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When electrons are confined to a two-dimensional plane and are subjected

to an out-of-plane magnetic field, they move in circular cyclotron orbits as
aresult of the Lorentz force. In the quantum domain, this cyclotron motion
is quantized, and as a consequence, the energy spectrum of the electrons
splitsinto discrete, highly degenerate states called Landau levels. These flat
bands are the origin of the integer and fractional quantum Hall effects’*.
Although photons do not experience the Lorentz force because they do not
carry charge, they can be made to experience ‘pseudomagnetic fields™** as a
result of periodicity-breaking strain. In this work, we experimentally observe
photonic Landaulevels that arise due to a strain-induced pseudomagnetic
fieldinasilicon photonic crystal slab. The Landau levels are dispersive
(thatis, they are not flat bands) due to the distortion of the unit cell by the
strain. We employ an additional strain of a different form thatinduces a
pseudoelectric potential to flatten them. By acting akin to cavities that

are delocalized across space, flat bands such as these have the potential

to strongly enhance light-matter interaction as a result of the photonic
structure. The analytical framework that we develop here for understanding
the effects of inhomogeneous strainin photonic crystals via gauge fields can
help to guide the design of multiscale non-periodic photonic structures.

Although light may respond to external magnetic fields when propagat-
inginmagneto-optical materials, thisresponse is typically very weak.
An approach was put forward for emulating magnetic behaviour in
photonicsystems (while maintaining reciprocity) by inhomogeneously
straining a photoniclattice*. Thisimplementation was based onanidea
proposed forelectronsingraphene, where astrain patternimposed on
thelattice would introduce an effective gauge field at the Dirac point,
causing electrons to behave as though there were a strong field pre-
sent, even in the absence of areal magnetic field’. The effect was later
demonstrated by directly observing Landaulevelsingraphene bubbles,
where astrain corresponding to an enormous pseudomagnetic field of
300 T was imposed”. Since the original photonic experiment, Landau

levels were also proposed and observed in twisted optical cavities®,
exciton-polariton condensates’ and mechanical systems®'°. Moreover,
there have been a number of theoretical proposals for how Landau
levels may be used in the context of photonics that are intrinsically
distinct from the electronic case'".

Here we directly observe Landau levels in two-dimensional sili-
con photonic crystal slabs in the nanophotonic domain (Fig. 1 shows
a schematic of the associated strain and the effect on the photonic
crystal band structure). Moreover, we go beyond purely pseudomag-
netic effects and demonstrate that strains corresponding to pseudo-
electric fields act to flatten the Landau levels that inherit dispersion
from the form of the pseudomagnetic strain. There are several key
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Fig.1|Schematicillustrating the effect of strain on the Dirac cone. The data
are obtained from equation (1). a,b, Unstrained (a) and strained (b) honeycomb
lattice. The purple arrows indicate the direction of deformation of the lattice.
¢, Band structure in the vicinity of the Dirac cone in the unstrained case
corresponding toa.d, Strain resultsin the spectrum breaking up into Landau
levels that are spaced as \/n, where nis aninteger. Here Aw is the difference in
frequency between the zeroth and first Landau levels, w, is the Dirac frequency
and (k,, k,) is the in-plane Bloch wavevector.

differences and advantages of pseudomagnetismin photonic crystals
compared with previous realizations of photonic pseudomagnetism.
Photonic crystals are known to enhance light-matter interaction via
cavity modes and flat bands™"*; recent work has shown that such flat
bands strongly enhance the interaction between photonic and elec-
tronic states, resulting in an increase in Smith-Purcell radiation by
orders of magnitude®. A similar mechanism also holds promise for
potential applications in nanophotonic scintillators used in parti-
cle accelerators, as well as for medical imaging'®. Moreover, because
Landau-gauge eigenstates are one-dimensional waveguide-like states
(since they are confined in all dimensions but one, unlike Bloch states
of two-dimensional photonic crystals), and have a low group veloc-
ity, they may be used for slow-light applications”. Importantly, in the
photoniccrystal case, flat-band enhancement is generated as a result
of the lattice itself, rather than separately from the constituent sites.
In contrast, for systems composed of individual, isolated guiding or
resonant elements*’, lattice effects are not leveraged because strong
enhancement would occur even in a single site. Second, besides hav-
ing unit cellsthatare an order of magnitude smaller, photonic crystals
can, in practice, have much larger system sizes compared with previ-
ous realizations (millions versus hundreds of unit cells), and can be
realized with asmaller loss in the silicon platform. Since Landau-level
degeneracy scales with the system size and the linewidth increases with
loss, photonic crystals allow for increased degeneracy and improved
spectral resolution of the levels.

Further, since photonic crystals do not have an associated
tight-binding theory, the original theoretical framework relating
strain to pseudomagnetism is not directly applicable, necessitating
anew understanding; the appropriate effective Hamiltonians and
strain-dependent emergent parameters for two-dimensional pho-
tonic crystals were derived in our previous theoretical work'®, and are
extendedtotheslab geometry here (two-dimensional slabembedded
in three-dimensional space). Our establishment of a new analytical
method of understanding and describing aperiodicity in photonic
crystals (that is, using pseudomagnetic fields) will be useful in their

optimization for many different functions; this has traditionally been
approached by using direct brute-force numerical optimization' .

Our starting point is a photonic crystal structure consisting of
rounded triangular air holes in a silicon slab® that rests on a silica
substrate. The holes form an underlying honeycomb pattern with
C,, symmetry. As a result, this lattice hosts Dirac points at the K and
K’ points in the Brillouin zone**™. As these Dirac points lie below the
lightline of avacuum, they are not detectable via free-space excitation.
Toallow radiative coupling from outside the slab, we introduce a small
period-doubling perturbation by changing the size of some of the holes
(Supplementary Section 2). This makes the unit cell of the lattice rectan-
gular, and the band structure is folded such that the Dirac coneresides
along the k, axis and lies above the light line of vacuum. Importantly,
we choose our period doubling in a way that respects inversion sym-
metry and thus will not cause the Dirac cone to be gapped. A scanning
electron microscopy (SEM) image of the structure is shown in Fig. 2a;
the period-doubled unit cell is shaded in purple.

We numerically compute the band structure (in the
transverse-electric polarization) using the guided-mode expansion
method as implemented in the open-source software package LEG-
UME®. Figure 2b shows the linearly dispersing transverse-electric-like
bands that exhibit a Dirac point at K, with frequency w,, = 0.318(2mca™).
Here ais thelattice constant of the underlying hexagonal lattice struc-
ture and cis the speed of light. The period-doubling procedure very
slightly changes the Dirac frequency (Supplementary Section 2).

Next, weintroduce a strain patterninour structure by deforming
thelattice (Fig. 2c). Here the termstrain refers not toastraininduced by
aphysically applied stress but to the deformation of the dielectric pat-
ternthatis directly etched into the silicon. The specific strain pattern
is achieved by mapping every point (x, y, z) to (x, y + a(kx)?, z), where k
is the strength of the strain. This deformation breaks the periodicity
in the x direction, but retains periodicity along the y direction. The
spatial-scale separation ensured by the assumption of small and slowly
varyingstrain, thatis, ka < 1, allows us to develop a multiple-scale” vari-
ant of degenerate perturbation theory to expand the eigenstates and
eigenvalues of the strained system. The eigenstates are—to aleading
order in k—a slow spatial modulation of the degenerate Bloch modes
associated with the Dirac point of the unstrained (k = 0) structure.

The resulting effective Hamiltonian, which incorporates the strain,

isgiven by
Xo|. @

where E;, = (w,/¢)?; 0,, 0;and 0, are Pauli matrices; and v, = 0.915a  and
b.=0.606a"*are two parameters calculated from the modes of the
unstrained structure at energy £,. Supplementary Section 3 provides
adetailed derivation, where explicit expressions for b.and vpin terms
ofthe eigenstates of the periodic structure are displayed. We note that
the effective Hamiltonian displayed in equation (1) is directly derived
fromthe continuumtheory of photonic crystals; this is fundamentally
different from previous work® based on the tight-binding approxima-
tion. Our approach extends the methods from another work™ to the
three-dimensional setting of the slab geometry, where the vectorial
nature of the electromagnetic fields plays arole.

Equation (1) corresponds to atwo-dimensional Dirac Hamiltonian
describing massless spin-1/2 relativistic particles under a constant
(pseudo)magnetic field pointing in the out-of-plane direction, where
the magnetic field has a strength of B, = 4ab.k*/v, and is described by
avector potential in the Landau gauge. The discrete energies that are
eigenvalues of the Hamiltonianinequation (1) for an electron are known
asLandaulevels. The energy eigenvalue of the nthlevel is proportional
to \/|n|, where nis an integer. Analogously, for our photonic crystal
slabs, the frequency eigenvalues of the electromagnetic eigenmodes

.0 .0 4ab.k?
Flesr = EpOp + Up [<_la)01 + (—15 =
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Fig.2|Unstrained and strained photonic crystals and their calculated

band structures. a, SEM image of the unstrained periodic photonic crystal.
The primitive unit cell is highlighted in red and the period-doubled unitcell, in
purple; a, the lattice constant, is indicated in white. b, Simulated band structure
for the unstrained structure, based on the primitive unit cell, showing a Dirac
point for the transverse-electric-like modes. The colour of the bands indicates
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the quality factors of the states. ¢, SEM image of the strained pattern, in which the
strain causes the loss of periodicity in the x direction. The y-periodic unit cell of
the strained patternis highlighted in purple. d, Simulated band structure for the
strained pattern (x = 0.0632a™), showing the emergence of Landau levels in the
vicinity of the Dirac frequency. Only the first 11 Landau levels (n =-5to 5)
areshown.

are, to the first order in k, proportional to /[n] and can be expressed
asw, =wp + (CZUD/\/EwD)\/Beanwheren isaninteger.

To corroborate our analytical results givenin equation (1), we also
perform numerical simulations of the strained structure using the
guided-mode expansion method. The strainisimplementedinadielec-
tric profile that spans 199 period-doubled unit cells in the x direction.
Due to the preservation of lattice periodicity along the y direction,
isconserved and the frequencies of bands can be plotted as functions
of k, (Fig. 2d). Here we observe the splitting of the spectrum near the
Dirac pointinto discrete Landaulevels due to the strain-induced pseu-
domagneticfield, where the spacing of these levelsis proportional to
+/In]| for afixed value of k.

Todemonstrate the formation of Landaulevelsinsuch asystem, we
useelectron-beam lithography to fabricate both periodic and strained
patternsinasiliconslab (¢ =12.11) on top of asilica substrate (¢ = 2.25).
Methods provides a detailed description of the fabrication methods.
Figure 2a,c shows the SEM images of the fabricated structures. The
structure shown in Fig. 2a has a periodicity of 2a =980 nm along the
xdirection.

To experimentally characterize the photonic bands of these
structures, we perform angle- and frequency-resolved reflec-
tion measurements. The samples are illuminated by a tunable
continuous-wave laser (Keysight 81606A) with a wavelength range
of 1=1.45-1.65 um (+1.5 pm absolute-wavelength-resolution accu-
racy) and alaser linewidth coherence control of 10 kHz. We measure
the iso-frequency contours of the fabricated photonic crystal slabs
using back-focal-plane imaging. We then extract the Landau-level
band structures by observing the photonic crystal resonances at
a fixed k, corresponding to the location of the Dirac point of the
unstrained structure (although k. is no longer agood momentum for
thestrained structure, aslowly varying strain primarily mixes nearby
k,, and hence, the Landau-level eigenstates are expected to strongly
coupletothek,value of the Dirac point of the unstrained structure).
Supplementary Section1provides details of the experimental setup.
All of the Landau-level states that we observe in the present work
residein the bulk; the corresponding edge states are helical because
the system preserves time-reversal symmetry, and could be realized
and out-coupled by introducing an appropriate confining potential.

Thatsaid, there is no sharp conceptual distinction between the bulk
and edge states, particularly in the Landau gauge, since the latter
can be thought of as bulk states that have been shifted into the gaps
between the Landau levels by the confining potentials.

Figure 3ashows the bands of the unstrained structure, obtained by
back-focal-planeimaging, where we clearly observe linearly dispersing
bands near the Dirac point. We note that a very small gap is observed
at the Dirac point; for graphene, any breaking of inversion symmetry
necessarily gaps the Dirac point. Inevitably, asmall symmetry-breaking
term due to imprecision in fabrication is present and responsible for
the observed gap. Supplementary Section 4 shows that the breaking
ofinversion symmetry affects the zeroth Landaulevel much more than
the other levels.

Next, we measure the bands of the strained photonic crystal slabs
described above and find the emergence of discrete Landau levels
(Fig. 3b). Although the effective theory predicts that the Landau lev-
els should be flat, we see that they are dispersive in both simulation
(Fig. 2d) and experiment (Fig. 3b), that is, the bands are concave-up.
This arises due to the fact that by adding strain, the unit cell is locally
distorted asafunction of x. This distortion effectively adds a parabolic
potential to the Hamiltonian (that is, H = x’0,), which, in turn, causes
the dispersion of the Landau-level bands. Supplementary Section 5
provides a detailed explanation.

According to the effective theory (equation (1)), the n =0 level
should be at the centre of all the Landau levels. However, due to the
aforementioned inversion-symmetry breaking, this level is slightly
shifted away from the centre (Supplementary Section 4). As a
result, we use a new reference frequency of wj, = l(a)_l + @) as the
Dirac frequency to calculate the Landau-level spacings, defined as
w, — wy. InFig. 3¢, we compare the theoretically and experimentally
obtained level spacings at k, = 0 under different strain strengths
(characterized by k) and observe good agreement between the two.
Fromthe experimental data, we also calculate the normalized quantity
lw, — |/(x/In] ), which should be a constant for all the Landau levels.
We again observe good agreement between the experiment and the
theoretically predicted value of 0.0823(21ic) (Fig. 3d). InFig.3c,d, the
theoretical plots (solid lines) are directly obtained from analytical
predictions, and have no free parameters.

Nature Photonics | Volume 18 | June 2024 | 580-585

582


http://www.nature.com/naturephotonics

Article

https://doi.org/10.1038/s41566-024-01425-y

0.332 F

0.326

0.320

0.314

® (2rca™

0.308
0.302

-0.06 -0.03 0 0.03 0.06

0.006 -

0.003 -

Aw,, (2mca™)
o

-0.003

-0.006

0 0.02 0.04

K(a™

0.06

Fig.3|Observation of Landau levels in the spectrum of a strained photonic
crystal. a, Experimentally measured band structure of the unstrained
honeycomb pattern, showing the Dirac point in the vicinity of w, = 0.32(2mtca™).
b, Measured band structure for the strained pattern. The uniform
pseudomagnetic field created by the strain causes the Dirac point to splitinto
sets of discrete Landau levels. Here k = 0.0632a ™, as in the numerical results
shown inFig. 2d. ¢, Landau-level energy spacing (Aw, o = w, — @) isalinear

0.332

0.326

0.314 £

w (2rca™)

0.308 [

0.30!

o

0.100

« Experiment
— Theory

[
{1t

0.065 L1 I I I I
] 5 10 15 20 25

0.095

T
—e

0.090 |-

0.085

T

JH P
o
———

0.080 -

_

—
——i

—_
_
[EE—
_
(R

e

0.075

|Aw, | KVInl" (2mic)

T
e
i
—e—it

0.070

Landau level and sample index

function of strain strength k. Note that the data used in c were taken from a

different sample from those of b. d, Landau levels lie at energies proportlionalltlo
wn—w
Vi
for each Landau level, including six different samples of different strain strengths
k. Theerrorbarsincandd are defined by the linewidth of the relevant Landau
level. Inboth cand d, the solid lines are the theoretical predictions with no free
parameters.

/|n|; thisbehaviour is captured by plotting the dimensionless quantity

From Fig. 3b, it is clear that as n decreases, the range of k, values
over which the nth Landaulevel is observed becomes smaller. This can
be intuitively understood as arising from the interaction of the
Landau-level states with other states that reside towards the far left
andright sides of the sample. These states rise in energy as one moves
away from the sample centre along the x direction. Equation (1)
shows thatthe Landau-level states are harmonic oscillator eigenstates

centred atx = k,/B.y, with spatial widths of A x,, = 1/ (2|n| + 6¢ )/ 2B

As k, increases, the Landau-level centre translates and the tail of the
Landau level eventually interacts with the states mentioned above,
leading to anincreased linewidth (Supplementary Section 3 provides
additional details).

Thefact that the x position of the Landau-level state linearly varies
withk,leadstoanother clear observable: when theinputbeamis moved
from left to right in real space along the x direction, the Landau-level
statesatincreasingk, are selectively excited and therefore appear more
clearly inthe band structure. We directly observe this effect (Fig. 4a—c):
when the input beam is on the left side of the sample (that is, x < 0),
we see that the modes on the left side of the band structure (k, < 0)
are more strongly excited, but as the input beam moves rightwards,
we observe that the modes on the right side of the band structure are
increasingly excited.

Tofurtherstudy therelationship between xand k,, we extract the
boundary in k, space between the modes that are excited and those
that are not excited. For input beams positioned to the left of centre,
we extract the right boundary, and for input beams positioned to the
right of centre, we extract the left boundary. The boundary values
differ from the effective excitation centres by an overall offset, which
we remove by fitting the data to a line and subtracting the intercept
(one for the left-boundary data and one for the right-boundary data;
Supplementary Section 3). Using this procedure, we obtain the rela-
tionship between the Landau-level horizontal position and the vertical

momentum k,. The linear relationship between these (Fig. 4d) evi-
dencesthe direct proportionality between the Landau-level positions
and k,. Supplementary Video 1shows the evolution of the relative exci-
tation of the Landau-level states as the beam moves from left to right.

We next turn our attention to the mitigation of the Landau-level
dispersion. As explained earlier, equation (1) predicts flat Landau
levels. However, in simulations and experiments, the Landau levels
exhibit quadratic dispersion as k, is varied. As shownin another work',
it is possible to mitigate this dispersion by introducing an additional
strain profile, which induces a pseudoelectric potential. Specifically,
we add a cubic term to the deformation such that the point (x, y, 2) is
mapped to (x + aB(kx)?, y + a(kx)? z). The parameter B controls the
strength of this additional strainin the x direction. A schematic of the
strained structure, whichinduces both pseudomagnetic and pseudo-
electric fields, is shown in Fig. 5a (Supplementary Section 5 provides
additional details). The reason why the pseudoelectric field counters
the Landau-level dispersion, to the leading order, can be explained
as follows. To the leading order, the form of the pseudoelectric field
givesrise to a potential V.= 3apmi’x*o, (to be added to equation (1)),
which is similar to that which creates the dispersion in the first place
(herem=-3.28ais a parameter calculated entirely from the states of
the periodicstructure). Since the spatial positions of the Landau-level
eigenstates grow linearly with k,, a quadratic potential in x is equiva-
lent to a parabolic dispersionin k. An appropriate choice of the field
strength (and sign) will then counteract the original dispersioninduced
by the strain associated with the pseudomagnetic field.

By appropriately choosing §, the quadratic dispersion of the Lan-
dau levels can be mitigated, leading to nearly flat bands. We note that
each Landaulevel requires adifferent value of Sto counteractits disper-
sion. Supplementary Section 5 provides more details. Figure 5b shows
the numerical simulations of the flattened Landau levels for astructure
with pseudomagnetic and pseudoelectricfieldsinduced by astrain with
k=0.0632a"and B=0.0364.Herethe n=01levelistargeted, but other
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levels are also evidently flatter. Figure 5c shows the experimental data
for a strained structure with the same values of k and 8 given above,
where agood agreementis observed between theory and experiment.

Inconclusion, we have directly observed Landaulevelsin the spec-
tra of two-dimensional silicon photonic crystal slabs. As in graphene,
the Landau-level energies are proportional to 1/n|, where nis aninteger.
The Landau-level bands are found to be dispersive, which can be
explained by a distortion of the unit cell as a result of the strain. We
further showed that this dispersion can be mitigated by adding an
additional strain that induces a position-dependent pseudoelectric
field (thatis, a potential). Landaulevels constitute anew methodology
for generating flat bands and thus enhancing light-matterinteractions,
which is distinct from standard slow light or cavity enhancement,
because aflat band essentially acts asa‘cavity everywhere in space’. This
realization in an on-chip photonic crystal slab geometry potentially
opens the door to the use of photonic strain engineering in metasur-
faces, since large angles can be accessed due to the subwavelength scale
ofthessites. The realization of optical pseudomagnetism prompts sev-
eral new questions and directions of enquiry, including whether
Landau-levelflat bands (or other spectral features of aperiodic photonic

crystals more generally) can be used to enhance the light-matter cou-
pling more efficiently than conventional photonic crystal flat bands or
other points of high degeneracy (such as Van Hove singularities); the
exploration of the nature of wave-mixing processes such as four-wave
mixing among Landau levels, given that the Landau-level eigenstates
are fundamentally different from Bloch modes, being localized in at
least one direction; the interplay between disorder and pseudomag-
netism in this nanophotonic context; and whether the square-root
structure of the eigenvalue spacing can lead to different properties
associated withan entangled pair or frequency-comb generation. More
broadly, the framework of pseudomagnetism gives an analytical handle
onaperiodic photonicstructures, allowing for anew approach to design
devices and better understanding of their behaviour.
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Methods

Device fabrication and characterization

We employed asilicon-on-insulator wafer (SOITEC) with a thickness of
220 +10 nmand asilicalayer with athickness 0f2,000 + 50 nm. Asingle
waferwasused for all the development, prototyping and device fabrica-
tion, and was characterized before being diced in 2 x 2 cm? squares. A
25-point scan was performed using a Woollam M-2000XF-193 spectro-
scopic ellipsometer. The device layer was verified to be within speci-
fications at an average of 217.7 + 0.5 nm. Each die used in this work
was similarly processed: a 2 min O, plasma was performed using a
Samco AQ-2000 plasma cleaner for surface preparation. A dehydra-
tionbake at 184 °C was performed for 1 minand then the positive resist
ZEON ZEP520A was diluted ata2:1ratioin anisole and was spin coated.
A 2,500 r.p.m. speed yielded a consistent 300-nm-thick resist layer,
which was necessary due to etching requirements. The resist was
then baked at 184 °C for 3 min before the sample was loaded into the
electron-beam lithography tool.

Patterns were generated and fractured using a 0.2 nm grid
resolution, a beam step size of 10.0 nm, a main-field size of
200.00 x 200.00 um?and a subfield size 0f 3.26 x 3.26 pm* The shape
detection method was used with smooth shape filling and appropri-
ate field overlaps. Field ordering was fixed, and we used fixed sub-
fields as the method for feature sorting in the field. This meant that
atypical 1 x 1 mm?sample with an -25% coverage could be written in
about 14 min at a dose of 225 pC cm™. The electron-beam tool, Raith
EBPG5200, wasrunat100 keV and we used abeam current of 20 nA, giv-
ingabeam-spot size of about 15 nm. After exposure, the samples were
developed for 3 mininn-amyl-acetate followed by al minisopropanol
rinse before being dried using a nitrogen gun. The substrates were
etched in an inductively coupled plasma etch tool, a Plasma-Therm
Versalock 700, using a mixture of SF, and C,Fgto allow for high selectiv-
ity for silicon. We aimed at aslight overetching of silicon to ensure that
the oxide layer would be revealed. The remaining resist was stripped
using O, plasma. Characterization of the different samples was car-
ried out using a field-emission SEM Gemini G500 instrument and a
Bruker Dimension Icon atomic force microscope. Supplementary
Fig. 2 shows a high-resolution SEM image of the fabricated strained
structure obtained at1kV.
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