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The response of black holes to small perturbations is known to be partially described by a superposition

of quasinormal modes. Despite their importance to enable strong-field tests of gravity, little to nothing is

known about what overtones and quasinormal-mode amplitudes are like for black holes in extensions to

general relativity. We take a first step in this direction and study what is arguably the simplest model that

allows first-principle calculations to be made: a nonrotating black hole in an effective-field-theory

extension of general relativity with cubic-in-curvature terms. Using a phase-amplitude scheme that uses

analytical continuation and the Prüfer transformation, we numerically compute, for the first time, the

quasinormal overtone frequencies (in this theory) and quasinormal-mode excitation factors (in any theory

beyond general relativity). We find that the overtone quasinormal frequencies and their excitation factors

are more sensitive than the fundamental mode to the length scale l introduced by the higher-derivative terms

in the effective field theory. We argue that a description of all overtones cannot be made within the regime

of validity of the effective field theory, and we conjecture that this is a general feature of any extension to

general relativity that introduces a new length scale. We also find that a parametrization of the

modifications to the general-relativistic quasinormal frequencies in terms of the ratio between l and

the black hole’s mass is somewhat inadequate, and we propose a better alternative. As an application, we

perform a preliminary study of the implications of the breakdown, in the effective field theory, of the

equivalence between the quasinormal mode spectra associated to metric perturbations of polar and axial

parity of the Schwarzschild black hole in general relativity. We also present a simple justification for the

loss of isospectrality.
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I. INTRODUCTION

The study of the response of black holes to external

perturbations has a long history that dates back to the

seminal work of Regge and Wheeler on the stability of the

“Schwarzschild singularity” against linear perturbations in

the 1950s [1]. Numerical scattering experiments performed

by Vishveshwara [2] showed that the response in time of

the black hole to incident Gaussian wave packets exhibits,

after an initial prompt response, a characteristic damped

oscillation, i.e., a “ringdown.” The ringdown was also

observed in the gravitational-waves signals produced by

test particles plunging radially into black holes by Davis

et al. [3–5] and in stellar collapse by Cunningham, Price

and Moncrief [6,7]. The latter showed that the ringdown

has oscillation frequency and damping time in conformity

with the quasinormal frequencies of a Schwarzschild black

hole calculated by Chandrasekhar and Detweiler [8].

Chandrasekhar and Detweiler also proved a remarkable

result: the spectrum of quasinormal modes associated to

metric perturbations of axial parity (described by Regge-

Wheeler equation [1]) and polar parity (described by the

Zerilli equation [9,10]) are the same despite the different

forms of these equations. The two spectra are said to be

isospectral.

It was not until the work of Leaver [11] in the 1980s, that

the relation between the source of disturbance and resulting

gravitational-wave signal was studied analytically as an

initial-value problem using Green’s functions; see also,

e.g., Refs. [12–18]. It became understood that the ringdown

dominates the black hole’s response, except at very early

(the “prompt response”) and very late times (the “tail”

[19]), and that it consists of a superposition of quasinormal

modes. The amplitude with which each mode contributes to

the ringdown is determined by its excitation coefficient,
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which can be factorized into perturbation independent

(termed the “quasinormal-mode excitation factor”) and

dependent parts. Together, quasinormal modes and their

excitation coefficients can be used to construct the quasi-

normal-mode contribution to the Green’s function which, in

turn, can be used to evolve an initial data in time. This

approach has been used to reproduce the ringdown in the

aforementioned cases [11,14].

The quasinormal frequencies of the astrophysically rel-

evant Kerr solution are uniquely determined by the black

hole’s mass and spin [20]. The identification of two or more

quasinormal frequencies from gravitational waves pro-

duced, e.g., in the coalescence of binary black holes

[21–24], would enable “direct evidence of black holes with

the same certainty as, say, the 21 cm line identifies

interstellar hydrogen,” as suggested by Detweiler [25]. If

black hole spectroscopy ever reveals a tension between

general relativistic predictions and observations, it would be

suggestive of new physics beyond general relativity [26,27].

With the advent of gravitational-wave astronomy

[28–30], it becomes sensible to attempt to understand

the quasinormal mode spectra (and respective excitation)

in theories beyond general relativity. In general relativity,

an ab initio description of the ringdown for the astrophysi-

cally relevant case of comparable mass binary-black

hole coalescence remains an outstanding open problem.

However, as exemplified in the foregoing discussion,

progress is possible within black hole perturbation

theory.

Here we take an initial step in this direction. We study the

quasinormal mode spectrum and the excitation factors of a

nonrotating black hole in an effective field theory (EFT) of

general relativity [31]; see the requirements for the con-

struction of the EFT therein. The motivations behind this

choice are manifold. First, the EFT has only two degrees of

freedom, and we avoid unnecessary technical complica-

tions introduced by couplings between the metric and extra

fields, such as scalars. Second, the EFT admits an exact

analytical nonrotating black hole solution to which pertur-

bation theory can be applied [32–36]. Third, previous

analysis, that focused only on the lowest damped quasi-

normal frequencies, showed that isospectrality of pertur-

bations of the Schwarzschild solution [8] is broken due to

the higher-dimension EFT terms [32–34]. For these rea-

sons, the EFT of general relativity is ideal to address from

first principles the following questions, representative of

what may be asked in any extension to general relativity,

(i) What is the consequence of the breakdown of

isospectrality in realistic sources of gravitational

radiation?

(ii) How sensitive are quasinormal overtone frequencies

to corrections to general relativity?

We give preliminary answers to these questions here.

Thiswork is organized as follows. In Sec. II, we review the

EFTof general relativity and the black hole solution we will

study. In Sec. III, we present the equations that describe the

linear perturbations of this black hole. We compare our

formulation of the equations with previous literature, and

present a simple explanation for the absence of isospectrality

in the EFT. In Sec. IV, we review a phase-amplitude method,

developed by one of us [37], that we use to compute the

quasinormal frequencies (including overtones) and their

respective excitation factors. In Sec. V, we present our

numerical results and discuss their regime of validity. In

Sec. VI, we summarize and discuss our main results. We use

the mostly plus metric signature and use geometrical units

c ¼ G ¼ 1. Parenthesis are used to indicate index symmet-

rization, as in TðμνÞ ¼ ðTμν þ TνμÞ=2.

II. EFFECTIVE-FIELD-THEORY

OF GENERAL RELATIVITY

A. Action and field equations

The general structure of the action is

S ¼ 1

16π

Z

d4x
ffiffiffiffiffiffi

−g
p

Rþ 1

16π

X

n≥2

l2n−2Sð2nÞ; ð1Þ

where l is a length scale assumed to be small compared to

the length scale associated with a black hole of mass M,

i.e.,M ≫ l, and Sð2nÞ is the action of the nth order curvature
term which has 2n derivatives of the metric. For this reason

we will use the terminology “dimension-2n operator.”

Notice that only even powers in l are allowed from

dimensional analysis.

One can show that, upon field redefinitions and as long

as the EFT construction is built around vacuum GR, that no

dimension-four operators exist. The first nontrivial con-

tribution occurs at dimension six and, at this order, there are

only two operators [38]. The resulting action is

S ¼ 1

16π

Z

d4x
ffiffiffiffiffiffi

−g
p ½Rþ l4L�; ð2Þ

where

L ¼ λeRμν
ρσRρσ

δγRδγ
μν þ λoRμν

ρσRρσ
δγR̃δγ

μν; ð3Þ

and R̃μνρσ ¼ ð1=2ÞϵμναβRαβρσ, where ϵμνρσ is the totally

antisymmetric Levi-Civita tensor, λe;o are dimensionless

constants associated to the even- (“e”) and odd-parity (“o”)

curvature terms, and l is a length scale.

The field equations of the theory, obtained by varying the

action (2) with respect to gμν, are

Eαβ ¼ Gαβ þ l4Sαβ ¼ 0; ð4Þ

where
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Sαβ ¼ Pðα
ρσγRβÞρσγ −

1

2
gαβLþ 2∇σ∇ρPðαjσjβÞρ; ð5aÞ

Pαβμν ¼ 3λeRαβ
ρσRρσμν

þ 3

2
λoðRαβ

ρσR̃ρσμν þ Rαβ
ρσR̃μνρσÞ: ð5bÞ

We will only consider the even-parity operator hereafter,

i.e., we set λo ¼ 0. For brevity, we will write λe ¼ λ, and

assume λ to be positive. A priori, however, λ can have either

sign; see, e.g., Refs. [39–41]. We will work to leading order

in λ, that is, to Oðl4Þ. Other aspects of the EFT in the

context of gravitational-wave physics are discussed, e.g., in

Refs. [42–47] and references therein.

B. Nonrotating black hole solution

A nonrotating spherically symmetric black-hole solution

of the theory (2) was found in Refs. [33,34,38]. The line

element is

ds2 ¼ −N2fdt2 þ f−1dr2 þ r2dθ2 þ r2sin2θdφ2; ð6Þ

where the metric functions N and f are, respectively,

N ¼ 1 − 108ε
M6

r6
; ð7aÞ

f ¼ 1 −
2M

r
þ 216ε

�

1 −
49

27

M

r

�

M6

r6
; ð7bÞ

and we introduced the dimensionless parameter,

ε ¼ λl4=M4; ð8Þ

and M is the Arnowitt-Deser-Misner (ADM) mass of the

black hole. The event horizon rh is located at the largest

positive root of f,

rh ¼ 2Mð1 − 5ε=16Þ: ð9Þ

The black-hole solution reduces to that of Schwarzschild in

the limit λ → 0, i.e., ε → 0. We note that rh can vanish if

ε ¼ 16=5 which, however, is outside the validity of the

EFT, ε ≪ 1. For the sake of completeness, we derive

Eq. (6) in Appendix A. Further, in Appendix B, we show

that the spacetime is of Petrov-type D.

The spacetime as written in Eq. (6) demands some care

when r is approximately 2M. To see this, take the grr metric

component,

f−1 ¼ ½1 − 2M=rþ εδfðrÞ�−1; ð10Þ

where we defined

δf ¼ 216
M6

r6

�

1 −
49

27

M

r

�

: ð11Þ

As r → 2M, we see that the EFT correction starts domi-

nating over the general-relativistic term. This means that

the expansion in ε ceases to hold in this limit. The same

happens for gtt ¼ −N2f.
To resolve this issue we perform a “resummation.” The

idea is to factor out a multiplicative term 1 − rh=r, thereby

recasting either N2f or f in the schematic form:

zðrÞ ¼ ð1 − rh=rÞ½1þ εδzðrÞ�; z arbitrary: ð12Þ

In this way, we guarantee that OðεÞ terms are small for any

value of r ≥ rh. We leave the details of this calculation to

Appendix C and quote our final result:

N2f ¼
�

1 −
rh

r

��

1 − ε

�

5M

8r
þ 5M2

4r2
þ 5M3

2r3
þ 5M4

r4

þ 10M5

r5
þ 20M6

r6

��

; ð13aÞ

f−1 ¼
�

1 −
rh

r

�

−1
�

1þ ε

�

5M

8r
þ 5M2

4r2
þ 5M3

2r3
þ 5M4

r4

þ 10M5

r5
−
196M6

r6

��

: ð13bÞ

Equations (13a) and (13b) are the expressions we will

use for the gtt and grr metric components, respectively. By

construction, both equations have the expected behavior at

the event horizon rh. In addition, since to OðεÞ,

N2f ¼ f ≃ 1 − 2M=rþOðr−2Þ; r=M ≫ 1; ð14Þ

we have retained the interpretation of M being the ADM

black-hole mass and that the spacetime is asymptotically

Minkowski.

III. BLACK HOLE PERTURBATIONS

The linear gravitational perturbations of the black-hole

solution (6) were analyzed in Refs. [33,34], in the Regge-

Wheeler-Zerilli formalism (“metric-perturbation approach”)

[1,9,10], and in Refs. [35,36] in the Newman-Penrose [48]

and Geroch-Held-Penrose [49] formalisms (“curvature-

perturbation approach”). See also Refs. [50,51] for related

work in the latter approach.

In the metric-perturbation approach, the problem reduces

to studying two equations in the frequency domain

�

d2

dx2
þ ω2

c2s ðrÞ
− V

ð�Þ
l

ðrÞ
�

X
ð�Þ
lω ðrÞ ¼ 0; ð15Þ
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that we now describe in detail. The superscript (�) is used

to denote variables associated to metric perturbations of

polar (þ) or axial (−) parity, which we assume to have

harmonic time-dependence expð−iωtÞ, and are labeled by

the multipole index l ≥ 2. Metric perturbations of polar

and axial parities are fully described by a single master

function known as the Zerilli XðþÞ and Regge-Wheeler Xð−Þ

functions, respectively.
1
We also introduced the tortoise

coordinate x, defined as

dx=dr ¼ 1=ðNfÞ; ð16Þ

and that maps the domain rh ≤ r < ∞ to −∞ < x < ∞.

This is not guaranteed to happen for all values of ε. As we

detail in Appendix D, the desired mapping holds for

ε≲ 0.59. Finally, V
ð�Þ
l

and c2s are the black-hole effective

potential and propagation velocity of the perturbations,

respectively. Let us consider both in turn.

First, the effective potential can be decomposed in a

resummed form as

V
ð�Þ
l

¼
�

1 −
rh

r

�

½V̄ð�Þ
l

þ εδV
ð�Þ
l

�: ð17Þ

The bare general-relativity contributions to the potential are

the Zerilli [9] and Regge-Wheeler [1] potentials, given

respectively by

V̄
ðþÞ
l

¼ 1

ðrΛlÞ2
�

2λ2
l
ðΛlþ1Þþ18M2

r2

�

λlþ
M

r

��

; ð18aÞ

V̄
ð−Þ
l

¼ 1

r2

�

lðlþ 1Þ − 6M

r

�

; ð18bÞ

where we defined

λl ¼ ðlþ 2Þðl − 1Þ=2; and Λl ¼ λl þ 3M=r: ð19Þ

The modifications to these potentials originating from the

dimension-six operators can be written schematically as

δV
ðþÞ
l

¼ 1

ðrΛlÞ2
X

10

i¼1

v
ðþÞ
il ðrÞðM=rÞi; ð20aÞ

δV
ð−Þ
l

¼ 1

r2

X

7

i¼1

v
ð−Þ
il ðM=rÞi: ð20bÞ

The coefficients v
ðþÞ
il contain Λl for n > 4; hence the

explicitly stated dependence on r. In contrast, v
ð−Þ
il is

independent of r for all n. All coefficients have powers

of l. We show the explicit forms of v
ð�Þ
il in Appendix E.

In Fig. 1 we show both potentials, Eqs. (18a) and (18b),

for l ¼ 2 as functions of the tortoise coordinate x. The
curves correspond to increasing values of ε, from zero

(general relativity) to 0.05 in steps of Δε ¼ 0.01. The EFT

corrections are most salient in the region between the event

horizon and the location of the potential peak; past the latter

the curves become identical to one another.

It is important to note that the potentials are short ranged,

i.e., their integral on the domain x∈ ð−∞;þ∞Þ is finite.

Indeed, one can verify that

Z þ∞

−∞

V
ð�Þ
l

dx ¼ 1

2M

�

2λl þ
1

2
þ ει

ð�Þ
l

�

; ð21Þ

where ι
ðþÞ
l

≠ ι
ð−Þ
l

are parity-dependent functions of l. In the

limit of general relativity, the integrals of theRegge-Wheeler

FIG. 1. The effective potentials V
ð�Þ
2

for perturbations of polar (left panel) and axial (right panel) parity. We vary the parameter

ε ¼ λl4=M4 from zero (general relativity) to 0.05 in increments of Δε ¼ 0.01. The value of the potential’s peak decreases (increases) for

the polar- (axial-) parity potentials with respect to general relativity. The location of the peak shifts in opposite directions, with respect to

the case of general relativity: outwardly for polar-parity and inwardly for the axial-parity potential. These changes are bound to the

region between the event horizon, pushed to x → −∞, and the location of the potential peak.

1
We verified that in the EFT, as in general relativity, the Zerilli

[9] and Zerilli-Moncrief [52] functions and the Regge-Wheeler
[1] and Cunningham-Price-Moncrief [6] functions satisfy the
same homogeneous differential equations.
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and Zerilli potentials are the same. This equality, first

noticed by Chandrasekhar and Detweiler [8] (see also

Refs. [53,54]), is a necessary condition to establish the

isospectrality of the Regge-Wheeler and Zerilli potentials.

More precisely, the equality of Eq. (21) is the first of an

infinite hierarchy of integral equalities that must be satisfied

by a pair of potentials if they are to have the same reflection

and transmission coefficients.
2
That this equality is broken

by the EFT corrections already at “zeroth order” in this

hierarchy implies the breakdown of isospectrality.

Finally, perturbations of polar and axial parity propagate

with a position-dependent velocity

c2s ¼ 1 − 288εf
M5

r5
;

≃ 1 − 288ε

�

1 −
rh

r

�

M5

r5
; ð22Þ

where in the second line we used the resummed form of f
[cf. Eq. (13b)] and kept the OðεÞ term only. We may note

that c2s is unity at spatial infinity and at the event horizon rh,
while it can be sub- or superluminal outside rh depending
on the sign of ε. Reference [58] argues that this speed

cannot be used to predict time delay (or advance) with

respect to general relativity as long as one stays within the

regime of validity of the EFT.

Before proceeding, let us compare our Eq. (15) with

those found in the literature, particularly in the works by de

Rham et al. [33] and Cano et al. [34] who, like ourselves,

worked in metric perturbation approach. In comparison to

Ref. [33], our perturbation equations are similar to their

Eqs. (2.23) except that we did a resummation of the

effective potentials. Likewise, we use the same definition

of the tortoise coordinate, though, again, we perform a

resummation. To compute the quasinormal mode frequen-

cies, Ref. [33] recasts their equations in a form that can be

mapped into the quasinormal frequency parametrization of

Ref. [59]. In comparison to Ref. [34], our perturbation

equations are different both in the choice of the tortoise

coordinate [they use a “pseudotortoise coordinate”; see

Eq. (41) therein] and in the effective potentials (they do a

field redefinition to trade the position-dependent propaga-

tion speed c2s for a frequency-dependent potential). To

compute the quasinormal frequencies, Ref. [34] did a direct

integration of the perturbation equations.
3

Cano et al. [34] reports an agreement of approximately

1% to 5% of their results with those of de Rham et al. [33].

In another work, Cano et al. [36] also computed the

quasinormal frequencies for rotating black holes using

the curvature-perturbation approach and using a small spin

expansion [35]. They followed the approach of Ref. [50] to

compute the quasinormal frequencies, and the results were

cross-checked against the direct integration of the modified

Teukolsky equation. In the nonrotating limit, their results

agree with those of Refs. [33,34]. Our results will be

presented in Sec. V. However, first, let us motivate and

explain the phase-amplitude method we will adopt to

compute the quasinormal modes and their excitation.

IV. QUASINORMAL MODES

AND THEIR EXCITATION

In this section, we review the “quick and dirty” phase-

amplitude method developed by Glampedakis and

Andersson [37] for studying black-hole resonances. We

will first review some technical difficulties in numerically

computing quasinormal modes and how they are overcome

in the phase-amplitude approach. We will then explain how

the quasinormal-mode excitation factors can be determined.

A. Quasinormal modes

We are interested in computing the quasinormal modes

associated to Eq. (15). Because the effective potentials are

short ranged and vanish both at the horizon and at spatial

infinity, whereat the propagation speed c2s becomes unity,

the general physical solution of Eq. (15) has the form

X
ð�Þ
lω ≃

�

e−iωx x → −∞

A
ð�Þ;in
lω e−iωx þ A

ð�Þ;out
lω eþiωx x → þ∞

; ð23Þ

consisting of purely ingoing waves at the event horizon and

a mixture of ingoing and outgoing waves at spatial infinity.

From the ratio between the amplitudes of the ingoing and

outgoing waves at spatial infinity, we can define the

scattering matrix

S
ð�Þ
lω ¼ ð−1Þlþ1A

ð�Þ;out
lω =A

ð�Þ;in
lω ¼ exp½2iδð�Þ

lω �; ð24Þ

where δ
ð�Þ
lω is the phase-shift function. Quasinormal modes

are solutions defined by having A
ð�Þ;in
lω ¼ 0, i.e., they are the

poles of the scattering matrix [2]. The problem of comput-

ing the quasinormal-mode frequencies ωln hence reduces

to a boundary-value problem in which one has to find ωln

such that A
ð�Þ;in
lω vanishes. Root-finding algorithms can be

used to perform this task. In black-hole physics, for each

multipole l, there is an infinite number n of quasinormal

frequencies that we sort according to their damping time.

The index n ¼ 0 is used for quasinormal-mode frequency

2
These integrals are formally related to conserved quantities

allowed by the Korteweg-de Vries equation [55]. See Ref. [53],
Sec. 4 and its Appendix, for a discussion, and Refs. [56,57] for
recent literature.

3
Implicitly, Ref. [33] also does a direct integration of the

perturbations equations. The reason is that the theory-agnostic
coefficients in Ref. [59] are found by direct integration of their
parametrized perturbation equation; see Eq. (10) and Sec. III
therein.
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with longest decay time (the “fundamental mode”) and

modes with n > 0 are called “overtones.”

A numerical challenge immediately presents itself if one

attempts to carry such procedure by numerically integrating

the differential equation (15). Since ωln is complex-valued,

we find

X
ð�Þ
lω ≃ expð∓ xImωlnÞ; x → �∞: ð25Þ

and because Imωln is negative for stable perturbations,

the quasinormal-mode solution diverges as x → �∞.

Consequently, in the root-finding process, we must resolve

an exponentially decaying from an exponentially growing

part of the solution, at large values of x. This is even more

challenging for overtones which, by definition, have shorter

damping times.

B. The phase-amplitude method

Reference [37] proposed a “quick-and-dirty” method for

the calculation of the quasinormal-mode frequencies that

combines two ideas. First, instead of working with the

(possibly rapidly varying) function X
ð�Þ
lω , one works with

slowly varying phase functions. Second, instead of working

on the real axis, one performs an analytical continuation of

X
ð�Þ
lω to complex values of x and a suitable integration path

is chosen in order to balance the exponentially decaying

and growing waves of the general solution Eq. (15). Let us

see how this works in practice. To lighten the notation, we

will omit the parity “(�)” and mode “lω” scripts for now.

We start by rewriting Eq. (15) as

�

d2

dx2
þQ

�

X ¼ 0; Q ¼ ω2=c2s − V; ð26Þ

where Q → ω2 as x → �∞, and the boundary conditions

(23) as follows:

X ≃

�

e−iωx x → −∞

B sinðωxþ ζÞ x → þ∞
; ð27Þ

where B and ζ are complex-valued constants. Equation (26)

admits an exact solution in the form

X ¼ exp

�
Z

Pðx0Þdx0
�

; ð28Þ

where P is the phase function,

P ¼ d logX=dx; ð29Þ

which, from Eq. (26), satisfies the Riccati equation
4

dP=dxþ P2 þQ ¼ 0; ð30Þ

and the quasinormal-mode boundary conditions translate

into P → −iω as x → −∞.

Instead of working with P as x → ∞ as well, it is useful

to introduce a second phase function, P̃, by means of the

Prüfer transformation defined as:

X ¼ B sin½ωxþ P̃ðxÞ�; ð31aÞ

dX=dx ¼ Bω cos½ωxþ P̃ðxÞ�: ð31bÞ

We can calculate d logX=dx with the foregoing equations

and find that the phase functions P and P̃ are related by

P ¼ ω cotðωxþ P̃Þ; ð32Þ

with inverse

P̃ ¼ −ωxþ 1

2i
log

�

iP − ω

iPþ ω

�

: ð33Þ

Note that Eq. (32) explains the absence of a dP̃=dx term in

Eq. (31b). A short calculation shows that the Prüfer phase

function satisfies

dP̃=dxþ ðω −Q=ωÞsin2ðωxþ P̃Þ ¼ 0: ð34Þ

From the asymptotic properties ofQ and P, we find from
Eqs. (30) and (34) that for real ω and l,

dP=dx ≃ 0; x → −∞ ð35aÞ

dP̃=dx ≃ 0; x → þ∞ ð35bÞ

That is, P and P̃ are slowly varying functions as x → −∞

and x→∞, respectively.
5
It is then suggestive that we

should work with P in the domain x∈ ð−∞; xm� and with P̃
in the domain x∈ ðxm;∞Þ, where xm is a matching point.

Experience has shown that the computation of the quasi-

normal frequencies does not depend on the precise value of

xm, as long as we chose it to be near the peak of the

effective potential V [37]. Here we chose rm ¼ 3M, the

location of the light ring in the Schwarzschild spacetime,

which translates to xm ≃ 1.61M.

Finally, we can compare Eqs. (31a) and (27) to conclude

that P̃ → ζ as x → ∞ and, by comparing Eqs. (23) and

(27), that

4
We may, parenthetically here, remark that the advantage of

working with the Riccati equation had already been appreciated
by Chandrasekhar and Detweiler [8]; cf. pp. 451 therein.

5
Equations (30) and (34) can be used to compute Regge

poles [37]. Like quasinormal modes, they are poles of the
scattering matrix (24), but correspond instead to complex values
of l for a given real-valued ω. Regge poles are important in
scattering theory; see, e.g., Refs. [60–62] for applications in
black-hole physics.
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Ain=Aout ¼ − expð−2iζÞ: ð36Þ

The second step in the scheme of Ref. [37] consists in

promoting the tortoise coordinate x to become complex

valued as in, e.g., in the closely related phase-integral

approach [63]. Consider the curve C illustrated in Fig. 2,

x ¼ xm þ ρ expðiβÞ; ð37Þ

parametrized by the real parameter ρ∈ ð−∞;∞Þ and where
β is a real constant. Note that the matching point is at ρ ¼ 0.

In terms of Eq. (37), the Prüfer equation (34) becomes

dP̃=dxþðω−Q=ωÞsin2½ωxmþωρexpðiβÞþ P̃� ¼ 0: ð38Þ

The crucial step is to now observe that, with a suitable

choice of β, we can make the ingoing and outgoing waves

as x → ∞ to be of comparable asymptotic amplitudes. This

is achieved by choosing,

β ¼ − argω; ð39Þ

such that the integration path is parallel to the anti-Stokes

lines when x→ �∞ [37]. Equation (38) becomes

dP̃=dxþ ðω −Q=ωÞsin2ðωxm þ jωjρþ P̃Þ ¼ 0: ð40Þ

Note that now the argument term proportional to ρ is real

and hence we eliminated the asymptotic exponential

behavior of the amplitude.

We can then rewrite thedifferential equations (30) and (40)

for the phase functionswithρ as an independent variable, and

trade x in favor of r by means of Eq. (37). We obtain

dP

dρ
þ eiβðP2 þQÞ ¼ 0; ð41aÞ

dP̃

dρ
þ eiβ

�

ω −
Q

ω

�

sin2ðωxm þ jωjρþ P̃Þ ¼ 0; ð41bÞ

dr

dρ
− eiβ

dr

dx
¼ 0; ð41cÞ

where dr=dx and β are given by Eqs. (16) and (39),

respectively.

Equation (41) constitutes the system of differential

equations we need to integrate to compute the quasinormal

frequencies. The integration procedure can be summarized

as follows:

(1) Choose the values of ε, l, and ω, and with the latter

compute β ¼ − argω.

(2) Determine the initial condition for r as ρ → −∞. We

found it useful, particularly in the context of the

integrations in the next section, to integrate Eq. (41c)

from ρm ¼ 0 (at which r ¼ 3M) backward to, say,

ρmin ¼ −50M. This fixes rmin ¼ rðρminÞ.
(3) Set the initial condition for P at ρmin using the

leading-order Wentzel-Kramers-Brillouin (WKB)

formula, that is, Pmin ¼ −iQðrminÞ1=2.
(4) Integrate Eqs. (41a) and (41c) from ρmin to ρm, using

rmin and Pmin as initial conditions.

(5) Calculate P̃ðρmÞ from Pðρm), the result of the

previous step, using Eq. (33).

(6) Switch to Prüfer phase function, that is, integrate

Eqs. (41b) and (41c) from ρ ¼ ρm up to ρ ¼ ρmax. In

practice, we often used ρmax ≈ 104M. This gives

us ζ ≃ P̃ðρmaxÞ.
(7) Calculate Ain=Aout using Eq. (36).

(8) Repeat steps 1 to 7, updating the value of ω until the

quasinormal-mode boundary condition Ain ¼ 0 is

satisfied. This is a root-finding problem that we

solve using Muller’s method [64].

We implemented the foregoing steps in C++. The

integration of the differential equations was performed

with the Runge-Kutta-Fehlberg (7, 8) method, as imple-

mented in Odeint [65], part of the Boost library [66]. Our

implementation of Muller’s method follows the pseudo-

code found in the “Numerical Recipes,” Chapter 9.2 [67].

Wewill present the numerical results of our quick-and-dirty

quasinormal mode frequency computations in Sec. VA.

C. The excitation factors

Having explained how we compute the quasinormal-

mode frequencies, we now present how we obtain their

excitation factors. The excitation factors are complex-

valued constants that are characteristic of a black-hole

spacetime and partially determine the amplitude with which

different quasinormal modes are excited given an initial

source of disturbance [11,14].

In this context, we are interested in the inhomogeneous

version of Eq. (26)

�

d2

dx2
þQ

�

X ¼ s: ð42Þ

FIG. 2. The integration path C in the complex x-plane used for

the calculation of the quasinormal modes. The value of β1;2 is the

chosen based on the asymptotic behavior ofQ as x → �∞. In our

problem, β1;2 ¼ − argω. However, the method can be applied to

other situations where this is not the case, such as of perturbations

of the Kerr black hole [37].
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The source s can represent, in the Fourier domain, either the

initial data of the function X in a spacelike hypersurface

t ¼ constant, or an external source driving the perturba-

tions X, for instance, a particle plunging into the black hole
[10]. The Cauchy problem associated to Eq. (42) can be

studied using Green’s functions [68]. Leaver [11], showed

that the contribution from the quasinormal modes to the

response in time of X is given by

Xðt; rÞ ¼ −Re
X

n

½Cne
−iωnðt−xÞ�; ð43Þ

where the sum is over all quasinormal frequencies ωn and

Cn are the respective quasinormal excitation coefficients.

The latter can be factorized as

Cn ¼ BnIn; ð44Þ

where In is an integral over the source s and the solution of
the homogeneous equation (15) at the quasinormal fre-

quency ωn,

In ¼
Z

∞

−∞

dx0 sðx0ÞXnðx0Þ=Aout; ð45Þ

and Bn are the source-independent excitation factors

Bn ¼
Aout

2ωn

�

dAin

dω

�

−1

ω¼ωn

¼ 1

2ωn

Aout

αn
; ð46Þ

where we approximated Ain ≃ αnðω − ωnÞ in the vicinity of
the quasinormal-mode frequency ωn. Hence, the excitation

factors are related to the ingoing- and outgoing-wave

amplitudes at spatial infinity at frequencies near ωn.

Equation (46) is our main quantity of interest. To

calculate it, we follow Ref. [37] again, which proposed

a phase-amplitude based scheme to compute Bn; see also

Ref. [14]. This means we must derive a relation between the

wave-amplitudes in Eq. (46) and the phase-functions P and

P̃. We begin by recalling that the general physical solution

of Eq. (26) is an ingoing wave at the event horizon and a

mixture of ingoing and outgoing waves at spatial infinity. If

we were to integrate this solution first from a near-horizon

location x−∞ up to a matching point xm and from a far-field

location x∞ down to the same xm, we would express the

result of these two integrations as

XLðxmÞ ¼ expðφL;−Þ; ð47aÞ

XRðxmÞ ¼ A expðφR;þÞ þ B expðφR;−Þ; ð47bÞ

where A and B are complex amplitudes and the various φ

are integrals over the phases, more precisely,

φL;− ¼
Z

xm

x−∞

PL;−dx
0; φR;� ¼

Z

xm

x∞

PR;�dx
0: ð48Þ

In these expressions, we introduced the subscripts L (R) to

indicate a function to the left (right) of the matching point

xm, and þ (−) to indicate the ingoing (outgoing) wave

phase. The condition for Eq. (47) to be a solution of

Eq. (26) is that the logarithmic derivatives of XL and XR are

continuous at xm:

PL;− ¼ PR;þ þ ðB=AÞPR;− expðφR;− − φR;þÞ
1þ ðB=AÞ expðφR;− − φR;þÞ

; ð49Þ

which we solve for B=A,

B

A
¼ PR;þ − PL;−

PL;− − PR;−

expðφR;− − φR;þÞ: ð50Þ

This is the first step of the derivation. The next step consists

of finding a relation between A and B with the amplitudes

Ain and Aout; cf. Eq. (23). By doing so, as detailed in

Ref. [37], we can rewrite Eq. (50) as

Ain

Aout

¼ PR;þ − PL;−

PL;− − PR;−

eΦ; ð51Þ

where we defined

Φ ¼ 2iωx∞ þ φR;þ − φR;− − 2i

Z

∞

x∞

Q − ω2

Q1=2 þ ω
dx0: ð52Þ

The final step is to take a derivative of Eq. (51) with respect

to the frequency ω and evaluate the result at the quasi-

normal mode frequency ωn using that (i) PR;þ is equal to

PL;− at ω ¼ ωn (this is nothing but the “resonant condition”

for the quasinormal mode [8]) and (ii) the linear approxi-

mation Ain ≃ αnðω − ωnÞ. By doing so, we obtain

αn

Aout

¼ ΩR;þ −ΩL;−

PL;− − PR;−

eΦn ; ΩR=L;� ¼ dPR=L;�
dω

; ð53Þ

which is our final result [37]. We reiterate that all quantities

in Eq. (53) are evaluated at x ¼ xm [i.e., ρ ¼ ρm; see

Eq. (37)] and ω ¼ ωn. Once we have determined the value

of αn=Aout, we use Eq. (46) to calculate the excitation factor

Bn of the quasinormal mode frequency ωn.

How do we calculate the various terms entering Eqs. (53)

and (52)? From these equations we identify two terms that

are independent on the phase functions, namely

2iωnx∞; and I ¼ −2i

Z

∞

x∞

Q − ω2
n

Q1=2 þ ωn

dx0: ð54Þ

The former is a constant, while the latter can be integrated

analytically by first expanding the integrand in powers of
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1=x ≈ 1=r (since jx=rhj ≫ 1) and then integrating term by

term. The integral is convergent in our case, for which

Q ≃ ω2 and dQ=dx ≃ 0 as x → ∞. We find:

I ¼ −
i

2ω

�

u∞
d2Q

du2

�

�

�

�

u¼0

þ u2∞

6

d3Q

du3

�

�

�

�

u¼0

þ…

�

; ð55Þ

where u ¼ 1=x.
For the remaining terms, it is convenient to separate our

discussion into quantities that are determined between

x∈ ½x−∞; xm� and x∈ ðxm; x∞�. Because we must evaluate

the phase functions at a quasinormal frequency, it is useful

to use the analytical continuation and the Prüfer trans-

formation introduced in Sec. IV B. By doing so, we can

write down two systems of first-order differential equa-

tions. Specifically, for x∈ ½x−∞; xm�, we need to integrate

three equations

dPL;−

dρ
þ eiβðP2

L;− þQÞ ¼ 0; ð56aÞ

dΩL;−

dρ
þ eiβ

�

2PL;−ΩL;− þ dQ

dω

�

¼ 0; ð56bÞ

dr

dρ
− eiβ

dr

dx
¼ 0; ð56cÞ

with initial conditions at ρ ¼ ρmin given by

PL;− ¼ iQ1=2; and ΩL;− ¼ −
1

2PL;−

dQ

dω
: ð57Þ

For x∈ ðxm; x∞�, we need to integrate six equations

dP̃R;�
dρ

þ eiβ
�

ω−
Q

ω

�

sin2ðP̃R;�þjωjρþωxmÞ¼ 0; ð58aÞ

dφR;�
dρ

− eiβω cotðωxþ P̃R;�Þ ¼ 0; ð58bÞ

dΩR;þ
dρ

þ eiβ
�

2ΩR;þω cotðωxþ P̃R;þÞ þ
dQ

dω

�

¼ 0; ð58cÞ

dr

dρ
− eiβ

dr

dx
¼ 0: ð58dÞ

The initial conditions for φR;� and ΩR;þ at ρ ¼ ρmax are

φR;� ¼ 0; and ΩR;þ ¼ −
1

2PR;þ

dQ

dω
; ð59Þ

and to determine the initial condition for P̃R;�, we first use
the WKB formula PR;� ¼ �iQ1=2 and then substitute the

result in Eq. (33). In our case dQ=dω ¼ 2ωc−2s .

Equations (56) and (58) constitute the two systems of

differential equations we need to integrate to compute the

quasinormal-mode excitation factors. The integration pro-

cedure can be summarized as follows:

(1) Choose the values of ε, l, and quasinormal

mode frequency ωn, and with the latter compute

β ¼ − argωn.

(2) Determine the initial conditions for r as ρ → �∞. We

integrate Eq. (41c) from ρm ¼ 0 backward (forward)

to, say, ρmin ¼ −40M (ρmax ¼ 2 × 104M). This fixes

rmin ¼ rðρminÞ and rmax ¼ rðρmaxÞ.
(3) Determine the other initial conditions for the de-

pendent variables in the two integration domains,

that is, at ρmin and ρmax.

(4) Integrate the system of equations (56) and (58) from

ρmin to ρm and from ρmax to ρm, respectively.

(5) Calculate PR;�ðρmÞ from P̃R;�ðρmÞ using Eq. (32).

(6) Compute αn=Aout using Eqs. (52) and (53), and,

finally, the excitation factor Bn using Eq. (46).

We implemented the foregoing steps in C++, adopting the

same integration library as in our calculation of the

quasinormal mode frequencies. We will present our results

for the quasinormal-mode excitation factors in Sec. V B.

V. NUMERICAL RESULTS

A. The quasinormal mode spectrum

1. Comparison with the literature

Our calculation of the quasinormal-mode frequencies

was validated in two ways. First, in the limit of general

relativity, we compared our results against the well-known

values for a Schwarzschild black hole, finding excellent

agreement. Computation wise, we found that it was

necessary to shift the matching point closer to the event

horizon to accurately calculate the overtone frequencies.

Above a certain overtone number, typically n≳ 4, it

becomes increasingly challenging to locate the quasinormal

mode in the root-finding process. The reason is that the

simple integration path (37) fails to approximate the more

complex integration path necessary for determining high

overtone quasinormal frequencies; see Refs. [63,69]. For

this reason, we quote results up to n ¼ 3.

As an example, for the fundamental and third overtone

quadrupole quasinormal frequencies we obtain

Mω
ðþÞ
20

¼ 0.37367169 − 0.088962318i; ð60aÞ

Mω
ð−Þ
20

¼ 0.37367169 − 0.088962321i; ð60bÞ

and

Mω
ðþÞ
23

¼ 0.25150495 − 0.70514814i; ð61aÞ

Mω
ð−Þ
23

¼ 0.25150496 − 0.70514818i; ð61bÞ
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respectively. By isospectrality, we expect ω
ðþÞ
ln ¼ ω

ð−Þ
ln , and,

indeed, the phase-amplitude method yields quasinormal

frequencies that differ from one another by Oð10−6Þ or

better. In addition, we compared our results against those of

the QNM package [70] that uses the continued-fraction

method of Refs. [20,71], and gives:

Mω
ð�Þ
20

¼ 0.37367168 − 0.088962316i; ð62aÞ

Mω
ð�Þ
23

¼ 0.25150496 − 0.70514820i: ð62bÞ

We find relative errors of Oð10−6Þ that are largest for the

highest overtone, n ¼ 3, for the reason explained earlier.

After having computed the general-relativistic quasinormal

frequencies to good accuracy, we varied the EFT parameter

ε in constant steps of Δε ¼ 0.001 and scanned the domain

ε∈ ½0; 0.05�. In Figs. 3 and 4, we use markers to indicate

values of ε in increments of 10 × Δε ¼ 0.01 to “guide

the eye.”

In Fig. 3 we show the real and imaginary parts of the

fundamental quadrupolar quasinormal frequency as a

function of ε and normalized with respect to its value in

general relativity, i.e.,

δReω
ð�Þ
ln ðεÞ ¼ Reω

ð�Þ
ln ðεÞ

Reω
ð�Þ
ln ð0Þ

; δImω
ð�Þ
ln ðεÞ ¼ Imω

ð�Þ
ln ðεÞ

Imω
ð�Þ
ln ð0Þ

:

The top and bottom panels show our results for these two

quantities, respectively. The solid curves are the results of

our phase-amplitude calculation. We use the markers to

FIG. 3. The fundamental polar and axial quasinormal mode

frequencies, normalized with respect to their Schwarzschild

values, as functions of ε ¼ λl4=M4. The top panel shows the

real part of frequencies, while the bottom panel their imaginary

part. The markers distinguish curves corresponding to modes of

polar (þ) and axial (−) parities. The dashed lines are the linear fits

by Cano et al. [36]. Both calculations agree remarkably well

despite using two different forms of the perturbations equations to

which different numerical techniques were applied to compute

the quasinormal mode frequencies.

FIG. 4. The quadrupolar polar- and axial-parity quasinormal frequencies, normalized with respect to their Schwarzschild values, as

functions of ε ¼ λl4=M4. The left and right columns correspond to quasinormal modes of polar and axial parities, respectively, whereas

the top and bottom panels show the real and imaginary parts. The line styles indicate different overtone numbers n. We see that the

deviations from the general-relativistic values can become nonmonotonic as we increase the value of ε. We also find that the curves

become nonlinear for smaller values of ε the higher the overtone number n.
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distinguish the curves corresponding to quasinormal modes

of polar (þ) and axial (−) parities, which are no longer the

same. We also show, with the dashed curves, the fits

obtained in Ref. [36]; cf. Table III therein. These fits are a

linear approximation to the behavior of ω
ð�Þ
20

with respect to

ε, which does become nonlinear as ε growth; cf. Ref. [34],

Fig. 1. The same behavior can be seen here. In addition, our

results are in excellent agreement with the linear fits of

Ref. [36] for ε≲ 0.03 and across the whole ε range for

δReω
ðþÞ
20

and δImω
ð−Þ
20

. The agreement is quite remarkable

considering that we do not integrate the same set of

perturbations equations and that we use different numerical

techniques to compute the quasinormal modes; recall

Sec. III. We find a similar level of agreement for the

fundamental l ¼ 3 quasinormal mode frequency. As a

consequence, our numerical results are also in agreement

with those of de Rham et al. [33].

We also briefly studied the case where ε is negative. For

sufficiently small values of jεj, we would expect that the

deviations from the quasinormal frequencies in general

relativity to be equal in magnitude, but with an opposite

sign relative to the case where ε is positive. We found that

this was indeed the case for ω
ð�Þ
20

.

2. Overtones and the limits of the effective field theory

With confidence built on the applicability of the phase-

amplitude approach to our problem and on our numerical

code, we now investigate, for the first time, the dependence

of the overtones as a function of ε.

In Fig. 4 we show ω
ð�Þ
2n as a function of ε. Panels on the

left and right columns show the polar (þ) and axial (−)

quasinormal frequencies, respectively. We show their real

and imaginary parts (normalized with respect to their values

in general relativity) in the top and bottom rows, respec-

tively. Different line styles represent different overtone

numbers n as indicated in the legend in the top-left panel.

We observe that as the overtone number n increases, the

smaller the range of ε at which the scaling is linear.

Moreover the curves do not necessarily behave monoton-

ically with respect to ε. This can best be seen for the n ¼ 3

axial-parity quasinormal-mode frequency. These conclu-

sions are shared among the overtones associated to l ¼ 2, 3

and 4. The emerging picture has two facets: (i) overtones

are more sensitive to the EFT corrections than the

fundamental mode, and (ii) the maximum value of ε above

which the linear approximation breaks down depends on l

and n.
In order to discuss the behavior of the quasinormal-mode

frequencies, we first describe the regime of applicability of

the EFT of gravity. As already mentioned, the EFT

corrections can be computed in powers of ε, with the

EFT breaking down once ε ≃ εth where εth is a threshold

value of order 1. This is the statement that the black-hole

curvature radius has to be larger than the scale l. Moreover,

one also needs the frequency of perturbations not too large.

At fixed l, increasing n corresponds in increasing the

proper frequency fln of the quasinormal modes. The

quantity fln can be identified with the real part of

ωln=ð2πÞ only if Reωln ≫ Imωln. Typically this is not

the case for the Schwarzschild quasinormal modes and,

following Ref. [72], one has to make the following

identification in order to have a monotonically increasing

spectrum of proper frequencies

fln ¼ ð2πÞ−1½Reω2

ln þ Imω2

ln�1=2: ð63Þ

Then, at fixed ε, an overtone with proper frequency fln can
be described within the EFT provided that [73]

εf ¼ λðlflnÞ4 ¼ εðMflnÞ4 ≪ ε−1: ð64Þ

The condition above is the statement that the covariant

contraction kμκμ ≪ l−2, where kμ and κμ are respectively

the typical four-momenta of the gravitational perturbations

and of the black hole background. The latter can be defined

as the normalized covariant derivative of the Kretschmann

scalar [73].

After these considerations, let us discuss the behavior we

find for the quasinormal modes. Our results show a

growing impact of the EFT corrections on ωln as n
increases at a fixed multipole l; see the “bird’s-eye view”

shown in Fig. 5. Reasoning in terms of Eq. (63) offers a

qualitative explanation for this behavior. Overtones corre-

spond to high-frequency waves and consequently probe

deeper the effective potential which is fixed by ε and l. As

a consequence, overtones are more sensitive to changes to

the effective potential that occur near the black-hole

horizon, which is the case in our problem—recall Fig. 1.

Complementary, let us also remark that this behavior is a

general feature of perturbation theory when the correction

to the potential comes from regions far from the potential

peak, or the potential minimum in the bound-problem case.

An example in quantum mechanics is given by a harmonic

oscillator potential VðxÞ ∝ x2 in the presence of a small

anharmonicity (going as, e.g., δVðxÞ ∝ x4). At first order in
perturbation theory, the corrections to the nth eigenenergy

grow as n to some given power (see for example Ref. [74]).

In our case, the EFT corrections grow toward the horizon

while the peak of the unperturbed potential is approx-

imately at the light ring and we therefore expect a similar

behavior.

The nonlinear behavior above a certain εmax of the

quasinormal frequencies sets an upper limit on the linear

description of our problem, and indicates that higher powers

of ε are necessary to describe the regime for ε≳ εmax. This

means that we either need to go to second order in

perturbation theory (our perturbations equations are linear

in the metric perturbations and in ε) or that we need to

include higher-order operators in our starting action (1). At
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second order in perturbation theory the second-order qua-

sinormal frequencies are a sum of first-order quasinormal

frequencies [75,76]; see, e.g., Refs. [77–83] for further

details. As a consequence, we expect the second-order

quasinormal frequencies to also scale with ε in the EFT.

Assuming that all the dimensionless factors entering in the

higher-dimension operators of the EFTare numbers of order

one, which is technically natural [31], then the effects from

dimension-eight operators would be of order ε3=2. Hence,

they would be the dominant contribution to the quasinormal

frequencies in the nonlinear regime of ε.

From these results and considerations, we find that the

onset of the nonlinear behavior in the quasinormal-mode

frequencies is best characterized in terms of the parameter

εf, rather than ε. In Fig. 6 we show, for each l and n, the

value of ε
1=4
f at which nonlinear corrections start appearing.

More specifically, we first evaluate the value of ε at which

ω
ð�Þ
ln deviates from its linear fit by more than 20%. This

gives us values of εmax and ω
ð�Þ
ln;max ¼ ω

ð�Þ
ln ðεmaxÞ associated

to this mode and threshold value. For instance, for ω
ð�Þ
20

we

find εmax > 0.05, hence all values of ε considered by us are

interpreted to be within the linearized regime according to

this criteria. In this case, we take for ω
ð�Þ
ln;max the value of

ω
ð�Þ
ln at ε ¼ 0.05. However, in general, this is not what

happens for other values of l and n. Then, with the values

of εmax and ω
ð�Þ
ln;max in hand, we can compute the respective

value of εf using Eq. (64). The values obtained are below

one, meaning that the onset of nonlinearities appears below

the breaking of the EFT, as one would expect.

As mentioned above, for values of both ε and εf close to

unity the EFT description inevitably breaks down: it is not

enough to include higher-order operators and any predic-

tion can only be made with an ultraviolet (UV) completion

of the EFT. As explained in Ref. [31], assuming a soft UV

completion, the corrections to the quasinormal-mode

frequencies (and other observable quantities) are expected

to saturate after the breaking of the EFT. In Fig. 7 we give a

schematic representation of the behavior of fln in this

scenario; see also Fig. 1 of Ref. [42] and related discussion

therein.

At this point it is clear that the condition in Eq. (64) is

necessarily violated for sufficiently large n, given a value of
ε. In other words the EFT cannot describe all overtones.

Using the asymptotic behavior of the Schwarzschild quasi-

normal frequencies in general relativity we can get a good

estimate for this maximum value of n, that we call nmax. The

spectrum at large n is independent on l and is given by

Mωln ≃ ð8πÞ−1 log 3 − iðnþ 1=2Þ=4; as n→ ∞: ð65Þ

FIG. 5. The spectrum of quasinormal modes ω
ð�Þ
ln in the complex plane in the range ε∈ ½0; 0.05�. The circles mark the location of the

general-relativity (“GR”) quasinormal mode frequencies, that are coincident for axial and polar modes. A nonzero value of the EFT

parameter ε breaks this symmetry, and axial- and polar-parity frequencies flow along the blue and orange colored lines, respectively, as

we increase ε. The larger the overtone number n, the farther away the quasinormal frequencies, at fixed multipole number l, with respect

to the fundamental mode, n ¼ 0.

FIG. 6. Values of ε
1=4
f at which a given quasinormal frequency

deviates by more than 20% from its linear fit in ε. Polar (þ) and

axial (−) quasinormal modes are shown on the left and right

panels, respectively. Notice that the values of ε
1=4
f in the tables

vary only by a factor of two between different modes.
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See Refs. [69,84] for numerical studies in this limit and

Refs. [85–88] for the posterior analytical derivations of this

result. Using this expression, Eqs. (63) and (64), and

imposing the latter as an equality, we readily obtain

nmax ≃ ð8πÞ=
ffiffiffi

ε
p

− 1=2þOð
ffiffiffi

ε
p

Þ: ð66Þ

The valuewe obtained is quite large even for ε close to unity,

nmax ∼Oð25Þ. Corrections not captured by the EFT are

bound to appear below, or at most at, nmax.

B. The quasinormal-mode excitation factors

1. Code validation and comparison with the literature

in the limit of general relativity

To our knowledge this is the first time that quasinormal-

mode excitation factors have been computed for black-hole

solutions in a theory that is not general relativity. To

validate our numerical results in the limit of general

relativity we performed two tests.

First, in general relativity, the excitation factors of polar

and axial quasinormal modes are related as

B
ðþÞ
ln ¼ 2λlðλl þ 1Þ þ 6iMωln

2λlðλl þ 1Þ − 6iMωln

B
ð−Þ
ln ; ð67Þ

as shown by Leaver [11]. This relation follows from two

identities relating the transmission and reflection coeffi-

cients of the Zerilli and Regge-Wheeler functions found by

Chandrasekhar and Detweiler [8]. We note that despite

sharing the same quasinormal mode spectra, the Zerilli and

Regge-Wheeler modes have different excitation factors. As

a consistency check of our code, we verified that our

numerical calculations of B
ð�Þ
ln satisfy Eq. (67) with a mean

error of approximately Oð10−5Þ across the ln-parameter

space we studied. This error decreases by one order of

magnitude if we exclude the n ¼ 3 overtones.

As a second test, we compared our values of B
ð�Þ
ln with

those obtained by Zhang, Berti, and Cardoso [18] (see

Table II therein), who employed the formalism of Mano,

Suzuki, and Takasugi [89–91]. This scheme is based on a

matched asymptotic expansion between a Coulomb-series

expansion near spatial infinity and a series expansion

involving hypergeometric functions near the event horizon.

Reassuringly, we find excellent agreement between our

phase-amplitude-based calculation and those of Ref. [18].

For example, for the excitation factors of the fundamental

quadrupole quasinormal frequencies we have

B
ðþÞ
20

¼ 0.120928þ 0.0706657i; ð68aÞ

B
ðþÞ
20

¼ 0.120923þ 0.0706696i; ð68bÞ

for the polar-parity mode and

B
ð−Þ
20

¼ 0.126902þ 0.0203152i; ð69aÞ

B
ð−Þ
20

¼ 0.126902þ 0.0203152i; ð69bÞ

for the axial-parity mode. In each of the two foregoing

equations the second line is taken from Ref. [18], Table II.

2. Effective-field-theory corrections

to the excitation coefficients

As we observed for the quasinormal-modes frequencies,

we also find that the associated excitation factors vary more

with respect to their values in general relativity, as functions

of ε, for the overtones. As an example, we show in Fig. 8

the trajectories in the complex plane of the quadrupolar

quasinormal mode excitation factors as we increase ε from

zero (circles) to 0.05. Solid and dashed lines correspond to

FIG. 7. Schematic representation of the quadrupolar quasinor-

mal proper frequencies f2n for even (blue) and odd (orange)

parities, as functions of ε and the regions of validity of the EFT

calculation. For small ε, deviations from the GR values are

approximately linear. The onset of nonlinearities in the correc-

tions is represented by the gray dashed line (NL): above this line

one needs to include higher-order contributions in ε. When ε≳

εth ∼Oð1Þ (green-shaded area) or εf ≳ εfth ∼ ε−1 (purple-shaded

area) the EFT description breaks down and one has to resort to its

UV completion to make predictions; see the discussion around

Eq. (64). Under the assumption of a soft UV completion, the

corrections to the quasinormal frequencies are expected to

saturate, as illustrated with the dashed lines.
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the excitation factors of the quasinormal modes of polar

and axial parities, respectively. Pairs of curves belonging to

the same overtone number n are indicated by the labels.

We found the same qualitative behavior for higher multi-

poles l. We present some sample values of the excitation

factors in Table I.

3. The effective quasinormal mode amplitude

As an application of the calculations presented in this

section, we perform a preliminary analysis of the gravita-

tional wave amplitude associated with the polar and axial

quasinormal modes. In practice this is done by introducing

an “effective” amplitude related to the magnitude of the

Green’s function used in the solution of the radial pertur-

bation equations for a given set of initial data; see, e.g.,

Ref. [16]. The relevant part of the Green’s function is the

one describing the quasinormal mode ringdown signal

and is given by h ¼ AoutðωnÞ=αn for each individual

mode ωn. The effective amplitude is then heff ¼
ffiffiffiffi

N
p

h,

where N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Reωn=Imωn

p

is the number of cycles in the

FIG. 8. Quadrupolar quasinormal mode excitation factors B
ð�Þ
2n

in the range ε∈ ½0; 0.05�. The circles mark the limit of general

relativity. Solid and dashed lines correspond to the excitation

factors of the quasinormal modes of polar and axial parities,

respectively. The labels indicate the pairs of curves that are

associated to each overtone number n. We see that the excitation

factors move farther away from their general-relativistic values

the larger the overtone number. The same behavior occurs for the

higher multipoles l we studied.

TABLE I. Quasinormal-mode excitation factors of the Zerilli and Regge-Wheeler functions for a selection of multipoles l overtones n

numbers and ε ¼ λl4=M4 ¼ 0, 0.01 and 0.02. Our results in the limit of general relativity, ε ¼ 0, are in excellent agreement with the

calculations of Ref. [18].

B
ðþÞ
ln εð×10−2Þ l ¼ 2 l ¼ 3 l ¼ 4

0 0.120928þ 0.0706657i −0.0889688 − 0.0611773i 0.0621245þ 0.069099i

n ¼ 0 1 0.117708þ 0.0672479i −0.087801 − 0.0568295i 0.0628948þ 0.0644908i

2 0.11423þ 0.0639308i −0.0863858 − 0.0524486i 0.0634276þ 0.0597634i

0 0.158645 − 0.253326i −0.191931þ 0.264798i 0.279718 − 0.24183i

n ¼ 1 1 0.164761 − 0.235166i −0.183766þ 0.246502i 0.259492 − 0.229203i

2 0.171749 − 0.217066i −0.176498þ 0.227387i 0.239777 − 0.215239i

0 −0.298938 − 0.0711347i 0.43677þ 0.20459i −0.543165 − 0.478076i

n ¼ 2 1 −0.298122 − 0.115973i 0.394863þ 0.230675i −0.478737 − 0.464904i

2 −0.297456 − 0.16154i 0.353727þ 0.258994i −0.413138 − 0.455013i

0 0.11382þ 0.204126i −0.000943158 − 0.476399i −0.374548þ 0.859556i

n ¼ 3 1 0.0959369þ 0.280675i 0.0877723 − 0.47838i −0.456808þ 0.756741i

2 0.076331þ 0.367397i 0.177021 − 0.481374i −0.542232þ 0.6564i

B
ð−Þ
ln εð×10−2Þ l ¼ 2 l ¼ 3 l ¼ 4

0 0.126902þ 0.0203152i −0.0938897 − 0.0491928i 0.0653479þ 0.0652391i

n ¼ 0 1 0.130744þ 0.0222580i −0.095795 − 0.0519542i 0.0659238þ 0.0680835i

2 0.134644þ 0.0251759i −0.097599 − 0.0548384i 0.0664031þ 0.0709206i

0 0.0476827 − 0.223755i −0.151135þ 0.269749i 0.261488 − 0.251524i

n ¼ 1 1 0.0389361 − 0.242548i −0.154331þ 0.289785i 0.274625 − 0.268574i

2 0.0330242 − 0.262936i −0.159411þ 0.309949i 0.289045 − 0.284968i

0 −0.190283þ 0.0157516i 0.415029þ 0.141039i −0.549216 − 0.435328i

n ¼ 2 1 −0.199520þ 0.0607662i 0.458619þ 0.108671i −0.619525 − 0.434249i

2 −0.219544þ 0.0942148i 0.506304þ 0.0827037i −0.69088 − 0.439270i

0 0.0808586þ 0.0796019i −0.0434027 − 0.412748i −0.316922þ 0.837911i

n ¼ 3 1 0.130958þ 0.0353271i −0.138089 − 0.418874i −0.217410þ 0.944489i

2 0.173338þ 0.0240910i −0.220413 − 0.444001i −0.131563þ 1.05946i
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ringdown signal; this obviously assumes a weakly damped

mode. Therefore, the effective signal amplitude of each

polar and axial quasinormal mode ωln is given by

h
ð�Þ;eff
ln ¼ 2

�

Reω
ð�Þ
ln

Imω
ð�Þ
ln

�
1

2

ω
ð�Þ
ln B

ð�Þ
ln ; ð70Þ

that we can compute with the numerical data obtained in the

previous section.

In Fig. 9 we show the effective amplitudes of the

fundamental quasinormal modes of polar (solid line) and

axial (dashed line) parities as functions of ε. We see that the

“polar-wave amplitude” dominates over its axial counter-

part for ε≲ 0.012, above which the axial mode dominates.

This suggests that at least for some initial data (see the

“asymptotic approximation” of Ref. [92]) that the dominant

contribution to the gravitational-wave ringdown amplitude

comes from the polar perturbations conditional, naturally,

also on the cutoff εmax for the onset on nonlinearities.

The dependence on this statement on the initial data (or

source of perturbation) can be seen from source-dependent

term in the quasinormal-mode excitation amplitude (45). As

an extreme example, it suffices to recall that I
ð−Þ
n vanishes for

a test particle radially infalling into a Schwarzschild black

hole even if B
ð−Þ
n is nonzero. Therefore, quasinormal modes

of axial parity are not excited in this situation. Nonetheless,

we note that previousworks in general relativity for plunging

test particles [93] and in the close-limit approximation [94]

do find that the amplitude associated to perturbations of polar

parity to be larger than those of axial parity. We conjecture

that this will also be the case in the EFT studied here.

VI. CONCLUSIONS AND OUTLOOK

Motivated by a dearth of understanding about the

quasinormal spectrum and about how these quasinormal

modes are excited in extensions to general relativity, we

reexamined and extended previous literature on perturba-

tions of nonrotating black holes in an EFT of general

relativity. Using a “quick and dirty” phase-amplitude

method [37], we computed both the first quasinormal-

frequency overtones and the quasinormal-mode excitation

factors. We found that the overtone frequencies (and their

respective excitation factors) are more sensitive than the

fundamental quasinormal modes to the length scale l
introduced by the higher-derivative operators in the EFT.

We interpreted these results from an EFT perspective, and

identified the domain of validity of the EFT description; see

Fig. 7. We also suggested the existence of an upper bound

on the overtone number n, abovewhich a UV completion of

the EFT becomes necessary to fully characterize the black

hole’s quasinormal mode spectrum. In addition, we pre-

sented a simple explanation for the inequivalence between

the spectra of quasinormal modes of polar and axial parities

in the EFT.

Let us put our findings in perspective. In Sec. V we

argued that the overtones can be interpreted as high-

frequency perturbations [72], and hence they probe the

structure of the black-hole effective potential region near

the horizon. This is the region of spacetime where the EFT

corrections are most significant; this is unsurprising given

that the EFT introduces higher powers of the curvature that

become relevant near the horizon. Following this reason-

ing, it is not unreasonable to conjecture that this sensitivity

of the overtones to new length scales would also be seen in

other theories that involve higher-curvature corrections to

general relativity, including those that introduce couplings

to extra degrees of freedom.
6

It is also tempting to interpret our results in terms of an

instability of the quasinormal-mode spectrum induced by

the higher-derivative operators in the EFT. In the language

of Jaramillo et al. [96], this would correspond to an

instability of the overtones; see, e.g., Refs. [15,97,98]

for earlier related works. Confirmation of this interpretation

would require an analysis of the quasinormal pseudospec-

trum associated to Eq. (15) following, e.g., Ref. [96]. If

confirmed, it would suggest that the instability of the

overtones is a general expectation from an EFT perspec-

tive. It would then be interesting to understand how this ties

with our conclusion that one cannot describe the quasi-

normal-mode spectrum past a certain overtone number

without invoking the UV completion of the EFT.

Our calculation of the quasinormal-mode excitation

factors and the observation that those associated to over-

tone are also sensitive to the near-horizon modifications

induced by the EFT has implications to the signatures of

these corrections in gravitational-wave observations. We

presented a first, but limited, analysis focusing on the

FIG. 9. The effective quasinormal mode amplitude for the

fundamental quadrupolar quasinormal modes of axial (−) and

polar (þ) parities as a functions of ε ¼ λl4=M4. For ε ≲ 0.012,

the amplitude is largest for the for polar quasinormal mode. A

crossover occurs around ε ≈ 0.012, above which the amplitude of

the axial quasinormal mode becomes larger.

6
While this paper was being completed, a preprint presented

the same reasoning [95].
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implications of isospectrality breaking in Sec. V (see

Fig. 9), but more work is evidently needed [99].
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APPENDIX A: DERIVATION OF THE

BLACK HOLE SOLUTION

To obtain the black-hole spacetime described by the line

element (6), we solve the field equations (4) perturbatively

in ε. To do so, we take N and f to be deformations away

from their Schwarzschild expressions:

f ¼ 1 − 2M̄=rþ εδf; ðA1aÞ

N ¼ 1þ εδN; ðA1bÞ

where M̄ is a positive constant, ε ¼ λl4=M̄4, and δf and δN
are functions of r. From the tt and rr components of field

equations, we find that δN and δf obey the decoupled first-

order differential equations:

�

d

dr
þ 1

r

�

δf ¼ 1080

r

M̄6

r6
−
2352

r

M̄7

r7
; ðA2aÞ

dðδNÞ
dr

¼ 648

r

M̄6

r6
: ðA2bÞ

The solutions of these equations are

δf ¼ c1

r
þ 216M̄6

r6
−
392M̄7

r7
; ðA3aÞ

δN ¼ c2 −
108M̄6

r6
; ðA3bÞ

where c1 and c2 are integration constants. They can be

fixed by examining the far-field expansion of gtt ¼ −N2f,

−gtt ≃ 1þ 2εc2 − ½2M̄ − εðc1 − 4M̄c2Þ�=r: ðA4Þ

We can then set c2 ¼ 0, as it amounts to a shift in the time

coordinate t. From the r−1 term, we identify the ADMmass

of the spacetime to be

M ¼ M̄ − εc1=2: ðA5Þ

Hence, the bare mass M̄ is renormalized by the dimension-

six operators in the action. We now solve Eq. (A5) for M̄,

noticing that ε ¼ λl4=M̄4 ¼ λl4=M4 to OðεÞ. The result is
M̄ ¼ M þ εc1=2, which substituted together with c2 ¼ 0 in

Eqs. (A3) and (A1), results in Eq. (7) to OðεÞ.

APPENDIX B: THE PETROV CLASSIFICATION

OF THE BLACK HOLE SOLUTION

The Petrov type of a spacetime can be identified by

constructing a null tetrad lμ, nμ, mμ and its complex

conjugate m̄μ and computing the Newman-Penrose scalars.

The tetrad satisfies the normalization lμnμ¼−1, mμm̄μ ¼ 1

with all the other contractions set to vanish. In thisAppendix,

we followRefs. [106,107] to determine the Petrov type of the

black hole solution given by Eqs. (6) and (13).

When the spacetime is algebraically special (having at

least one degenerate principal null direction), the following

condition is satisfied

I3 ¼ 27J2; ðB1Þ

where

I ¼ 1

2
C̃αβγδC̃

αβγδ;

¼ 3Ψ2

2
− 4Ψ1Ψ3 þ Ψ4Ψ0; ðB2Þ

J ¼ −
1

6
C̃αβγδC̃

γδ
μνC̃

μναβ;

¼ −Ψ3

2
þ 2Ψ1Ψ3Ψ2 þ Ψ0Ψ4Ψ2 −Ψ4Ψ

2

1
− Ψ0Ψ

2

3
; ðB3Þ

where we defined

C̃αβγδ ¼
1

4

�

Cαβγδ þ
i

2
ϵαβμνC

μν
γδ

�

; ðB4Þ

for a Weyl tensor Cαβγδ, Levi-Civita tensor ϵαβμν, and where

Ψi are the Newman-Penrose Weyl scalars with the only

restriction of Ψ4 ≠ 0:

Ψ0 ¼ Cαβγδl
αmβlγmδ; ðB5aÞ

Ψ1 ¼ Cαβγδl
αnβlγmδ; ðB5bÞ

Ψ2 ¼ Cαβγδl
αmβm̄γnδ; ðB5cÞ

Ψ3 ¼ Cαβγδl
αnβm̄γnδ; ðB5dÞ

Ψ4 ¼ Cαβγδn
αm̄βnγm̄δ: ðB5eÞ
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In particular, I and J are nonvanishing for Petrov type D

(and II).

To further determine the Petrov type, we study the

following relations that are invariant under a tetrad rotation

and hold for type D (and III):

K ¼ 0; N − 9L2 ¼ 0; ðB6Þ

where

K ¼ Ψ1Ψ
2

4
− 3Ψ4Ψ3Ψ2 þ 2Ψ3

3
; ðB7aÞ

L ¼ Ψ2Ψ4 −Ψ
2

3
; ðB7bÞ

N ¼ Ψ
3

4
Ψ0 − 4Ψ2

4
Ψ1Ψ3 þ 6Ψ4Ψ2Ψ

2

3
− 3Ψ4

3
: ðB7cÞ

To summarize, the spacetime is type D if Eqs. (B1) and

(B6) are satisfied for nonvanishing I and J.
Let us now apply the above formulation to the black hole

solution described by Eqs. (6) and (13). One of the simplest

null tetrad is found as

lμ ¼
�

r

r − rh
; 1 −

5

8

M

r
ε

�

1þ 2M

r
þ 4M2

r2
þ 8M3

r3
þ 16M4

r4
−
704

5

M5

r5

�

; 0; 0

�

þOðε2Þ; ðB8aÞ

nμ ¼
�

3r − rh

2ðr − rhÞ
þ 5

16

M

r
ε

�

1þ 2M

r
þ 4M2

r2
þ 8M3

r3
þ 16M4

r4
þ 32M5

r5

�

;

rþ rh

2r
−
5

8

M

r
ε

�

1þ 2M

r
þ 4M2

r2
þ 8M3

r3
þ 16M4

r4
−
272

5

M5

r5
−
864

5

M6

r6

�

;

ffiffiffi

2
p

r
; 0

�

þOðε2Þ; ðB8bÞ

mμ ¼
�

r

r − rh
; 1 −

5

8

M

r
ε

�

1þ 2M

r
þ 4M2

r2
þ 8M3

r3
þ 16M4

r4
−
704

5

M5

r5

�

;
1
ffiffiffi

2
p

r
;

i
ffiffiffi

2
p

r sin θ

�

þOðε2Þ: ðB8cÞ

Here, at OðϵÞ, we substituted rh ¼ 2M to simplify the

expressions. We checked that the Petrov type of the black

hole does not change even if we leave rh arbitrary. Then,

using Eqs. (B5) and (B8), we find that Ψi are given by

Ψ0 ¼ Ψ1 ¼ Oðε2Þ; ðB9aÞ

Ψ2 ¼
rh

2r3
þ 5M

16r3
ε

�

1 −
2304M5

5r5
þ 960M6

r6

�

þOðε2Þ; ðB9bÞ

Ψ3 ¼ 3Ψ2; Ψ4 ¼ 6Ψ2: ðB9cÞ

We can now obtain the Petrov type of the black hole. First,

the Weyl scalar invariants I and J are given by

I ¼ 3rh
2

4r6
þ 15M2

8r6
ε

�

1 −
2304M5

5r5
þ 960M6

r6

�

þOðε2Þ; ðB10aÞ

J ¼ −
rh

3

8r9
−
15M3

16r9
ε

�

1 −
2304M5

5r5
þ 960M6

r6

�

þOðε2Þ; ðB10bÞ

which leads to

I3 − 27J2 ¼ Oðε2Þ: ðB11Þ

Second, K, L, and N are given by

K ¼ Oðε2Þ; ðB12aÞ

L ¼ −
3rh

2

4r6
−
15M2

8r6
ε

�

1 −
2304M5

5r5
þ 960M6

r6

�

þOðε2Þ; ðB12bÞ

N ¼ 81rh
4

16r12
þ 405M4

4r12
ε

�

1 −
2304M5

5r5
þ 960M6

r6

�

þOðε2Þ; ðB12cÞ

which leads to

N − 9L2 ¼ Oðε2Þ: ðB13Þ

Thus, to the order we worked on, I and J are nonvanishing

and Eqs. (B1) and (B6) are satisfied, so the spacetime is of

Petrov type D.

APPENDIX C: DERIVATION OF EQ. (13)

Let us derive Eq. (13b) first. We start by adding and

subtracting rh=r to Eq. (10) and collect the terms as,

f−1 ¼
�

1 −
rh

r
þ
�

rh − 2M

r
þ εδf

��

−1

: ðC1Þ

QUASINORMAL MODES AND THEIR EXCITATION BEYOND … PHYS. REV. D 110, 024042 (2024)

024042-17



From Eq. (9) we see that rh − 2M is of order ε

rh − 2M ¼ εδrh ¼ −
5

8
εM: ðC2Þ

We can then rewrite Eq. (C1), by factoring out 1 − rh=r:

f−1 ¼
�

1 −
rh
r

�

−1
�

1þ ε
δrh=rþ δf

1 − rh=r

�

−1

;

≃

�

1 −
rh

r

�

−1
�

1 − ε
δrh=rþ δf

1 − 2M=r

�

; ðC3Þ

where we replaced rh=r by its Oðε0Þ value in the second

line. We now use the explicit forms of δrh and δf, given in
Eqs. (11) and (C2), to find

f−1 ¼
�

1 −
rh

r

�

−1
�

1 − ε

�

1 −
2M

r

�

−1
�

−
5

8

M

r

þ 216M6

r6
−
392M7

r7

��

: ðC4Þ

Although not evident, the term proportional to ε inside the

square brackets is regular at r ¼ 2M, with value −3=2. To
see this explicitly, we use the factorization

−
5

8

M

r
þ 216M6

r6
−
392M7

r7

¼ −

�

1 −
2M

r

��

5

8

M

r
þ 5

4

M2

r2
þ 5

2

M3

r3

þ 5M4

r4
þ 10M5

r5
−
196M6

r6

�

: ðC5Þ

Using this result, we obtain Eq. (13b). Equation (13a) is

derived in the same manner. We find

N2f ¼
�

1 −
rh

r

��

1þ 2εδN þ ε
δrh=rþ δf

1 − 2M=r

�

;

¼
�

1 −
rh

r

��

1 − ε

�

5

8

M

r
þ 5

4

M2

r2
þ 5

2

M3

r3
þ 5M4

r4

þ 10M5

r5
þ 20M6

r6

��

; ðC6Þ

where we used δN ¼ −108M6=r6.

APPENDIX D: THE TORTOISE COORDINATE

In this Appendix, we analyze in detail the properties of

the tortoise coordinate x, defined in Eq. (16),

dx=dr ¼ 1=ðNfÞ:

We use the resummation recipe introduced in Sec. II B and

detailed in Appendix C to rewrite Eq. (16) as

dx

dr
¼

�

1 −
rh

r

�

−1
�

1þ ε

�

5

8

M

r
þ 5

4

M2

r2
þ 5

52

M3

r3

þ 5M4

r4
þ 10M5

r5
−
88M6

r6

��

: ðD1Þ

This differential equation can be solved analytically, and

the solution can be schematically written as

x ¼ rþ rh logðr=rh − 1Þ þ εδxðrÞ; ðD2Þ

where we set the integration constant to be −rh log rh. The
expression for δx is somewhat lengthy and we omit it for

brevity. In the limit of general relativity (ε ¼ 0), we recover

the usual Schwarzschild formula

x ¼ rþ 2M log½r=ð2MÞ − 1�: ðD3Þ

For x to be a bona fide tortoise coordinate, we expect that
x → −∞ as r → rh and that x → ∞ as r → ∞. Whether

this is the case for all values of ε is not immediately evident.

Let us first consider the limit of spatial infinity. In this limit,

an expansion of Eq. (D2) yields:

x ≃ rþ rh

�

1þ ε
5

8

M

rh

�

log r; for r=rh ≫ 1: ðD4Þ

Because the term in parentheses is Oð1Þ, and because r
grows faster than log r, we conclude that x → ∞ when

r → ∞, as desired.

We now consider the near-horizon limit. In this limit, an

expansion of Eq. (D2) yields:

x ≃ rh þ rh logðr − rhÞ þ εrh½p0 þ p1 log rh

þ p2 logðr − rhÞ�; for r=rh ∼ 1; ðD5Þ

where pi (i ¼ 1, 2, 3) are sextic polynomials in M=r.
The coefficients in the polynomials are not all positive,

and, consequently, we need to look whether x → −∞

as r → rh in more detail. We first note that the dominant

terms in Eq. (D5) for r ≈ rh are those proportional to

logðr − rhÞ, i.e.,

x ≃ rhð1þ εp2Þ logðr − rhÞ; ðD6Þ
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where p2 is:

p2 ¼
5

8

M

rh
þ 5

4

M2

r2h
þ 5

2

M3

r3h
þ 5M4

r4h
þ 10M5

r5h
−
88M6

r6h
: ðD7Þ

In units in whichM ¼ 1 and for rh ≈ 2 [cf. Eq. (9)], p2 has

a magnitude of Oð10−1Þ. Hence, depending on the value of
ε, x can approach either �∞ in the limit r → rh.
Numerically, we found that 1þ εp2 becomes negative

for ε≳ 0.59. This value of ε is one order of magnitude

larger than the values we considered in the main text.

Hence, x, as given by Eq. (D2), has the desired properties of
a tortoise coordinate for all practical purposes.

APPENDIX E: COEFFICIENTS IN THE

EFFECTIVE POTENTIAL

In this Appendix, we present the coefficients v
ð�Þ
il that

appear in the EFT corrections δV
ð�Þ
l

to the Zerilli and

Regge-Wheeler potentials (20). The coefficients v
ðþÞ
il in the

polar-parity potential are

v
ðþÞ
1l

¼−5λ2
l
ðλlþ1Þ;

v
ðþÞ
2l

¼−5λ2
l
ð2λlþ5Þ;

v
ðþÞ
3l

¼−5λlð4λ2lþ10λlþ9Þ;

v
ðþÞ
4l

¼−5ð8λ3
l
þ20λ2

l
þ18λlþ9Þ; ðE1Þ

v
ðþÞ
5l

¼10½−8λ3
l
−20λ2

l
−18λl−288λ3

l
ðl2þl−6Þ=Λl−9�;

v
ðþÞ
6l

¼4f176λ3
l
þ116λ2

l
−90λl

þ54λ2
l
½15l2ðlþ1Þ2−336lðlþ1Þþ836�=Λl−45g;

v
ðþÞ
7l

¼24f88λ2
l
−30λlþ15λl½147l2ðlþ1Þ2

−1304lðlþ1Þþ2164�=Λl−15g;

v
ðþÞ
8l

¼144f−5þ44λlþ3λl½1073lðlþ1Þ−3988�=Λlg;

v
ðþÞ
9l

¼6336þ½778608lðlþ1Þ−1938240�=Λl;

v
ðþÞ
10l

¼879552=Λl:

The coefficients v
ð−Þ
il in the axial-parity potential are

v
ð−Þ
1l

¼ −
5

8
lðlþ 1Þ;

v
ð−Þ
2l

¼ −
5

4
ðl2 þ l − 3Þ;

v
ð−Þ
3l

¼ −
5

2
ðl2 þ l − 3Þ;

v
ð−Þ
4l

¼ −5ðl2 þ l − 3Þ;

v
ð−Þ
5l

¼ 1430lðlþ 1Þ − 8610;

v
ð−Þ
6l

¼ 41460 − 3332lðlþ 1Þ;

v
ð−Þ
7

¼ −48192: ðE2Þ

We recall that λl and Λl, appearing in Eqs. (E1) and

(E2), are defined in Eq. (19).
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