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Adaptive Cluster-Dynamic Mode
Decomposition with Application to the Burgers’
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Abstract— This paper proposes a new model reduction
method that improves the prediction accuracy of dynamic
modes decomposition with control (DMDc). DMD is a
data-driven technique that extracts low-order models from
high-dimensional complex dynamic systems with actu-
ation. With DMDc, an input-output reduced-order model
can be obtained for system identification and prediction.
In this work, in order to better capture the nonlinear
behavior, an adaptive clustering method is introduced to
group the snapshots obtained by experimental data or
numerical simulation into several sub-regions that display
similar behavior to construct a reduced-order model. Clus-
ter methods with DMDc are combined to construct the
local reduced-order model. Furthermore, with the predic-
tion process, new incoming data is fed into the clusters
to update the cluster-DMDc reduced order model to ob-
tain more accurate predictions. Time clustering is applied
to the snapshots generated by the Burgers’ equations
with boundary actuation, and the adaptive cluster DMDc
reduced-order model outperforms the standard DMDc.

Index Terms— Reduced order modeling, Dynamic mode
decomposition with control, and fluid flow systems.

[. INTRODUCTION

Dynamic mode decomposition (DMD) [1] is often used in
the field of fluid dynamics since it is capable of capturing
the spatial-temporal structure of the dynamic flows. DMD
has also been applied in other fields such as neuroscience,
load forecasting, parameter estimation, and image process-
ing [2]. DMD can be considered as a finite-dimensional
approximation of the infinite-dimensional, linear Koopman
operator which describes the evolution of state measurements
[3] [4] [5] [6]. In recent years, many extensions of DMD
have been proposed. For instance, [2] directly imposes the
sparsity regularization and the nonnegativity constraint on
the structures of the DMD modes. In [7], an online DMD
framework was proposed. As time evolves, online DMD
updates the approximation of the system dynamics using
incoming data and computes the DMD matrix with rank-1
updates without the need to store all of the data. In [8],
DMD with control (DMDc) was proposed to take actua-
tion into account. The general notion of clustering is also
used in various domains such as data compressing, image
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processing, etc. In [9], [10], [11] [12], Centroid Voronoi
Tessellations (CVT), a clustering method based on k-means
algorithm, is used to construct a reduced order model by
choosing the cluster centroids as the reduced basis. In [13],
the authors group snapshots into several clusters, and then
cluster centroids partition the state space in complementary
non-overlapping regions. Based on these regions, the state
transition matrix is constructed using a Markov process and
finally applied to a mixing layer problem. In [14], differential
geometry properties of Riemannian manifolds are used to
produce suitable reduced-order bases for nonlinear dynamical
systems. The authors of [15] [16] (based on the work of
[17]) used the fact that snapshots generated by nonlinear
systems belong to nonlinear manifolds, however, popular
reduced order models such as DMD and Proper Orthogonal
Decomposition (POD) [11] are inherently linear, that is, they
assume that the snapshots belong to a linear vector space.
Then in [15] [16] [18] [19], the authors propose to quantify
the global nonlinear manifold geodesic by partitioning the
manifold into several regions and then approximating us-
ing local Euclidean distances. Snapshot data were grouped
into several sub-regions, and reduced-order POD models
were constructed in each sub-region. The results show a
significant improvement over conventional POD. In [19] off-
line cluster DMD and DMDc algorithms are proposed with
application to the predictive control of hydraulic fracturing.
The clustering method is based on an algorithm proposed in
[20]. In contrast, here the k-means clustering algorithm is
used in conjunction with DMD and DMDc to yield online
cluster-DMD and DMDc algorithms that adapt to incoming
data. More specifically, this paper presents an extension of
the work in [16] [8]. We propose the use of a clustering
algorithm to group the system snapshots obtained through
experimental data or numerical simulation into several sub-
regions that display similar behavior to construct a reduced-
order model for each sub-region. The k-means algorithm [21]
is used to group the snapshots that have similar behavior
into clusters. In particular, time clustering is applied to the
snapshots generated by the Burgers’ equation with boundary
actuation resulting in a cluster DMDc reduced order method
that yields better results than standard DMDc. Next, in the
prediction task, rather than group the clusters all at once,
we sequentially group the clusters and adaptively update the
DMDc reduced order model, consequently transforming the
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offline data-driven technique into an online technique. The
Burgers’ equation is used as a surrogate to the Navier-Stokes
equation since it has the same nonlinearity as the latter.
It is a fundamental partial differential equation occurring
in several fields including fluid mechanics, acoustics, gas
dynamics, and traffic flow [22]. Finally, cluster DMDc is
shown to outperform standard DMDc in general by exploiting
a property of the Frobenius matrix norm in Lemma 2.1. This
paper is organized as follows: Section II provides a brief
background on DMDc and the k-means clustering algorithm,
followed by the proposed adaptive cluster DMDc reduced
order modeling method. Section III presents a numerical
study that illustrates the adaptive cluster DMDc reduced
order model with a comparison with conventional DMDc.
Concluding remarks are provided in Section IV.

[I. BACKGROUND: DYNAMIC MODE DECOMPOSITION
A. DMD and DMDc

DMD aims to extract information about a dynamical sys-
tem from an ensemble of experimental or numerical snapshot
data. Letting x; € R™ be a measurement made at time k,
DMD assumes that (xy,2ky1) can be approximated by a
linear operator A as [8]:

Tpt1 ~ Az k ( 1 )
Represented in matrix form:

TN-1 2

TN 3)

Where m is the total number of the snapshots and X' is the
time shift snapshots matrix of X, the goal of DMD is to
identify a matrix A € R™*" that best approximates X' =
AX. Such an estimate can be obtained according to [23]:

A=X'XxT (4)

Where X is the Moore-Penrose pseudoinverse of X. For
an underdetermined system, DMD finds the matrix A that
solves:

min | X' — AX||F, 5)

i.e., A can be regarded as a least-squares solution relating
X’ and X. Singular value decomposition (SVD) can also be
used to compute a lower-rank approximation for A,

I ]

Vie
Where U € R"f”, Ur € R™*" is the first 7 columns of U,
Y e RPXm—1 3 € R™ " is r x r matrix extracted from the

X=Usv*=[T, Urem]{zo’“ 20

1m

~ U5V,

left upper corner of &, V* € Rm=1xm=14pd V" ¢ Rrxm~=1
is the first » row of V*, % denotes the complex conjugate
transpose. r is the truncation value, rem are the remaining
singular values. When constructing a reduced order model,
an appropriate r should be chosen to retain important system
information while avoiding overfitting. With the snapshots in
hand, the approximated DMD model A using SVD can be
computed as [8]:

AxX'VE, U =4 @
where A is an approximation of operator A. The dynamical

system can be represented by z; = Axy. Reduced order
model can be constructed by the transform x = Uz, then [8]

Fpyr = Ay, ®)

In a similar vein, DMDc is a variant of the DMD algorithm
that characterizes the relationship between a future measure-
ment .y with the current measurement x; and current
control input uy. With all pairs of state measurements and
control signals at hand, the system is represented by

Tpq1 = Axy + Buy )

Where u, € R! and B € R™*!, To handle the incorporation
of control input, consider a new matrix of control input
snapshots defined as:

(10)

In conjunction with the previously defined matrices X and
X, the dynamical system can be represented according to
(8]

X'~ AX + BT (11)

The goal of DMDc is to find the best linear operators A and
B to approximate the dynamical system with actuation. In
this case, to construct the relationship between unknown A,
B with known data X and I, (11) is rewritten as [8]:

X

r (12)

X' =~ [ A B ] { } =C0
where C = [A B], Q = [X T|T. With a similar form as
DMD in (4), DMDc is defined as C' = X’Qf, where C can
be found by minimizing the Frobenius norm ||C' — X'Qf || .
As in DMD, SVD is used on the augmented input data matrix
Q, that is, Q = UXV* = Uf]f/*, with the truncation value
r. Then, the approximated linear operators A and B can be
found as [8]:

C~XVylu* 13
[A B~ [X'VE~lU; X'VEiU3]

where C' € R7"X(n+l),ﬁ1 S R"XT,[NJQ S RZXT,U = [ﬁl UQ]
In order to find a reduced order representation of dynamic
systems, a second SVD on the output matrix X’ is used
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[8], where X’ =~ USV with the truncation value p, here
U e RV % € RP*P, V* ¢ RP*™1 Then the reduced
order system matrices for A and B can be realized with the
linear transformation z = U#:

A=UAU = U X'VE'UU

R TT* ATT — Tr* /Y 5 —177%* (14)
B=U"AU =U*X'VE U,

The reduced order dynamic system with the given control
inputs can be constructed as:

Fpp1 = AZy + Biy, (15)
After presenting the background for standard DMD and
DMDc, next, clustering is introduced.

B. k-means clustering

In this work, we consider clustering in conjunction with the
implementation of DMDc. Specifically, we implement the k-
means clustering method which groups the snapshots together
by calculating the minimal distance between each point and
the kth cluster centroid according to the Euclidean distance
d(z;,z;) = \/(xi — ;)T (x; — ), where d is the Euclidean
distance between two distinct snapshots x; and x;, [21].
Let ¢; be the argument of the minimum distance between
x; and z.,, i.e., ¢; = argminj—y . x d(z;, ;). The new

. 27],\]:1 le,—j4 .
centroids are x., = 1"771:]’ where j = 1,..., K, K
is the number of clusteg,1 and 1=y = 1if ¢; = j and
1c.7.:j = 0 otherwise. If S is the set of all the snapshots,
and if S’i represents the ith cluster with center Z¢,;, then
S = Ulegi, where the union is a union of disjoint sets.
In the next section, the clusters 5} are used to derive cluster

DMDec.

C. Cluster DMDc

Each cluster of snapshots S; is used to form the matrix
of snapshots X; at time k and X/ at time k + 1. In this
case, since for any m x n matrix M = (my;), ||M||% =
> ity 2i— mij|?, i.e., the Frobenius norm of a matrix is
equal to the sum of the Frobenius norms of any partition.
This observation results in the following Lemma.

Lemma 2.1: For any matrix X/, X € R™*(™=1) and any
K partitions of compatible dimensions X and X, of X’ and
X, respectively, the following holds:

K
. /_ 2 > . /_ . . 2
min || X' — AX| > ;rg¥irlllX1 AXilE a6
Proof:

K
in|| X' — AX|% =mi X' — AX;|?
min || I3 = min Y [1X] — A3

i=1

a7

M=

> ) min || X7 — AX;|[%

1

<.
Il

1X] — A X%

I
]~

i=1

~

since the minimum with respect to the matrix A of the
sum of the norms is always greater or equal to the sum
of the minimum of each norm with respect to A. And the
minimum is achieved for each cluster separately for some
matrix A;,i = 1,..., K, where A; = XZ(XZ-T. This clearly
shows that cluster DMDc will provide a better fit to the data
than conventional DMDc in general.
As seen in algorithm 1, after obtaining the snapshots, and the
number of clusters is chosen, the k-means algorithm groups
the snapshot data into several sub-regions. Following section
II, a reduced order model is constructed for each cluster as
follows: R w1
A =U; X{Viy USU;
e (18)
B =U; X{V;¥; U,
When the control inputs are zeros, the DMDc is identical to
the DMD.

Algorithm 1: Cluster-DMD reduced order model
Input: Snapshots dataset X, X’ and T’

1 Feed X to the k-means algorithm for %k clusters with

the corresponding X;, T';, 1-time shiftX/;

2fori=1 to kdo

3 Construct the input matrix Q; = [X; I';]7 and

find SVD of Q;,Q; ~ [U;, Uy, )TV ;

4 Find the SVD of 1-time shift matrix,

X| ~ UiV ;

5 Compute the reduced order model A; =

B Ui*X{‘Z‘,ji_lUiUi,Bi = lji*X{Viji_lﬁiz

Output: Reduced order model A;, B; for each cluster

D. Cluster DMDc with adaptation

DMDc is a powerful technique for system identification.
Inequality (16) shows cluster-DMDc has generally better
performance in representing data, i.e. system identification.
Furthermore, DMDc is also a potential predictive tool, to
improve its prediction accuracy a new method is proposed.
DMDc is an offline data-driven method, in [7] an online
scheme for DMD is proposed for online system identification
for large-scale time-varying systems. The scheme updates the
system’s dynamics as new data becomes available transform-
ing the off-line technique to an online technique. Borrowing
the idea as in [7], to obtain more accurate predictions, we
propose an online cluster DMDc method which results in an
adaptive cluster DMDc reduced model as new prediction data
are gathered. The key idea here is that with the prediction
process, we are adding the predicted solution to the nearest
cluster and updating the DMDc reduced order models for the
corresponding cluster.

Given the initial state x(, with the boundary control sequence
ug, k = 1...,n, the prediction process is as follows: xj4; =
Az + Biug,i = arg min;—1 . g |Tky1 — xcj|§, where ¢
is the index of the i*" cluster, add x4 to the i'" cluster
obtaining a new cluster X;, then SVD is applied to obtain
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the updated A;, B; as seen in Algorithm 2.

In the next section, this method is applied to the Burgers’
equation, in particular, the method is shown to be more
effective at predicting the dynamics than the offline DMDc
and cluster-DMDc methods.

[11. APPLICATION TO THE BURGERS' EQUATION
A. 1-D Burgers’ equation

DMD is often used in fluid dynamics applications [23] [1]
[24]. The Burgers’ equation is a partial differential equation
(PDE) that is a simplified version of the Navier-Stokes
equations when neglecting the pressure term and external
force. It takes the following form [22]:

ow ow 1 0%w cQ
— tw—=—-=,
ot Oxr  Re 0z2’
Where @ = [l,r], t € [0,T]. The initial and boundary
conditions are specified as follows:

19)

w(zx, tg) = wo(x)

o wlt) | w() | (20)
w(0Q, ) = [ w(r ) ] = { () = u(t)
The term é is kinematic viscosity [22]. Re is the counterpart

to the Reynolds number from the Navier-Stokes equation, and
x and t are the space and time variables, respectively. OS2 is
the boundary of Q. w;, u, are left and right boundary inputs.
Finite difference approximation is applied:

dw; wi —wi—1 1 wip1 — 2w +wiq
dt Az Re Az?2

Where ¢ = 0,1,...,N. Equation (21) can be written in the
matrix form as:

+ w; 21

w = Aw + Bu + F(w) (22)

In (22), Aw is the linear term “H1=2YtWist and [(w) is
the nonlinear term w; “*—~=* in (21).

B. Numerical Snapshots

We utilize a finite difference approximation in Matlab to
numerically solve the initial boundary value problem with
and without (open loop) control to obtain the snapshots. In
the simulation, we choose Re = 520, N =800, Q = [l,r] =
[0,1],t € [0,T], T = 10s with time step size At = 0.00125s
and space step size 0.004. The full-order model consists of
251 states. Next, the DMDc, cluster DMDc, and adaptive
cluster DMDc results will be presented.

C. Identification
1) Cluster DMDc with boundary inputs: In this case, bound-
ary inputs are given as:
u; = —0.2 x cos(3nt/T)

0.8 x cos(wt/T) 23

Uy =

Where u; and u, are the left and right boundary inputs,
respectively.

Solution at every 0.2s

Solution

Fig. 1. Snapshots are generated by the Burgers’ equation with non-
zero boundary input as in (23).

T

0 200 400 600 800
Snapshots index

w O

Cluster Index

N

Fig. 2. Snapshots are generated by the Burgers’ equation with non-
zero boundary input. The figure shows the distribution of clusters along
the snapshots index.

With the snapshots at hand, the k-mean algorithm groups
the snapshots into 6 sub-regions. The 2 truncation numbers
for the constructed reduced order model are chosen to
be r = 8 p = 5. In Fig. 2 the distribution of cluster
index along time steps is shown. Then the reduced order
models /L-, Bi,i =1,...,6 of order 5 for each cluster are
constructed. As seen in (1), DMDc reduced order model
A and cluster DMDc flhBi are used to reconstruct the
dynamical system. In Fig. 3, three snapshots are shown.
One can see that given the same initial state and actuation
data, the DMDc and cluster DMDc reduced order model can
represent the system accurately. In the right panel of Fig. 3
and Fig. 6, the proposed cluster DMDc method outperforms
the standard DMDc [8]. Next, we will use the resulting
models for prediction.

D. Prediction

Cluster DMDc is implemented as an offline data-driven
method. Once a representative model is obtained, the under-
lying governing equation is no longer needed. However, off-

Fig. 3. Snapshots are generated by the Burgers’ equation with non-
zeros boundary inputs, DMDc and cluster DMDc reduced order models
are used to reconstruct the snapshot data.
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Norm btw Full and Reduced model

—DMDc
— Cluster-DMDc

L2 error

Ban DS

0 200 400 600 800
snapshots

Fig. 4. At each time step, the norm of the errors of DMDc and cluster
DMDc reconstructed solutions and snapshots, respectively, are shown.
Thatis, |lePMDe — g, || vs. [|aSt*~PMPe _ ;| are plotted.

line prediction models need to be trained with large datasets,
the new proposed adaptive Cluster DMDc avoids using pre-
processed data. First, the following boundary inputs are given
below to construct the DMDc reduced order models for each
cluster as seen in Algorithm (1):

u; = 0.2cos(3nt/T) wu, = —0.8cos(nt/T) (24)

1) Algorithm for Cluster DMDc: Next, K = 6 is chosen
to generate clusters, then we feed the training data into
algorithm 1 to obtain a cluster DMDc reduced model for
each cluster. For prediction, given the initial condition and
actuation data for the system, then at the next time step,
the state solution belongs to a specific cluster, that is, in
the next step for prediction, the reduced order model should
switch to the corresponding cluster of the current state
solution, meanwhile, the incoming state data is fed into the
specific cluster to update the DMDc reduced order model to
accommodate general boundary control inputs. Below is the
algorithm for the prediction process.

Algorithm 2: adaptive Cluster DMD with control

Input: Initial state 1, Snap§hot~s X
1 Apply Algorithm 1 to get A;, B; based on X

2 for i =1: n(time steps): end do

3 compute the distance between the x;, 1 and all k
clusters centroids ¢;, ..., ¢k ;

4 find j = argmin; ||z; — ¢l

5 add new data z; into j** cluster and update A;,
B; using algorithm (1);

6 compute the next states solution 41 based on
as);

Output: Prediction of xs,..., 2z,

2) Prediction: The adaptive cluster DMDc model
is used to make predictions for the dynamic system.
Here, 4 separate trials are considered with outputs
generated with the following boundary inputs. For
the comparison, some boundary inputs are set at
different magnitudes and frequencies as follows:
u, = 0.2cos(3nt/T),u,, = —0.8cos(nt/T),w, =
0.18 cos(3nt/T), uy, = —0.8 cos(mt/T), uy, =

0.19 cos(37t/T), tr, = —0.81 cos(nt/T), uy, =
0.19 cos(37t/T'), ur, = —0.81 cos(1.57t/T).

The first boundary inputs considered, wu;,,u,, are used to
construct the basic cluster-DMDc reduced order model, then
we predict the system governed by the Burgers’ equation
with different boundary inputs w;, ,.,, U, g, U, -, - AS S€ED
in the 2"¢ trial, boundary inputs uy, ., u, are different from
uy, in magnitude, in the 37 trial, the left and right boundary
inputs are different from w;,, u,, in magnitude. For the 4%"
trial, the magnitude of boundary inputs is the same as in
the 3" trial, but the frequency of the right boundary input
is different. That is, the generality of the cluster-DMDc is
tested and an adaptive Cluster-DMDc reduced order model
is proposed. In Fig. 5, at each prediction iteration, the Lo
errors are calculated and shown. The blue, red, and black
curves are prediction performance using DMDc, cluster
DMDc and adaptive cluster DMDc, respectively. In the table
below Fig. 5, the overall measured square error between
the real system and the predicted system is calculated.
Combining the information in the figure and table, the
proposed adaptive cluster DMDc has the best prediction
performance.

L, error

600 800 0 200

0 200 600 800

400 400
Predicted Iteration Predicted Iteration

(a) (b)

—
----DMDc

-+~ Cluster-DMDc
— Adaptive Cluster-DMDc

~-=-DMDc
-+~ Cluster-DMDc
— Adaptive Cluster-DMDc

0 200 400 600 800 0 200 400 600 800
Predicted Iteration Predicted Iteration

(c) (@

Fig. 5. a) u; = 0.2 X cos(3nt/T),ur = —0.8 X cos(wt/T),
b) u; = 0.18 X cos(3nwt/T),u, = —0.8 X cos(wt/T), Cc) uy =
0.19 X cos(3nt/T),u, = —0.81 X cos(wt/T) ,d) u; = 0.19 X
cos(3nt/T), u, = —0.81 X cos(1.57t/T)

,,,,,,

ssssssssss

Fig. 6. This figure shows the prediction details in trial 3 at t= 0.1s,
t=0.5s, and t =1s, respectively.

4570

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on November 11,2024 at 13:11:20 UTC from IEEE Xplore. Restrictions apply.



Overall MSE | DMDc | Clu-DMDc | Adaptive Clu-DMDc |

Trial 1 0.0206 0.00079 0.00064

Trial 2 0.0206 0.0013 0.00083

Trial 3 0.0222 0.0016 0.0012

Trial 4 0.0310 0.0484 0.0015
TABLE |

PREDICTION PERFORMANCE USING DMDc, CLUSTER DMDcC, AND
ADAPTIVE CLUSTER DMDcC

V. CONCLUSION

In this paper, a cluster DMDc reduced-order modeling with
an adaptation strategy is proposed. This technique extends
DMDc [8] which extracts a low-order model with actuation.
The clustered DMDc presented here is based on the fact
that nonlinear system snapshot solutions belong to nonlinear
manifolds for which geodesics can be approximated locally,
i.e., in clusters, by the Euclidean distance. By grouping the
snapshots that have similar features the clusters are obtained.
DMDc reduced-order modeling is then applied to each cluster
to obtain the cluster DMDc. It is shown that cluster DMDc
provides better fits to model data than standard DMDc in
general. By updating the cluster DMDc reduced-order model
sequentially, an online data-driven technique for predictive
purposes is obtained. This is illustrated in simulation results
applied to the Burgers’ equation. A number of open questions
and possible extensions remain. For each cluster, the number
of dynamic modes is fixed, while for some clusters there
would possibly exist unstable modes so that the prediction
error would increase when the dynamic system moves into
these clusters. In [25], a user-defined low-order rank DMD
model is introduced which consistently provides a more accu-
rate approximation of the true system eigenvalues than DMD.
In addition, how to choose the optimal number of clusters is
not considered in this work. The latter may further improve
the accuracy of the proposed adaptive Cluster-DMDc. In [26],
a quantization error model was proposed to generate optimal
clusters for a given dataset. Future work will focus on finding
the optimal cluster number and selecting the best modes
to improve performance. Further comparison, in particular,
with the Extended DMD (EDMD), a data-driven method to
approximate the Koopman operator [27], will be carried out.
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