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Direct observation of Landau levels in silicon 
photonic crystals

Maria Barsukova    1,6, Fabien Grisé    2,6, Zeyu Zhang    1,6, Sachin Vaidya    1,3, 
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When electrons are confined to a two-dimensional plane and are subjected 
to an out-of-plane magnetic field, they move in circular cyclotron orbits as 
a result of the Lorentz force. In the quantum domain, this cyclotron motion 
is quantized, and as a consequence, the energy spectrum of the electrons 
splits into discrete, highly degenerate states called Landau levels. These flat 
bands are the origin of the integer and fractional quantum Hall effects1,2. 
Although photons do not experience the Lorentz force because they do not 
carry charge, they can be made to experience ‘pseudomagnetic fields’3,4 as a 
result of periodicity-breaking strain. In this work, we experimentally observe 
photonic Landau levels that arise due to a strain-induced pseudomagnetic 
field in a silicon photonic crystal slab. The Landau levels are dispersive 
(that is, they are not flat bands) due to the distortion of the unit cell by the 
strain. We employ an additional strain of a different form that induces a 
pseudoelectric potential to flatten them. By acting akin to cavities that 
are delocalized across space, flat bands such as these have the potential 
to strongly enhance light–matter interaction as a result of the photonic 
structure. The analytical framework that we develop here for understanding 
the effects of inhomogeneous strain in photonic crystals via gauge fields can 
help to guide the design of multiscale non-periodic photonic structures.

Although light may respond to external magnetic fields when propagat-
ing in magneto-optical materials, this response is typically very weak. 
An approach was put forward for emulating magnetic behaviour in 
photonic systems (while maintaining reciprocity) by inhomogeneously 
straining a photonic lattice4. This implementation was based on an idea 
proposed for electrons in graphene, where a strain pattern imposed on 
the lattice would introduce an effective gauge field at the Dirac point, 
causing electrons to behave as though there were a strong field pre-
sent, even in the absence of a real magnetic field3. The effect was later 
demonstrated by directly observing Landau levels in graphene bubbles, 
where a strain corresponding to an enormous pseudomagnetic field of 
300 T was imposed5. Since the original photonic experiment, Landau 

levels were also proposed and observed in twisted optical cavities6, 
exciton–polariton condensates7 and mechanical systems8–10. Moreover, 
there have been a number of theoretical proposals for how Landau 
levels may be used in the context of photonics that are intrinsically 
distinct from the electronic case11,12.

Here we directly observe Landau levels in two-dimensional sili-
con photonic crystal slabs in the nanophotonic domain (Fig. 1 shows 
a schematic of the associated strain and the effect on the photonic 
crystal band structure). Moreover, we go beyond purely pseudomag-
netic effects and demonstrate that strains corresponding to pseudo-
electric fields act to flatten the Landau levels that inherit dispersion 
from the form of the pseudomagnetic strain. There are several key 
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optimization for many different functions; this has traditionally been 
approached by using direct brute-force numerical optimization19–21.

Our starting point is a photonic crystal structure consisting of 
rounded triangular air holes in a silicon slab22 that rests on a silica 
substrate. The holes form an underlying honeycomb pattern with 
C6v symmetry. As a result, this lattice hosts Dirac points at the K and 
K′ points in the Brillouin zone23–25. As these Dirac points lie below the 
light line of a vacuum, they are not detectable via free-space excitation.  
To allow radiative coupling from outside the slab, we introduce a small 
period-doubling perturbation by changing the size of some of the holes 
(Supplementary Section 2). This makes the unit cell of the lattice rectan-
gular, and the band structure is folded such that the Dirac cone resides 
along the kx axis and lies above the light line of vacuum. Importantly, 
we choose our period doubling in a way that respects inversion sym-
metry and thus will not cause the Dirac cone to be gapped. A scanning 
electron microscopy (SEM) image of the structure is shown in Fig. 2a; 
the period-doubled unit cell is shaded in purple.

We numerically compute the band structure (in the 
transverse-electric polarization) using the guided-mode expansion 
method as implemented in the open-source software package LEG-
UME26. Figure 2b shows the linearly dispersing transverse-electric-like 
bands that exhibit a Dirac point at K, with frequency ωD = 0.318(2πca−1). 
Here a is the lattice constant of the underlying hexagonal lattice struc-
ture and c is the speed of light. The period-doubling procedure very 
slightly changes the Dirac frequency (Supplementary Section 2).

Next, we introduce a strain pattern in our structure by deforming 
the lattice (Fig. 2c). Here the term strain refers not to a strain induced by 
a physically applied stress but to the deformation of the dielectric pat-
tern that is directly etched into the silicon. The specific strain pattern 
is achieved by mapping every point (x, y, z) to (x, y + a(κx)2, z), where κ 
is the strength of the strain. This deformation breaks the periodicity 
in the x direction, but retains periodicity along the y direction. The 
spatial-scale separation ensured by the assumption of small and slowly 
varying strain, that is, κa ≪ 1, allows us to develop a multiple-scale27 vari-
ant of degenerate perturbation theory to expand the eigenstates and 
eigenvalues of the strained system. The eigenstates are—to a leading 
order in κ—a slow spatial modulation of the degenerate Bloch modes 
associated with the Dirac point of the unstrained (κ = 0) structure.

The resulting effective Hamiltonian, which incorporates the strain, 
is given by

ℋeff = EDσ0 + vD [(−i
∂
∂x )

σ1 + (−i ∂∂y
+ 4ab∗κ2

vD
x)σ2] , (1)

where ED = (ωD/c)2; σ0, σ1 and σ2 are Pauli matrices; and vD = 0.915a−1 and 
b* = 0.606a−2 are two parameters calculated from the modes of the 
unstrained structure at energy ED. Supplementary Section 3 provides 
a detailed derivation, where explicit expressions for b* and vD in terms 
of the eigenstates of the periodic structure are displayed. We note that 
the effective Hamiltonian displayed in equation (1) is directly derived 
from the continuum theory of photonic crystals; this is fundamentally 
different from previous work3 based on the tight-binding approxima-
tion. Our approach extends the methods from another work18 to the 
three-dimensional setting of the slab geometry, where the vectorial 
nature of the electromagnetic fields plays a role.

Equation (1) corresponds to a two-dimensional Dirac Hamiltonian 
describing massless spin-1/2 relativistic particles under a constant 
(pseudo)magnetic field pointing in the out-of-plane direction, where 
the magnetic field has a strength of Beff = 4ab*κ2/vD and is described by 
a vector potential in the Landau gauge. The discrete energies that are 
eigenvalues of the Hamiltonian in equation (1) for an electron are known 
as Landau levels. The energy eigenvalue of the nth level is proportional 
to √|n|, where n is an integer. Analogously, for our photonic crystal 
slabs, the frequency eigenvalues of the electromagnetic eigenmodes 

differences and advantages of pseudomagnetism in photonic crystals 
compared with previous realizations of photonic pseudomagnetism. 
Photonic crystals are known to enhance light–matter interaction via 
cavity modes and flat bands13,14; recent work has shown that such flat 
bands strongly enhance the interaction between photonic and elec-
tronic states, resulting in an increase in Smith–Purcell radiation by 
orders of magnitude15. A similar mechanism also holds promise for 
potential applications in nanophotonic scintillators used in parti-
cle accelerators, as well as for medical imaging16. Moreover, because 
Landau-gauge eigenstates are one-dimensional waveguide-like states 
(since they are confined in all dimensions but one, unlike Bloch states 
of two-dimensional photonic crystals), and have a low group veloc-
ity, they may be used for slow-light applications17. Importantly, in the 
photonic crystal case, flat-band enhancement is generated as a result 
of the lattice itself, rather than separately from the constituent sites. 
In contrast, for systems composed of individual, isolated guiding or 
resonant elements4,7, lattice effects are not leveraged because strong 
enhancement would occur even in a single site. Second, besides hav-
ing unit cells that are an order of magnitude smaller, photonic crystals 
can, in practice, have much larger system sizes compared with previ-
ous realizations (millions versus hundreds of unit cells), and can be 
realized with a smaller loss in the silicon platform. Since Landau-level 
degeneracy scales with the system size and the linewidth increases with 
loss, photonic crystals allow for increased degeneracy and improved 
spectral resolution of the levels.

Further, since photonic crystals do not have an associated 
tight-binding theory, the original theoretical framework relating 
strain to pseudomagnetism is not directly applicable, necessitating 
a new understanding; the appropriate effective Hamiltonians and 
strain-dependent emergent parameters for two-dimensional pho-
tonic crystals were derived in our previous theoretical work18, and are 
extended to the slab geometry here (two-dimensional slab embedded 
in three-dimensional space). Our establishment of a new analytical 
method of understanding and describing aperiodicity in photonic 
crystals (that is, using pseudomagnetic fields) will be useful in their 
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Fig. 1 | Schematic illustrating the effect of strain on the Dirac cone. The data 
are obtained from equation (1). a,b, Unstrained (a) and strained (b) honeycomb 
lattice. The purple arrows indicate the direction of deformation of the lattice.  
c, Band structure in the vicinity of the Dirac cone in the unstrained case 
corresponding to a. d, Strain results in the spectrum breaking up into Landau 
levels that are spaced as √n, where n is an integer. Here Δω is the difference in 
frequency between the zeroth and first Landau levels, ωD is the Dirac frequency 
and (kx, ky) is the in-plane Bloch wavevector.
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are, to the first order in κ, proportional to √|n| and can be expressed 
as ωn = ωD ± (c2vD/√2ωD)√Beff|n|, where n is an integer.

To corroborate our analytical results given in equation (1), we also 
perform numerical simulations of the strained structure using the 
guided-mode expansion method. The strain is implemented in a dielec-
tric profile that spans 199 period-doubled unit cells in the x direction. 
Due to the preservation of lattice periodicity along the y direction, ky 
is conserved and the frequencies of bands can be plotted as functions 
of ky (Fig. 2d). Here we observe the splitting of the spectrum near the 
Dirac point into discrete Landau levels due to the strain-induced pseu-
domagnetic field, where the spacing of these levels is proportional to 
√|n| for a fixed value of κ.

To demonstrate the formation of Landau levels in such a system, we 
use electron-beam lithography to fabricate both periodic and strained 
patterns in a silicon slab (ε = 12.11) on top of a silica substrate (ε = 2.25). 
Methods provides a detailed description of the fabrication methods. 
Figure 2a,c shows the SEM images of the fabricated structures. The 
structure shown in Fig. 2a has a periodicity of 2a = 980 nm along the 
x direction .

To experimentally characterize the photonic bands of these 
structures, we perform angle- and frequency-resolved reflec-
tion measurements. The samples are illuminated by a tunable 
continuous-wave laser (Keysight 81606A) with a wavelength range 
of λ = 1.45–1.65 μm (±1.5 pm absolute-wavelength-resolution accu-
racy) and a laser linewidth coherence control of 10 kHz. We measure 
the iso-frequency contours of the fabricated photonic crystal slabs 
using back-focal-plane imaging. We then extract the Landau-level 
band structures by observing the photonic crystal resonances at 
a fixed kx corresponding to the location of the Dirac point of the 
unstrained structure (although kx is no longer a good momentum for 
the strained structure, a slowly varying strain primarily mixes nearby 
kx, and hence, the Landau-level eigenstates are expected to strongly 
couple to the kx value of the Dirac point of the unstrained structure). 
Supplementary Section 1 provides details of the experimental setup. 
All of the Landau-level states that we observe in the present work 
reside in the bulk; the corresponding edge states are helical because 
the system preserves time-reversal symmetry, and could be realized 
and out-coupled by introducing an appropriate confining potential. 

That said, there is no sharp conceptual distinction between the bulk 
and edge states, particularly in the Landau gauge, since the latter 
can be thought of as bulk states that have been shifted into the gaps 
between the Landau levels by the confining potentials.

Figure 3a shows the bands of the unstrained structure, obtained by 
back-focal-plane imaging, where we clearly observe linearly dispersing 
bands near the Dirac point. We note that a very small gap is observed 
at the Dirac point; for graphene, any breaking of inversion symmetry 
necessarily gaps the Dirac point. Inevitably, a small symmetry-breaking 
term due to imprecision in fabrication is present and responsible for 
the observed gap. Supplementary Section 4 shows that the breaking 
of inversion symmetry affects the zeroth Landau level much more than 
the other levels.

Next, we measure the bands of the strained photonic crystal slabs 
described above and find the emergence of discrete Landau levels 
(Fig. 3b). Although the effective theory predicts that the Landau lev-
els should be flat, we see that they are dispersive in both simulation 
(Fig. 2d) and experiment (Fig. 3b), that is, the bands are concave-up. 
This arises due to the fact that by adding strain, the unit cell is locally 
distorted as a function of x. This distortion effectively adds a parabolic 
potential to the Hamiltonian (that is, H ≈ x2σ0), which, in turn, causes 
the dispersion of the Landau-level bands. Supplementary Section 5 
provides a detailed explanation.

According to the effective theory (equation (1)), the n = 0 level 
should be at the centre of all the Landau levels. However, due to the 
aforementioned inversion-symmetry breaking, this level is slightly 
shifted away from the centre (Supplementary Section 4). As a  
result, we use a new reference frequency of ω′

0 =
1
2
(ω−1 + ω1)  as the 

Dirac frequency to calculate the Landau-level spacings, defined as 
ωn − ω′

0. In Fig. 3c, we compare the theoretically and experimentally 
obtained level spacings at ky = 0 under different strain strengths  
(characterized by κ) and observe good agreement between the two. 
From the experimental data, we also calculate the normalized quantity 
|ωn − ω′

0|/(κ√|n| ), which should be a constant for all the Landau levels. 
We again observe good agreement between the experiment and the 
theoretically predicted value of 0.0823(2πc) (Fig. 3d). In Fig. 3c,d, the 
theoretical plots (solid lines) are directly obtained from analytical 
predictions, and have no free parameters.
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Fig. 2 | Unstrained and strained photonic crystals and their calculated 
band structures. a, SEM image of the unstrained periodic photonic crystal. 
The primitive unit cell is highlighted in red and the period-doubled unit cell, in 
purple; a, the lattice constant, is indicated in white. b, Simulated band structure 
for the unstrained structure, based on the primitive unit cell, showing a Dirac 
point for the transverse-electric-like modes. The colour of the bands indicates 

the quality factors of the states. c, SEM image of the strained pattern, in which the 
strain causes the loss of periodicity in the x direction. The y-periodic unit cell of 
the strained pattern is highlighted in purple. d, Simulated band structure for the 
strained pattern (κ = 0.0632a−1), showing the emergence of Landau levels in the 
vicinity of the Dirac frequency. Only the first 11 Landau levels (n = −5 to 5)  
are shown.
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From Fig. 3b, it is clear that as n decreases, the range of ky values 
over which the nth Landau level is observed becomes smaller. This can 
be intuitively understood as arising from the interaction of the 
Landau-level states with other states that reside towards the far left 
and right sides of the sample. These states rise in energy as one moves 
away from the sample centre along the x direction. Equation (1)  
shows that the Landau-level states are harmonic oscillator eigenstates 

centred at x = ky/Beff, with spatial widths of Δ xn = √(2|n| + δ0,n)/2Beff. 

As ky increases, the Landau-level centre translates and the tail of the 
Landau level eventually interacts with the states mentioned above, 
leading to an increased linewidth (Supplementary Section 3 provides 
additional details).

The fact that the x position of the Landau-level state linearly varies 
with ky leads to another clear observable: when the input beam is moved 
from left to right in real space along the x direction, the Landau-level 
states at increasing ky are selectively excited and therefore appear more 
clearly in the band structure. We directly observe this effect (Fig. 4a–c): 
when the input beam is on the left side of the sample (that is, x < 0), 
we see that the modes on the left side of the band structure (ky < 0) 
are more strongly excited, but as the input beam moves rightwards, 
we observe that the modes on the right side of the band structure are 
increasingly excited.

To further study the relationship between x and ky, we extract the 
boundary in ky space between the modes that are excited and those 
that are not excited. For input beams positioned to the left of centre, 
we extract the right boundary, and for input beams positioned to the 
right of centre, we extract the left boundary. The boundary values 
differ from the effective excitation centres by an overall offset, which 
we remove by fitting the data to a line and subtracting the intercept 
(one for the left-boundary data and one for the right-boundary data; 
Supplementary Section 3). Using this procedure, we obtain the rela-
tionship between the Landau-level horizontal position and the vertical 

momentum ky. The linear relationship between these (Fig. 4d) evi-
dences the direct proportionality between the Landau-level positions 
and ky. Supplementary Video 1 shows the evolution of the relative exci-
tation of the Landau-level states as the beam moves from left to right.

We next turn our attention to the mitigation of the Landau-level 
dispersion. As explained earlier, equation (1) predicts flat Landau 
levels. However, in simulations and experiments, the Landau levels 
exhibit quadratic dispersion as ky is varied. As shown in another work18, 
it is possible to mitigate this dispersion by introducing an additional 
strain profile, which induces a pseudoelectric potential. Specifically, 
we add a cubic term to the deformation such that the point (x, y, z) is 
mapped to (x + aβ(κx)3, y + a(κx)2, z). The parameter β controls the 
strength of this additional strain in the x direction. A schematic of the 
strained structure, which induces both pseudomagnetic and pseudo-
electric fields, is shown in Fig. 5a (Supplementary Section 5 provides 
additional details). The reason why the pseudoelectric field counters 
the Landau-level dispersion, to the leading order, can be explained 
as follows. To the leading order, the form of the pseudoelectric field 
gives rise to a potential Veff = 3aβmκ3x2σ0 (to be added to equation (1)), 
which is similar to that which creates the dispersion in the first place 
(here m = −3.28a−2 is a parameter calculated entirely from the states of 
the periodic structure). Since the spatial positions of the Landau-level 
eigenstates grow linearly with ky, a quadratic potential in x is equiva-
lent to a parabolic dispersion in ky. An appropriate choice of the field 
strength (and sign) will then counteract the original dispersion induced 
by the strain associated with the pseudomagnetic field.

By appropriately choosing β, the quadratic dispersion of the Lan-
dau levels can be mitigated, leading to nearly flat bands. We note that 
each Landau level requires a different value of β to counteract its disper-
sion. Supplementary Section 5 provides more details. Figure 5b shows 
the numerical simulations of the flattened Landau levels for a structure 
with pseudomagnetic and pseudoelectric fields induced by a strain with 
κ = 0.0632a−1 and β = 0.0364. Here the n = 0 level is targeted, but other 
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levels are also evidently flatter. Figure 5c shows the experimental data 
for a strained structure with the same values of κ and β given above, 
where a good agreement is observed between theory and experiment.

In conclusion, we have directly observed Landau levels in the spec-
tra of two-dimensional silicon photonic crystal slabs. As in graphene, 
the Landau-level energies are proportional to √|n|, where n is an integer. 
The Landau-level bands are found to be dispersive, which can be 
explained by a distortion of the unit cell as a result of the strain. We 
further showed that this dispersion can be mitigated by adding an 
additional strain that induces a position-dependent pseudoelectric 
field (that is, a potential). Landau levels constitute a new methodology 
for generating flat bands and thus enhancing light–matter interactions, 
which is distinct from standard slow light or cavity enhancement, 
because a flat band essentially acts as a ‘cavity everywhere in space’. This 
realization in an on-chip photonic crystal slab geometry potentially 
opens the door to the use of photonic strain engineering in metasur-
faces, since large angles can be accessed due to the subwavelength scale 
of the sites. The realization of optical pseudomagnetism prompts sev-
eral new questions and directions of enquiry, including whether 
Landau-level flat bands (or other spectral features of aperiodic photonic 

crystals more generally) can be used to enhance the light–matter cou-
pling more efficiently than conventional photonic crystal flat bands or 
other points of high degeneracy (such as Van Hove singularities); the 
exploration of the nature of wave-mixing processes such as four-wave 
mixing among Landau levels, given that the Landau-level eigenstates 
are fundamentally different from Bloch modes, being localized in at 
least one direction; the interplay between disorder and pseudomag-
netism in this nanophotonic context; and whether the square-root 
structure of the eigenvalue spacing can lead to different properties 
associated with an entangled pair or frequency-comb generation. More 
broadly, the framework of pseudomagnetism gives an analytical handle 
on aperiodic photonic structures, allowing for a new approach to design 
devices and better understanding of their behaviour.
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Fig. 5 | Introduction of a pseudoelectric potential acts to flatten the 
Landau-level bands. a, Schematic depicting the strain profile that produces the 
pseudoelectric potential used to mitigate the Landau-level dispersion.  

b, Simulated band structure with κ = 0.0632a−1 and β = 0.0364, where the Landau 
level n = 0 is predicted to be flattened. c, Experimental data for κ = 0.0632a−1 and 
β = 0.0364, showing the flattening of the Landau levels.
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Methods
Device fabrication and characterization
We employed a silicon-on-insulator wafer (SOITEC) with a thickness of 
220 ± 10 nm and a silica layer with a thickness of 2,000 ± 50 nm. A single 
wafer was used for all the development, prototyping and device fabrica-
tion, and was characterized before being diced in 2 × 2 cm2 squares. A 
25-point scan was performed using a Woollam M-2000XF-193 spectro-
scopic ellipsometer. The device layer was verified to be within speci-
fications at an average of 217.7 ± 0.5 nm. Each die used in this work 
was similarly processed: a 2 min O2 plasma was performed using a 
Samco AQ-2000 plasma cleaner for surface preparation. A dehydra-
tion bake at 184 °C was performed for 1 min and then the positive resist 
ZEON ZEP520A was diluted at a 2:1 ratio in anisole and was spin coated.  
A 2,500 r.p.m. speed yielded a consistent 300-nm-thick resist layer, 
which was necessary due to etching requirements. The resist was 
then baked at 184 °C for 3 min before the sample was loaded into the 
electron-beam lithography tool.

Patterns were generated and fractured using a 0.2 nm grid 
resolution, a beam step size of 10.0 nm, a main-field size of 
200.00 × 200.00 μm2 and a subfield size of 3.26 × 3.26 μm2. The shape 
detection method was used with smooth shape filling and appropri-
ate field overlaps. Field ordering was fixed, and we used fixed sub-
fields as the method for feature sorting in the field. This meant that 
a typical 1 × 1 mm2 sample with an ~25% coverage could be written in 
about 14 min at a dose of 225 μC cm–2. The electron-beam tool, Raith 
EBPG5200, was run at 100 keV and we used a beam current of 20 nA, giv-
ing a beam-spot size of about 15 nm. After exposure, the samples were 
developed for 3 min in n-amyl-acetate followed by a 1 min isopropanol 
rinse before being dried using a nitrogen gun. The substrates were 
etched in an inductively coupled plasma etch tool, a Plasma-Therm 
Versalock 700, using a mixture of SF6 and C4F8 to allow for high selectiv-
ity for silicon. We aimed at a slight overetching of silicon to ensure that 
the oxide layer would be revealed. The remaining resist was stripped 
using O2 plasma. Characterization of the different samples was car-
ried out using a field-emission SEM Gemini G500 instrument and a 
Bruker Dimension Icon atomic force microscope. Supplementary 
Fig. 2 shows a high-resolution SEM image of the fabricated strained 
structure obtained at 1 kV.
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