
Wheeler equation [1]) and polar parity (described by the
Zerilli equation [9,10]) are the same despite the different
forms of these equations. The two spectra are said to be
isospectral.

It was not until the work of Leaver [11] in the 1980s, that
the relation between the source of disturbance and resulting
gravitational-wave signal was studied analytically as an
initial-value problem using Green’s functions; see also,
e.g., Refs. [12—-18]. It became understood that the ringdown
dominates the black hole’s response, except at very early
(the “prompt response”) and very late times (the “tail”
[19]), and that it consists of a superposition of quasinormal
modes. The amplitude with which each mode contributes to
the ringdown is determined by its excitation coefficient,
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which can be factorized into perturbation independent
(termed the “quasinormal-mode excitation factor”) and
dependent parts. Together, quasinormal modes and their
excitation coefficients can be used to construct the quasi-
normal-mode contribution to the Green’s function which, in
turn, can be used to evolve an initial data in time. This
approach has been used to reproduce the ringdown in the
aforementioned cases [11,14].

The quasinormal frequencies of the astrophysically rel-
evant Kerr solution are uniquely determined by the black
hole’s mass and spin [20]. The identification of two or more
quasinormal frequencies from gravitational waves pro-
duced, e.g., in the coalescence of binary black holes
[21-24], would enable “direct evidence of black holes with
the same certainty as, say, the 21 cm line identifies
interstellar hydrogen,” as suggested by Detweiler [25]. If
black hole spectroscopy ever reveals a tension between
general relativistic predictions and observations, it would be
suggestive of new physics beyond general relativity [26,27].

With the advent of gravitational-wave astronomy
[28-30], it becomes sensible to attempt to understand
the quasinormal mode spectra (and respective excitation)
in theories beyond general relativity. In general relativity,
an ab initio description of the ringdown for the astrophysi-
cally relevant case of comparable mass binary-black
hole coalescence remains an outstanding open problem.
However, as exemplified in the foregoing discussion,
progress is possible within black hole perturbation
theory.

Here we take an initial step in this direction. We study the
quasinormal mode spectrum and the excitation factors of a
nonrotating black hole in an effective field theory (EFT) of
general relativity [31]; see the requirements for the con-
struction of the EFT therein. The motivations behind this
choice are manifold. First, the EFT has only two degrees of
freedom, and we avoid unnecessary technical complica-
tions introduced by couplings between the metric and extra
fields, such as scalars. Second, the EFT admits an exact
analytical nonrotating black hole solution to which pertur-
bation theory can be applied [32-36]. Third, previous
analysis, that focused only on the lowest damped quasi-
normal frequencies, showed that isospectrality of pertur-
bations of the Schwarzschild solution [8] is broken due to
the higher-dimension EFT terms [32-34]. For these rea-
sons, the EFT of general relativity is ideal to address from
first principles the following questions, representative of
what may be asked in any extension to general relativity,

(1) What is the consequence of the breakdown of

isospectrality in realistic sources of gravitational
radiation?

(i) How sensitive are quasinormal overtone frequencies

to corrections to general relativity?
We give preliminary answers to these questions here.

This work is organized as follows. In Sec. II, we review the
EFT of general relativity and the black hole solution we will

study. In Sec. I1I, we present the equations that describe the
linear perturbations of this black hole. We compare our
formulation of the equations with previous literature, and
present a simple explanation for the absence of isospectrality
in the EFT. In Sec. IV, we review a phase-amplitude method,
developed by one of us [37], that we use to compute the
quasinormal frequencies (including overtones) and their
respective excitation factors. In Sec. V, we present our
numerical results and discuss their regime of validity. In
Sec. VI, we summarize and discuss our main results. We use
the mostly plus metric signature and use geometrical units
¢ = G = 1. Parenthesis are used to indicate index symmet-
rization, as in T'(,,) = (T, +T,,)/2.

II. EFFECTIVE-FIELD-THEORY
OF GENERAL RELATIVITY

A. Action and field equations

The general structure of the action is

1

1
Y — d4 “0R + — 12”_25<2"), 1
167:/ VI +16ﬂ§ m

where [ is a length scale assumed to be small compared to
the length scale associated with a black hole of mass M,
i.e., M > [, and S is the action of the nth order curvature
term which has 2n derivatives of the metric. For this reason
we will use the terminology “dimension-2n operator.”
Notice that only even powers in [ are allowed from
dimensional analysis.

One can show that, upon field redefinitions and as long
as the EFT construction is built around vacuum GR, that no
dimension-four operators exist. The first nontrivial con-
tribution occurs at dimension six and, at this order, there are
only two operators [38]. The resulting action is

1
S=— [ d*x/=g[R + I*L], 2
& [ axvEaIR + 1L @
where
L = 2.R,"°R,.Rs™ + 2R, R, Rs M, (3)

and R,,,, = (1/2)€,,”Ryp,0, Where €,,,, is the totally
antisymmetric Levi-Civita tensor, 4., are dimensionless
constants associated to the even- (“e”’) and odd-parity (“0”)
curvature terms, and Z is a length scale.

The field equations of the theory, obtained by varying the

action (2) with respect to g, are
Sa/i = G(l/)’ + 14511/5 = 09 (4)

where
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We will only consider the even-parity operator hereafter,
i.e., we set 1, = 0. For brevity, we will write A, = 4, and
assume A to be positive. A priori, however, A can have either
sign; see, e.g., Refs. [39—41]. We will work to leading order
in A, that is, to O(I*). Other aspects of the EFT in the
context of gravitational-wave physics are discussed, e.g., in
Refs. [42-47] and references therein.

B. Nonrotating black hole solution
A nonrotating spherically symmetric black-hole solution
of the theory (2) was found in Refs. [33,34,38]. The line
element is

ds? = —=N%2fde? + f7'dr? + r2d6? + r’sin?0dg?,  (6)

where the metric functions N and f are, respectively,

M6
N=1- 10887, (7a)
2M 49 M\ M*
=1-—+421 l———|—
! P 68( 27 r> o (7b)
and we introduced the dimensionless parameter,
e =A*/M*, (8)

and M is the Arnowitt-Deser-Misner (ADM) mass of the
black hole. The event horizon ry, is located at the largest
positive root of f,

= 2M(1 = 5¢/16). )

The black-hole solution reduces to that of Schwarzschild in
the limit 4 — 0, i.e., € = 0. We note that r, can vanish if
e = 16/5 which, however, is outside the validity of the
EFT, e < 1. For the sake of completeness, we derive
Eq. (6) in Appendix A. Further, in Appendix B, we show
that the spacetime is of Petrov-type D.

The spacetime as written in Eq. (6) demands some care
when r is approximately 2M. To see this, take the g,, metric
component,

fh=[1=-2M/r+esf(r)]", (10)

where we defined

5f:216M:<1—49M>. (11)
r

As r — 2M, we see that the EFT correction starts domi-
nating over the general-relativistic term. This means that
the expansion in € ceases to hold in this limit. The same
happens for g, = —N>f.

To resolve this issue we perform a “resummation.” The
idea is to factor out a multiplicative term 1 — r,/r, thereby
recasting either N>f or f in the schematic form:

z(r) = (1 = ry/r)[1 4 €6z(r)], zarbitrary.  (12)
In this way, we guarantee that O(¢) terms are small for any

value of r > r,,. We leave the details of this calculation to
Appendix C and quote our final result:

h 5M 5M* 5M3  5M*
Nf=(1-2)]1-¢|>—
f ( r>[ €<8r+4r2 +2r3 + r

10M°>  20M°
+ 5 + 5 >}, (13a)
-1 5SM  5M*> SM3  SM*
—1 T
=(1-—— 1 —
f < r) { +8<8r+4r2 +2r3 r
10M°  196M°
+ e - G )] (13b)

Equations (13a) and (13b) are the expressions we will
use for the g,, and g,, metric components, respectively. By
construction, both equations have the expected behavior at
the event horizon ry,. In addition, since to O(e),

N2f=fo1=-2M/r+ O(r?), r/M>1, (14)
we have retained the interpretation of M being the ADM

black-hole mass and that the spacetime is asymptotically
Minkowski.

III. BLACK HOLE PERTURBATIONS

The linear gravitational perturbations of the black-hole
solution (6) were analyzed in Refs. [33,34], in the Regge-
Wheeler-Zerilli formalism (“metric-perturbation approach’)
[1,9,10], and in Refs. [35,36] in the Newman-Penrose [48]
and Geroch-Held-Penrose [49] formalisms (“curvature-
perturbation approach”). See also Refs. [50,51] for related
work in the latter approach.

In the metric-perturbation approach, the problem reduces
to studying two equations in the frequency domain

d2 (1)2 + +
et am VXL =0 ()
S
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FIG. 1. The effective potentials Vgi) for perturbations of polar (left panel) and axial (right panel) parity. We vary the parameter
e = AI*/M* from zero (general relativity) to 0.05 in increments of Ae = 0.01. The value of the potential’s peak decreases (increases) for
the polar- (axial-) parity potentials with respect to general relativity. The location of the peak shifts in opposite directions, with respect to
the case of general relativity: outwardly for polar-parity and inwardly for the axial-parity potential. These changes are bound to the
region between the event horizon, pushed to x — —oo, and the location of the potential peak.

that we now describe in detail. The superscript (%) is used
to denote variables associated to metric perturbations of
polar (+) or axial (—) parity, which we assume to have
harmonic time-dependence exp(—iwt), and are labeled by
the multipole index # > 2. Metric perturbations of polar
and axial parities are fully described by a single master
function known as the Zerilli X(*) and Regge-Wheeler X(-)
functions, respectively.! We also introduced the tortoise
coordinate x, defined as

dx/dr = 1/(NY), (16)
and that maps the domain r, <r < o0 to —c0 < x < 00.

This is not guaranteed to happen for all values of . As we

detail in Appendix D, the desired mapping holds for

e < 0.59. Finally, prﬂ and ¢? are the black-hole effective

potential and propagation velocity of the perturbations,
respectively. Let us consider both in turn.

First, the effective potential can be decomposed in a
resummed form as

+)

v = (1 —ﬁ> [V 4 esviH). (17)
r

The bare general-relativity contributions to the potential are
the Zerilli [9] and Regge-Wheeler [1] potentials, given
respectively by

18 M2 M
202(A 1 A — 1, 18
rw[ 26+ 1)+ (f+r)] (18a)

AY
|
—~

"We verified that in the EFT, as in general relativity, the Zerilli
[9] and Zerilli-Moncrief [52] functions and the Regge-Wheeler
[1] and Cunningham-Price-Moncrief [6] functions satisfy the
same homogeneous differential equations.

_ 1 oM
Vo) =5 [f(f+ 1) ——}, (18b)
r r
where we defined
le=(+2)(¢—-1)/2, and A,=2,+3M/r. (19)

The modifications to these potentials originating from the
dimension-six operators can be written schematically as

10
(o1 (+) ;
Ve = G 2 e (MY (20
) _ 15~ 0 :
8V, = i (M/r)'. (20b)
i=1

(+)

The coefficients v;,” contain A, for n > 4; hence the

explicitly stated dependence on r. In contrast, vl(;) is

independent of r for all n. All coefficients have powers
of £. We show the explicit forms of 1)5;5 ) in Appendix E.

In Fig. 1 we show both potentials, Eqs. (18a) and (18b),
for £ =2 as functions of the tortoise coordinate x. The
curves correspond to increasing values of &, from zero
(general relativity) to 0.05 in steps of Ae = 0.01. The EFT
corrections are most salient in the region between the event
horizon and the location of the potential peak; past the latter
the curves become identical to one another.

It is important to note that the potentials are short ranged,
i.e., their integral on the domain x € (—o0, +00) is finite.
Indeed, one can verify that

+00 1 1
()4, _ (+)
/_oo Vf dx——2 |:2ﬂf+§+&’lf :|, (21)

where zgf) # ziﬁ are parity-dependent functions of Z. In the
limit of general relativity, the integrals of the Regge-Wheeler
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and Zerilli potentials are the same. This equality, first
noticed by Chandrasekhar and Detweiler [8] (see also
Refs. [53,54]), is a necessary condition to establish the
isospectrality of the Regge-Wheeler and Zerilli potentials.
More precisely, the equality of Eq. (21) is the first of an
infinite hierarchy of integral equalities that must be satisfied
by a pair of potentials if they are to have the same reflection
and transmission coefficients.” That this equality is broken
by the EFT corrections already at “zeroth order” in this
hierarchy implies the breakdown of isospectrality.

Finally, perturbations of polar and axial parity propagate
with a position-dependent velocity

MS
Cg =1- 2888‘](‘7,

5
21—2888<1 —@) M (22)
r

P

where in the second line we used the resummed form of f
[cf. Eq. (13b)] and kept the O(¢) term only. We may note
that ¢? is unity at spatial infinity and at the event horizon ry,
while it can be sub- or superluminal outside r, depending
on the sign of e. Reference [58] argues that this speed
cannot be used to predict time delay (or advance) with
respect to general relativity as long as one stays within the
regime of validity of the EFT.

Before proceeding, let us compare our Eq. (15) with
those found in the literature, particularly in the works by de
Rham et al. [33] and Cano et al. [34] who, like ourselves,
worked in metric perturbation approach. In comparison to
Ref. [33], our perturbation equations are similar to their
Eqgs. (2.23) except that we did a resummation of the
effective potentials. Likewise, we use the same definition
of the tortoise coordinate, though, again, we perform a
resummation. To compute the quasinormal mode frequen-
cies, Ref. [33] recasts their equations in a form that can be
mapped into the quasinormal frequency parametrization of
Ref. [59]. In comparison to Ref. [34], our perturbation
equations are different both in the choice of the tortoise
coordinate [they use a “pseudotortoise coordinate”; see
Eq. (41) therein] and in the effective potentials (they do a
field redefinition to trade the position-dependent propaga-
tion speed c¢? for a frequency-dependent potential). To
compute the quasinormal frequencies, Ref. [34] did a direct
integration of the perturbation equations.

*These integrals are formally related to conserved quantities
allowed by the Korteweg-de Vries equation [55]. See Ref. [53],
Sec. 4 and its Appendix, for a discussion, and Refs. [56,57] for
recent literature.

3Implicitly, Ref. [33] also does a direct integration of the
perturbations equations. The reason is that the theory-agnostic
coefficients in Ref. [59] are found by direct integration of their
parametrized perturbation equation; see Eq. (10) and Sec. III
therein.

Cano et al. [34] reports an agreement of approximately
1% to 5% of their results with those of de Rham et al. [33].
In another work, Cano et al. [36] also computed the
quasinormal frequencies for rotating black holes using
the curvature-perturbation approach and using a small spin
expansion [35]. They followed the approach of Ref. [50] to
compute the quasinormal frequencies, and the results were
cross-checked against the direct integration of the modified
Teukolsky equation. In the nonrotating limit, their results
agree with those of Refs. [33,34]. Our results will be
presented in Sec. V. However, first, let us motivate and
explain the phase-amplitude method we will adopt to
compute the quasinormal modes and their excitation.

IV. QUASINORMAL MODES
AND THEIR EXCITATION

In this section, we review the “quick and dirty” phase-
amplitude method developed by Glampedakis and
Andersson [37] for studying black-hole resonances. We
will first review some technical difficulties in numerically
computing quasinormal modes and how they are overcome
in the phase-amplitude approach. We will then explain how
the quasinormal-mode excitation factors can be determined.

A. Quasinormal modes

We are interested in computing the quasinormal modes
associated to Eq. (15). Because the effective potentials are
short ranged and vanish both at the horizon and at spatial
infinity, whereat the propagation speed ¢ becomes unity,
the general physical solution of Eq. (15) has the form

X = —0

—iwx
() ©
fw — A(f"’;'))’ine—ia)x _~_A£pi)*0“te+iwx X = —‘1-00’

(23)
consisting of purely ingoing waves at the event horizon and
a mixture of ingoing and outgoing waves at spatial infinity.
From the ratio between the amplitudes of the ingoing and
outgoing waves at spatial infinity, we can define the
scattering matrix

Sh) = (1Al Al = explaisyy)]. (24)

where 5;2) is the phase-shift function. Quasinormal modes

are solutions defined by having A?;)’m = 0, i.e., they are the

poles of the scattering matrix [2]. The problem of comput-
ing the quasinormal-mode frequencies w,, hence reduces
to a boundary-value problem in which one has to find w,,

such that A%)'m vanishes. Root-finding algorithms can be
used to perform this task. In black-hole physics, for each
multipole Z, there is an infinite number n of quasinormal
frequencies that we sort according to their damping time.
The index n = 0 is used for quasinormal-mode frequency
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with longest decay time (the “fundamental mode”) and
modes with n > 0 are called “overtones.”

A numerical challenge immediately presents itself if one
attempts to carry such procedure by numerically integrating
the differential equation (15). Since w,, is complex-valued,
we find

*)

X;w ~ exp(F xImawy, ), X — too. (25)

and because Imw,, is negative for stable perturbations,
the quasinormal-mode solution diverges as x — *oo.
Consequently, in the root-finding process, we must resolve
an exponentially decaying from an exponentially growing
part of the solution, at large values of x. This is even more
challenging for overtones which, by definition, have shorter
damping times.

B. The phase-amplitude method

Reference [37] proposed a “quick-and-dirty” method for
the calculation of the quasinormal-mode frequencies that
combines two ideas. First, instead of working with the
(possibly rapidly varying) function X;f)), one works with
slowly varying phase functions. Second, instead of working
on the real axis, one performs an analytical continuation of
Xl(f,j;) to complex values of x and a suitable integration path
is chosen in order to balance the exponentially decaying
and growing waves of the general solution Eq. (15). Let us
see how this works in practice. To lighten the notation, we
will omit the parity “(4)” and mode “Zw” scripts for now.

We start by rewriting Eq. (15) as
2

E%+Qk:a Q=w?/ci-V, (26)

where Q — @?

(23) as follows:

as x — Foo, and the boundary conditions

X —=> —0 (27)

e—iwx
X~ { ) )
Bsin(wx +{) x— +oo

where B and ¢ are complex-valued constants. Equation (26)
admits an exact solution in the form

X =exp {/ P(x’)dx’}, (28)
where P is the phase function,
P =dlog X/dx, (29)

which, from Eq. (26), satisfies the Riccati equation4

‘We may, parenthetically here, remark that the advantage of
working with the Riccati equation had already been appreciated
by Chandrasekhar and Detweiler [8]; cf. pp. 451 therein.

dP/dx+ P>+ Q =0, (30)

and the quasinormal-mode boundary conditions translate
into P - —iw as x - —oo.

Instead of working with P as x — oo as well, it is useful
to introduce a second phase function, P, by means of the
Priifer transformation defined as:

X = Bsinjox + P(x)), (31a)

dX/dx = Bw cos[wx + P(x)]. (31b)

We can calculate dlog X/dx with the foregoing equations
and find that the phase functions P and P are related by

P = wcot(wx + P), (32)
with inverse
~ 1 iP—w
P=—wxt-1 . 33
>t Og[ipm} (33)

Note that Eq. (32) explains the absence of a dP/dx term in
Eq. (31b). A short calculation shows that the Priifer phase
function satisfies

dP/dx + (w — Q/w)sin?(wx + P) = 0. (34)

From the asymptotic properties of Q and P, we find from
Egs. (30) and (34) that for real @ and 7,
dP/dx ~0, (35a)

X = —0

dP/dx ~0, X — 400 (35b)
That is, P and P are slowly varying functions as x — —co
and x— oo, respectively.5 It is then suggestive that we
should work with P in the domain x € (—co, x,,,] and with P
in the domain x € (x,,, o), where x,, is a matching point.
Experience has shown that the computation of the quasi-
normal frequencies does not depend on the precise value of
Xm, as long as we chose it to be near the peak of the
effective potential V [37]. Here we chose r,, = 3M, the
location of the light ring in the Schwarzschild spacetime,
which translates to x,, ~ 1.61M.

Finally, we can compare Eqgs. (31a) and (27) to conclude
that P — ¢ as x — oo and, by comparing Eqgs. (23) and
(27), that

5Equations (30) and (34) can be used to compute Regge
poles [37]. Like quasinormal modes, they are poles of the
scattering matrix (24), but correspond instead to complex values
of £ for a given real-valued w. Regge poles are important in
scattering theory; see, e.g., Refs. [60-62] for applications in
black-hole physics.
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=
/ﬁ .

Tm

FIG. 2. The integration path C in the complex x-plane used for
the calculation of the quasinormal modes. The value of f , is the
chosen based on the asymptotic behavior of Q as x — +o0. In our
problem, f, , = —arg w. However, the method can be applied to
other situations where this is not the case, such as of perturbations
of the Kerr black hole [37].

Ain/Aout - = exp(—21§) (36)

The second step in the scheme of Ref. [37] consists in
promoting the tortoise coordinate x to become complex
valued as in, e.g., in the closely related phase-integral
approach [63]. Consider the curve C illustrated in Fig. 2,

X = X + pexp(if), (37)

parametrized by the real parameter p € (—o0, 00) and where
fis areal constant. Note that the matching pointis atp = 0.
In terms of Eq. (37), the Priifer equation (34) becomes

dP/dx + (0 — Q/w)sin®|wx,, + wpexp(if) + P|=0. (38)

The crucial step is to now observe that, with a suitable
choice of f#, we can make the ingoing and outgoing waves
as x — oo to be of comparable asymptotic amplitudes. This
is achieved by choosing,

p=—argw, (39)

such that the integration path is parallel to the anti-Stokes
lines when x — 400 [37]. Equation (38) becomes

dP/dx + (0 — Q/w)sin®(wx,, + |w|p + P) = 0. (40)

Note that now the argument term proportional to p is real
and hence we eliminated the asymptotic exponential
behavior of the amplitude.

We can then rewrite the differential equations (30) and (40)
for the phase functions with p as an independent variable, and
trade x in favor of r by means of Eq. (37). We obtain

P .
j— +ef(PP+0) =0, (41a)
p

P .
— +¢éf <a) - g) sin?(wxy, + |w|lp + P) =0, (41b)
dp @

ﬂ — eiﬁﬂ =0,
dp dx

(41c)
where dr/dx and f are given by Egs. (16) and (39),
respectively.

Equation (41) constitutes the system of differential
equations we need to integrate to compute the quasinormal
frequencies. The integration procedure can be summarized
as follows:

(1) Choose the values of ¢, Z, and w, and with the latter

compute ff = —arg w.

(2) Determine the initial condition for r as p — —co. We
found it useful, particularly in the context of the
integrations in the next section, to integrate Eq. (41c)
from p,, = 0 (at which r = 3M) backward to, say,
Pmin = —30M. This fixes rpin = 7(Pmin)-

(3) Set the initial condition for P at p,;, using the
leading-order Wentzel-Kramers-Brillouin (WKB)
formula, that is, Py, = —iQ(Fmin)"/>.

(4) Integrate Egs. (41a) and (41c) from p,;, to p,,, using
rmin and Py, as initial conditions.

(5) Calculate P(p,,) from P(p,,), the result of the
previous step, using Eq. (33).

(6) Switch to Priifer phase function, that is, integrate
Egs. (41b) and (41c) from p = p, Up t0 p = Ppax- In
practice, we often used p,.x ~ 10*M. This gives
US € = P(ppyey)-

(7) Calculate A;,/A,, using Eq. (36).

(8) Repeat steps 1 to 7, updating the value of @ until the
quasinormal-mode boundary condition A;;, =0 is
satisfied. This is a root-finding problem that we
solve using Muller’s method [64].

We implemented the foregoing steps in C++. The
integration of the differential equations was performed
with the Runge-Kutta-Fehlberg (7, 8) method, as imple-
mented in Odeint [65], part of the Boost library [66]. Our
implementation of Muller’s method follows the pseudo-
code found in the “Numerical Recipes,” Chapter 9.2 [67].
We will present the numerical results of our quick-and-dirty
quasinormal mode frequency computations in Sec. VA.

C. The excitation factors

Having explained how we compute the quasinormal-
mode frequencies, we now present how we obtain their
excitation factors. The excitation factors are complex-
valued constants that are characteristic of a black-hole
spacetime and partially determine the amplitude with which
different quasinormal modes are excited given an initial
source of disturbance [11,14].

In this context, we are interested in the inhomogeneous
version of Eq. (26)

[d—xz + Q} X=s. (42)

024042-7



HECTOR O. SILVA et al.

PHYS. REV. D 110, 024042 (2024)

The source s can represent, in the Fourier domain, either the
initial data of the function X in a spacelike hypersurface
t = constant, or an external source driving the perturba-
tions X, for instance, a particle plunging into the black hole
[10]. The Cauchy problem associated to Eq. (42) can be
studied using Green’s functions [68]. Leaver [11], showed
that the contribution from the quasinormal modes to the
response in time of X is given by

X(t.r) = —Re) [C,emion(=0)], (43)

where the sum is over all quasinormal frequencies w,, and
C, are the respective quasinormal excitation coefficients.
The latter can be factorized as

C,=8B,1, (44)
where [, is an integral over the source s and the solution of

the homogeneous equation (15) at the quasinormal fre-
quency ,,

I, = / ® v’ s()X, (7)Ao (45)

o0

and B,, are the source-independent excitation factors

B — Aout |:dAin:| -l _ LAout (46)
" 20, do |, a,
where we approximated A;, ~ a,(w — w,,) in the vicinity of
the quasinormal-mode frequency w,. Hence, the excitation
factors are related to the ingoing- and outgoing-wave
amplitudes at spatial infinity at frequencies near w,,.
Equation (46) is our main quantity of interest. To
calculate it, we follow Ref. [37] again, which proposed
a phase-amplitude based scheme to compute B,; see also
Ref. [14]. This means we must derive a relation between the
wave-amplitudes in Eq. (46) and the phase-functions P and
P. We begin by recalling that the general physical solution
of Eq. (26) is an ingoing wave at the event horizon and a
mixture of ingoing and outgoing waves at spatial infinity. If
we were to integrate this solution first from a near-horizon
location x_, up to a matching point x,,, and from a far-field
location x,, down to the same x,,, we would express the
result of these two integrations as

X (xm) = exp(ep.-), (47a)

Xgr(xm) = Aexp(gr 1) + Bexp(gr-),  (47b)

where A and B are complex amplitudes and the various ¢
are integrals over the phases, more precisely,

fﬂL.—:/mPL,—dx'v PR+ :/mPR.idxl‘ (48)

In these expressions, we introduced the subscripts L (R) to
indicate a function to the left (right) of the matching point
Xy, and + (—) to indicate the ingoing (outgoing) wave
phase. The condition for Eq. (47) to be a solution of
Eq. (26) is that the logarithmic derivatives of X; and Xy are
continuous at x,:

_ Pr + (B/A)Pr_exp(pr- — ¢r.+)

P _ = , 49
- 1+ (B/A)exp(pr - — ¢r 1) )
which we solve for B/ A,
B Pr,—P_
i HGXP((PR.— — QR+ )- (50)

This is the first step of the derivation. The next step consists
of finding a relation between A and 5 with the amplitudes
A;, and A, cf. Eq. (23). By doing so, as detailed in
Ref. [37], we can rewrite Eq. (50) as

Ain _PR,+_PL,— ()

= , 51
Aout PL,— - PR,— © ( )
where we defined
_ N [ Q- o’ /
b = 21a)x°° + (pR7+ —@Pr - — 2i /Xoo mdx . (52)

The final step is to take a derivative of Eq. (51) with respect
to the frequency @ and evaluate the result at the quasi-
normal mode frequency w,, using that (i) Py ., is equal to
Py _ at w = w, (this is nothing but the “resonant condition”
for the quasinormal mode [8]) and (ii) the linear approxi-
mation A, ~ a,(w — w,). By doing so, we obtain

Qs — dp
S TRt Q= (53)
Aout PL.— - PR _ do

which is our final result [37]. We reiterate that all quantities
in Eq. (53) are evaluated at x = x,, [i.e., p = p,; see
Eq. (37)] and w = w,,. Once we have determined the value
of a,, /Ay, We use Eq. (46) to calculate the excitation factor
B,, of the quasinormal mode frequency w,,.

How do we calculate the various terms entering Eqgs. (53)
and (52)? From these equations we identify two terms that
are independent on the phase functions, namely

P 2
diwyxy, and T = —2i / Q=W 4y (s4)

L 0"+,

The former is a constant, while the latter can be integrated
analytically by first expanding the integrand in powers of
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1/x=1/r (since |x/ry| > 1) and then integrating term by
term. The integral is convergent in our case, for which
Q ~®? and dQ/dx ~ 0 as x — oo. We find:

i d’Q

2 3
7--11, 3¢ Uz d’Q
20 du?

v

A } (55)

where u = 1/x.

For the remaining terms, it is convenient to separate our
discussion into quantities that are determined between
X E[X_g, Xm] and x € (xp, X4 |- Because we must evaluate
the phase functions at a quasinormal frequency, it is useful
to use the analytical continuation and the Priifer trans-
formation introduced in Sec. IV B. By doing so, we can
write down two systems of first-order differential equa-
tions. Specifically, for x € [x_,, x,], we need to integrate
three equations

P _ .
L=y e’(P_+0)=0, (56a)
dp ’
dQy _ . d
L= e {ZPL _Q_+ —Q] =0,  (56b)
’ ' dw
dr ., dr
——e/— =0, 56
dp ¢ dx (56¢)
with initial conditions at p = p,,;, given by
. 1 do
P _=iQ'/?, d Q _=- —. 57
L, 10 an L, 2P, _do (57)
For x € (x,, xo], we need to integrate six equations
dP . N
— R el (a) —g> sin?(Pg + + |w|p+wx,) =0, (58a)
dp 0] ’
d . -
% —ewcot(wx + Py) =0, (58b)
" :
o A 3 do
% +e¥ [2QR,+w cot(wx + Pr ) + ol = 0, (58¢c)
dr ., dr
——e¥—=0. (58
dp ¢ dx (584)

The initial conditions for g .. and Qg , at p = pp,, are

1 do

- 5
2PR,+ d(i)’ ( 9)

gpr+ =0, and Qp_ =

and to determine the initial condition for IBRi, we first use
the WKB formula Py . = +iQ'/? and then substitute the
result in Eq. (33). In our case dQ/dw = 2wc;>.

Equations (56) and (58) constitute the two systems of
differential equations we need to integrate to compute the
quasinormal-mode excitation factors. The integration pro-
cedure can be summarized as follows:

(1) Choose the values of & ¢, and quasinormal
mode frequency w,, and with the latter compute
p=—-argw,.

(2) Determine the initial conditions for ras p — d-c0. We
integrate Eq. (41c) from p,, = 0 backward (forward)
t0, 52y, Prin = —40M (e = 2 X 10°M). This fixes
Tmin = r(pmin) and ry,x = r(pmax)'

(3) Determine the other initial conditions for the de-
pendent variables in the two integration domains,
that is, at p,;, and ppax-

(4) Integrate the system of equations (56) and (58) from
Pmin 10 pyy and from p.. to p.,, respectively.

(5) Calculate Py, (py,) from Py . (py,) using Eq. (32).

(6) Compute «,/A,, using Egs. (52) and (53), and,
finally, the excitation factor B, using Eq. (46).

We implemented the foregoing steps in C++, adopting the
same integration library as in our calculation of the
quasinormal mode frequencies. We will present our results
for the quasinormal-mode excitation factors in Sec. V B.

V. NUMERICAL RESULTS

A. The quasinormal mode spectrum

1. Comparison with the literature

Our calculation of the quasinormal-mode frequencies
was validated in two ways. First, in the limit of general
relativity, we compared our results against the well-known
values for a Schwarzschild black hole, finding excellent
agreement. Computation wise, we found that it was
necessary to shift the matching point closer to the event
horizon to accurately calculate the overtone frequencies.
Above a certain overtone number, typically n 24, it
becomes increasingly challenging to locate the quasinormal
mode in the root-finding process. The reason is that the
simple integration path (37) fails to approximate the more
complex integration path necessary for determining high
overtone quasinormal frequencies; see Refs. [63,69]. For
this reason, we quote results up to n = 3.

As an example, for the fundamental and third overtone
quadrupole quasinormal frequencies we obtain

Mo} = 037367169 — 0.088962318i,  (60a)

Mo'y) = 037367169 — 0.088962321i,  (60b)
and

Mo} = 025150495 — 0.70514814i,  (61a)

Mo = 0.25150496 — 0.70514818i,  (61b)
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0.88 b i i i i .

0.00 0.01 0.02 0.03 0.04 0.05
AU
FIG. 3. The fundamental polar and axial quasinormal mode

frequencies, normalized with respect to their Schwarzschild
values, as functions of & = Al*/M*. The top panel shows the
real part of frequencies, while the bottom panel their imaginary
part. The markers distinguish curves corresponding to modes of
polar (4) and axial (—) parities. The dashed lines are the linear fits
by Cano et al. [36]. Both calculations agree remarkably well
despite using two different forms of the perturbations equations to
which different numerical techniques were applied to compute
the quasinormal mode frequencies.

O.QI 1 1 1 1 1
1.00
s
3 0.95
g
=
0.90
0.00 0.01 0.02 0.03 0.04 0.05
At/ Mt

respectively. By isospectrality, we expect a)g) = a)(f;), and,

indeed, the phase-amplitude method yields quasinormal
frequencies that differ from one another by O(107%) or
better. In addition, we compared our results against those of
the QNM package [70] that uses the continued-fraction
method of Refs. [20,71], and gives:

Moy = 037367168 — 0.088962316i,  (62a)
Moy = 0.25150496 — 0.70514820i.  (62b)

We find relative errors of O(107%) that are largest for the
highest overtone, n = 3, for the reason explained earlier.
After having computed the general-relativistic quasinormal
frequencies to good accuracy, we varied the EFT parameter
€ in constant steps of Ae = 0.001 and scanned the domain
€€10,0.05]. In Figs. 3 and 4, we use markers to indicate
values of & in increments of 10 x Ae = 0.01 to “guide
the eye.”

In Fig. 3 we show the real and imaginary parts of the
fundamental quadrupolar quasinormal frequency as a
function of e and normalized with respect to its value in
general relativity, i.e.,

(+) (£)
T Rew,,’ (¢) + Imw,,’ ()
5Rea)£ﬂ”)(8) = ﬁ, élma)(fn) (e) = %.
Rewy, (0) Imay,,’(0)

The top and bottom panels show our results for these two
quantities, respectively. The solid curves are the results of
our phase-amplitude calculation. We use the markers to

(
2n

oRew.

1.4
1.3
1.2
1.1

1.0 F

0.9

1.00 [

0.00

0.01

0.02

0.03 0.04 0.05
ALY/ M

FIG. 4. The quadrupolar polar- and axial-parity quasinormal frequencies, normalized with respect to their Schwarzschild values, as
functions of & = A/*/M*. The left and right columns correspond to quasinormal modes of polar and axial parities, respectively, whereas
the top and bottom panels show the real and imaginary parts. The line styles indicate different overtone numbers n. We see that the
deviations from the general-relativistic values can become nonmonotonic as we increase the value of . We also find that the curves
become nonlinear for smaller values of ¢ the higher the overtone number n.
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distinguish the curves corresponding to quasinormal modes
of polar (+) and axial (—) parities, which are no longer the
same. We also show, with the dashed curves, the fits
obtained in Ref. [36]; cf. Table III therein. These fits are a

linear approximation to the behavior of a)éﬁ) with respect to
&, which does become nonlinear as e growth; cf. Ref. [34],
Fig. 1. The same behavior can be seen here. In addition, our
results are in excellent agreement with the linear fits of
Ref. [36] for £ £0.03 and across the whole ¢ range for

6Rea)g) and 5Ima)§6). The agreement is quite remarkable
considering that we do not integrate the same set of
perturbations equations and that we use different numerical
techniques to compute the quasinormal modes; recall
Sec. IIIl. We find a similar level of agreement for the
fundamental £ = 3 quasinormal mode frequency. As a
consequence, our numerical results are also in agreement
with those of de Rham et al. [33].

We also briefly studied the case where ¢ is negative. For
sufficiently small values of |¢|, we would expect that the
deviations from the quasinormal frequencies in general
relativity to be equal in magnitude, but with an opposite
sign relative to the case where ¢ is positive. We found that

this was indeed the case for a)%[).

2. Overtones and the limits of the effective field theory

With confidence built on the applicability of the phase-
amplitude approach to our problem and on our numerical
code, we now investigate, for the first time, the dependence
of the overtones as a function of .

In Fig. 4 we show ng? as a function of e. Panels on the
left and right columns show the polar (+) and axial (-)
quasinormal frequencies, respectively. We show their real
and imaginary parts (normalized with respect to their values
in general relativity) in the top and bottom rows, respec-
tively. Different line styles represent different overtone
numbers n as indicated in the legend in the top-left panel.
We observe that as the overtone number n increases, the
smaller the range of & at which the scaling is linear.
Moreover the curves do not necessarily behave monoton-
ically with respect to . This can best be seen for the n = 3
axial-parity quasinormal-mode frequency. These conclu-
sions are shared among the overtones associated to £ = 2,3
and 4. The emerging picture has two facets: (i) overtones
are more sensitive to the EFT corrections than the
SJundamental mode, and (ii) the maximum value of € above
which the linear approximation breaks down depends on ¢
and n.

In order to discuss the behavior of the quasinormal-mode
frequencies, we first describe the regime of applicability of
the EFT of gravity. As already mentioned, the EFT
corrections can be computed in powers of &, with the
EFT breaking down once & ~ g3 where g, is a threshold
value of order 1. This is the statement that the black-hole
curvature radius has to be larger than the scale /. Moreover,

one also needs the frequency of perturbations not too large.
At fixed ¢, increasing n corresponds in increasing the
proper frequency f,, of the quasinormal modes. The
quantity f,, can be identified with the real part of
wz,/(27) only if Rew,, > Imw,,. Typically this is not
the case for the Schwarzschild quasinormal modes and,
following Ref. [72], one has to make the following
identification in order to have a monotonically increasing
spectrum of proper frequencies

fen = 2n) '[Rew?, + Imw?, ]2 (63)

Then, at fixed ¢, an overtone with proper frequency f,, can
be described within the EFT provided that [73]

&r = ’l(lf)f’n)4 = E(Mfrf’n)4 <l (64)

The condition above is the statement that the covariant
contraction Kk, < [72, where k* and x* are respectively
the typical four-momenta of the gravitational perturbations
and of the black hole background. The latter can be defined
as the normalized covariant derivative of the Kretschmann
scalar [73].

After these considerations, let us discuss the behavior we
find for the quasinormal modes. Our results show a
growing impact of the EFT corrections on w,, as n
increases at a fixed multipole ¢; see the “bird’s-eye view”
shown in Fig. 5. Reasoning in terms of Eq. (63) offers a
qualitative explanation for this behavior. Overtones corre-
spond to high-frequency waves and consequently probe
deeper the effective potential which is fixed by € and 7. As
a consequence, overtones are more sensitive to changes to
the effective potential that occur near the black-hole
horizon, which is the case in our problem—recall Fig. 1.
Complementary, let us also remark that this behavior is a
general feature of perturbation theory when the correction
to the potential comes from regions far from the potential
peak, or the potential minimum in the bound-problem case.
An example in quantum mechanics is given by a harmonic
oscillator potential V(x) o x* in the presence of a small
anharmonicity (going as, e.g., 5V (x) o x*). At first order in
perturbation theory, the corrections to the nth eigenenergy
grow as n to some given power (see for example Ref. [74]).
In our case, the EFT corrections grow toward the horizon
while the peak of the unperturbed potential is approx-
imately at the light ring and we therefore expect a similar
behavior.

The nonlinear behavior above a certain ¢p,, of the
quasinormal frequencies sets an upper limit on the linear
description of our problem, and indicates that higher powers
of € are necessary to describe the regime for € 2 €,,,. This
means that we either need to go to second order in
perturbation theory (our perturbations equations are linear
in the metric perturbations and in ¢) or that we need to
include higher-order operators in our starting action (1). At
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FIG. 5. The spectrum of quasinormal modes w(;;) in the complex plane in the range ¢ € [0, 0.05]. The circles mark the location of the
general-relativity (“GR”) quasinormal mode frequencies, that are coincident for axial and polar modes. A nonzero value of the EFT
parameter ¢ breaks this symmetry, and axial- and polar-parity frequencies flow along the blue and orange colored lines, respectively, as
we increase €. The larger the overtone number n, the farther away the quasinormal frequencies, at fixed multipole number #, with respect

to the fundamental mode, n = 0.

second order in perturbation theory the second-order qua-
sinormal frequencies are a sum of first-order quasinormal
frequencies [75,76]; see, e.g., Refs. [77-83] for further
details. As a consequence, we expect the second-order
quasinormal frequencies to also scale with ¢ in the EFT.
Assuming that all the dimensionless factors entering in the
higher-dimension operators of the EFT are numbers of order
one, which is technically natural [31], then the effects from
dimension-eight operators would be of order /2. Hence,
they would be the dominant contribution to the quasinormal
frequencies in the nonlinear regime of .

From these results and considerations, we find that the
onset of the nonlinear behavior in the quasinormal-mode
frequencies is best characterized in terms of the parameter
€y, rather than e. In Fig. 6 we show, for each # and n, the

value of e}/ * at which nonlinear corrections start appearing.

0.029 1 0.046 0.029 0.046

1 40.033 0.047 1 40.027 0.049
0.038 10.049 2 40.026 0.041

34 0.03 0.041 0.055

(+) (=)

FIG. 6. Values of e}/ * at which a given quasinormal frequency
deviates by more than 20% from its linear fit in e. Polar (4) and
axial (—) quasinormal modes are shown on the left and right

panels, respectively. Notice that the values of 8}/ * in the tables
vary only by a factor of two between different modes.

More specifically, we first evaluate the value of ¢ at which

(+)

w,,’ deviates from its linear fit by more than 20%. This

(£ _ (H) -
onmax = Opy (£max ) associated

(+)

to this mode and threshold value. For instance, for w,,” we
find €, > 0.05, hence all values of ¢ considered by us are

interpreted to be within the linearized regime according to
()

¢n,max

gives us values of ¢, and ®

this criteria. In this case, we take for w the value of

a)(fj;) at ¢ = 0.05. However, in general, this is not what

happens for other values of # and n. Then, with the values

1) . .
of &, and a);n)max in hand, we can compute the respective

value of &, using Eq. (64). The values obtained are below
one, meaning that the onset of nonlinearities appears below
the breaking of the EFT, as one would expect.

As mentioned above, for values of both ¢ and &, close to
unity the EFT description inevitably breaks down: it is not
enough to include higher-order operators and any predic-
tion can only be made with an ultraviolet (UV) completion
of the EFT. As explained in Ref. [31], assuming a soft UV
completion, the corrections to the quasinormal-mode
frequencies (and other observable quantities) are expected
to saturate after the breaking of the EFT. In Fig. 7 we give a
schematic representation of the behavior of f,, in this
scenario; see also Fig. 1 of Ref. [42] and related discussion
therein.

At this point it is clear that the condition in Eq. (64) is
necessarily violated for sufficiently large n, given a value of
€. In other words the EFT cannot describe all overtones.
Using the asymptotic behavior of the Schwarzschild quasi-
normal frequencies in general relativity we can get a good
estimate for this maximum value of n, that we call n,,. The
spectrum at large n is independent on ¢ and is given by

Mawg, ~8x)'log3 —i(n+1/2)/4, asn— co. (65)
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Ef > Efth € > Eth

-

E;h
€= /\l‘l/M4

FIG. 7. Schematic representation of the quadrupolar quasinor-
mal proper frequencies f,, for even (blue) and odd (orange)
parities, as functions of & and the regions of validity of the EFT
calculation. For small &, deviations from the GR values are
approximately linear. The onset of nonlinearities in the correc-
tions is represented by the gray dashed line (NL): above this line
one needs to include higher-order contributions in . When ¢ 2
en ~ O(1) (green-shaded area) or £, 2 &4, ~ €' (purple-shaded
area) the EFT description breaks down and one has to resort to its
UV completion to make predictions; see the discussion around
Eq. (64). Under the assumption of a soft UV completion, the
corrections to the quasinormal frequencies are expected to
saturate, as illustrated with the dashed lines.

See Refs. [69,84] for numerical studies in this limit and
Refs. [85-88] for the posterior analytical derivations of this
result. Using this expression, Egs. (63) and (64), and
imposing the latter as an equality, we readily obtain

N = (87)/V/E = 1/2 + O(/2). (66)

The value we obtained is quite large even for € close to unity,
Nmax ~ O(25). Corrections not captured by the EFT are
bound to appear below, or at most at, 7.

B. The quasinormal-mode excitation factors
1. Code validation and comparison with the literature
in the limit of general relativity

To our knowledge this is the first time that quasinormal-
mode excitation factors have been computed for black-hole

solutions in a theory that is not general relativity. To
validate our numerical results in the limit of general
relativity we performed two tests.

First, in general relativity, the excitation factors of polar
and axial quasinormal modes are related as

(+) _ 24e(Ae + 1) + 6iMay,
20,y 4 1) = 6iMay,

BS).  (67)

as shown by Leaver [11]. This relation follows from two
identities relating the transmission and reflection coeffi-
cients of the Zerilli and Regge-Wheeler functions found by
Chandrasekhar and Detweiler [8]. We note that despite
sharing the same quasinormal mode spectra, the Zerilli and
Regge-Wheeler modes have different excitation factors. As
a consistency check of our code, we verified that our
numerical calculations of BS;) satisfy Eq. (67) with a mean
error of approximately O(1073) across the #n-parameter
space we studied. This error decreases by one order of
magnitude if we exclude the n = 3 overtones.

As a second test, we compared our values of B;? with
those obtained by Zhang, Berti, and Cardoso [18] (see
Table II therein), who employed the formalism of Mano,
Suzuki, and Takasugi [89-91]. This scheme is based on a
matched asymptotic expansion between a Coulomb-series
expansion near spatial infinity and a series expansion
involving hypergeometric functions near the event horizon.
Reassuringly, we find excellent agreement between our
phase-amplitude-based calculation and those of Ref. [18].
For example, for the excitation factors of the fundamental
quadrupole quasinormal frequencies we have

Bl = 0.120928 + 0.0706657i, (68a)

B} = 0.120923 + 0.0706696i, (68b)
for the polar-parity mode and

B\ = 0.126902 + 0.0203152i, (69a)

By =0.126902 + 0.0203152i, (69b)

for the axial-parity mode. In each of the two foregoing
equations the second line is taken from Ref. [18], Table II.

2. Effective-field-theory corrections
to the excitation coefficients

As we observed for the quasinormal-modes frequencies,
we also find that the associated excitation factors vary more
with respect to their values in general relativity, as functions
of ¢, for the overtones. As an example, we show in Fig. 8
the trajectories in the complex plane of the quadrupolar
quasinormal mode excitation factors as we increase ¢ from
zero (circles) to 0.05. Solid and dashed lines correspond to
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FIG. 8. Quadrupolar quasinormal mode excitation factors Bg::)

in the range €€ [0, 0.05]. The circles mark the limit of general
relativity. Solid and dashed lines correspond to the excitation
factors of the quasinormal modes of polar and axial parities,
respectively. The labels indicate the pairs of curves that are
associated to each overtone number n. We see that the excitation
factors move farther away from their general-relativistic values
the larger the overtone number. The same behavior occurs for the
higher multipoles # we studied.

the excitation factors of the quasinormal modes of polar
and axial parities, respectively. Pairs of curves belonging to
the same overtone number n are indicated by the labels.
We found the same qualitative behavior for higher multi-
poles . We present some sample values of the excitation
factors in Table 1.

3. The effective quasinormal mode amplitude

As an application of the calculations presented in this
section, we perform a preliminary analysis of the gravita-
tional wave amplitude associated with the polar and axial
quasinormal modes. In practice this is done by introducing
an “effective” amplitude related to the magnitude of the
Green’s function used in the solution of the radial pertur-
bation equations for a given set of initial data; see, e.g.,
Ref. [16]. The relevant part of the Green’s function is the
one describing the quasinormal mode ringdown signal
and is given by h = A, (w,)/a, for each individual
mode ,. The effective amplitude is then h.; = VN,

where N = /Rew,,/Imw, is the number of cycles in the

TABLE L.

Quasinormal-mode excitation factors of the Zerilli and Regge-Wheeler functions for a selection of multipoles £ overtones n

numbers and € = A*/M* = 0, 0.01 and 0.02. Our results in the limit of general relativity, e = 0, are in excellent agreement with the
calculations of Ref. [18].

J: £(x1072) =2 =3 £ =4
0 0.120928 + 0.0706657i ~0.0889688 — 0.0611773i 0.0621245 + 0.069099i
n=0 1 0.117708 + 0.0672479i —0.087801 — 0.0568295i 0.0628948 + 0.0644908i
2 0.11423 + 0.0639308i ~0.0863858 — 0.0524486i 0.0634276 + 0.0597634i
0 0.158645 — 0.253326i ~0.191931 + 0.264798i 0.279718 — 0.24183i
n=1 1 0.164761 — 0.235166i —0.183766 + 0.246502i 0.259492 — 0.229203i
2 0.171749 — 0.217066i ~0.176498 + 0.227387i 0.239777 - 0.215239i
0 ~0.298938 — 0.0711347i 0.43677 + 0.20459i ~0.543165 — 0.478076i
n=2 1 ~0.298122 — 0.115973i 0.394863 + 0.230675i —0.478737 — 0.464904i
2 ~0.297456 — 0.16154i 0353727 + 0.258994i ~0.413138 — 0.455013i
0 0.11382 + 0.204126i ~0.000943158 — 0.476399i —0.374548 + 0.859556i
n=>3 1 0.0959369 + 0.280675i 0.0877723 — 0.47838i ~0.456808 + 0.756741i
2 0.076331 + 0.367397i 0.177021 — 0.481374i ~0.542232 + 0.6564i
B £(x1072) £=2 £=3 £ =4
0 0.126902 + 0.0203152i ~0.0938897 — 0.0491928i 0.0653479 + 0.0652391i
n=0 1 0.130744 + 0.0222580i ~0.095795 — 0.0519542i 0.0659238 + 0.0680835i
2 0.134644 + 0.0251759i ~0.097599 — 0.0548384i 0.0664031 + 0.0709206i
0 0.0476827 — 0.223755i —0.151135 + 0.269749; 0.261488 — 0.251524i
n=1 1 0.0389361 — 0.242548i ~0.154331 + 0.289785i 0.274625 — 0.268574i
2 0.0330242 — 0.262936 ~0.159411 + 0.309949i 0.289045 — 0.284968i
0 ~0.190283 + 0.0157516i 0.415029 + 0.141039i ~0.549216 — 0.435328i
n=2 1 ~0.199520 + 0.0607662i 0.458619 + 0.108671i ~0.619525 — 0.434249i
2 —0.219544 + 0.0942148i 0.506304 + 0.0827037i ~0.69088 — 0.439270i
0 0.0808586 -+ 0.0796019i —0.0434027 — 0.412748i ~0.316922 + 0.837911i
n=>3 1 0.130958 + 0.0353271i —0.138089 — 0.418874i ~0.217410 + 0.944489i
2 0.173338 + 0.0240910i ~0.220413 — 0.444001i —0.131563 + 1.05946i
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FIG. 9. The effective quasinormal mode amplitude for the
fundamental quadrupolar quasinormal modes of axial (—) and
polar (+) parities as a functions of £ = 1/*/M*. For £ <0.012,
the amplitude is largest for the for polar quasinormal mode. A
crossover occurs around ¢ ~ 0.012, above which the amplitude of
the axial quasinormal mode becomes larger.

ringdown signal; this obviously assumes a weakly damped
mode. Therefore, the effective signal amplitude of each
polar and axial quasinormal mode w,, is given by

(&) eff Rea);i) : (£) p(£)
hfn ’ = 2|: (i):| Wyp Bzf’n ’ (70)
Imw,,

that we can compute with the numerical data obtained in the
previous section.

In Fig. 9 we show the effective amplitudes of the
fundamental quasinormal modes of polar (solid line) and
axial (dashed line) parities as functions of . We see that the
“polar-wave amplitude” dominates over its axial counter-
part for € < 0.012, above which the axial mode dominates.
This suggests that at least for some initial data (see the
“asymptotic approximation” of Ref. [92]) that the dominant
contribution to the gravitational-wave ringdown amplitude
comes from the polar perturbations conditional, naturally,
also on the cutoff ¢, for the onset on nonlinearities.

The dependence on this statement on the initial data (or
source of perturbation) can be seen from source-dependent
term in the quasinormal-mode excitation amplitude (45). As
an extreme example, it suffices to recall that / ff) vanishes for
a test particle radially infalling into a Schwarzschild black
hole even if BS,_) is nonzero. Therefore, quasinormal modes
of axial parity are not excited in this situation. Nonetheless,
we note that previous works in general relativity for plunging
test particles [93] and in the close-limit approximation [94]
do find that the amplitude associated to perturbations of polar
parity to be larger than those of axial parity. We conjecture
that this will also be the case in the EFT studied here.

VI. CONCLUSIONS AND OUTLOOK

Motivated by a dearth of understanding about the
quasinormal spectrum and about how these quasinormal

modes are excited in extensions to general relativity, we
reexamined and extended previous literature on perturba-
tions of nonrotating black holes in an EFT of general
relativity. Using a “quick and dirty” phase-amplitude
method [37], we computed both the first quasinormal-
frequency overtones and the quasinormal-mode excitation
factors. We found that the overtone frequencies (and their
respective excitation factors) are more sensitive than the
fundamental quasinormal modes to the length scale [
introduced by the higher-derivative operators in the EFT.
We interpreted these results from an EFT perspective, and
identified the domain of validity of the EFT description; see
Fig. 7. We also suggested the existence of an upper bound
on the overtone number n, above which a UV completion of
the EFT becomes necessary to fully characterize the black
hole’s quasinormal mode spectrum. In addition, we pre-
sented a simple explanation for the inequivalence between
the spectra of quasinormal modes of polar and axial parities
in the EFT.

Let us put our findings in perspective. In Sec. V we
argued that the overtones can be interpreted as high-
frequency perturbations [72], and hence they probe the
structure of the black-hole effective potential region near
the horizon. This is the region of spacetime where the EFT
corrections are most significant; this is unsurprising given
that the EFT introduces higher powers of the curvature that
become relevant near the horizon. Following this reason-
ing, it is not unreasonable to conjecture that this sensitivity
of the overtones to new length scales would also be seen in
other theories that involve higher-curvature corrections to
general relativity, including those that introduce couplings
to extra degrees of freedom.6

It is also tempting to interpret our results in terms of an
instability of the quasinormal-mode spectrum induced by
the higher-derivative operators in the EFT. In the language
of Jaramillo et al. [96], this would correspond to an
instability of the overtones; see, e.g., Refs. [15,97,98]
for earlier related works. Confirmation of this interpretation
would require an analysis of the quasinormal pseudospec-
trum associated to Eq. (15) following, e.g., Ref. [96]. If
confirmed, it would suggest that the instability of the
overtones is a general expectation from an EFT perspec-
tive. It would then be interesting to understand how this ties
with our conclusion that one cannot describe the quasi-
normal-mode spectrum past a certain overtone number
without invoking the UV completion of the EFT.

Our calculation of the quasinormal-mode excitation
factors and the observation that those associated to over-
tone are also sensitive to the near-horizon modifications
induced by the EFT has implications to the signatures of
these corrections in gravitational-wave observations. We
presented a first, but limited, analysis focusing on the

®While this paper was being completed, a preprint presented
the same reasoning [95].
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implications of isospectrality breaking in Sec. V (see
Fig. 9), but more work is evidently needed [99].
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APPENDIX A: DERIVATION OF THE
BLACK HOLE SOLUTION

To obtain the black-hole spacetime described by the line
element (6), we solve the field equations (4) perturbatively
in €. To do so, we take N and f to be deformations away
from their Schwarzschild expressions:

f=1-2M/r+ &sf, (Ala)

N =1+ &dN, (A1b)
where M is a positive constant, e = 1/*/M*, and §f and 5N
are functions of r. From the ## and rr components of field
equations, we find that SN and §f obey the decoupled first-
order differential equations:

d 1 1080 M® 2352 M7
<dr * r)éf ror® ror’ (A2a)
d(6N) 648 M
=——. A2b
dr ror ( )
The solutions of these equations are
¢, 216M5 392M7

of = — -, A3

=t S (A3a)
108M°
ON = Cyr — % (A3b)
r

where ¢; and ¢, are integration constants. They can be
fixed by examining the far-field expansion of g, = —N?f,

—gn =1+ 2ec, — [2M — e(cy —4Mc,)|/r.  (A4)

We can then set ¢, = 0, as it amounts to a shift in the time
coordinate 7. From the r~! term, we identify the ADM mass
of the spacetime to be

M =M —ec/2. (AS)
Hence, the bare mass M is renormalized by the dimension-
six operators in the action. We now solve Eq. (A5) for M,
noticing that e = Al*/M* = Al*/M* to O(e). The result is
M = M + ec, /2, which substituted together with ¢, = 0in
Eqgs. (A3) and (A1), results in Eq. (7) to O(e).

APPENDIX B: THE PETROV CLASSIFICATION
OF THE BLACK HOLE SOLUTION

The Petrov type of a spacetime can be identified by
constructing a null tetrad ¥, n#, m* and its complex
conjugate /m* and computing the Newman-Penrose scalars.
The tetrad satisfies the normalization /#n,=—1, m"m, = 1
with all the other contractions set to vanish. In this Appendix,
we follow Refs. [106,107] to determine the Petrov type of the
black hole solution given by Egs. (6) and (13).

When the spacetime is algebraically special (having at
least one degenerate principal null direction), the following

condition is satisfied

P =277, (B1)
where
=le copré
- E apys ’
= 3?% - 4‘P1LP3 + lP4lP0, (BZ)

1= 2 Fuva,
J = _gcaﬂyécrﬁﬂycﬂ /3’
== —IP% + 2T1T3q}2 + lIJOlP4le - \P41P% - IPO\P:%, (B3)

where we defined

~ 1 i

Ca/}y5 = Z <Ca/1;/§ + 56(1/3;41/ Cﬂuy&) s (B4)
for a Weyl tensor C4,5, Levi-Civita tensor €,4,,, and where
Y, are the Newman-Penrose Weyl scalars with the only
restriction of ¥, # O:

Yo = Copsl®m’lIrm°, (B5a)
W, = Coplnlmd, (B5b)
W) = Coppsl®mP i n’, (B5c¢)
W3 = Cupysln’min’, (B5d)
Wy = Coppsn™m’n’m®. (B5e)
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In particular, / and J are nonvanishing for Petrov type D
(and 1I).

To further determine the Petrov type, we study the
following relations that are invariant under a tetrad rotation
and hold for type D (and III):

K = \“Ijl Ti - 3“1"4‘{}3‘“}‘2 + 2\1‘%, (B7a)
L - ‘PZ\P4 - T%, (B7b)

To summarize, the spacetime is type D if Eqgs. (B1) and
(B6) are satisfied for nonvanishing 7 and J.

_ 2 _
K =0, N -9L" =0, (B6) Let us now apply the above formulation to the black hole
solution described by Eqgs. (6) and (13). One of the simplest
where null tetrad is found as
|
r 5SM 2M  4AM?*  8MP  16M* 704 MP
H = Jd———e(1+— -———1,0,0 O(&?), B8
[r—rh 8r8< * + r2 + r M 5 r5> ]+ (%) (B8a)
p 3r—ry, n 5M 1+2M+4M2+8M3 16M*  32M°
W=|—+-——¢ — ,
2(r—r) 1671 r 2 r r
r+r SM 2M  4AM? 8MP 16M* 272M5 864 MO\ 2
———c¢ 14+ — - ],—.0 O(&?), B8b
2r 8r€< N r? - r rt 57 5 7 r +O() (B8b)
r 5M 2M  AM?*  8MP 16M* 704 MP\ 1 i
H = Jd———e(1+— —— ), —,————| + O(?). B8
" |:r—rh r 8< + + r2 + r }"4 5 }"5) \/Er \/irsine] <£ ) ( C)
|
Here, at O(e), we substituted r, = 2M to simplify the Second, K, L, and N are given by
expressions. We checked that the Petrov type of the black
hole does not change even if we leave ry, arbitrary. Then, K = @(82)’ (B12a)
using Egs. (B5) and (BS8), we find that ¥; are given by
2 2 5 6
Y, =¥, = O(e2), (BYa) I — _3r}1 3 15M o1 2304M°  960M'
450 870 5r o
5M 2304M°  960M° + O(e?), B12b
w, = 2 (- + ) (B120)
2 16F° 5 r
4 4 5 6
+ 0(82)’ (B9b) _ 81ry i 405M o1 2304M°  960M'
16712 4512 5P o
¥, =39, ¥, = 6%,. (B9c) + O(&?), (B12c)
We can now obtain the Petrov type of the black hole. First, ~ Which leads to
the Weyl scalar invariants / and J are given by
N —9L% = O(&). (B13)

3r,2  15M? 2304M°  960M°
=46 e el 1- 5 6
4r 8r S5r r
+ O(&?), (B10a)
; rne 15M3 . 2304M° N 960M°
T e —— — E —_—
8 16/ 5 o
+ O(&?), (B10b)
which leads to
P =27]* = O(&?). (B11)

Thus, to the order we worked on, / and J are nonvanishing
and Egs. (B1) and (B6) are satisfied, so the spacetime is of
Petrov type D.

APPENDIX C: DERIVATION OF EQ. (13)

Let us derive Eq. (13b) first. We start by adding and
subtracting r,/r to Eq. (10) and collect the terms as,

F = {1 —r—:+ (”‘ _r2M+eaf>}_l. (C1)
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From Eq. (9) we see that r,, —2M is of order ¢

5
r, —2M = ebry, = —geM. (C2)

We can then rewrite Eq. (C1), by factoring out 1 — r,/r:

1 mh) ! ory/r +of] !
= (=) e

- 1 AN -1 1 5rh/r+5f
SGOREEE

where we replaced ry,/r by its O(¢°) value in the second
line. We now use the explicit forms of 6r, and df, given in
Egs. (11) and (C2), to find

1 AN -1 2MN\ -1 5M
(=) =02 (5T

216M5 392M7>}
- :

(C3)

o (C4)

Although not evident, the term proportional to ¢ inside the
square brackets is regular at r = 2M, with value —3/2. To
see this explicitly, we use the factorization

392M7

8 r 70 r’

(M (M SM s
- r 8r 42 2,3
SM* 10M° 196M6>

5M  216M°

}”4 I"5 }"6 <C5 )

Using this result, we obtain Eq. (13b). Equation (13a) is
derived in the same manner. We find

2p_({_" Srw/r + 8f
Nf-(l r>[1+2£5N+€1_2M/r,

rh SM 5M2
(=)o (2M 2
( r)[ £<8r+4 r2+

10M°  20M°

sSM3 sMm*
253 r

(Co)

where we used 6N = —108M°®/r°.

APPENDIX D: THE TORTOISE COORDINATE

In this Appendix, we analyze in detail the properties of
the tortoise coordinate x, defined in Eq. (16),

dx/dr = 1/(NY).

We use the resummation recipe introduced in Sec. II B and
detailed in Appendix C to rewrite Eq. (16) as

dx ! h ‘]1+ 5M_'_5M2+5M3
dr r €8r 4 2 523

S5M* 10M° 88M6>}

r4 r5 7‘6 (D 1 )

This differential equation can be solved analytically, and
the solution can be schematically written as

x=r+r,log(r/r,— 1)+ ebx(r), (D2)
where we set the integration constant to be —ry, log ry,. The
expression for ox is somewhat lengthy and we omit it for
brevity. In the limit of general relativity (¢ = 0), we recover
the usual Schwarzschild formula

x=r+2Mlog[r/(2M) — 1]. (D3)

For x to be a bona fide tortoise coordinate, we expect that
X — —oo as r — r, and that x — oo as r — co. Whether
this is the case for all values of ¢ is not immediately evident.
Let us first consider the limit of spatial infinity. In this limit,
an expansion of Eq. (D2) yields:

5M
x2r+rh<1+8§r_) logr, forr/r,>1. (D4)
h

Because the term in parentheses is (1), and because r
grows faster than logr, we conclude that x - co when
r — oo, as desired.

We now consider the near-horizon limit. In this limit, an
expansion of Eq. (D2) yields:

x =1y + rylog(r — ) 4 ery[po + py log ry

+ pylog(r—ry)], for r/ry,~1, (DS5)

where p; (i =1, 2, 3) are sextic polynomials in M/r.
The coefficients in the polynomials are not all positive,
and, consequently, we need to look whether x - —oo
as r — r, in more detail. We first note that the dominant
terms in Eq. (DS5) for r~r, are those proportional to
log(r —ry), i.e.,

x=ry(1 4 ep,)log(r—ry), (D6)
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where p, is:
- 5M+5M2 +5M3 +5M4 N 10M°  88M°© (D7)
P2 = 8ry 41 27 r r s

In units in which M = 1 and for r,, = 2 [cf. Eq. (9)], p, has
a magnitude of O(107!). Hence, depending on the value of
g, x can approach either H+oco in the limit r — ry,.
Numerically, we found that 1+ ep, becomes negative
for £ 2 0.59. This value of ¢ is one order of magnitude
larger than the values we considered in the main text.
Hence, x, as given by Eq. (D2), has the desired properties of
a tortoise coordinate for all practical purposes.

APPENDIX E: COEFFICIENTS IN THE
EFFECTIVE POTENTIAL

In this Appendix, we present the coefficients UE;: ) that

appear in the EFT corrections 5V;i) to the Zerilli and

Regge-Wheeler potentials (20). The coefficients v,(; )in the

polar-parity potential are

N =—52(3,+1),
W =—512(24,+5).
W =—52,(402+104,+9),

i) =—5(843 42042+ 184, +9). (E1)

i) = 10[—-842 —2042 — 184, — 28843 (£ +£—6) /A, —9],
ol =4{17623 + 11612 =902,
F542[1522(£+1)2 —3364(£+ 1) +836] /A, —45},
W) =24{8812 304, + 152, (14722 (£ +1)>
—1304¢(£41)+2164]/A,— 15},
i) = 144{=5+442,+32,[1073£(£+ 1) —3988] /A, }.
vt = 6336+ 7786087 (£ + 1) — 1938240 /A,
W) =879552/A,.

)

The coefficients v;,” in the axial-parity potential are

_ 5
W7 :—gf(f—l— 1),

-) 5.0

sz ——Z(f +Lﬁ—3)q
) S o »

U3 :—E(f +f—3),

W) =52+ ¢ -3),

W5 = 14302(2 + 1) - 8610,
o) = 41460 — 33324(¢ + 1),
W7 = —48192. (E2)

We recall that A, and A,, appearing in Eqgs. (El) and
(E2), are defined in Eq. (19).
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