

ORIGINAL ARTICLE

Co-flowering richness has variable effects on pollen quantity and quality limitation in four *Clarkia* species

Cristopher Albor¹, Katherine Eisen^{2,3}, Emma Moore⁴, Monica Geber³, Tia-Lynn Ashman⁵, Robert A. Raguso⁶ and Gerardo Arceo-Gómez^{4,*}

¹Department of Biological Sciences, University of Calgary, Calgary, AB, Canada, ²Department of Biology, Loyola Marymount University, Los Angeles, CA 90045, USA, ³Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA, ⁴Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37614, USA, ⁵Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA, and ⁶Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA

*For correspondence. E-mail gomezg@etsu.edu

Received: 29 February 2024 Returned for revision: 17 July 2024 Editorial decision: 5 August 2024 Accepted: 12 August 2024

- **Background and Aims** Pollination failure occurs from insufficient pollen quantity or quality. However, the relative contributions of pollen quantity vs. quality to overall pollen limitation, and how this is affected by the co-flowering context, remain unknown for most plant populations. Here, we studied patterns of pollen deposition and pollen tube formation across populations of four predominantly outcrossing species in the genus *Clarkia* to evaluate how the richness of co-flowering congeners affects the contribution of pollen quantity and quality to pollen limitation.
- **Methods** We partition variation in pollen deposition and pollen tube production across individuals, populations and species to identify the main sources of variation in components of reproductive success. We further quantify the relative contribution of pollen quantity and quality limitation to the reproductive success of the four *Clarkia* species using piecewise regression analyses. Finally, we evaluate how variation in the number of co-flowering *Clarkia* species in the community affects the strength of pollen quality and quality limitation.
- **Results** Across all contexts, pollen deposition and the proportion of pollen tubes produced varied greatly among individuals, populations and species, and these were not always correlated. For instance, *C. xantiana* received the smallest pollen loads yet produced the highest proportion of pollen tubes, while *C. speciosa* exhibited the opposite pattern. Yet, co-flowering richness had variable effects on the strength of pollen quantity and quality limitation among populations. Specifically, breakpoint values, which are an indicator of overall pollen limitation, were two-fold higher in the four-species community compared with one- and two-species communities for two *Clarkia* species, suggesting that pollen limitation can increase with increasing richness of co-flowering congeners.
- **Conclusions** Our results reveal a complex interplay between the quantity and quality of pollen limitation and co-flowering context that may have different evolutionary outcomes across species and populations.

Key words: *Clarkia*, facilitation, piecewise regression, pollination, pollen tubes, pollen deposition.

INTRODUCTION

Angiosperms often rely on biotic vectors to move pollen from male (anthers) to female reproductive structures (stigmas) for successful reproduction (Waser *et al.*, 1996; Wilcock and Neiland, 2002; Ollerton *et al.*, 2011). However, pollination failure is common, and occurs when plants receive an inadequate quantity and/or quality of pollen on stigmas, a phenomenon known as ‘pollen limitation’ (Burd, 1994; Larson and Barrett, 2000; Ashman *et al.*, 2004; Knight *et al.*, 2005). In fact, global estimates suggest that reproduction is limited by

pollen receipt in more than 60 % of plant populations (Ashman *et al.*, 2004; Knight *et al.*, 2005; Vamosi *et al.*, 2006; Bennett *et al.*, 2020), and that half of all flowering species could experience an 80 % decline in seed production without pollinators (Rodger *et al.*, 2021). Thus, advancing our knowledge of the causes and consequences of pollen limitation is central to understanding the factors that limit plant reproductive success and to safeguarding natural plant populations and communities, particularly considering increasing human-mediated disturbances.

Decreases in both pollen quantity and quality can limit seed production but these can result from different ecological processes (Ashman *et al.*, 2004; Aizen and Harder, 2007; Alonso *et al.*, 2013). Pollen quantity limitation can occur when a decrease in pollinator availability leads to insufficient pollen deposition on stigmas (Larson and Barrett, 2000; Knight *et al.*, 2005; Gómez *et al.*, 2010), thus decreasing seed production (Ashman *et al.*, 2004; Knight *et al.*, 2005). On the other hand, pollen quality limitation occurs when pollen grains fail to germinate on the stigma or fail to successfully fertilize the ovules (Waser *et al.*, 1996; Toms and Lesperance, 2003; Aizen and Harder, 2007; Arceo-Gómez *et al.*, 2016a). Pollen quality limitation can occur due to the deposition of self-pollen in self-incompatible species (Waser and Price, 1991; Tehrani and Brown, 1992; Eckert *et al.*, 2010), which represent at least 50 % of all angiosperms (Goodwillie *et al.*, 2005; Eckert *et al.*, 2010). Even in self-compatible plants, self-pollen can have slower germination and pollen tube growth rates compared with outcross pollen (i.e. cryptic self-incompatibility), and thus be of lower quality (Bateman, 1956; Weller and Ornduff, 1977; Bowman, 1987; Eckert *et al.*, 2010). Pollen quality limitation may also result from heterospecific pollen – pollen from a different plant species – as it almost invariably results in unsuccessful ovule fertilization when deposited on stigmas (Morales and Traveset, 2008; Ashman and Arceo-Gómez, 2013; Ashman *et al.*, 2020), although effects may vary with pollen donor identity (Arceo-Gómez *et al.*, 2019b; Streher *et al.*, 2020). Despite the overall importance of understanding the mechanisms driving pollen limitation, to date, the relative contributions of pollen quality vs. quantity to pollen limitation is only known for a few plant populations (e.g. Aizen and Harder, 2007; Harder *et al.*, 2016a, 2016b).

One component of the environment that can influence quantity and quality aspects of pollination is the diversity and composition of the co-flowering community (Moeller, 2004; Ghazoul, 2006; Mitchell *et al.*, 2009; Arceo-Gómez and Ashman, 2014). Co-flowering species can either increase or decrease pollen quantity limitation. For instance, if co-flowering species provision a larger pollinator community, then the increase in pollinator availability can increase conspecific pollen deposition and seed production, hence decreasing pollen quantity limitation (Rathcke, 1983; Moeller, 2004; Ghazoul, 2006). However, competition among co-flowering plants has been more commonly observed (Mitchell *et al.*, 2009). In these systems, co-flowering species compete to attract a limited pollinator pool, reducing pollinator visitation and thus increasing pollen quantity limitation (Waser, 1978; Campbell, 1985; Mitchell *et al.*, 2009; Runquist and Stanton, 2013; Johnson *et al.*, 2022).

Co-flowering plant species also have the potential to affect the quality of pollen received. For instance, low amounts of pollen delivered as a result of pollinator competition can lead to an increase in self-pollination (Moeller and Geber, 2005; Eckert *et al.*, 2010), reducing pollen quality (Larson and Barrett, 2000; Aizen and Harder, 2007; Lázaro *et al.*, 2009). An increase in the number of co-flowering species can also lead to higher levels of heterospecific pollen transfer if pollinators visit more than one species in a single foraging bout (inconstant foraging; e.g. McLernon *et al.*, 1996; Arceo-Gómez and Ashman, 2011; Fang

and Huang, 2013; Ashman *et al.*, 2020). Heterospecific pollen transfer is widespread in diverse co-flowering communities with some plant species receiving >50 % of heterospecific pollen and experiencing negative consequences for reproductive success (Morales and Traveset, 2008; Ashman and Arceo-Gómez, 2013). However, plants may evolve traits that minimize the effects or promote the tolerance of heterospecific pollen (Hopkins and Rausher, 2012; Ashman and Arceo-Gómez, 2013). While the influence of co-flowering species on pollinator visitation and reproduction of neighbouring plants is well-documented (Ghazoul, 2006; Mitchell *et al.*, 2009; Braun and Lortie, 2019), the effect of co-flowering species richness on pollen quantity vs. quality limitation to plant reproductive success is not well understood.

Our ability to quantify the relative magnitude of pollen quantity and quality limitation has recently improved via the use of field-collected styles from spent flowers to characterize the relationship between pollen grains deposited on stigmas and pollen tubes growing in styles (Fig. 1) (Alonso *et al.*, 2012; Arceo-Gómez and Ashman, 2014; Cisternas-Fuentes and Koski, 2024). In contrast to traditional hand-pollination experiments, estimating pollen limitation from field-collected styles is more tractable across large biological and spatial scales, including across multiple species and populations (Arceo-Gómez and Ashman, 2014; Cisternas-Fuentes and Koski, 2024). Specifically, the piecewise approach developed by Alonso *et al.* (2012) distinguishes between quantity and quality of pollen grains required to reach a saturation point in the number of pollen tubes that reach the base of the style (Fig. 1). This approach has the advantage that it avoids the confounding effects of resource availability and re-allocation which can influence estimates of pollen limitation based on hand-pollination experiments (Ashman *et al.*, 2004; Knight *et al.*, 2005; Alonso *et al.*, 2012). Additionally, traditional hand-pollination approaches rely on manual supplementation of outcross pollen (high-quality pollen), potentially confounding quality and quantity aspects of pollen limitation (Ashman *et al.*, 2020). The piecewise approach thus provides a unique opportunity to evaluate both aspects of pollen limitation (quantity and quality) across large spatial scales that encompass a range of biotic and abiotic contexts.

Uncovering patterns of natural variation in pollen deposition and pollen tube formation and evaluating how this variation is structured at different levels of biological organization (i.e. populations, plants within populations) can provide further insights into the factors determining plant reproductive success in nature (Herrera *et al.*, 2002; Arceo-Gómez *et al.*, 2016b). For instance, large variance among populations would indicate that community attributes, such as co-flowering richness (e.g. Schuett and Vamosi, 2010; Sargent *et al.*, 2011; Arceo-Gómez and Ashman, 2014), are important drivers of pollination success. On the other hand, greater variance among plants within a population would indicate that plant differences in traits that influence pollinator attraction such as flower size and floral display (e.g. Fishman and Willis, 2008; Sandring and Ågren, 2009) may play an important role. Understanding the main sources of variation in pollen receipt and pollen tube formation is hence important for determining the forces that mediate plant

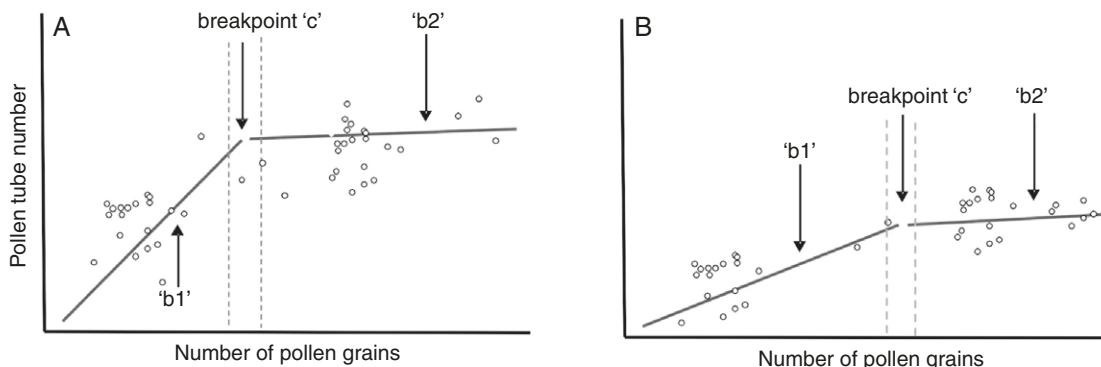


FIG. 1. Conceptual framework for the use of piecewise regression to evaluate patterns of pollen quantity and quality limitation by evaluating the relationship between the number of pollen grains deposited on stigmas and the number of pollen tubes at the base of the style (Alonso *et al.*, 2012). The pollen grain–tube relationship is shown for two hypothetical populations (A and B) where each dot represents data from individual senesced flowers collected in the field. Each relationship is characterized by three parameters: the first slope (b_1) represents the ‘rate’ at which pollen tube saturation is reached, the breakpoint (c) represents the number of pollen grains required to achieve a saturation point ($\pm 95\%$ confidence interval) and the second slope (b_2) estimates the degree to which pollen quality alone increases pollen tube production after an asymptote has been reached. (A) A population with a lower breakpoint and a steeper first slope (b_1), which are indicative of higher pollen quality because a smaller number of pollen grains (compared to the population in B) are necessary to reach saturation in pollen tube production. In species where the quality of pollen is high, pollen quantity is expected to be the main factor limiting plant reproductive success. (B) A population where pollen quality is lower (smaller b_1 value and a larger breakpoint). In this population, pollen quality is expected to be the main factor limiting reproductive success because increases in pollen deposition have little effect on pollen tube production relative to increases in pollen quality.

reproductive success in nature (e.g. Herrera *et al.*, 2002; Arceo-Gómez *et al.*, 2016b).

In this study, we quantify pollen deposition and pollen tube formation to evaluate how their variance is structured across individuals and populations of four *Clarkia* species. We further use piecewise regression to estimate quantity and quality components of pollen limitation of the four *Clarkia* species across 25 sites with varying richness of co-flowering *Clarkia* species. We ask the following specific questions: (1) What are the major sources of variation (species, populations or individual plants) in pollen deposition and proportion of pollen tubes produced in *Clarkia*? (2) What is the relative contribution of pollen quantity and quality limitation to plant reproductive success and does it vary by *Clarkia* species? (3) Does an increase in the number of co-flowering *Clarkia* species affect the strength of pollen quality and quality limitation and does the effect depend on *Clarkia* species identity?

MATERIALS AND METHODS

Study system

Four common species of *Clarkia* were studied in Kern Canyon of the southern California Sierra Nevada: *Clarkia speciosa* subsp. *polyantha* H. Lewis and M. Lewis, *Clarkia cylindrica* subsp. *clavicarpa* W. Davis, *Clarkia unguiculata* Lindley and *Clarkia xantiana* subsp. *xantiana* A. Gray (Fig. 2). In this region, one to four of the *Clarkia* species are found at study sites (Appendix 1; Moeller, 2004; Eisen and Geber, 2018; Eisen *et al.*, 2019). This area has a Mediterranean climate with hot, dry summers and cold, wet winters (Jonas and Geber, 1999; Geber and Eckhart, 2005). The vegetation consists of oak and pine woodlands and grasslands (see Appendix 2 for common plant species). *Clarkia* are among the last species to flower from late April/early May to mid-June, and therefore overlap little in flowering time with co-occurring forbs. Additionally, the

most frequent flower visitors to the four *Clarkia* species are a guild of largely solitary bee species that specialize on the genus *Clarkia* (MacSwain, 1973; Moeller and Geber, 2005; Singh, 2014; James *et al.*, 2022; Appendix 3). These specialist bees carry only *Clarkia* pollen and thus do not transfer pollen from non-*Clarkia* species (Moeller and Geber, 2005; James *et al.*, 2022), and they carry a lot more *Clarkia* pollen than generalist bee visitors (Moeller and Geber, 2005). The main specialist bee pollinators are *Hesperapis regularis*, *Lasioglossum pullilabre*, *Megachile gravita*, *Megachile pascoensis* and *Diadasia angusticeps* (Appendix 3; MacSwain, 1973; Moeller, 2004; Moeller and Geber, 2005; Eckhart *et al.*, 2006; Singh, 2014; James *et al.*, 2022). These attributes of *Clarkia*’s pollination biology mean that pollinator-mediated interactions are largely limited to interactions among *Clarkia* species rather than between *Clarkia* and co-occurring non-*Clarkia* species (James and Geber, in review).

Patterns of pollen limitation may vary among *Clarkia* species because differences in their degree of pollinator specialization can lead to variation in the size and composition of pollen loads they receive (e.g. Lázaro *et al.*, 2015), particularly of congeneric *Clarkia* pollen. Congeneric pollen is the lowest quality pollen delivered to stigmas because *Clarkia* pollen does not germinate and pollen tubes do not grow on heterospecific stigmas and styles (Lewis and Lewis, 1955; Arceo-Gómez *et al.*, 2015). *Clarkia* species differ in the frequency of visitation by generalist bees and in the degree of pollinator sharing (Appendix 3; Singh, 2014; James, 2020; James *et al.*, 2022). For instance, *C. unguiculata* receives the lowest fraction of visits by specialist bees (~40 %), followed by *C. xantiana* (~55 %), *C. speciosa* and *C. cylindrica* (~80 %) (Appendix 3; Singh, 2014). Some of the common specialists (e.g. *Hesperapis*, *Megachile* sp., *Lasioglossum pullilabre*) are broadly shared by two or more *Clarkia* species and are likely to transfer heterospecific *Clarkia* pollen (Appendix 3; James *et al.*, 2022). By contrast, the specialist *Diadasia angusticeps* visits *C. speciosa* almost exclusively, is *C. speciosa*’s most frequent visitor and carries little

FIG. 2. Four studied co-flowering *Clarkia* species. All *Clarkia* species occur in the southern California Sierra Nevada foothills and can be found in populations of one to four species flowering simultaneously (modified from Eisen and Geber, 2018).

pollen of other *Clarkia* species (Appendix 3; Singh, 2014; James et al., 2022).

The four *Clarkia* species are annuals, and populations persist in the same location for long periods of time (e.g. 30–40 years; Lewis, 1953; Arceo-Gómez et al., 2015; Eisen and Geber, 2018). The studied *Clarkia* species are not known to hybridize in the wild (Lewis and Lewis, 1955; Jonas and Geber, 1999). All four species are self-compatible but rely on pollinators for reproduction because autonomous selfing is limited by pronounced protandry and herkogamy (Lewis, 1953). Outcrossing rates are generally high but variable across populations (Hove et al., 2016; Ivey et al., 2016). *Clarkia* species have similar numbers of ovules per flower, though the average ovule is slightly higher in *C. cylindrica* (James and Geber, in review; ovule number per flower: *C. cylindrica* mean = 62, range = 8–143; *C. speciosa* mean = 56.1, range = 2–199; *C. unguiculata* mean = 50.1, range = 1–106; *C. xantiana* mean = 53.6, range = 3–105). The species typically produce 20–30 seeds per flower but vary in flower number per plant under natural conditions, with *C. speciosa* having the fewest flowers per plant (Németh and Smith-Huerta, 2003; James and Geber, in review; *C. cylindrica* mean = 10.8, range = 1–115; *C. speciosa* mean = 5.2, range = 1–50; *C. unguiculata* mean = 11.2, range = 1–135; *C. xantiana* mean = 19.2, range = 1–200). Flowers open sequentially, with only a subset of flowers, from as few as one to ~20 flowers open at the same time depending on the size of the plant. Sequential flower opening limits opportunities for geitonogamous selfing on small plants.

Sample collection and processing

To evaluate how different components of pollination success change with increasing number of co-flowering *Clarkia* species, styles were collected randomly from wilted, naturally pollinated flowers at 24 different sites and 46 total species/site combinations (Appendix 1). Sites were selected to represent replicates of different combinations of one-species, two-species and four-species sites across Kern Canyon. *Clarkia* flowers typically wilt at the end of the day (M. Geber, pers. obs.) and pollen tubes reach the ovary 8 h after pollen deposition (Briscoe Runquist et al., 2014; Arceo-Gómez et al., 2015). Thus, by collecting wilted flowers in the morning/afternoon (i.e. wilted from the previous day) we ensured that all flowers had reached maximum pollen loads and pollen tubes and that no additional pollen had accumulated for at least 12 h. The number of *Clarkia* species at a site varied from a single *Clarkia* species (one-species sites; $n = 12$), to two *Clarkia* species (two-species sites; $n = 17$), to all four *Clarkia* species (four-species sites; $n = 17$). One style per plant was collected randomly from 30–118 individuals per species per site across the entire flowering season (approx. every 4–5 d) for a total of 3776 styles. Styles were sampled from 31 populations (species by site combinations) in 2014 and 15 populations in 2017 (Appendix 1). Each sampling year was considered an independent sampling event but variation between years was accounted for in the analyses (see below). Styles were stored in microcentrifuge tubes containing 90 % ethanol and processed in the lab for pollen grain and pollen tube counting. Styles were softened with 1 M KOH and then stained using decolorized aniline blue (Arceo-Gómez et al., 2016b). Styles were mounted onto microscope slides and the amount of *Clarkia* pollen grains (i.e. pollen quantity) was counted with a compound microscope under 40 \times magnification (Arceo-Gómez et al., 2016b). Pollen grains from different *Clarkia* species cannot be distinguished morphologically (pers. obs.; Ha and Ivey, 2017), and counts of pollen grains on stigmas are therefore counts of both conspecific and heterospecific pollen. The number of pollen tubes at the base of the style (i.e. pollen quality) was counted under an epifluorescence microscope (Nikon Eclipse 80i/Leica DM 3000) at 40 \times magnification (Arceo-Gómez et al., 2016b).

Data analysis

Variation in pollen deposition and proportion of pollen tubes. We estimated the relative contributions of *Clarkia* species identity, the co-flowering context (one-species, two-species and four-species sites) and of intrinsic individual plant characteristics (residual variance) to the overall variance in *Clarkia* pollen deposition (pollen quantity) and proportion of pollen tubes produced (pollen tubes at the base of the style/total *Clarkia* pollen load on stigmas). We use the proportion of pollen tubes for this analysis as it reflects the proportion of pollen grains that are successful (pollen quality) and is a measure of reproductive success that standardizes for variation in the number of pollen grains received on stigmas across individuals and plant species. Specifically, we compared the variance explained by focal species identity, co-flowering richness, the focal species identity \times co-flowering richness interaction, as well as variance among individual sampling sites and years (2014 and 2017). For this, we fitted a generalized linear mixed

model (GLMM) for each response variable (pollen deposition and proportion of pollen tubes) with focal species identity, co-flowering context and their interaction as fixed effects, and individual site ID and year as random intercepts. The pollen deposition model was adjusted using a Poisson error distribution and a log-link function, as suggested by Bolker *et al.* (2009) for count data associated with ecological processes. The proportion of pollen tubes was modelled using a Gaussian (normal) distribution and an identity link function. GLMMs with significant interaction effects between fixed variables were analysed with a post-hoc Tukey's test to determine sources of significant differences. No evidence of overdispersion was observed in any model ($P > 0.05$ for all cases; 'testDispersion' in the R package DHARMA; Hartig, 2021). We used the coefficient of determination R^2 to determine the proportion of explained variance in each GLMM that can be attributed to the fixed and random variables. Specifically, we employed semi-partial coefficients of determination, also known as semi-partial R^2 , which break down the variance of R^2 into components that are uniquely explained by individual predictors (i.e. fixed and random variables), while accounting for covariances among predictors. One advantage of semi-partial R^2 is that it utilizes the covariance structure of GLMMs instead of using analyses with independent structures and interpretations. GLMMs were fitted using the R package lme4 (Bates, 2010). Additionally, we ran Wald chi-square tests (Type III) from the R package car (Fox and Weisberg, 2019) to determine the overall significance of the predictors' effects. Semi-partial R^2 values for fixed and random effects were calculated using the partR2 package (Stoffel *et al.*, 2021). All analyses were conducted in R (v.4.05; Crawley, 2012).

Pollen quantity and quality limitation. We estimated the contribution of pollen quantity and quality limitation to plant reproductive success for every species and co-flowering context (one-species, two-species and four-species sites) combination ($n = 46$ species/site combinations) using the piecewise regression approach proposed by Alonso *et al.* (2012) (Fig. 1). The piecewise regression approach quantifies differences in the 'rate' at which pollen tube saturation is reached (slope of the dose-response relationship; $b1$ in Fig. 1), and in the number of pollen grains that are required to reach the saturation point (breakpoint in Fig. 1; Alonso *et al.*, 2012; Arceo-Gómez and Ashman, 2014) at the end of flower life. The number of pollen tubes at the base of the style has been shown to be a strong predictor of seed production in the studied *Clarkia* species (Arceo-Gómez *et al.*, 2015), and thus probably reflects pollen limitation at post-zygotic stages. To conduct the piecewise regression, we first fit a separate linear model for each species \times co-flowering richness 'treatment' combination ($n = 46$) to approximate the relationship between stigmatic pollen loads (i.e. pollen deposition) and the number of pollen tubes reaching the base of the style (Alonso *et al.*, 2012; Arceo-Gómez and Ashman, 2014). Because this relationship is rarely monotonic, and instead exhibits a diminishing/shallower slope at high pollen load, the linear model was then partitioned into two separate regressions using the 'segmented' package in R (Muggeo, 2008) to determine the linear relationship's inflection point (i.e. the breakpoint), between the steeper initial slope at lower pollen loads and the shallower slope at higher pollen loads (Fig. 1; also see

Alonso *et al.*, 2012). This piecewise model describes the pollen grain–tube relationship based on three parameters, the first ($b1$) and second regression slopes ($b2$), and the breakpoint (c) in the relationship (Fig. 1; Toms and Lesperance, 2003; Alonso *et al.*, 2012). Each parameter ($b1$, c and $b2$) was estimated using 1000 bootstraps (Toms and Lesperance, 2003; Alonso *et al.*, 2012).

Ecologically, a lower breakpoint and a steeper first slope ($b1$) are indicative of overall higher pollen quality because a smaller number of pollen grains are necessary to reach saturation in the number of pollen tubes that reach the base of the style (Fig. 1A; Arceo-Gómez and Ashman, 2014). In species where the quality of pollen received is high (high $b1$ and low breakpoint values), we expect pollen quantity to be the main limitation to plant reproductive success because additional pollen makes the greatest contribution to future pollen tube production (Fig. 1A; Alonso *et al.*, 2012, 2013; Arceo-Gómez and Ashman, 2014). The opposite is true for species that receive low-quality pollen (smaller $b1$ values and larger breakpoints; Fig. 1B), because increases in pollen deposition have little effect on pollen tube and seed production relative to increases in pollen quality (i.e. pollen quality limitation is strongest). The second slope ($b2$) measures the degree to which pollen quality alone increases pollen tube/seed production after an asymptote has been reached in the relationship between pollen grains and tubes (Fig. 1; Alonso *et al.*, 2012; Arceo-Gómez and Ashman, 2014). It is also possible that after saturation of the pollen grain–pollen tube relationship additional pollen deposition reduces reproductive success (i.e. negative $b2$ values; Alonso *et al.*, 2012). For instance, seed production may decrease if overcrowding of pollen on the stigma interferes with pollen germination (stigma clogging) or overcrowding of tubes in styles interferes with tube growth (Cruzan, 1986). It is important to note that in contrast to Alonso *et al.* (2012), here low-quality pollen can result not only from low-quality conspecific (self) pollen (as in Alonso *et al.*, 2012) but also from congeneric *Clarkia* pollen which does not lead to ovule fertilization (i.e. lowest quality pollen) and these are indistinguishable on the stigma. For instance, a small $b1$ value and a large breakpoint value (as in Fig. 1B) may result from deposition of low-quality heterospecific pollen, while large $b1$ values and small breakpoint values (as in Fig. 1A) would result only from high-quality conspecific pollen.

Clarkia species richness effects on pollen quantity and quality limitation. After estimating the two regression slopes ($b1$, $b2$) and breakpoint (c) value for each *Clarkia* species and site combination ($n = 46$), we used linear mixed models (LMMs) to analyse variation in each parameter ($b1$, c and $b2$), and assess differences in the relative contribution of pollen quantity and quality to plant reproductive success in the four *Clarkia* species across the three co-flowering contexts (i.e. one-, two- and four-species sites). The models included focal species identity, co-flowering species richness and their interaction as fixed effects. Sampling site and year were included as random effects (random intercepts) to account for intrinsic site characteristics and yearly differences that may influence pollen deposition and pollen tube production. Site ID also controls for clustered data structures such as when multiple species occur within a site (Schielzeth and Nakagawa, 2013). Residuals for all models were normally distributed (Shapiro–Wilks test, $P > 0.05$). We

performed post-hoc Tukey's tests when significant main and interaction effects were observed. LMMs were fitted using the R package lme4 (Bates, 2010).

RESULTS

Variation in pollen deposition and proportion of pollen tubes

Variation among individual plants within a site (e.g. residual variation) was the main source of variation in pollen deposition and proportion of pollen tubes (Table 1). This was followed by variation due to the interaction between species focal identity and co-flowering context (22 and 8 % for pollen deposition and proportion of pollen tubes respectively) and variation among *Clarkia* species (15 and 3 % for pollen deposition and proportion of pollen tubes, respectively) (Table 1; Appendix 4). Co-flowering context (one, two or four *Clarkia* species), individual site and year contributed the least to variation in both response variables (Table 1; Appendix 4).

Pollen load size and proportion of pollen tubes differed among *Clarkia* species (Table 1). Average pollen grain receipt was lowest in *C. xantiana* (159 ± 4.2) followed by *C. unguiculata* (202 ± 7.6), *C. cylindrica* (263 ± 9.0) and *C. speciosa* (400 ± 7.5) (all pairwise comparisons were significant $P < 0.01$; Supplementary Data Table S1). However, the proportion of pollen tubes was lowest in *C. speciosa* (0.059 ± 0.001) followed by *C. unguiculata* (0.089 ± 0.003), *C. cylindrica* (0.092 ± 0.003) and *C. xantiana* (0.099 ± 0.002). The only significant difference in the proportion of pollen tubes was between *C. speciosa* and all the other *Clarkia* species ($P < 0.01$; Table S1).

There was no effect of co-flowering species richness on pollen deposition or proportion of pollen tubes (Table 1; Appendix 4). However, there was a significant two-way interaction indicating that the effect of co-flowering species richness on pollen deposition and proportion of pollen tubes depended on *Clarkia* species identity (Table 1; Figs 3 and 4). For instance, pollen deposition was higher at four-species sites for three out of the four focal species, with *C. speciosa* being the exception (Fig. 3; Supplementary Data Table S2). Similarly, the proportion of

pollen tubes increased with co-flowering species richness in *C. unguiculata* and *C. cylindrica* (Fig. 4; Table S2) but not in *C. speciosa* or *C. xantiana* (Fig. 4; Table S2).

Pollen quantity and quality limitation

The initial slope of the pollen tube–pollen deposition dose response curve (b_1) differed among *Clarkia* species (Table 2; Appendix 4), with the value of b_1 being two times higher for *C. unguiculata* (0.112 ± 0.01) than for *C. speciosa* (0.074 ± 0.01 ; $P = 0.03$). The b_1 values for *C. xantiana* (0.096 ± 0.01) and *C. cylindrica* (0.083 ± 0.01) did not differ from those of any other species ($P > 0.05$). We did observe differences in breakpoint (c) values among *Clarkia* species (Table 2; Appendix 4). Breakpoint values ranged from 199 (± 62.7) pollen grains in *C. unguiculata* to 214 (± 54.9) in *C. xantiana*, 250 (± 33.1) in *C. cylindrica* and 350 (± 88.3) in *C. speciosa*. However, only *C. speciosa*'s breakpoint value was significantly different from that of all other *Clarkia* species ($P < 0.005$ for all; Supplementary Data Table S3). We did not observe significant differences in the second slope (b_2) among *Clarkia* species (focal species identity; Table 2; Appendix 4).

Clarkia species richness effects on pollen quantity and quality limitation

We did not find differences in b_1 values due to co-flowering species richness or its interaction with *Clarkia* species identity (Table 2; also see Supplementary Data Fig. S1). However, breakpoint values were affected by co-flowering species richness, and the effect varied depending on *Clarkia* species identity (Table 2 and Fig. 5; Table S4). While breakpoint values were significantly higher for populations at the four-species sites compared to one- and two-species sites in *C. xantiana* and *C. unguiculata*, this was not the case for the other two *Clarkia* species (Fig. 5; Table S4; also see Fig. S1). Finally, b_2 values were not affected by the co-flowering richness context or their interaction with focal species identity (Table 2).

DISCUSSION

We observed substantial variation in pollen load size on flower stigmas and in the proportion of pollen tubes in flower styles, with most of the variation attributable to differences among individual plants within a population. This result points to the importance of evaluating multiple sources of variation in pollination processes: variation across species and variation among individuals within a population (Gomez and Perfectti, 2012; Arroyo-Correa *et al.*, 2021, 2024; Soares *et al.*, 2021). We also found that closely related co-flowering species with similar floral phenotypes and overlapping pollinator communities (MacSwain, 1973; Moeller, 2004; Moeller and Geber, 2005) vary in the amount and quality of pollen received. For instance, per ovule, *Clarkia* species received between 2.9 and 7.1 pollen grains and produced between 0.29 and 0.42 pollen tubes. We further found that the co-flowering community modified patterns of pollen quality and/or quantity limitation within a species. Here we discuss the potential drivers of variation in

TABLE 1. Fixed and mixed-effects model partitioning of variance in pollen deposition and proportion of pollen tubes.

	Pollen deposition	Proportion of pollen tubes
Fixed effects	0.397	0.114
Focal species ID	0.155***	0.028***
Richness	0.023 ^{n.s.}	0.001 ^{n.s.}
Focal species ID \times Richness	0.219***	0.085***
Random effects	0.046	0.022
Site	0.035	0.021
Year	0.011	0.001
Residual variation (among-individual variation)	0.557	0.864

Semi-partial R^2 estimate using GLMMs with a Poisson distribution.
*** $P < 0.001$, ** $P < 0.01$, n.s. = not significant. $N = 3776$.

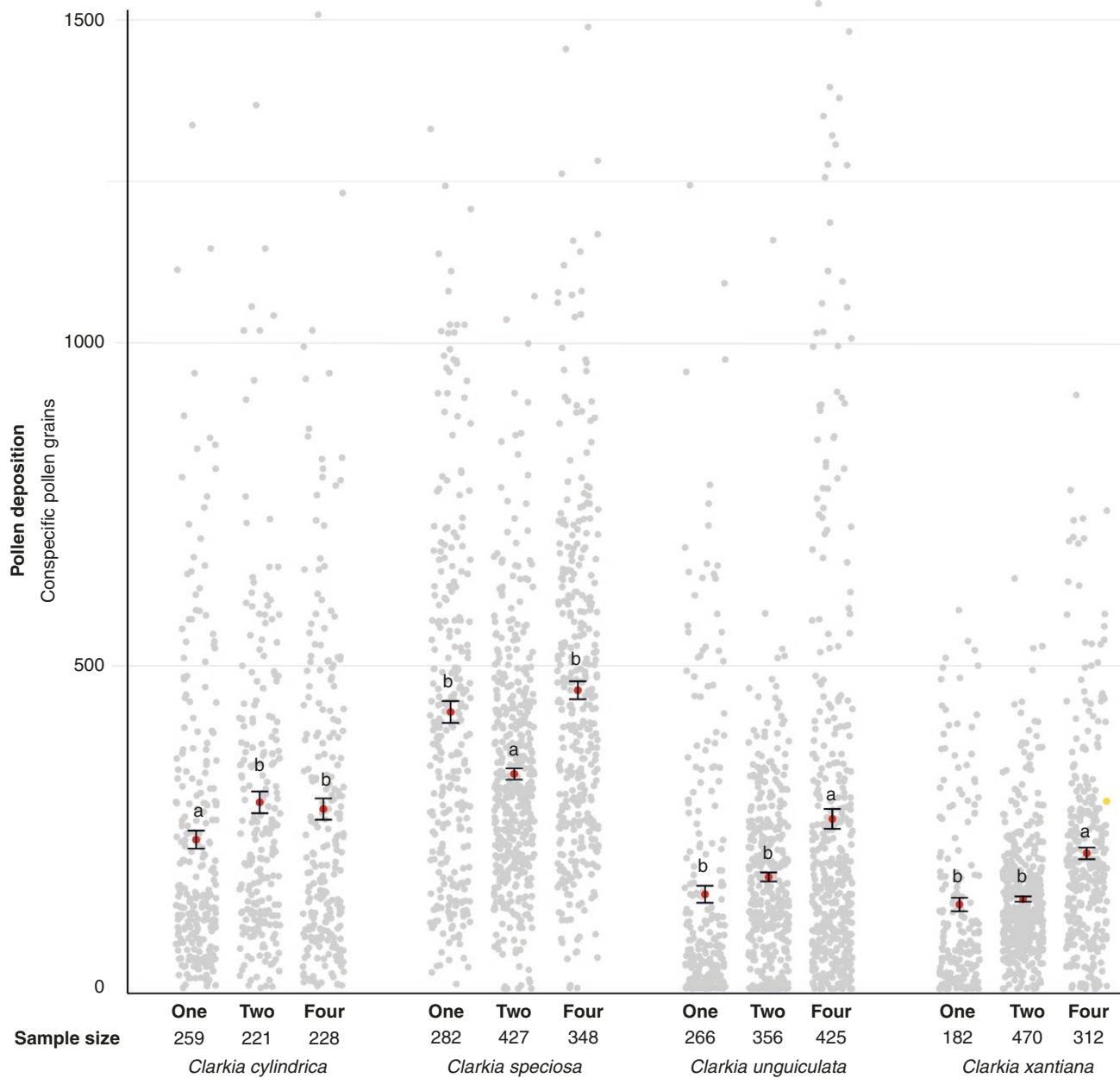


FIG. 3. Mean (\pm s.e.) pollen deposition on flowers for each *Clarkia* species at sites where it flowers alone (one-species sites), with one other (two-species sites) and with three other *Clarkia* species (four-species sites). Different letters represent significant differences ($P < 0.05$) between sites with different co-flowering richness within each *Clarkia* species.

patterns of pollen limitation among co-occurring species and across communities with varying *Clarkia* species richness.

The substantive variation in the quantity and quality of pollen received among individuals within a population suggests that small-scale differences in the biotic and/or abiotic environment within sites, and/or across time (sampling days), play a large role in mediating pollination success in these species. Although the importance of within-population variation in generating spatial mosaics of reproductive success and floral evolution has been previously acknowledged, it remains largely understudied (Herrera, 1995; Herrera *et al.*, 2002; Arceo-Gómez *et al.*, 2016b). Within-population variation in pollination success

can result from differences in micro-environmental conditions (e.g. solar radiation and wind exposure; Hennessy *et al.*, 2020; Watson *et al.*, 2022; Plos *et al.*, 2023), intrinsic differences in pollination-related traits among individual plants (e.g. flower size, nectar, colour, scent; Herrera, 1995; Herrera *et al.*, 2002), or the spatial distribution of conspecifics and heterospecifics within a community (Dupont *et al.*, 2014; Arroyo-Correa *et al.*, 2021). While we have information on the average density of each *Clarkia* species at a subset of sites (see below), we lack data on the local density of conspecifics and heterospecifics surrounding focal plants to evaluate local neighbourhood effects on pollen receipt and pollen tube growth of individual flowers.

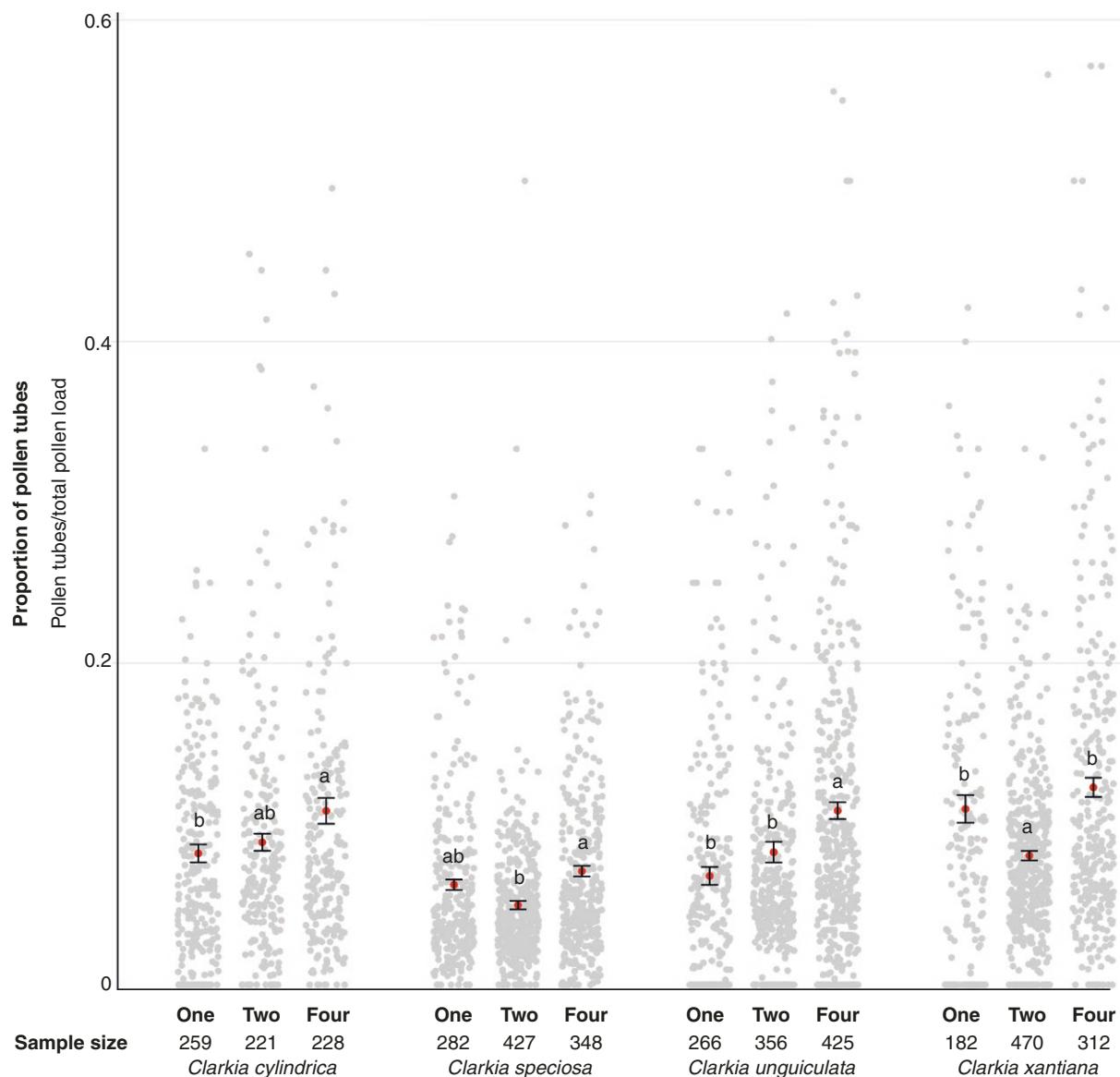


FIG. 4. Mean (\pm s.e.) proportion of pollen tubes (pollen tubes/total pollen load) in flowers for each *Clarkia* species at sites where they occur alone (one-species sites), with one other (two-species sites) and with three other *Clarkia* species (four-species sites). Different letters represent significant differences ($P < 0.05$) between sites with different co-flowering richness within each *Clarkia* species.

TABLE 2. Linear mixed-effects models to assess the effect of focal species identity and co-flowering species richness on estimators of pollen quantity and quality limitation. The first regression slope (b_1), breakpoint (c) and second regression slope (b_2) were estimated using the piecewise method of Alonso *et al.* (2012).

	Species ID		Richness		Species ID \times Richness	
	χ^2	P-value	χ^2	P-value	χ^2	P-value
Slope 1	8.23	0.04*	0.14	0.92	10.31	0.11
Breakpoint	52.75	<0.001***	2.08	0.035	20.94	0.0018**
Slope 2	4.75	0.19	2.29	0.31	4.62	0.59

*** $P < 0.001$, ** $P < 0.01$, * $P < 0.05$.

Our findings nevertheless underscore the importance of considering these fine-scale sources of variation in pollination success (Herrera, 1995; Herrera *et al.*, 2002; Arceo-Gómez *et al.*, 2016b). Evaluating how variation in pollen receipt is structured at different spatial scales (i.e. populations, plants within populations) is key to advancing our understanding of the factors influencing plant reproductive success in nature (e.g. Aizen *et al.*, 1990; Dudash and Fenster, 1997; Kunin, 1997; Herrera *et al.*, 2002) and their role in the evolution of plant reproductive strategies (e.g. Dudash, 1993; Burd, 1994; Gomulkiewicz *et al.*, 2000).

We observed differences in patterns of pollen quantity and quality limitation using our proxies across species. Specifically, pollen quality limitation appeared to be stronger in *C. speciosa*, as it had the smallest first slope (b_1) and the largest breakpoint (c) value of the four *Clarkia* species. In other words, *C.*

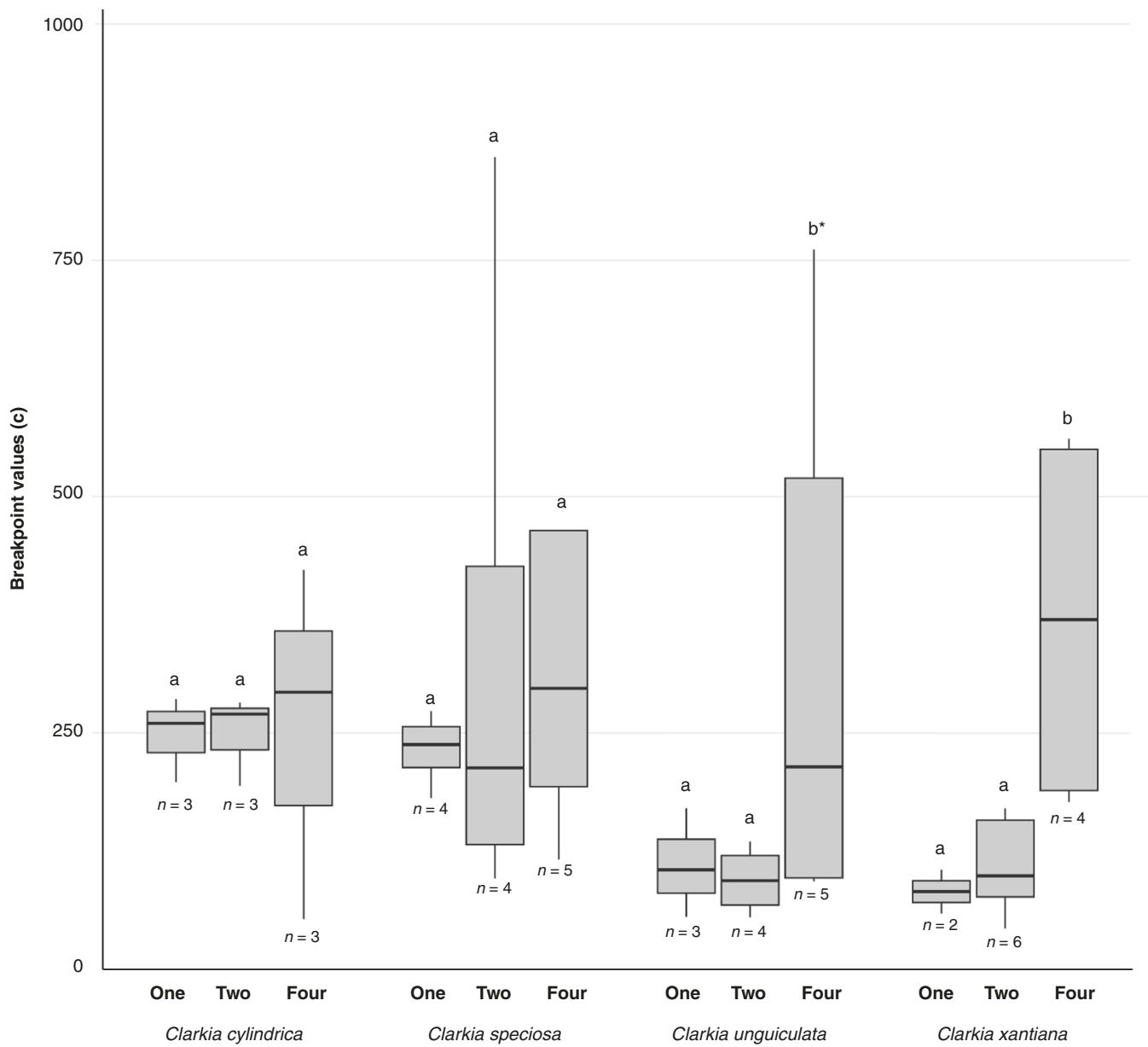


FIG. 5. Differences in average piecewise breakpoint values (c) for each *Clarkia* species at sites where it flowers alone (one-species sites), with one other (two-species sites) and with three other *Clarkia* species (four-species sites). The bottom and top limits of each box are the lower and upper quartiles respectively. The horizontal black lines within each box represent the median. Different letters show significant differences ($P < 0.05$) between sites with different co-flowering richness within each *Clarkia* species. *Marginal pairwise differences ($P = 0.08$; Supplementary Data Table S4).

speciosa required more pollen grains to reach saturation in the number of pollen tubes in styles compared to other species (e.g. Fig. 1B), which is consistent with it having the lowest proportion of pollen tubes (Fig. 2). This result is surprising, since a large fraction of visits to *C. speciosa* are by *D. angusticeps*, a single highly specialized bee (Appendix 3; Singh, 2014; James *et al.*, 2022), and thus we expected *C. speciosa* to be more strongly limited by pollen quantity than quality. Although the exact source of low-quality pollen is unknown (but see below on potential sources of low pollen quality), this finding suggests the potential for pollen quality to limit reproductive success even in highly specialized pollination systems (e.g.

Fenster and Marten-Rodriguez, 2007; Armbruster, 2017). Equally unexpected was the finding that pollen quantity limitation appeared to be stronger in *C. unguiculata*, as its first slope value (b_1) was two times higher than that of *C. speciosa*, and it had the lowest breakpoint value, suggesting higher pollen quality (e.g. Fig. 1A). The high pollen quantity limitation in *C. unguiculata* may also be due to the fact that, in spite of being visited by common generalist bees, such as honeybees and bumblebees (Appendix 3; Singh, 2014), these generalists typically carry very little *Clarkia* pollen (Moeller and Geber, 2005; James *et al.*, 2022). Given the highly specialized pollination biology of *C. speciosa* and the relatively generalized

pollination biology of *C. unguiculata*, it seems unlikely that the difference in pollen quality received by the two species is the result of differences in the amount of heterospecific pollen. Rather, differences in pollen quality may be driven by differences in low-quality conspecific pollen deposition. While *C. speciosa* and *C. unguiculata* are both self-compatible species, rates of self-pollen deposition could differ between them. For instance, *C. speciosa* has a bowl-shaped, upward-facing flower which may facilitate self-pollen deposition as bees enter and forage on flowers from above, compared to the forward-facing flowers in *C. unguiculata* that bees approach from the front (Fig. 2; M. Geber, pers. obs.). Floral orientation has been found to help direct how pollinators approach flowers with various outcomes (Fenster *et al.*, 2009). However, *C. speciosa* produces the lowest number of flowers with few of them open at the same time and thus geitonogamous pollination is unlikely in this species. *Clarkia unguiculata*, on the other hand, has high levels of protandry (Dudley *et al.*, 2007) as has been noted in multiple herbaceous species (e.g. Darwin, 1871; Dudash, 1990), which could increase outcross pollen deposition (i.e. high pollen quality; but see Hove *et al.*, 2016; Ivey *et al.*, 2016). The exact mechanisms driving differences in the patterns of pollen quantity and quality limitation deserve further study. For instance, a recent study has shown that the degree of quality and quantity of pollen limitation is impacted by both the genetic diversity within a population and its genetic effective population size (Cisternas-Fuentes and Koski, 2024). Our findings further underscore the importance of evaluating inter- and intraspecific variation in pollen quality and quantity limitation and the potential for micro-evolutionary processes to shape the patterns observed. Our results also indicate that divergent strategies in terms of pollen quality and quantity receipt may exist despite strong similarities among *Clarkia* species in their ecological context and evolutionary history and thus highlight the importance of evaluating quantity and quality aspects of pollen limitation across multiple coexisting plant species.

Community context, i.e. the number of the co-flowering congeners, had significant but variable effects on pollen quantity and quality limitation across our focal species. Specifically, breakpoint values were two times higher in the four-species sites compared to one- and two-species communities for *C. xantiana* and *C. unguiculata*, but did not vary across community contexts for *C. speciosa* or *C. cylindrica*. The higher breakpoint values for *C. xantiana* and *C. unguiculata* at four-species sites suggest that overall pollen limitation increases in these species with increasing co-flowering species richness because a larger number of pollen grains are needed to reach pollen tube saturation at four-species sites compared to one- or two-species sites. Interestingly, total pollen load size also increased with increasing number of co-flowering *Clarkia* species in both species (Fig. 2), suggesting that they receive higher amounts of low-quality pollen (e.g. *Clarkia* heterospecific pollen) with increasing co-flowering richness. Pollinator inconstancy (i.e. switches between *Clarkia* species in successive visits by a pollinator) has also been observed to increase as local *Clarkia* diversity increases, probably leading to greater transfer of heterospecific and lower quality pollen (James, 2020). Other studies have also observed increases in heterospecific pollen deposition with increasing co-flowering richness in species with a large number of floral visitors (e.g. Arceo-Gómez and

Ashman, 2014). However, the role of heterospecific pollen in mediating overall patterns of pollen limitation in natural populations is still largely underappreciated (Arceo-Gómez *et al.*, 2019a; Ashman *et al.*, 2020). Furthermore, in species-rich communities, the relative densities of individual species can be lower than in species-poor communities, and this could affect pollinator behaviour (e.g. constancy), and levels of con- and heterospecific pollen transfer. However, using data on mean density of each *Clarkia* species at a subset of populations ($n = 14$), we found no relationship between average focal *Clarkia* density, congeneric *Clarkia* density or total plant density on population estimates of pollen quantity and quality limitation (b1, c, b2; $P > 0.5$; Supplementary Data Table S5), nor on average pollen load size or pollen tube production ($P > 0.5$; Table S6). However, our finding of increased pollen limitation with increasing co-flowering species richness in *C. xantiana* is unexpected, and inconsistent with previous studies showing that this species experiences pollinator-mediated facilitation in the presence of other co-flowering *Clarkia* species (Moeller, 2004). It is also important to note that the influence of other non-*Clarkia* species in this system (Appendix 2), although possible, is expected to be minimal. This is mainly because most non-*Clarkia* species flower earlier, and *Clarkia* species show a strong reliance on specialist bees. Furthermore, a recent experimental study examining the effect non-*Clarkia* forb neighbours on seed set in focal *Clarkia* plants suggests the effects of non-*Clarkia* species are resource-based rather than pollinator-mediated (James and Geber, in review). Specifically, seed set decreased with increasing numbers of non-*Clarkia* neighbours and the reduction was equal in control flowers subject to natural levels of pollination and in flowers that received supplemental hand-pollination (James and Geber, in review). By comparison, the effect of *Clarkia* neighbours on focal individual seed set was almost entirely pollinator-mediated, affecting seed set in control flowers only (James and Geber, in review). Overall, our results suggest a complex interplay between pollen quantity and quality that mediates reproductive success across *Clarkia* species and communities. These dynamics have also been observed in other systems (e.g. Aizen and Harder, 2007; Chacoff *et al.*, 2008; Alonso *et al.*, 2013, Arceo-Gómez and Ashman, 2014). For instance, Chacoff *et al.* (2008) found pollen quality as the main factor limiting reproductive success in *Crataegus monogyna* via post-zygotic embryo selection favouring outcross progeny. However, Alonso *et al.* (2013) found that the importance of pollen quantity vs. quality in limiting reproductive success varied strongly among species (endemic vs. non-endemic) and across geographical regions globally. The different mechanisms (e.g. differences in pollinator attraction vs. degree of inbreeding depression/heterospecific pollen transfer) underlying this interplay across species and communities probably can have different evolutionary outcomes.

It is important to note that our results showed no evidence of competition for pollinators among co-flowering *Clarkia* species, since we did not see a decrease in total pollen load size with increasing co-flowering species richness for any species. In fact, three species showed an increase in total pollen load received with increasing co-flowering richness (*C. cylindrica*, *C. unguiculata* and *C. xantiana*; Fig. 3), suggesting that pollinator visitation increases in more diverse communities (also

see Moeller, 2004; Moeller and Geber, 2005). Thus, negative effects of co-flowering may only result from changes in the quality of pollen delivered to stigmas (conspecific related vs. unrelated or heterospecific) with potential consequences for the evolution of tolerance or avoidance strategies that minimize low-quality pollen deposition in species-rich communities (e.g. Ashman and Arceo-Gómez, 2013; Arceo-Gómez et al., 2015). Overall, our results emphasize the importance of conducting large-scale studies that evaluate drivers of pollination success across multiple species and populations (e.g. Aizen and Harder, 2007; Chacoff et al., 2008; Alonso et al., 2013; Arceo-Gómez and Ashman, 2014), evaluating quality and quantity aspects of pollination success to elucidate the mechanisms driving pollen limitation.

SUPPLEMENTARY DATA

Supplementary data are available at *Annals of Botany* online and consist of the following.

Figure S1. Representative example of piecewise regressions slopes and breakpoints (red dot) based on the pollen grain–tube dose–response relationship for two *Clarkia* species at one-, two- and four species sites. **Table S1.** Pairwise Tukey post-hoc comparisons of pollen deposition and proportion of pollen tubes (pollen tubes/total pollen load) among *Clarkia* species. **Table S2.** Pairwise Tukey post-hoc comparisons of pollen deposition and proportion of pollen tubes (pollen tubes/total pollen load) among *Clarkia* species in response to co-flowering species richness. **Table S3.** Pairwise Tukey post-hoc comparisons of the breakpoint values (c) among *Clarkia* species. **Table S4.** Pairwise Tukey post-hoc breakpoint values (c) among *Clarkia* species in response to co-flowering species richness. **Table S5.** Linear models to assess the effect of population ($N = 14$)-level (A) congeneric *Clarkia* floral density, (B) focal *Clarkia* species density and (C) total density (conspecific + heterospecific) on estimators of pollen quantity and quality limitation [first regression slope b1, breakpoint (c) and second regression slope b2]. **Table S6.** Linear models to assess the effect of the total *Clarkia* species' focal floral density, congeneric *Clarkia* floral density, and total floral density (*Clarkia* species' focal floral density + congeneric *Clarkia* floral density) on average pollen deposition (conspecific pollen grains) and average proportion of pollen tubes (pollen tubes/pollen deposition). $N = 14$ species \times site combinations.

ACKNOWLEDGEMENTS

We thank M. Dudash and multiple anonymous reviewers for their valuable comments on previous versions of the manuscript. We thank A. Wruck for help in the field and processing styles in the lab in the 2017 portion of the study.

FUNDING

This project was funded by a National Science Foundation (NSF) GRFP to K.E.E. (DGE-1650441), and NSF DEB-1256288 and DEB-1754299 to M.A.G. G.A.G. was funded by NSF DEB 1931163.

LITERATURE CITED

Aizen MA, Harder LD. 2007. Expanding the limits of the pollen-limitation concept: effects of pollen quantity and quality. *Ecology* **88**: 271–281.

Aizen MA, Searcy KB, Mulcahy DL. 1990. Among- and within-flower comparisons of pollen tube growth following self-and cross-pollinations in *Dianthus chinensis* (Caryophyllaceae). *American Journal of Botany* **77**: 671–676.

Alonso C, Herrera CM, Ashman TL. 2012. A piece of the puzzle: a method for comparing pollination quality and quantity across multiple species and reproductive events. *The New Phytologist* **193**: 532–542.

Alonso C, Navarro-Fernández CM, Arceo-Gómez G, Meindl GA, Parra-Tabla V, Ashman TL. 2013. Among-species differences in pollen quality and quantity limitation: Implications for endemics in biodiverse hotspots. *Annals of Botany* **112**: 1461–1469.

Arceo-Gómez G, Ashman TL. 2011. Heterospecific pollen deposition: does diversity alter the consequences? *The New Phytologist* **192**: 738–746.

Arceo-Gómez G, Ashman TL. 2014. Coflowering community context influences female fitness and alters the adaptive value of flower longevity in *Mimulus guttatus*. *The American Naturalist* **183**: E50–E63.

Arceo-Gómez G, Abdala-Roberts L, Jankowiak A, et al. 2016a. Patterns of among- and within-species variation in heterospecific pollen receipt: The importance of ecological generalization. *American Journal of Botany* **103**: 396–407.

Arceo-Gómez G, Alonso C, Abdala-Roberts L, Parra-Tabla V. 2016b. Patterns and sources of variation in pollen deposition and pollen tube formation in flowers of the endemic monoecious shrub *Cnidoscolus souzae* (Euphorbiaceae). *Plant Biology (Stuttgart, Germany)* **18**: 594–600.

Arceo-Gómez G, Kaczorowski RL, Patel C, Ashman TL. 2019a. Interactive effects between donor and recipient species mediate fitness costs of heterospecific pollen receipt in a co-flowering community. *Oecologia* **189**: 1041–1047.

Arceo-Gómez G, Schroeder A, Albor C, et al. 2019b. Global geographic patterns of heterospecific pollen receipt help uncover potential ecological and evolutionary impacts across plant communities worldwide. *Scientific Reports* **9**: 8086.

Arceo-Gómez G, Ashman TL. 2014. Patterns of pollen quantity and quality limitation of pre-zygotic reproduction in *Mimulus guttatus* vary with co-flowering community context. *Oikos* **123**: 1261–1269.

Arceo-Gómez G, Raguso RA, Geber MA. 2015. Can plants evolve tolerance mechanisms to heterospecific pollen effects? An experimental test of the adaptive potential in *Clarkia* species. *Oikos* **125**: 718–725.

Arceo-Gómez G, Ashman TL. 2017. The specialization continuum in pollination systems: diversity of concepts and implications for ecology, evolution and conservation. *Functional Ecology* **31**: 88–100.

Arroyo-Correa B, Bartomeus I, Jordano P. 2021. Individual-based plant-pollinator networks are structured by phenotypic and microsite plant traits. *Journal of Ecology* **109**: 2832–2844.

Arroyo-Correa B, Bartomeus I, Jordano P. 2024. Flowering synchrony modulates pollinator sharing and places plant individuals along a competition–facilitation continuum. *Oikos* **2024**: e10477.

Ashman TL, Arceo-Gómez G. 2013. Toward a predictive understanding of the fitness costs of heterospecific pollen receipt and its importance in co-flowering communities. *American Journal of Botany* **100**: 1061–1070.

Ashman T-L, Knight TM, Steets JA, et al. 2004. Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. *Ecology* **85**: 2408–2421.

Ashman TL, Alonso C, Parra-Tabla V, Arceo-Gómez G. 2020. Pollen on stigmas as proxies of pollinator competition and facilitation: complexities, caveats and future directions. *Annals of Botany* **125**: 1003–1012.

Bateman AJ. 1956. Cryptic self-incompatibility in the wallflower: *Cheiranthus cheiri* L. *Heredity* **10**: 257–261.

Bates DM. 2010. *lme4: mixed-effects modeling with R*. New York: Springer.

Bennett JM, Steets JA, Burns JH, et al. 2020. Land use and pollinator dependency drives global patterns of pollen limitation in the Anthropocene. *Nature Communications* **11**: 1–6.

Bolker BM, Brooks ME, Clark CJ, et al. 2009. Generalized linear mixed models: a practical guide for ecology and evolution. *Trends in Ecology and Evolution* **24**: 127–135.

Bowman RN. 1987. Cryptic self-incompatibility and the breeding system of *Clarkia unguiculata* (Onagraceae). *American Journal of Botany* **74**: 471–476.

Braun J, Lortie CJ. 2019. Finding the bees knees: a conceptual framework and systematic review of the mechanisms of pollinator-mediated facilitation. *Perspectives in Plant Ecology, Evolution and Systematics* **36**: 33–40.

Briscoe Runquist RD, Chu E, Iverson JL, Kopp JC, Moeller DA. 2014. Rapid evolution of reproductive isolation between incipient outcrossing and selfing *Clarkia* species. *Evolution* **68**: 2885–2900.

Burd M. 1994. Bateman's principle and plant reproduction: the role of pollen limitation in fruit and seed set. *The Botanical Review* **60**: 83–139.

Campbell DR. 1985. Pollen and gene dispersal: the influences of competition for pollination. *Evolution* **39**: 418–431.

Chacoff NP, García D, Obeso JR. 2008. Effects of pollen quality and quantity on pollen limitation in *Crataegus monogyna* (Rosaceae) in NW Spain. *Flora - Morphology, Distribution, Functional Ecology of Plants* **203**: 499–507.

Cisternas-Fuentes A, Koski MH. 2024. Effective population size mediates the impact of pollination services on pollen limitation. *Proceedings Biological Sciences* **291**: 20231519.

Crawley MJ. 2012. *The R book*. Chichester: John Wiley & Sons.

Cruzan MB. 1986. Pollen-tube distributions in *Nicotiana glauca* - evidence for density dependent growth. *American Journal of Botany* **73**: 902–907.

Darwin C. 1871. *The descent of man, and selection in relation to sex*. London: J. Murray.

Dudash MR. 1990. Relative fitness of selfed and outcrossed progeny in a self-compatible, protandrous species, *Sabatia angularis* L. (Gentianaceae): a comparison in three environments. *Evolution* **44**: 1129–1139.

Dudash MR. 1993. Variation in pollen limitation among individuals of *Sabatia angularis* (Gentianaceae). *Ecology* **74**: 959–962.

Dudash MR, Fenster CB. 1997. Multiyear study of pollen limitation and cost of reproduction in the iteroparous *Silene virginica*. *Ecology* **78**: 484–493.

Dudley LS, Mazer SJ, Galusky P. 2007. The joint evolution of mating system, floral traits and life history in *Clarkia* (Onagraceae): genetic constraints vs. independent evolution. *Journal of Evolutionary Biology* **20**: 2200–2218.

Dupont YL, Trajelsgaard K, Hagen M, et al. 2014. Spatial structure of an individual-based plant–pollinator network. *Oikos* **123**: 1301–1310.

Eckert CG, Kalisz S, Geber MA, et al. 2010. Plant mating systems in a changing world. *Trends in Ecology and Evolution* **25**: 35–43.

Eckhart VM, Rushing NS, Hart GM, Hansen JD. 2006. Frequency-dependent pollinator foraging in polymorphic *Clarkia xantiana* ssp. *xantiana* populations: implications for flower colour evolution and pollinator interactions. *Oikos* **112**: 412–421.

Eisen KE. 2018. Ecological sorting and character displacement contribute to the structure of communities of *Clarkia* species. *Journal of Evolutionary Biology* **31**: 1440–1458.

Eisen KE, Campbell DR, Richards E, Geber MA. 2019. Differences in flowering phenology are likely not the product of competition for pollination in *Clarkia* communities. *International Journal of Plant Sciences* **180**: 974–986.

Fang Q, Huang SQ. 2013. A directed network analysis of heterospecific pollen transfer in a biodiverse community. *Ecology* **94**: 1176–1185.

Fenster CB, Marten-Rodriguez S. 2007. Reproductive assurance and the evolution of pollination specialization. *International Journal of Plant Sciences* **168**: 215–228.

Fenster CB, Armbruster WS, Dudash MR. 2009. Specialization of flowers: is floral orientation an overlooked first step? *The New Phytologist* **183**: 502–506.

Fishman L, Willis JH. 2008. Pollen limitation and natural selection on floral characters in the yellow monkeyflower, *Mimulus guttatus*. *New Phytologist* **177**: 802–810.

Fox J, Weisberg S. 2019. Nonlinear regression, nonlinear least squares, and nonlinear mixed models in R. *Population* **150**: 200.

Geber MA, Eckhart VM. 2005. Experimental studies of adaptation in *Clarkia xantiana*. II. Fitness variation across a subspecies border. *Evolution* **59**: 521–531.

Ghazoul J. 2006. Floral diversity and the facilitation of pollination. *Journal of Ecology* **94**: 295–304.

Gomez JM, Perfectti F. 2012. Fitness consequences of centrality in mutualistic individual-based networks. *Proceedings Biological Sciences* **279**: 1754–1760.

Gómez JM, Abdelaziz M, Lorite J, Jesús Muñoz-Pajares A, Perfectti F. 2010. Changes in pollinator fauna cause spatial variation in pollen limitation. *Journal of Ecology* **98**: 1243–1252.

Gomulkiewicz R, Thompson JN, Holt RD, Nuismer SL, Hochberg ME. 2000. Hot spots, cold spots, and the geographic mosaic theory of coevolution. *American Naturalist* **156**: 156–174.

Goodwillie C, Kalisz S, Eckert CG. 2005. The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. *Annual Review of Ecology, Evolution, and Systematics* **36**: 47–79.

Ha MK, Ivey CT. 2017. Pollinator-mediated interactions in experimental arrays vary with neighbor identity. *American Journal of Botany* **104**: 252–260.

Harder LD, Aizen MA, Richards SA. 2016a. The population ecology of male gametophytes: the link between pollination and seed production. *Ecology Letters* **19**: 497–509.

Harder LD, Aizen MA, Richards SA, Joseph MA, Busch JW. 2016b. Diverse ecological relations of male gametophyte populations in stylar environments. *American Journal of Botany* **103**: 484–497.

Hartig F. 2021. *DHARMA: Residual Diagnostics for Hierarchical (multi-level/mixed) Regression Models*. R package version 0.4. 1.

Hennessy G, Harris C, Eaton C, et al. 2020. Gone with the wind: effects of wind on honey bee visit rate and foraging behaviour. *Animal Behaviour* **161**: 23–31.

Herrera CM. 1995. Floral biology, microclimate, and pollination by ectothermic bees in an early-blooming herb. *Ecology* **76**: 218–228.

Herrera CM, Cerdá X, García MB, et al. 2002. Floral integration, phenotypic covariance structure and pollinator variation in bumblebee-pollinated *Helleborus foetidus*. *Journal of Evolutionary Biology* **15**: 108–121.

Hopkins R, Rausher MD. 2012. Pollinator-mediated selection on flower color allele drives reinforcement. *Science* **335**: 1090–1092.

Hove AA, Mazer SJ, Ivey CT. 2016. Seed set variation in wild *Clarkia* populations: teasing apart the effects of seasonal resource depletion, pollen quality, and pollen quantity. *Ecology and Evolution* **6**: 6524–6536.

Ivey CT, Dudley LS, Hove AA, Emms SK, Mazer SJ. 2016. Outcrossing and photosynthetic rates vary independently within two *Clarkia* species: implications for the joint evolution of drought escape physiology and mating system. *Annals of Botany* **118**: 897–905.

James ARM. 2020. *Pollinator sharing and spatial partitioning affect flowering plant coexistence*. PhD Thesis, Cornell University.

James ARM, Geber MA, Toews DPL. 2022. Molecular assays of pollen use consistently reflect pollinator visitation patterns in a system of flowering plants. *Molecular Ecology Resources* **22**: 361–374.

Johnson CA, Dutt P, Levine JM. 2022. Competition for pollinators destabilizes plant coexistence. *Nature* **607**: 721–725.

Jonas CS, Geber MA. 1999. Variation among populations of *Clarkia unguiculata* (Onagraceae) along altitudinal and latitudinal gradients. *American Journal of Botany* **86**: 333–343.

Knight TM, Steets JA, Vamosi JC, et al. 2005. Pollen limitation of plant reproduction: pattern and process. *Annual Review of Ecology, Evolution, and Systematics* **36**: 467–497.

Kunin WE. 1997. Population size and density effects in pollination: pollinator foraging and plant reproductive success in experimental arrays of *Brassica kaber*. *Journal of Ecology* **85**: 225–234.

Larson BMH, Barrett SCH. 2000. A comparative analysis of pollen limitation in flowering plants. *Biological Journal of the Linnean Society* **69**: 503–520.

Lázaro A, Lundgren R, Totland O. 2009. Co-flowering neighbors influence the diversity and identity of pollinator groups visiting plant species. *Oikos* **118**: 691–702.

Lázaro A, Lundgren R, Totland O. 2015. Pollen limitation, species' floral traits and pollinator visitation: Different relationships in contrasting communities. *Oikos* **124**: 174–186.

Lewis H. 1953. Chromosome phylogeny and habitat preference of *Clarkia*. *Evolution* **7**: 102–109.

Lewis H, Lewis M. 1955. *The genus Clarkia*. University of California Publications in Botany. Berkeley, CA: University of California.

MacSwain JW. 1973. Comparative behavior of bees and Onagraceae. IV. *Clarkia* bees of the western United States. *University of California Publications in Entomology* **70**: 1–80.

McLernon SM, Murphy SD, Aarsen LW. 1996. Heterospecific pollen transfer between sympatric species in a midsuccessional old-field community. *American Journal of Botany* **83**: 1168–1174.

Mitchell RJ, Flanagan RJ, Brown BJ, Waser NM, Karron JD. 2009. New frontiers in competition for pollination. *Annals of Botany* **103**: 1403–1413.

Moeller DA. 2004. Facilitative interactions among plants via shared pollinators. *Ecology* **85**: 3289–3301.

Moeller DA, Geber MA. 2005. Ecological context of the evolution of self-pollination in *Clarkia Xantiana*: population size, plant communities, and reproductive assurance. *Evolution* **59**: 786–799.

Morales CL, Traveset A. 2008. Interspecific pollen transfer: magnitude, prevalence and consequences for plant fitness. *Critical Reviews in Plant Sciences* **27**: 221–238.

Muggeo VMR. 2008. Segmented: an R package to fit regression models with broken-line relationships. *R News* **8**: 20–25.

Németh MB, Smith-Huerta NL. 2003. Pollen deposition, pollen tube growth, seed production, and seedling performance in natural populations of *Clarkia unguiculata* (Onagraceae). *International Journal of Plant Sciences* **164**: 153–164.

Ollerton J, Winfree R, Tarrant S. 2011. How many flowering plants are pollinated by animals? *Oikos* **120**: 321–326.

Plos C, Stelbrink N, Römermann C, Knight TM, Hensen I. 2023. Abiotic conditions affect nectar properties and flower visitation in four herbaceous plant species. *Flora* **303**: 152279.

Rathcke B. 1983. Competition and facilitation among plants for pollination. In *Pollination biology*. Oxford: Elsevier Science, 305–329.

Rodger JG, Bennett JM, Razanajatovo M, et al. 2021. Widespread vulnerability of flowering plant seed production to pollinator declines. *Science Advances* **7**: eabd3524.

Runquist RB, Stanton ML. 2013. Asymmetric and frequency-dependent pollinator-mediated interactions may influence competitive displacement in two vernal pool plants. *Ecology Letters* **16**: 183–190.

Sandring S, Ågren J. 2009. Pollinator-mediated selection on floral display and flowering time in the perennial herb *Arabidopsis lyrata*. *Evolution* **63**: 1292–1300.

Sargent RD, Kembel SW, Emery NC, Forrestel EJ, Ackerly DD. 2011. Effect of local community phylogenetic structure on pollen limitation in an obligately insect-pollinated plant. *American Journal of Botany* **98**: 283–289.

Schielzeth H, Nakagawa S. 2013. Nested by design: model fitting and interpretation in a mixed model era. *Methods in Ecology and Evolution* **4**: 14–24.

Schlueter EM, Vamosi JC. 2010. Phylogenetic community context influences pollen delivery to *Allium cernuum*. *Evolutionary Biology* **37**: 19–28.

Singh I. 2014. *Pollination interaction networks between Clarkia (Onagraceae) species and their pollinators in the Southern Sierra Nevada, California*. MS thesis, Cornell University.

Soares NC, Maruyama PK, Staggemeier VG, Morellato LPC, Araujo MS. 2021. The role of individual variation in flowering and pollination in the reproductive success of a crepuscular buzz-pollinated plant. *Annals of Botany* **127**: 213–222.

Stoffel MA, Nakagawa S, Schielzeth H. 2021. partR2: partitioning R(2) in generalized linear mixed models. *PeerJ* **9**: e11414.

Streher NS, Bergamo PJ, Ashman TL, Wolowski M, Sazima M. 2020. Effect of heterospecific pollen deposition on pollen tube growth depends on the phylogenetic relatedness between donor and recipient. *AoB Plants* **12**: plaa016.

Tehrani G, Brown SK. 1992. Pollen-incompatibility and self-fertility in sweet cherry. *Plant Breeding Reviews* **9**: 367–388.

Toms JD, Lesperance ML. 2003. Piecewise regression: a tool for identifying ecological thresholds. *Ecology* **84**: 2034–2041.

Vamosi JC, Knight TM, Steets JA, Mazer SJ, Burd M, Ashman TL. 2006. Pollination decays in biodiversity hotspots. *Proceedings of the National Academy of Sciences of the United States of America* **103**: 956–961.

Waser NM. 1978. Interspecific pollen transfer and competition between co-occurring plant species. *Oecologia* **36**: 223–236.

Waser NM, Price MV. 1991. Reproductive costs of self-pollination in *Ipomopsis aggregata* (Polemoniaceae): are ovules usurped? *American Journal of Botany* **78**: 1036–1043.

Waser NM, Chittka L, Price MV, Williams NM, Ollerton J. 1996. Generalization in pollination systems, and why it matters. *Ecology* **77**: 1043–1060.

Watson DM, McLellan RC, Fontúrbel FE. 2022. Functional roles of parasitic plants in a warming world. *Annual Review of Ecology, Evolution, and Systematics* **53**: 25–45.

Weller SG, Ornduff R. 1977. Cryptic self-incompatibility in *Amsinckia grandiflora*. *Evolution* **31**: 47–55.

Wilcock C, Neiland R. 2002. Pollination failure in plants: why it happens and when it matters. *Trends in Plant Science* **7**: 270–277.

APPENDIX 1

List and location (latitude, longitude) of sites where flower styles were collected, year(s) of collection, species richness and composition of sites, and species (x) whose styles were collected at each site (C: *Clarkia cylindrica*; S: *C. speciosa*; U: *C. unguiculata*; X: *C. xantiana*).

Site name	Latitude (DD)	Longitude (DD)	Year(s)	Co-flowering species richness	Species composition	Species collected			
						C	S	U	X
S_Flat	35.5801	-118.5222	2014, 2017	1	C		x		
S45	35.5881	-118.5209	2014	1	C		x		
SquirrelTank	35.6102	-118.4121	2017	1	S			x	
Black_Gulch	35.5934	-118.5241	2014	1	S			x	
S41	35.5949	-118.5242	2014	1	S			x	
S60	35.5893	-118.5045	2014	1	S			x	
SiteFifty	35.4890	-118.7102	2014, 2017	1	U				x
S47	35.5773	-118.5393	2014	1	U				x
LCWW	35.4803	-118.7092	2014	1	X				x
TCF	35.5233	-118.6620	2014	1	X				x
OKR_30.4	35.5765	-118.5544	2014	2	C, S		x	x	
Live_Oak	35.4835	-118.7330	2014	2	C, U		x		
S30	35.4933	-118.7055	2014	2	C, U				x
S34	35.4742	-118.7282	2014	2	C, U				x
ChinaGarden	35.5379	-118.6489	2017	2	C, X		x		x
BLGW	35.5930	-118.5282	2014	2	S, X		x		x

Site name	Latitude (DD)	Longitude (DD)	Year(s)	Co-flowering species richness	Species composition	Species collected			
						C	S	U	X
GRE	35.5989	-118.5056	2014	2	S, X		x		x
S8	35.5908	-118.5120	2014	2	S, X		x		x
DEM Jr.	35.5306	-118.6237	2017	2	U, X			x	x
S31	35.4808	-118.7473	2014	2	U, X			x	x
DELfour	35.5464	-118.6170	2017	4	C, S, U, X	x	x	x	x
MillCreek	35.5363	-118.6142	2014, 2017	4	C, S, U, X	x	x	x	x
CHG	35.5371	-118.6487	2014	4	C, S, U, X		x	x	x
Democrat	35.5289	-118.6266	2014	4	C, S, U, X		x	x	

APPENDIX 2

Common species (and family) of trees, shrubs, forbs and grasses in the Kern River region where collection sites are located. Not all plant species occur at a given site.

Species	Family
Trees	
<i>Quercus chrysolepis</i>	
<i>Quercus douglasii</i>	Fagaceae
<i>Quercus wislizeni</i>	Fagaceae
<i>Pinus sabiniana</i>	Pinaceae
<i>Aesculus californica</i>	Sapindaceae
<i>Juniperus californica</i>	Cupressaceae
Shrubs	
<i>Sambucus cerulea</i>	Adoxaceae
<i>Toxicodendron diversilobum</i>	Anacardiaceae
<i>Hesperoyucca whipplei</i>	Asparagaceae
<i>Artemisia douglasiana</i>	Asteraceae
<i>Artemisia tridentata</i>	Asteraceae
<i>Baccharis salicifolia</i>	Asteraceae
<i>Encelia actoni</i>	Asteraceae
<i>Ericameria linearifolia</i>	Asteraceae
<i>Ericameria nauseosa</i>	Asteraceae
<i>Eriodictyon californicum</i>	Boraginaceae
<i>Ribes quercetorum</i>	Grossulariaceae
<i>Diplacus aurantiacus</i>	Phrymaceae
<i>Eriogonum fasciculatum</i>	Polygonaceae
<i>Eriogonum wrightii</i>	Polygonaceae
<i>Ceanothus cuneatus</i>	Rhamnaceae
<i>Cercocarpus betuloides</i>	Rosaceae
Forbs	
<i>Asclepias californica</i>	Apocynaceae
<i>Triteleia laxa</i>	Asparagaceae
<i>Achillea millefolium</i>	Asteraceae
<i>Chaenactis glabriuscula</i>	Asteraceae
<i>Eriophyllum ambiguum</i>	Asteraceae
<i>Eriophyllum confertiflorum</i>	Asteraceae
<i>Lasthenia californica</i>	Asteraceae

Species	Family
<i>Lasthenia gracilis</i>	Asteraceae
<i>Layia pentachaeta</i>	Asteraceae
<i>Madia elegans</i>	Asteraceae
<i>Senecio</i> sp.	Asteraceae
<i>Uropappus lindleyi</i>	Asteraceae
<i>Amsinckia eastwoodiae</i>	Boraginaceae
<i>Amsinckia menziesii</i>	Boraginaceae
<i>Amsinckia menziesii</i>	Boraginaceae
<i>Cryptantha</i> sp.	Boraginaceae
<i>Hydrophyllum occidentale</i>	Boraginaceae
<i>Nemophila menziesii</i>	Boraginaceae
<i>Phacelia cicutaria</i>	Boraginaceae
<i>Phacelia distans</i>	Boraginaceae
<i>Phacelia ramosissima</i>	Boraginaceae
<i>Phacelia tanacetifolia</i>	Boraginaceae
<i>Pholistoma auritum</i>	Boraginaceae
<i>Pholistoma membranaceum</i>	Boraginaceae
<i>Plagiobothrys</i> sp.	Boraginaceae
<i>Erysimum capitatum</i>	Brassicaceae
<i>Lepidium</i> sp.	Brassicaceae
<i>Calystegia longipes</i>	Convolvulaceae
<i>Croton setiger</i>	Euphorbiaceae
<i>Acmonia glaber</i>	Fabaceae
<i>Lotus micranthus</i>	Fabaceae
<i>Lupinus albifrons</i>	Fabaceae
<i>Lupinus benthamii</i>	Fabaceae
<i>Lupinus bicolor</i>	Fabaceae
<i>Lupinus microcarpus</i>	Fabaceae
<i>Erodium cicutarium</i>	Geraniaceae
<i>Salvia columbariae</i>	Lamiaceae
<i>Calochortus venustus</i>	Liliaceae
<i>Claytonia perfoliata</i>	Montiaceae
<i>Camissonia campestris</i>	Onagraceae
<i>Clarkia exilis</i>	Onagraceae
<i>Castilleja exserta</i>	Orobanchaceae
<i>Castilleja subinclusa</i>	Orobanchaceae
<i>Eschscholzia californica</i>	Papaveraceae
<i>Papaver heterophyllum</i>	Papaveraceae
<i>Platystemon californicus</i>	Papaveraceae
<i>Collinsia heterophylla</i>	Plantaginaceae
<i>Gilia capitata</i>	Polemoniaceae
<i>Gilia tricolor</i>	Polemoniaceae
<i>Leptosiphon bicolor</i>	Polemoniaceae
<i>Leptosiphon montanus</i>	Polemoniaceae
<i>Linanthus dichotomus</i>	Polemoniaceae
<i>Naverretia capillaris</i>	Polemoniaceae
<i>Eriogonum inflatum</i>	Polygonaceae

Species	Family
<i>Eriogonum nudum</i>	Polygonaceae
<i>Datura wrightii</i>	Solanaceae
<i>Dichelostemma congestum</i>	Themidaceae
Grasses	
<i>Avena barbata</i>	Poaceae
<i>Bromus diandrus</i>	Poaceae
<i>Bromus rubens</i>	Poaceae
<i>Bromus tectorum</i>	Poaceae
<i>Festuca microstachys</i>	Poaceae
<i>Hordeum murinum</i>	Poaceae
<i>Polypogon monspeliensis</i>	Poaceae

APPENDIX 3

Common specialist and generalist bee species that visit the four *Clarkia* species based on surveys at multiple sites in the Kern River region in 2010 (20 sites) and 2011 (17 sites), as reported in [Singh, 2014](#) (chapter 1, tables 1 and 2). Sites varied in *Clarkia* species composition (2–4 *Clarkia* species) and were surveyed for bees 2–4 times during the flowering season, with each survey including morning and afternoon censuses. Bee species are listed in decreasing order of abundance (visit number). The proportion of visits by each bee species to each of the four *Clarkia* species across all sampling sites is shown where the visit total is ≥ 15 (C: *Clarkia cylindrica*; S: *C. speciosa*; U: *C. unguiculata*; X: *C. xantiana*; 0.00 | 0.50 | 1.00). Also shown are the total and proportion of all visits by specialists and the total and proportion of all visits by generalists to each *Clarkia* species, as well the proportion of all bee visits to each *Clarkia* species that are by specialists.¶

Species	Family	Visit number	% visits to C	% visits to S	% visits to U	% visits to X
Specialist visitors						
<i>Hesparapis regularis</i>	Melittidae	1053	0.27	0.20	0.22	0.30
<i>Diadasia angusticeps</i>	Apidae	274	0.01	0.99	0.00	0.00
<i>Megachile gravita</i> and <i>M. pascoensis</i> †	Megachilidae	199	0.07	0.59	0.06	0.29
<i>Lasioglossum pullilabre</i> §	Halictidae	128	0.52	0.27	0.14	0.07
<i>Melilisodes clarkiae</i>	Apidae	20	0.05	0.20	0.00	0.75
<i>Andrena lewisorum</i>	Andrenidae	17	0.88	0.00	0.12	0.00
<i>Ceratina sequoiae</i>	Apidae	15	0.00	0.33	0.00	0.67
Total visits by specialists		1889	466	857	766	830
% of all specialist visits			0.20	0.36	0.16	0.25
Generalist visitors						
<i>Apis mellifera</i>	Apidae	439	0.00	0.02	0.67	0.31
<i>Halictus farinosus</i>	Halictidae	210	0.13	0.39	0.11	0.38
<i>Lasioglossum</i> sp.‡	Halictidae	183	0.24	0.23	0.23	0.30
<i>Bombus vandykei</i> and <i>B. vosnesenskii</i> †	Apidae	126	0.01	0.01	0.51	0.48
<i>Anthophora urbana</i>	Apidae	50	0.02	0.76	0.14	0.08
<i>Hoplitis albifrons</i>	Megachilidae	26	0.19	0.00	0.19	0.62
<i>Xylocopa tabaniformis</i>	Apidae	9				
<i>Bombus crotchii</i>	Apidae	9				
<i>Coelioxys sericaudata</i>	Megachilidae	8				
<i>Osmia</i> sp. 1	Megachilidae	6				
<i>Osmia</i> sp. 2	Megachilidae	5				
<i>Agapostemon texanus</i>	Halictidae	4				
Total visits by generalists		1075	83	172	457	362
% of all generalist visits			0.08	0.16	0.43	0.34

Species	Family	Visit number	% visits to C	% visits to S	% visits to U	% visits to X
% of all visits			0.16	0.29	0.26	0.28
% of all visits that are by specialists			0.82	0.80	0.40	0.56

^aVisits by unidentified bees (<3 % of all visits) in [Singh \(2014\)](#) are omitted from the table.

^b*Megachile gravita* and *M. pascoensis* are lumped together because they are difficult to distinguish in flight. The same applies for *Bombus vandykei* and *B. vosnesenskii*.

^c*Lasioglossum pullilabre* is a putative specialist because bees carry large amounts of *Clarkia* pollen ([Moeller and Geber, 2005](#)).

^d*Lasioglossum* sp. consists of multiple species from several subgenera. These *Lasioglossum* carry little *Clarkia* pollen ([Moeller and Geber, 2005](#)) and are considered generalists, though they were categorized as specialists in [Singh \(2014\)](#).

APPENDIX 4

Pollen deposition, pollen tubes, and estimates of pollen quantity and quality limitation for each *Clarkia* species at each collection site.

Species	Site	Year	N	Co-flowering richness	Average pollen deposition	Average pollen tubes	Average proportion pollen tube	First regression slope (b1)	Break-point (c)	Second regression slope (b2)
<i>Clarkia cylindrica</i>	S_Flat	2017	60	1	498.383	26.667	0.068	0.093	260.000	0.004
<i>Clarkia cylindrica</i>	S_Flat	2014	100	1	150.900	16.180	0.112	0.112*	198.000	0.061*
<i>Clarkia cylindrica</i>	S45	2014	99	1	148.747	3.939	0.059	0.021*	285.393	-0.006
<i>Clarkia speciosa</i>	Black_Gulch	2014	100	1	414.620	23.370	0.082	0.131*	180.986	0.012
<i>Clarkia speciosa</i>	S41	2014	60	1	323.567	9.500	0.035	0.044	224.000	-0.002
<i>Clarkia speciosa</i>	S60	2014	72	1	412.486	19.028	0.056	0.061	273.000	0.014
<i>Clarkia speciosa</i>	SquirrelTank	2017	50	1	603.820	31.080	0.065	0.109	251.001	0.013
<i>Clarkia unguiculata</i>	S47	2014	106	1	73.179	4.981	0.075	0.103*	55.382	0.036*
<i>Clarkia unguiculata</i>	S50	2014	100	1	31.310	2.770	0.063	0.066*	105.000	0.153*
<i>Clarkia unguiculata</i>	SiteFifty	2017	60	1	465.683	23.200	0.064	0.147	170.034	-0.006
<i>Clarkia xantiana</i>	LCWW	2014	82	1	41.500	1.829	0.046	0.055*	59.000	0.008
<i>Clarkia xantiana</i>	TCF	2014	100	1	203.020	25.340	0.161	0.182*	105.000	0.065*
<i>Clarkia cylindrica</i>	ChinaGarden	2017	60	2	506.917	43.667	0.115	0.104	282.001	0.014
<i>Clarkia cylindrica</i>	Live_Oak	2014	106	2	246.349	17.613	0.085	0.083*	194.000	0.036*
<i>Clarkia cylindrica</i>	OKR_30.4	2014	55	2	131.073	7.255	0.066	0.041*	269.800	0.005
<i>Clarkia speciosa</i>	BLGW	2014	108	2	450.519	20.907	0.050	0.038*	858.950	0.002
<i>Clarkia speciosa</i>	GRE	2014	102	2	315.098	9.196	0.036	0.085	95.850	0.007*
<i>Clarkia speciosa</i>	OKR_30.4	2014	110	2	225.218	10.200	0.062	0.071*	143.850	0.002
<i>Clarkia speciosa</i>	S8	2014	107	2	339.766	13.607	0.049	0.042*	282.000	-0.002
<i>Clarkia unguiculata</i>	DEMJr.	2017	50	2	283.480	37.640	0.216	0.260	71.998	0.032
<i>Clarkia unguiculata</i>	S30	2014	116	2	139.155	6.828	0.061	0.068*	135.000	0.009
<i>Clarkia unguiculata</i>	S31	2014	111	2	184.027	9.108	0.053	0.080*	115.000	0.020*
<i>Clarkia unguiculata</i>	S34	2014	79	2	136.203	9.101	0.071	0.189*	55.000	0.015
<i>Clarkia xantiana</i>	BLGW	2014	108	2	100.213	7.704	0.085	0.099*	77.387	0.014
<i>Clarkia xantiana</i>	ChinaGarden	2017	50	2	256.520	17.000	0.083	0.020	444.001	0.069
<i>Clarkia xantiana</i>	DEMJr.	2017	30	2	251.167	18.900	0.103	0.103	170.000	-0.001
<i>Clarkia xantiana</i>	GRE	2014	61	2	121.525	10.230	0.094	0.130*	76.000	0.016
<i>Clarkia xantiana</i>	S31	2014	103	2	129.049	8.757	0.071	0.091*	120.000	0.010
<i>Clarkia xantiana</i>	S8	2014	118	2	112.263	6.771	0.070	0.159*	43.000	0.017*
<i>Clarkia cylindrica</i>	DELfour	2017	60	4	479.933	41.817	0.124	0.106*	422.296	-0.009
<i>Clarkia cylindrica</i>	MillCreek	2017	60	4	372.600	44.783	0.171	0.091	293.000	-0.009

Species	Site	Year	N	Co-flowering richness	Average pollen deposition	Average pollen tubes	Average proportion pollen tube	First regression slope (b1)	Break-point (c)	Second regression slope (b2)
<i>Clarkia cylindrica</i>	MillCreek	2014	108	4	113.204	5.648	0.064	0.096*	53.000	0.013*
<i>Clarkia speciosa</i>	CHG	2014	100	4	464.650	24.770	0.066	0.119	193.000	0.006
<i>Clarkia speciosa</i>	DELFour	2017	38	4	647.263	34.553	0.065	0.025*	1182.100	-0.150
<i>Clarkia speciosa</i>	Democrat	2014	77	4	261.506	13.429	0.061	0.090	116.000	-0.001
<i>Clarkia speciosa</i>	MillCreek	2017	51	4	537.824	43.314	0.101	0.049	463.999	0.030*
<i>Clarkia speciosa</i>	MillCreek	2014	82	4	513.329	28.220	0.069	0.109*	297.000	-0.009
<i>Clarkia unguiculata</i>	CHG	2014	106	4	104.236	10.368	0.110	0.146*	93.000	0.033*
<i>Clarkia unguiculata</i>	DELFour	2017	60	4	840.700	36.417	0.073	0.048	519.374	0.001
<i>Clarkia unguiculata</i>	Democrat	2014	99	4	160.465	7.354	0.051	0.049*	214.000	-0.018
<i>Clarkia unguiculata</i>	MillCreek	2017	60	4	374.600	38.333	0.126	0.045*	761.450	-0.170
<i>Clarkia unguiculata</i>	MillCreek	2014	100	4	117.990	16.920	0.175	0.153*	96.530	0.073*
<i>Clarkia xantiana</i>	CHG	2014	109	4	165.294	9.844	0.062	0.068*	177.000	0.000
<i>Clarkia xantiana</i>	DELFour	2017	43	4	407.837	31.419	0.092	0.056	546.452	-0.057
<i>Clarkia xantiana</i>	MillCreek	2017	50	4	266.820	29.660	0.146	0.037*	561.000	0.228
<i>Clarkia xantiana</i>	MillCreek	2014	110	4	149.464	22.836	0.184	0.156*	193.000	0.052*

N = sample size. *Values of b1 and b2 that are different from zero, considering a 95 % confidence interval obtained from 1000 randomizations during the piecewise model fitting.