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AbstractÐ This paper proposes a new model reduction
method that improves the prediction accuracy of dynamic
modes decomposition with control (DMDc). DMD is a
data-driven technique that extracts low-order models from
high-dimensional complex dynamic systems with actu-
ation. With DMDc, an input-output reduced-order model
can be obtained for system identification and prediction.
In this work, in order to better capture the nonlinear
behavior, an adaptive clustering method is introduced to
group the snapshots obtained by experimental data or
numerical simulation into several sub-regions that display
similar behavior to construct a reduced-order model. Clus-
ter methods with DMDc are combined to construct the
local reduced-order model. Furthermore, with the predic-
tion process, new incoming data is fed into the clusters
to update the cluster-DMDc reduced order model to ob-
tain more accurate predictions. Time clustering is applied
to the snapshots generated by the Burgers’ equations
with boundary actuation, and the adaptive cluster DMDc
reduced-order model outperforms the standard DMDc.

Index TermsÐ Reduced order modeling, Dynamic mode
decomposition with control, and fluid flow systems.

I. INTRODUCTION

Dynamic mode decomposition (DMD) [1] is often used in

the field of fluid dynamics since it is capable of capturing

the spatial-temporal structure of the dynamic flows. DMD

has also been applied in other fields such as neuroscience,

load forecasting, parameter estimation, and image process-

ing [2]. DMD can be considered as a finite-dimensional

approximation of the infinite-dimensional, linear Koopman

operator which describes the evolution of state measurements

[3] [4] [5] [6]. In recent years, many extensions of DMD

have been proposed. For instance, [2] directly imposes the

sparsity regularization and the nonnegativity constraint on

the structures of the DMD modes. In [7], an online DMD

framework was proposed. As time evolves, online DMD

updates the approximation of the system dynamics using

incoming data and computes the DMD matrix with rank-1

updates without the need to store all of the data. In [8],

DMD with control (DMDc) was proposed to take actua-

tion into account. The general notion of clustering is also

used in various domains such as data compressing, image
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processing, etc. In [9], [10], [11] [12], Centroid Voronoi

Tessellations (CVT), a clustering method based on k-means

algorithm, is used to construct a reduced order model by

choosing the cluster centroids as the reduced basis. In [13],

the authors group snapshots into several clusters, and then

cluster centroids partition the state space in complementary

non-overlapping regions. Based on these regions, the state

transition matrix is constructed using a Markov process and

finally applied to a mixing layer problem. In [14], differential

geometry properties of Riemannian manifolds are used to

produce suitable reduced-order bases for nonlinear dynamical

systems. The authors of [15] [16] (based on the work of

[17]) used the fact that snapshots generated by nonlinear

systems belong to nonlinear manifolds, however, popular

reduced order models such as DMD and Proper Orthogonal

Decomposition (POD) [11] are inherently linear, that is, they

assume that the snapshots belong to a linear vector space.

Then in [15] [16] [18] [19], the authors propose to quantify

the global nonlinear manifold geodesic by partitioning the

manifold into several regions and then approximating us-

ing local Euclidean distances. Snapshot data were grouped

into several sub-regions, and reduced-order POD models

were constructed in each sub-region. The results show a

significant improvement over conventional POD. In [19] off-

line cluster DMD and DMDc algorithms are proposed with

application to the predictive control of hydraulic fracturing.

The clustering method is based on an algorithm proposed in

[20]. In contrast, here the k-means clustering algorithm is

used in conjunction with DMD and DMDc to yield online

cluster-DMD and DMDc algorithms that adapt to incoming

data. More specifically, this paper presents an extension of

the work in [16] [8]. We propose the use of a clustering

algorithm to group the system snapshots obtained through

experimental data or numerical simulation into several sub-

regions that display similar behavior to construct a reduced-

order model for each sub-region. The k-means algorithm [21]

is used to group the snapshots that have similar behavior

into clusters. In particular, time clustering is applied to the

snapshots generated by the Burgers’ equation with boundary

actuation resulting in a cluster DMDc reduced order method

that yields better results than standard DMDc. Next, in the

prediction task, rather than group the clusters all at once,

we sequentially group the clusters and adaptively update the

DMDc reduced order model, consequently transforming the
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offline data-driven technique into an online technique. The

Burgers’ equation is used as a surrogate to the Navier-Stokes

equation since it has the same nonlinearity as the latter.

It is a fundamental partial differential equation occurring

in several fields including fluid mechanics, acoustics, gas

dynamics, and traffic flow [22]. Finally, cluster DMDc is

shown to outperform standard DMDc in general by exploiting

a property of the Frobenius matrix norm in Lemma 2.1. This

paper is organized as follows: Section II provides a brief

background on DMDc and the k-means clustering algorithm,

followed by the proposed adaptive cluster DMDc reduced

order modeling method. Section III presents a numerical

study that illustrates the adaptive cluster DMDc reduced

order model with a comparison with conventional DMDc.

Concluding remarks are provided in Section IV.

II. BACKGROUND: DYNAMIC MODE DECOMPOSITION

A. DMD and DMDc

DMD aims to extract information about a dynamical sys-

tem from an ensemble of experimental or numerical snapshot

data. Letting xk ∈ R
n be a measurement made at time k,

DMD assumes that (xk, xk+1) can be approximated by a

linear operator A as [8]:

xk+1 ≈ Axk (1)

Represented in matrix form:

X =





| | |
x1 x2 . . . xN−1

| | |



 (2)

X ′ =





| | |
x2 x3 . . . xN

| | |



 (3)

Where m is the total number of the snapshots and X ′ is the

time shift snapshots matrix of X , the goal of DMD is to

identify a matrix A ∈ R
n×n that best approximates X ′ ≈

AX . Such an estimate can be obtained according to [23]:

A = X ′X† (4)

Where X† is the Moore-Penrose pseudoinverse of X . For

an underdetermined system, DMD finds the matrix A that

solves:

min
A

∥X ′ −AX∥F , (5)

i.e., A can be regarded as a least-squares solution relating

X ′ and X . Singular value decomposition (SVD) can also be

used to compute a lower-rank approximation for A,

X = UΣV ∗ =
[

Ũr Ũrem

]

[

Σ̃r 0
0 Σrem

] [

Ṽr

∗

Ṽ ∗
rem

]

≈ ŨrΣ̃rṼr

∗

(6)

Where U ∈ R
n×n, Ũr ∈ R

n×r is the first r columns of U ,

Σ ∈ R
n×m−1, Σ̃ ∈ R

r×r is r × r matrix extracted from the

left upper corner of Σ, V ∗ ∈ R
m−1×m−1 and Ṽr

∗
∈ R

r×m−1

is the first r row of V ∗, ∗ denotes the complex conjugate

transpose. r is the truncation value, rem are the remaining

singular values. When constructing a reduced order model,

an appropriate r should be chosen to retain important system

information while avoiding overfitting. With the snapshots in

hand, the approximated DMD model A using SVD can be

computed as [8]:

A ≈ X ′ṼrΣ̃r

−1
Ũr

∗
= Ā (7)

where Ā is an approximation of operator A. The dynamical

system can be represented by xk+1 = Āxk. Reduced order

model can be constructed by the transform x = Ũ x̃, then [8]

:

x̃k+1 = Ãx̃k (8)

In a similar vein, DMDc is a variant of the DMD algorithm

that characterizes the relationship between a future measure-

ment xk+1 with the current measurement xk and current

control input uk. With all pairs of state measurements and

control signals at hand, the system is represented by

xk+1 = Axk +Buk (9)

Where uk ∈ R
l and B ∈ R

n×l. To handle the incorporation

of control input, consider a new matrix of control input

snapshots defined as:

Γ =





| | |
u1 u2 . . . um−1

| | |



 (10)

In conjunction with the previously defined matrices X and

X
′

, the dynamical system can be represented according to

[8]

X ′ ≈ AX +BΓ (11)

The goal of DMDc is to find the best linear operators A and

B to approximate the dynamical system with actuation. In

this case, to construct the relationship between unknown A,

B with known data X and Γ, (11) is rewritten as [8]:

X ′ ≈
[

A B
]

[

X
Γ

]

= CΩ (12)

where C = [A B], Ω = [X Γ]T . With a similar form as

DMD in (4), DMDc is defined as C = X ′Ω†, where C can

be found by minimizing the Frobenius norm ∥C −X ′Ω†∥F .

As in DMD, SVD is used on the augmented input data matrix

Ω, that is, Ω = UΣV ∗ ≈ Ũ Σ̃Ṽ ∗, with the truncation value

r. Then, the approximated linear operators A and B can be

found as [8]:

C ≈ X ′Ṽ Σ̃−1Ũ∗

[A B] ≈ [X ′Ṽ Σ̃−1Ũ∗
1 X ′Ṽ Σ̃−1Ũ∗

2 ]
(13)

where C ∈ R
n×(n+l), Ũ1 ∈ R

n×r, Ũ2 ∈ R
l×r, Ũ = [Ũ1 Ũ2].

In order to find a reduced order representation of dynamic

systems, a second SVD on the output matrix X ′ is used
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[8], where X ′ ≈ Û Σ̂V̂ with the truncation value p, here

Û ∈ R
n×p, Σ̂ ∈ R

p×p, V̂ ∗ ∈ R
p×m−1. Then the reduced

order system matrices for A and B can be realized with the

linear transformation x = Û x̃:

Ã = Û∗AÛ = Û∗X ′Ṽ Σ̃−1Ũ∗
1 Û

B̃ = Û∗AÛ = Û∗X ′Ṽ Σ̃−1Ũ∗
2

(14)

The reduced order dynamic system with the given control

inputs can be constructed as:

x̃k+1 = Ãx̃k + B̃ũk (15)

After presenting the background for standard DMD and

DMDc, next, clustering is introduced.

B. k-means clustering

In this work, we consider clustering in conjunction with the

implementation of DMDc. Specifically, we implement the k-

means clustering method which groups the snapshots together

by calculating the minimal distance between each point and

the kth cluster centroid according to the Euclidean distance

d(xi, xj) =
√

(xi − xj)T (xi − xj), where d is the Euclidean

distance between two distinct snapshots xi and xj , [21].

Let ci be the argument of the minimum distance between

xi and xcj , i.e., ci = argminj=1,...,K d(xi, xcj ). The new

centroids are xcj =
∑

N
i=1

1ci=jxi
∑

N
i=1

1ci=j
, where j = 1, . . . ,K, K

is the number of clusters, and 1cj=j = 1 if ci = j and

1cj=j = 0 otherwise. If S̃ is the set of all the snapshots,

and if S̃i represents the ith cluster with center xci , then

S̃ = ∪k
i=1S̃i, where the union is a union of disjoint sets.

In the next section, the clusters S̃i are used to derive cluster

DMDc.

C. Cluster DMDc

Each cluster of snapshots S̃i is used to form the matrix

of snapshots Xi at time k and X ′
i at time k + 1. In this

case, since for any m × n matrix M = (mij), ∥M∥2F =
∑m

i=1

∑n

j=1 |mij |
2, i.e., the Frobenius norm of a matrix is

equal to the sum of the Frobenius norms of any partition.

This observation results in the following Lemma.

Lemma 2.1: For any matrix X ′, X ∈ Rn×(m−1), and any

K partitions of compatible dimensions X ′
i and Xi, of X ′ and

X , respectively, the following holds:

min
A

∥X ′ −AX∥2F ≥

K
∑

i=1

min
Ai

∥X ′
i −AiXi∥

2
F (16)

Proof:

min
A

∥X ′ −AX∥2F =min
A

K
∑

i=1

∥X ′
i −AXi∥

2
F

≥
K
∑

i=1

min
A

∥X ′
i −AXi∥

2
F

=
K
∑

i=1

∥X ′
i −AiXi∥

2
F

(17)

since the minimum with respect to the matrix A of the

sum of the norms is always greater or equal to the sum

of the minimum of each norm with respect to A. And the

minimum is achieved for each cluster separately for some

matrix Ai, i = 1, . . . ,K, where Ai = X ′
iX

†
i . This clearly

shows that cluster DMDc will provide a better fit to the data

than conventional DMDc in general.

As seen in algorithm 1, after obtaining the snapshots, and the

number of clusters is chosen, the k-means algorithm groups

the snapshot data into several sub-regions. Following section

II, a reduced order model is constructed for each cluster as

follows:

Ãi = Ûi

∗
X ′

iṼiΣ̃i

−1
Ũ∗
i1
Ûi

B̃i = Ûi

∗
X ′

iṼiΣ̃i

−1
Ũi2

(18)

When the control inputs are zeros, the DMDc is identical to

the DMD.

Algorithm 1: Cluster-DMD reduced order model

Input: Snapshots dataset X , X ′ and Γ
1 Feed X to the k-means algorithm for k clusters with

the corresponding Xi,Γi, 1-time shiftX ′
i;

2 for i = 1 to k do

3 Construct the input matrix Ωi = [Xi Γi]
T and

find SVD of Ωi,Ωi ≈ [Ũi1 Ũi2 ]
T Σ̃iṼi ;

4 Find the SVD of 1-time shift matrix,

X ′
i ≈ ÛiΣ̂iV̂i ;

5 Compute the reduced order model Ãi =

Ûi

∗
X ′

iṼiΣ̃i

−1
Ũ∗
i1
Ûi, B̃i = Ûi

∗
X ′

iṼiΣ̃i

−1
Ũi2

Output: Reduced order model Ãi, B̃i for each cluster

D. Cluster DMDc with adaptation

DMDc is a powerful technique for system identification.

Inequality (16) shows cluster-DMDc has generally better

performance in representing data, i.e. system identification.

Furthermore, DMDc is also a potential predictive tool, to

improve its prediction accuracy a new method is proposed.

DMDc is an offline data-driven method, in [7] an online

scheme for DMD is proposed for online system identification

for large-scale time-varying systems. The scheme updates the

system’s dynamics as new data becomes available transform-

ing the off-line technique to an online technique. Borrowing

the idea as in [7], to obtain more accurate predictions, we

propose an online cluster DMDc method which results in an

adaptive cluster DMDc reduced model as new prediction data

are gathered. The key idea here is that with the prediction

process, we are adding the predicted solution to the nearest

cluster and updating the DMDc reduced order models for the

corresponding cluster.

Given the initial state x0, with the boundary control sequence

uk, k = 1. . . , n, the prediction process is as follows: xk+1 =
Ãixk + B̃iuk, i = argminj=1,. . . ,K |xk+1 − xcj |

2
2, where i

is the index of the ith cluster, add xk+1 to the ith cluster

obtaining a new cluster Xi, then SVD is applied to obtain
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the updated Ãi, B̃i as seen in Algorithm 2.

In the next section, this method is applied to the Burgers’

equation, in particular, the method is shown to be more

effective at predicting the dynamics than the offline DMDc

and cluster-DMDc methods.

III. APPLICATION TO THE BURGERS’ EQUATION

A. 1-D Burgers’ equation

DMD is often used in fluid dynamics applications [23] [1]

[24]. The Burgers’ equation is a partial differential equation

(PDE) that is a simplified version of the Navier-Stokes

equations when neglecting the pressure term and external

force. It takes the following form [22]:

∂w

∂t
+ w

∂w

∂x
=

1

Re

∂2w

∂x2
, x ∈ Ω (19)

Where Ω = [l, r], t ∈ [0, T ]. The initial and boundary

conditions are specified as follows:

w(x, t0) = w0(x)

w(∂Ω, t) =

[

w(l, t)
w(r, t)

]

=

[

ul(t)
ur(t)

]

= u(t)
(20)

The term 1
Re

is kinematic viscosity [22]. Re is the counterpart

to the Reynolds number from the Navier-Stokes equation, and

x and t are the space and time variables, respectively. ∂Ω is

the boundary of Ω. ul, ur are left and right boundary inputs.

Finite difference approximation is applied:

dwi

dt
+ wi

wi − wi−1

∆x
=

1

Re

wi+1 − 2wi + wi−1

∆x2
(21)

Where i = 0, 1, . . . , N . Equation (21) can be written in the

matrix form as:

ẇ = Aw +Bu+ F (w) (22)

In (22), Aw is the linear term
wi+1−2wi+wi−1

∆x2 and F (w) is

the nonlinear term wi
wi−wi−1

∆x
in (21).

B. Numerical Snapshots

We utilize a finite difference approximation in Matlab to

numerically solve the initial boundary value problem with

and without (open loop) control to obtain the snapshots. In

the simulation, we choose Re = 520, N = 800, Ω = [l, r] =
[0, 1], t ∈ [0, T ], T = 10s with time step size ∆t = 0.00125s
and space step size 0.004. The full-order model consists of

251 states. Next, the DMDc, cluster DMDc, and adaptive

cluster DMDc results will be presented.

C. Identification

1) Cluster DMDc with boundary inputs: In this case, bound-

ary inputs are given as:

ul = −0.2× cos(3πt/T )

ur = 0.8× cos(πt/T )
(23)

Where ul and ur are the left and right boundary inputs,

respectively.

Fig. 1. Snapshots are generated by the Burgers’ equation with non-
zero boundary input as in (23).

Fig. 2. Snapshots are generated by the Burgers’ equation with non-
zero boundary input. The figure shows the distribution of clusters along
the snapshots index.

With the snapshots at hand, the k-mean algorithm groups

the snapshots into 6 sub-regions. The 2 truncation numbers

for the constructed reduced order model are chosen to

be r = 8, p = 5. In Fig. 2 the distribution of cluster

index along time steps is shown. Then the reduced order

models Ãi, B̃i, i = 1, . . . , 6 of order 5 for each cluster are

constructed. As seen in (1), DMDc reduced order model

Ã and cluster DMDc Ãi, B̃i are used to reconstruct the

dynamical system. In Fig. 3, three snapshots are shown.

One can see that given the same initial state and actuation

data, the DMDc and cluster DMDc reduced order model can

represent the system accurately. In the right panel of Fig. 3

and Fig. 6, the proposed cluster DMDc method outperforms

the standard DMDc [8]. Next, we will use the resulting

models for prediction.

D. Prediction

Cluster DMDc is implemented as an offline data-driven

method. Once a representative model is obtained, the under-

lying governing equation is no longer needed. However, off-

Fig. 3. Snapshots are generated by the Burgers’ equation with non-
zeros boundary inputs, DMDc and cluster DMDc reduced order models
are used to reconstruct the snapshot data.
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Fig. 4. At each time step, the norm of the errors of DMDc and cluster
DMDc reconstructed solutions and snapshots, respectively, are shown.

That is, ∥xDMDc

i
− xi∥ v.s. ∥x

Clu−DMDc

i
− xi∥ are plotted.

line prediction models need to be trained with large datasets,

the new proposed adaptive Cluster DMDc avoids using pre-

processed data. First, the following boundary inputs are given

below to construct the DMDc reduced order models for each

cluster as seen in Algorithm (1):

ul = 0.2 cos(3πt/T ) ur = −0.8 cos(πt/T ) (24)

1) Algorithm for Cluster DMDc: Next, K = 6 is chosen

to generate clusters, then we feed the training data into

algorithm 1 to obtain a cluster DMDc reduced model for

each cluster. For prediction, given the initial condition and

actuation data for the system, then at the next time step,

the state solution belongs to a specific cluster, that is, in

the next step for prediction, the reduced order model should

switch to the corresponding cluster of the current state

solution, meanwhile, the incoming state data is fed into the

specific cluster to update the DMDc reduced order model to

accommodate general boundary control inputs. Below is the

algorithm for the prediction process.

Algorithm 2: adaptive Cluster DMD with control

Input: Initial state x1, Snapshots X

1 Apply Algorithm 1 to get Ãi, B̃i based on X
2 for i = 1 : n(time steps) : end do

3 compute the distance between the xi+1 and all k
clusters centroids ci, . . . , ck ;

4 find j = argminj ∥xi − cj∥;

5 add new data xi into jth cluster and update Ãj ,

B̃j using algorithm (1);

6 compute the next states solution x̃k+1 based on

(15) ;

Output: Prediction of x2, . . . , xm

2) Prediction: The adaptive cluster DMDc model

is used to make predictions for the dynamic system.

Here, 4 separate trials are considered with outputs

generated with the following boundary inputs. For

the comparison, some boundary inputs are set at

different magnitudes and frequencies as follows:

ul1 = 0.2 cos(3πt/T ), ur1 = −0.8 cos(πt/T ), ul2 =
0.18 cos(3πt/T ), ur2 = −0.8 cos(πt/T ), ul3 =

0.19 cos(3πt/T ), ur3 = −0.81 cos(πt/T ), ul4 =
0.19 cos(3πt/T ), ur4 = −0.81 cos(1.5πt/T ).
The first boundary inputs considered, ul1 , ur1 are used to

construct the basic cluster-DMDc reduced order model, then

we predict the system governed by the Burgers’ equation

with different boundary inputs ul2,r2 , ul3,r3 , ul4,r4 . As seen

in the 2nd trial, boundary inputs ul2,r2 , ul2 are different from

ul1 in magnitude, in the 3rd trial, the left and right boundary

inputs are different from ul1 , ur1 in magnitude. For the 4th

trial, the magnitude of boundary inputs is the same as in

the 3rd trial, but the frequency of the right boundary input

is different. That is, the generality of the cluster-DMDc is

tested and an adaptive Cluster-DMDc reduced order model

is proposed. In Fig. 5, at each prediction iteration, the L2

errors are calculated and shown. The blue, red, and black

curves are prediction performance using DMDc, cluster

DMDc and adaptive cluster DMDc, respectively. In the table

below Fig. 5, the overall measured square error between

the real system and the predicted system is calculated.

Combining the information in the figure and table, the

proposed adaptive cluster DMDc has the best prediction

performance.
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Fig. 5. a) ul = 0.2 × cos(3πt/T ), ur = −0.8 × cos(πt/T ),
b) ul = 0.18 × cos(3πt/T ), ur = −0.8 × cos(πt/T ), c) ul =
0.19× cos(3πt/T ), ur = −0.81× cos(πt/T ) , d) ul = 0.19×
cos(3πt/T ), ur = −0.81 × cos(1.5πt/T )

Fig. 6. This figure shows the prediction details in trial 3 at t= 0.1s,
t=0.5s, and t =1s, respectively.
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Overall MSE DMDc Clu-DMDc Adaptive Clu-DMDc

Trial 1 0.0206 0.00079 0.00064
Trial 2 0.0206 0.0013 0.00083
Trial 3 0.0222 0.0016 0.0012
Trial 4 0.0310 0.0484 0.0015

TABLE I

PREDICTION PERFORMANCE USING DMDC, CLUSTER DMDC, AND

ADAPTIVE CLUSTER DMDC

IV. CONCLUSION

In this paper, a cluster DMDc reduced-order modeling with

an adaptation strategy is proposed. This technique extends

DMDc [8] which extracts a low-order model with actuation.

The clustered DMDc presented here is based on the fact

that nonlinear system snapshot solutions belong to nonlinear

manifolds for which geodesics can be approximated locally,

i.e., in clusters, by the Euclidean distance. By grouping the

snapshots that have similar features the clusters are obtained.

DMDc reduced-order modeling is then applied to each cluster

to obtain the cluster DMDc. It is shown that cluster DMDc

provides better fits to model data than standard DMDc in

general. By updating the cluster DMDc reduced-order model

sequentially, an online data-driven technique for predictive

purposes is obtained. This is illustrated in simulation results

applied to the Burgers’ equation. A number of open questions

and possible extensions remain. For each cluster, the number

of dynamic modes is fixed, while for some clusters there

would possibly exist unstable modes so that the prediction

error would increase when the dynamic system moves into

these clusters. In [25], a user-defined low-order rank DMD

model is introduced which consistently provides a more accu-

rate approximation of the true system eigenvalues than DMD.

In addition, how to choose the optimal number of clusters is

not considered in this work. The latter may further improve

the accuracy of the proposed adaptive Cluster-DMDc. In [26],

a quantization error model was proposed to generate optimal

clusters for a given dataset. Future work will focus on finding

the optimal cluster number and selecting the best modes

to improve performance. Further comparison, in particular,

with the Extended DMD (EDMD), a data-driven method to

approximate the Koopman operator [27], will be carried out.
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