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Abstract

In this work, we study the dynamics of an infinite array of nonlinear dimer oscilla-
tors which are linearly coupled as in the classical model of Su, Schrieffer and Heeger
(SSH). The ratio of in-cell and out-of-cell couplings of the SSH model defines dis-
tinct phases: topologically trivial and topologically non-trivial. We first consider the
case of weak out-of-cell coupling, corresponding to the topologically trivial regime
for linear SSH; for any prescribed isolated dimer frequency, wj,, which satisfies non-
resonance and non-degeneracy assumptions, we prove that there are discrete breather
solutions for sufficiently small values of the out-of-cell coupling parameter. These
states are 277 /wp- periodic in time and exponentially localized in space. We then study
the global continuation with respect to this coupling parameter. We first consider the
case where wj, the seeding discrete breather frequency, is in the (coupling dependent)
phonon gap of the underlying linear infinite array. As the coupling is increased, the
phonon gap decreases in width and tends to a point (at which the topological tran-
sition for linear SSH occurs). In this limit, the spatial scale of the discrete breather
grows and its amplitude decreases, indicating the weakly nonlinear long-wave regime.
Asymptotic analysis shows that in this regime the discrete breather envelope is deter-
mined by a vector gap soliton of the limiting envelope equations. We use the envelope
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theory to describe discrete breathers for SSH-coupling parameters corresponding to
topologically trivial and, by exploiting an emergent symmetry, topologically nontriv-
ial regimes, when the spectral gap is small. Our asymptotic theory shows excellent
agreement with extensive numerical simulations over a wide range of parameters.
Analogous asymptotic and numerical results are obtained for the continuations from
the anti-continuous regime for frequencies, wy, below the acoustic or above the optical
phonon bands.

Keywords Discrete lattice dynamical systems - Topological states - Multiple-scale
asymptotics

Mathematics Subject Classification 34A34 - 34A33 - 34C25

1 Introduction
1.1 Motivation and Background

There is great current interest in the study of wave propagation through discrete and
continuous periodic media, which exhibits nontrivial topological properties. While
it is common for physical systems to support defect modes concentrated at points or
interfaces, these modes are in general not stable against significant perturbations of the
structure. However, it has been recognized that topological characteristics in the bulk
(Floquet—Bloch) band structure can give rise to modes which are robust against large
(but localized) perturbations of the system. The role of band structure topology in wave
physics was firstrecognized in the context of condensed matter physics, e.g., the integer
quantum Hall effect (Klitzing et al. 1980) and topological insulators (Hasan and Kane
2010). The hallmark of topological materials is the presence of topologically protected
edge states. These states are localized at interfaces (line defects, facets), which propa-
gate unidirectionally and are robust against localized—even large—imperfections in
the system. Many of the topological wave phenomena observed in these contexts were
subsequently realized in engineered metamaterial systems in photonics (Haldane and
Raghu 2008; Ozawa et al. 2019), acoustics (Mousavi et al. 2015), electronics (Hadad
etal. 2017) and elasticity (Wang et al. 2015) which, in the regime of linear phenomena,
are characterized by a linear band structure. There is very wide interest in technologies
based on topologically protected states due to the potential for extraordinarily robust
energy and information transfer in communications and computing.

Such systems can naturally be probed in the nonlinear regime via strong excitation,
and so it is of great interest to study whether topological properties persist in the
regime where nonlinear effects are present and whether perhaps different topological
phenomena emerge (Hadad et al. 2017; Chaunsali and Theocharis 2019; Chaunsali
et al. 2021; Jezequel and Delplace 2022; Smirnova et al. 2020).

Among the simplest models exhibiting fopological phases is the Su—Schrieffer—
Heeger (SSH) model (Su et al. 1979), a discrete (tight binding) model on one-
dimensional lattice in which two "atoms" per cell (dimers) are linearly and nearest
neighbor coupled.
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Fig. 1 a Schematic of the infinite dimer lattice considered with A (B) sites in red (blue) and intra (inter)
cell coupling yin (Yout); b band structure of the lattice for various ratios |yin/Yout|- A gap in the energy
spectrum opens if and only if |y /Yout| 7 1 (Color figure online)

Figure 1 displays a schematic of SSH array of dimers. The red sites are called A—
sites and the blue sites are called B— sites. Each A—site has two nearest neighbor
B—sites and each B—site has two nearest neighbor A —sites. In-cell (intra-cell) and
out-of-cell (inter-cell) nearest neighbors are coupled via hopping coefficients yi, € R
and your € R, respectively: for n € Z,

EVY = yin¥ 2 + youvl (1.1)
EVE = yin¥ + vou Vs (1.2)

The spectrum of the SSH-Hamiltonian, Hssy, acting in the space of discrete wave
functions, /2(Z), consists of two real intervals (bands), sweptout by the two eigenvalues
E_(k) <0 < E4(k), as the quasimomentum k varies over the interval [0, 2], of the
family of Bloch Hamiltonian Hssy (k) = o1h1(k) + o2ha(k) (obtained by discrete
Fourier transform, o; denote Pauli matrices); see Fig. 1. A gap in the spectrum occurs
for |Yin/Yout| 7 1 and the bands touch in a linear crossing for |yin/Yout| = 1.

The two distinct topological phases correspond to |Vin/Your]| > 1 (trivial) and
|%in/Youtl < 1 (non-trivial) and are identified with the cases where the Zak phase,
a winding number (about the origin) associated with the variation in the vector field
h(k) = (hi(k), ha(k)) as k varies over S! = R/27Z, is equal to zero or one. The
topological character is also manifested in the spectrum of states for a terminated (semi-
infinite) structure; there exists a zero energy edge state which decays exponentially
into the bulk if and only if one is in the topologically non-trivial phase (|Vin/Vout| < 1).
See, for example, Shen (2017) and Shapiro and Weinstein (2022).

In this paper, we study a nonlinear variant of the SSH-model, introduced in
Chaunsali et al. (2021). In this model, each “atom” of the array corresponds to a
nonlinear mass-spring oscillator described by a Newtonian law: ¥ = —V’(x), with
an even anharmonic potential, V (x). For illustrative purposes, it will be convenient at
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times to work with the specific potential:

3 r
V(x) = 5x2 + Zx“. (1.3)

The case when I' > 0 is referred to as the case of a hardening nonlinearity and the
case when I' < 0 as a softening nonlinearity.

Within a fixed dimer/cell, the two mass spring systems with amplitudes x4 and x5
are linearly coupled via the in-cell coupling coefficient yij:

i =~V (M) + pnr®

B = —V'(xB) + pinx? (1.4)

The coupled system (1.4) is the fundamental unit with which we build up a non-
linear SSH-network. The system (1.4) will be assumed to have non-resonant and
non-degenerate time-periodic orbits in a sense which we shall make precise in Theo-
rem 2.2.

We build an SSH-network of nonlinear dimers by coupling each oscillator to its
out-of-cell nearest neighbors via a second coupling coefficient, yoy. This gives the
system:

x,‘? = _V/(x;?) + )\Voutx,?,1 + Vinan
B = V') + yinxl + Ayouxy, neZ. (1.5)

In (1.5), we make explicit the B— site terms which interact with the x,f‘ and the
A~ site terms which interact with x2. V' consists of both linear and nonlinear onsite
contributions. The non-negative parameter, A, has been inserted in order to interpolate
between the anti-continuous limit (A = 0) and globally coupled models.

More generally, we study

2 A e A B A

X+ Vi) — Vinx, ) |: <x >i| (O)

.. +XA|R = , € 7, 1.6
(xf + V'(xB) — pinx ! xB ; 0 " (1.6)

where R is a bounded linear operator on [2(Z; R?). The coupling operator, R, can
couple sites beyond nearest neighbor, but its defining matrix elements are assumed
to be exponentially decaying away from the diagonal; see (2.2)). The case of nearest
neighbor interactions (see (1.5)) corresponds to:

A B
X X
R =— il
|: (xB)]n yout(xrﬁrl)

Consider the band structure of the linearized dynamics for (1.5) about the zero
state (x,’;‘ = xf = 0, n € Z), determined by the set of non-trivial plane wave states:
e’(k"_“”)é, 0#¢ € C2. In terms of £ = w? — a)g vs. k, the band spectrum is a
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re-centering about g = V”(0) of the SSH band spectrum:

k
Extk) = () (-0 = i\/ (in = A¥ou) + 47inAou cos? (5) wf = V' (0.

1.7
Figure 1 displays the graphs of these band functions. The two spectral bands are sep-
arated by a gap for |Ayout/vin| 7 1 and touch at a linear crossing for |Ayout/vin| = 1.
It is therefore natural to contrast the properties of the A— parametrized family of
equations (1.5) for the (linearly) topologically distinct regimes |Ayout/¥in| < 1 and

[AYout/¥in| > 1.

Remark 1.1 (Phonon gaps) In terms of the frequency parameter w, there are two
pairs of dispersion curves, symmetric about w = 0, each pair having phonon gap
for |AYout/¥in| # 1: one about @y and one about —awy, each of width ~ w,, ! |e|, where
€ = ¥in — AYout

1.2 Summary of the Article and Results

We study the existence and properties of discrete breathers, solutions of the infinite
lattice nonlinear system (1.6), which are periodic in time and localized on the discrete
lattice Z. We outline the key points of this paper:

1. Existence of discrete breathers; Theorem 2.2 Assume that the anharmonic potential

in (1.6) satisfies V(—x) = V(x). Let t — X, (¢) denote a non-resonant and non-
degenerate T, = i)—”— periodic solution of the limiting (A = 0) infinite dimer
array, associated with (1.4). Then, for all A sufficiently small and nonzero, there
is a unique 73— periodic solution

A
[ XA = [(x" m)}
x’f(t) nez

with X? = X, of the globally coupled lattice equations (1.6). This solution lies
in the space sz, consisting of sequences X (¢), which satisfy X (#) = X(—¢) and,
together with derivatives up to order 2, are 7, — periodic and square integrable
over [0, Tp] and square summable (spatially) over Z:

T 2 d] A(l' )\’) 2
xXMZ, = / ’—(X” ’ )’dt<oo.
1X 5, % 0 ]2:(:) de/ \x7 (1 )

Furthermore, the mapping A +— || X )‘||H2T is smooth. For a discussion of the

behavior when the non-resonance hypothesis is violated, see in particular Remark
2.3 and Fig. 3.

Our proof is based on a Poincaré continuation strategy, used in the pioneering
article (MacKay and Aubry 1994) on discrete breathers. The richer structure of
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the building block isolated dimer dynamical system (1.4) (anti-continuous limit)
allows for richer behaviors in the global array. Finally, recall that for general
nonlinear autonomous dynamical systems the period of the solution varies along
the continuation. Here, the symmetry condition on V (x) enables us to restrict our
study to time-reversible solutions with fixed period. The analysis can be adapted to
more general potentials, V (x), by incorporating the determination of the discrete
breather period as a function of A.

2. Applications of Theorem 2.2. In Sect.3, we apply Theorem 2.2 to obtain discrete
breather solutions which are continuations of two classes of solutions to the iso-
lated dimer dynamical system (1.4): in-phase (Type I) and out-of-phase (Type
II) solutions. We verify the non-resonance and non-degeneracy assumptions of
Theorem 2.2 by a combination of rigorous analysis and numerical computation.

3. Exponential spatial decay of discrete breathers, Theorem 4.1 The breather solu-
tions obtained via Theorem 2.2 have the square-summable decay behavior of
functions in HZT;,- Hence, they are only guaranteed to decay at infinity in a mild
sense. In Sect.4, we prove Theorem 4.1, a general result on exponential spatial
decay of the discrete breathers, which applies to those constructed in Theorem 2.2.
Our proof uses ideas underlying Combes and Thomas discrete operator estimates
(see, for example, Aizenman and Warzel 2015) and offers a different perspective
on the earlier decay results in MacKay and Aubry (1994).

4. Numerical simulations of discrete breathers: ranging from the highly discrete
(anti-continuous) regime to the nearly continuum regime For

0 < A < Xs = Yin/Youtl,

the phonon spectrum (linearized spectrum about the zero state) has an open spectral
gap centered about the linearized “atomic” frequency, wg = +/ V" (0); see Remark
1.1. The gap width is of order one for A near zero and shrinks down to the point w as
A approaches A,.. Using a numerical method, outlined in Appendix A, we construct
solutions corresponding to fine grid of A — values starting at > = 0 and continued,
when possible, till very close to A,. The initializing discrete breather, which is
supported on the n = 0 dimer, is taken to be a periodic orbit with frequency, wy
corresponding to one of the following cases:

(A) wp =~ wg in the phonon gap,
(B) wp just above the optical branch of the phonon spectrum and
(C) wp just below the acoustic branch of the phonon spectrum.

Fig. 2 presents a summary of our continuation results for in-phase (Type I) periodic
orbits wy, in Case (A); this terminology is introduced in Sect. 3.

For A > 0 sufficiently small, the breather is strongly localized on a few lattice
sites; this behavior is captured by Theorem 2.2. For A less than but near A, where
the parameter

€ = Yin — AYout
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is small, the spectral (phonon) gap is small, and we expect the discrete breather
spatial profile to decay very slowly on the lattice length-scale.
This behavior is clearly indicated in Fig. 2d—f.

5. Continuum envelope theory in the small phonon gap regime, . — i, As A

approaches A, = |Vin/Vout| (€ — 0), the discrete breather has the structure of
a weakly nonlinear wave packet, whose amplitude decreases and width increases.
In Sect.5, we consider separately the limits: L 1+ A, (¢ | 0)and X | A, (¢ 1 0),
which correspond, respectively, to the vanishing gap limit in the topologically
trivial and topologically non-trivial linear phases.
In each of these scenarios, we construct, by multiple scale asymptotic analysis,
weakly nonlinear wave packets comprised of bulk spectral components corre-
sponding to energies near the band crossing (see Fig. 1b). This multiple scale
expansion describes discrete breathers as a bifurcation from the phonon spectrum
into the gap. Central to the construction are asymptotic gap soliton envelope equa-
tions corresponding to cases A 1 A, and A | A,. These are related by an emergent
symmetry:

if (U, V)lisa gap soliton which gives the discrete breather envelope
for the regime A 1 Ay, then the (—V, U)T = —iop(U, V)T defines
the envelope of a discrete breather in the regime A | Ay; (1.8)

see the further discussion below.

We emphasize thatin Jenkinson and Weinstein (2016) and Jenkinson and Weinstein
(2017) the phonon band edge is at a fixed frequency and the frequency of the
bifurcating discrete breather (solitary standing wave) moves into the (semi-infinite)
gap below the phonon spectrum. In contrast, in the present work, we prescribe the
discrete breather frequency, wp, which is fixed and outside the phonon spectrum.
Our discrete breathers have this frequency all along the bifurcation curve, and it
is the phonon spectrum that approaches wj.

6. Agreement of continuum envelope theory with numerical simulations forix —
Ae» and [>—excitation threshold for in-gap discrete breathers The numerically
computed discrete breather is very well approximated by the leading term of our
asymptotic expansion for 0 < € < 1. More precisely, consider the case where €,
and hence, the gap about w is small and fixed and that the breather frequency, wp,
is in this gap. For € small, the phonon gap about frequency wq is approximately
of width €|wg|~! (Remark 1.1), and hence, we may write:

wp = wp — €——, (1.9)
2w

where —1 < v < 1| measures the offset of wp from the center of the gap. We
demonstrate that discrete breathers with frequencies in this small spectral gap are
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very well approximated by the wave form:

A . v
(izgg: 2) ~ 2/ e(—1)" (l‘iEEZ: B;) cos [ (wo — 62_0)()> t:| , D<ex 1.
(1.10)
The pair (U(z; v), V(z; v)) is a gap soliton solution of a coupled system of non-
linear dispersive equations governing the slowly varying envelope; see (5.22). We
expect that such expansions can be made rigorous via bifurcation theory meth-
ods; see, for example, the derivation of discrete breathers of the discrete nonlinear
Schrodinger equation in Jenkinson and Weinstein (2016) and Jenkinson and Wein-
stein (2017); see also Ilan and Weinstein (2010) and articles cited therein, as well
as results concerning discrete breathers on diatomic Fermi—Pasta—Ulam-Tsingou
(FPUT) lattices James and Noble (2004).
Representative phase portraits of the planar dynamical system governing (U (+; v),
V (+; v)) are plotted for representative values of v in Fig. 5. Gap solitons are homo-
clinic orbits which connect (0, 0) to itself. We obtain an excellent numerical fit to
(1.10) with computed discrete breathers for A less than and near A,; see Fig. 2.
Figure2 also shows that while the amplitude (/°° norm) of “in-gap” discrete
breathers tends to zero as A — A, (for the cubic nonlinear lattice model) there
is a strictly positive excitation threshold with respect to the /> norm; there is a
minimum /2 norm below which there are no discrete breathers near the continuum
limit; see Weinstein (1999). In the present setting, this is a consequence of the
asymptotic nonlinear Dirac equation with cubic nonlinearity, which has a critical
dilation scaling; see Sect. 6.4 for a discussion in the context of general nonlineari-
ties. In contrast, for the cubic nonlinear model, states whose frequencies bifurcate
“out-of-gap” (above the optical or below the acoustic bands) have /> which tend
to zero as the frequency approaches the edge; their envelopes are governed by a
nonlinear Schroedinger equation for which the cubic nonlinearity has subcritical
scaling properties (Sulem and Sulem 1999; Fibich 2015).

7. Bifurcation of discrete breathers into the (linear) topologically non-trivial regime
Note, in view of the symmetry (1.8) of the continuum envelope equations, we
have that from (1.10) we obtain a bifurcation of discrete breathers, for small and
negative € = ¥in — AYout, corresponding to the topologically non-trivial phase of

the linear SSH: s
. X, (t, —€) _
iop (xrll;(t’ —e)) , 0<—-exl. (1.11D)

While the continuation from the anticontinuous limit (linearly topologically trivial
band structure) breaks down as A 1 A, (the phonon gap closes), the emergent
continuum symmetry (1.8) provides a means for continuation into the regime
where there is a linear topologically non-trivial band structure.

8. Chirality of mid-gap discrete breathers Finally, we note a chiral feature of “mid-
gap” discrete breathers displayed in Fig.2. The decay of discrete breathers as |n|
tends to infinity is determined by the available decaying solutions of the asymptotic
linear problem. Since the discrete breather frequency in this case is at the center
of the gap, the corresponding linear states are those of the linear SSH model of
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Type | discrete breathers
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Fig. 2 a Phonon spectrum schematic (black) with breather frequency, wp, (red); b [°° norm of computed
(dotted) discrete breather and its approximation from the weakly nonlinear long-wave theory (1.10); ¢
12 norm of computed (x’s) discrete breather and its approximation from the weakly nonlinear long-wave
theory (1.10); d—f show numerically computed discrete breather profiles for . = 0, .2, .31, respectively;
and g shows envelope obtained from analytical approximation z +— (U (z), V (z)), a homoclinic orbit of
the system (5.25). The continuation is initialized, for A = 0, with a anti-continuum in-phase periodic orbit
of the nonlinear dimer (2.5) of frequency w;, = wy = /V”(0) = /3, corresponding to the initial value
parameter ay ~ 0.82; see Sect.3.1. Parameter values: I' = 1, y;, = 0.5, Yout = 1.5 (A« = 1/3), N =201
(Color figure online)

zero energy; (1.1) with E = 0. Zero energy solutions which decay as n — 400
and zero energy solutions which decay as n — —oo are concentrated on distinct
sublattices and this is precisely reflected in the large |n| behavior of Fig. 2f. This
dichotomy at mid-gap is also reflected in the continuum theory via the tangency
of invariant manifolds at the origin; Sect. 6 provides a very detailed discussion.
This is consistent with modeling and experiments in Solnyshkov et al. (2017) and
Pernet et al. (2022).
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1.3 Relation to Previous Work

There is an extensive theoretical and applied literature devoted to the study of discrete
breathers on a wide class of lattice structures; see, for instance, the review (Flach and
Gorbach 2008). Discrete breathers on diatomic FPUT-like lattices are studied in Livi
etal. (1997), Maniadis et al. (2003) and James and Noble (2004). The nonlinearities we
consider act “on-site,” but the underlying linear band structure of such FPUT systems
and those we consider are similar. We also mention the experimental works (Boechler
et al. 2010; Pernet et al. 2022) which study discrete breathers and gap solitons in
dimerized granular crystals and photonic lattices modeled by FPUT lattice systems,
respectively. The current study is motivated by recent works in the physics literature
investigating the interplay between topological band-structures and nonlinear effects,
primarily in the context of discrete and continuum SSH and other types of photonic and
mechanical systems; see, for example, Hadad et al. (2017), Chaunsali and Theocharis
(2019), Chaunsali et al. (2021), Pal et al. (2018) and Jezequel and Delplace (2022). Note
that the topological character of the discrete SSH is due to a chiral symmetry which
emerges in the tight binding limit of a class of continuum dimer models; see Shapiro
and Weinstein (2022). Finally, related to the weakly nonlinear continuum theory and
gap solitons we derive in the small phonon gap regime, we note earlier work on gap
solitons in nonlinear periodic optical media, governed by nonlinear Dirac type models;
see, for example, Aceves and Wabnitz (1989), Christodoulides and Joseph (1989),
Goodman et al. (2001), and the recent studies (Smirnova et al. 2019; Chaunsali et al.
2022) and references cited therein.

2 Discrete Breathers in the Anti-continuous Regime

We seek time periodic and spatially localized solutions of coupled nonlinear lattice

system:
»A (A B A
v > |: (x )] (0)
. +A|R = , nelz, 2.1
<xf +V'(xB) - yinx,‘f xB . 0 2.

for A real nonzero and sufficiently small. The mapping x +— R[x] is assumed to be a
bounded linear map on [?(Z; C?) with exponentially decaying matrix elements:

IRmxllc2 < Clvgl™ Mixllc2, m,l € Z, 2.2)

where 0 < |[vg| < 1 and 0 < C < oo. The case of nearest neighbor interactions (1.5)
is an example. We assume that the potential, V, in (2.1) satisfies:

Ve CXR), V(-x)=VX). (2.3)

Remark 2.1 For Theorem 2.2 on the existence of discrete breathers, we only require
that x — R[x]is bounded linear map on /2(Z; C?). The exponential decay hypothesis

@ Springer



Journal of Nonlinear Science (2023) 33:59 Page 11 0f52 59

on the coupling matrix R,,; is used in Sect.4 to prove spatial exponential decay of
discrete breathers.

For & = 0, there is no coupling among the individual dimers in the array; this is
the anti-continuous limit:

==V + yinxk
i = —V/(xB) 4 yimx?, nel 2.4)

We consider the simplest type of solution (2.4) in which only the n = 0 oscillators
are excited and all other dimer amplitudes, n # 0, are set to zero. Hence, we seek
solutions to the system

i ==V + vinxg

B (2.5)
5§ = =V'(xg) + yinxg -

A general analysis of (2.5) requires a study of a four-dimensional phase space. In
Sect. 3.1, we consider two classes of periodic orbits, in-phase and out-of-phase; each
leads to a reduction of (2.5) to a two-dimensional phase space. For now, we assume
that (xf (1), xf (1)) denotes a periodic solution of (2.5) of period 7}, (frequency wp =
27 /Tp). Hence, for A = 0, the infinite dimer array (2.1) has a breather solution

X*(t)=|...,o,o, (xf(t)>,o,o,...}. (2.6)

xB()

Equivalently, in terms of the mapping

= A 1A B A
vk )+ (= ()]
.. +XA|R , 2.7
<x,f + V' (xB) — pinx xB el 27
we have
F(X,,0)=0.

Our first goal is to construct a mapping A > X*(¢), defined for all real A # 0
and sufficiently small in a Banach space of T}, — periodic in time, spatially decaying
sequences, such that

F(X*, 1) =0. (2.8)

We now introduce a function space framework appropriate for an application of the
implicit function theorem. Let H?b denote the Banach space of infinite sequences of

time-periodic H> = H>([0, Tp]; R?)— functions or loop space given by

H2 = {X(0) = (52 Olaez - 30 € HAR/ZTY), X(1) = X(-1)] 2.9)

Tp
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endowed with the norm given by

A 2
2 _ 2 *
||X(l‘)||H2 = Z ||xn||H2 = Z H (x%) HHz’

nez nez

0 .
and HT;, given by

HO = {X(t) = (xn()}nez : Xn € LER/THZ), X (1) = X(—1) a.e. ] (2.10)

Ty

with norm

2
L2’

IXOI2, =Y Il =3 | (iz) |

nez nez

we have that
. 142 0 1 .
F: HTb xR — Hrb is a C* mapping.

We now state a theorem on the existence and uniqueness of discrete breather solu-
tions to (1.6).

Theorem 2.2 (Breathers near the anti-continuum limit) Consider the nonlinear dimer
array (2.1) with potential, V, satisfying (2.3). Fix a periodic solution, X, =
(xf, xf)T, of period Ty, associated with the isolated (A = 0) dimer (2.5). We make
the following two additional hypotheses:

(a) Non-resonance:

(nawp)? # V") % yin, foralln € Z. 2.11)
(b) Non-degeneracy: The nullspace of the operator

2
i RAMCO) 0 01
* = 2 — Vin 10

d
0 P + V'xB@))

(2.12)

acting in the space H%b is empty. (The operator L, is the linearized operator of
the isolated dimer dynamical system (2.5) about the periodic orbit, X .)

Then, under hypotheses (a) and (b) there exists ., > 0 and C U curve
k€10, 4p) > X* € H7 such that X° = X and F(X*; 1) = 0 for all 0 < & < Ap.

Remark 2.3 (On the non-resonance condition (2.11)) Let A = 0. The linearization of
the dimer system is given by the block diagonal system:

i = =V 2O + yinnl (2.13)
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(a) non-resonant (b) near resonant fundamental (c) resonant 2nd harmonic
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Fig. 3 Panel a shows the spatio-temporal evolution of non-resonant Type I seeded data (see Sect.3 for
definition) with weak coupling (A = 0.1) over 120 anti-continuum breather periods. In contrast, panels
b and ¢ break the non-resonance condition, (2.11), and therefore cannot be continued. Here, the phonon
coupling is evident. Panel b is very close to the linear regime and nearly resonates with the fundamental
(n = 1 in the theorem). Panel ¢ resonates with the second harmonic (n = 2 in the theorem)

i = —v" B O + v, (2.14)
in the n = 0 dimer and, for n # 0

A = —v" 0k + yan?
iB = —v"O)md + yin.

(2.15)

Each n # 0 block has the four distinct frequencies, @, given by the solutions of:
@ = V"(0) + yin and ®* = V" (0) — yin. Hence, the infinite system has the identical
four distinct frequencies, each now having infinite multiplicity, with corresponding
modes supported on distinct dimer cells. For & # 0 and small, these infinite multiplicity
frequencies perturb to phonon bands, intervals of spectra, corresponding to the time
harmonic solutions, £ée ', & € [2(Z), of

v A " A B A
X4+ VIO0)x] — Yinx, X 0
.. +X1|R = . 2.16
<x,? + V"(0)xE — yinx;? xE)] o 2.16)
The non-resonance condition (2.11) ensures that nonlinearity-induced harmonics of
the breather frequency wy do not resonate with the phonon spectrum. Such resonances
are known to lead to the slow resonant radiation damping of coherent structures;

see Fig. 3, and also, for example, Soffer and Weinstein (1999), Soffer and Weinstein
(2004), Soffer and Weinstein (2005) and Weinstein (2015).

Remark 2.4 (On the non-degeneracy condition) Below, in Sect. 3, we show in a con-
crete family of examples that the non-degeneracy hypothesis holds generically. Its
verification in any individual case can easily be addressed numerically; see Fig. 4.

Proof of Theorem 2.2 The proof is based on the implicit function theorem; see, for
example, Nirenberg (1974). Clearly we have F(X,, 0) = 0. To apply the implicit
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Fig. 4 Phase plots of typical Type I or II states for the potential V (x) = %xz + %x“. Panel a hardening
case, I' > 0; Panel b softening case, I' < 0. Panel ¢ Representative plots of the isolated dimer frequency as
a function of energy for Type I states (solid-curves) and Type II states (dashed curves). Curves for hardening
nonlinearity are in blue and for softening nonlinearity in red. The horizontal line depicts the midgap phonon
frequency, wg = /V"(0) = /3, for reference (Color figure online)

function theorem, we must check that differential of the mapping F at (X, 1) =
(X4, 0,

Fx(X., 001 H — Hy

is one to one and onto and that the inverse is bounded. The differential with respect to

Aatany (X, ) is
AF(X; 1) x4
[TL = [R <XB>L (2.17)

The differential with respect to X is given by the block diagonal operator

Lo y-1

Fx(X,; 0)Y = L, Yo |, vjeH*R/ZTy; R, j€Z,
Lo i
(2.18)
where the 2 x 2 block operators are L., displayed in (2.12), and
d? ” 01
Lo = [@ +V (0)] D2 = Yin (1 0) . (2.19)
Here, Ir x> = op denotes the 2 x 2 identity matrix.
We first claim that the operators Lo and L, both map
Hsz = {x € H*(R/ZTy; R?) : x(—1) = x(1)} (2.20)

to

Hfb = {x € L>(R/ZTy; R?) : x(—1) = x(?) a.e. }.
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We further claim that these maps are one to one, onto and have a bounded inverse:

1Ly  Fllgz < Coll fll o 2.21)
Tp Ty

1LY Fllge < Call fligo (2.22)
Th Th

where Cy and C, are constants.
The bound (2.21) on L, ! follows by an explicit Fourier series calculation using the
Non-resonance Hypothesis (2.11). Indeed, consider the equation

Loy = f, where feL2

is given by a Fourier series:

fA(t)> _ (f”’A> dnwit/Ty 29
We seek a solution
A 5n,A .
o= () -S(Ea) e e
nez

and find that a solution y(¢) € Hrz,, can be constructed for arbitrary f € L%, if and
only if

— (nwp)* + V"(0) —Yin
det< i — (nwp)? + V" (0) #0 foralln € Z. (2.25)

Equivalently, ((n) — V"(0))’ — y2 # 0 or

((na))2 —V"(0) — yin) ((na))2 —V"(0) + ym) £0, foralln e Z.

This is precisely the nonresonance Hypothesis (2.11) so the proof of the bound (2.21)
is complete.

The bound (2.22) on L} ! follows from the Non-degeneracy Hypothesis; see (2.12).
Indeed, the spectrum of L, acting in Hg) is discrete, and non-degeneracy implies that

0 ¢ spec(L). Hence, ||L;1f||L% < [dist (0, spec(L))] ™! ||f||LzT . Standard elliptic
b b

theory implies the bound (2.22).
The inverse of Fx(X,; 0) acting on sequences

Y:(...,y_l,yo,yl,...)GH%
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is then given by

Fx(X,; 007y = Ly! vo |, yj € H(ZTy;RY), jeZ,

(2.26)
which satisfies the bound

IFx(X: 07'YI2, < CiY Iyl = CullYl?, .

Ty nez Ty

where C1 = max{Cy, C«}. We may now apply the implicit function theorem to obtain
the existence of a curve A € [0, 1) — X* € Hib such that X*» = X, for A = 0 and

F(X*, 1) =0forall A € [0, A). This completes the proof of Theorem 2.2. O

3 Application of Theorem 2.2
In this section, we introduce two classes of periodic solutions of isolated dimer
dynamical system (2.4). We then verify the resonance and non-degeneracy hypotheses

of Theorem 2.2 to obtain curves of discrete breathers in the weak coupling (anti-
continuous) regime.

3.1 Two Classes of Periodic Orbits

3.1.1 Type | States (In-Phase)

a, = x2(0) = xB0) £0and 22(0) = x5 (0) = 0. 3.1

Let a, be such that
7= —=V'(2) + yinz (3.2)

with initial data z(0) = a, and (0) = 0 has a periodic solution z\"(#) Then,

)Cf(l‘) D 1
(i) =" (;)

is a periodic solution of (2.4) with initial conditions (3.1).

3.1.2 Type |l States (Out-of-Phase)

a, = x2(0) = —x2(0) # 0and x2(0) = %2 (0) = 0. (3.3)
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Let a, be such that
7=-V"(2) — vinz (3.4)

with initial data z(0) = a, and z(0) = 0 has a periodic solution zi”)(t). Then,

2O\ _an 1
(xf(r)) =u 0 (—1>

is a periodic solution of (2.4) with initial conditions (3.3). Note the requirement that
V is even in (2.3) implies that there are Type II dimer periodic solutions.

The phase portraits in Fig.4a, b display periodic solutions of Type I to the anti-
continuum problem, for a hardening and softening quartic potential, respectively. The
period T, = Tp(ay) is given by the expression:

ax(E) dz 2

I,11) ay
T (E) =4 , E—V(a) £yn—=0. (3.5
b 0 V2(E—VQ@)* ynd R

The upper choice of sign in (3.5) corresponds to in-phase (Type I) periodic solu-
tions and the expression with the lower choice of sign corresponds to out-of-phase
(Type II) periodic solutions. In Fig. 4c, the isolated dimer angular frequency, wp (E) =
27 /Ty (E), is plotted as a function of its energy, E, using (3.5), for Type I (solid-
curves) and Type II (dashed-curves) data, for both a softening (red) and hardening
(blue) potential, at a fixed of value of yiy.

We now discuss the application of Theorem 2.2 to prove thatisolated dimer solutions
of Type I and Type II continue to discrete breather solutions (exciting all lattice sites)
for all nonzero X, which are sufficiently small. To apply Theorem 2.2, we assume the
Non-resonance Condition (2.11) (see Fig.3 for an illustration of when this condition
is and is not met and also the discussion in Remark 2.3) and then need only verify the
Non-degeneracy Condition (b) that

the nullspace of L., acting in the space HT2[ , 1s given by {0}.
3.2 Verification of the Non-degeneracy Condition (b) for Type | and Type Il
Anti-continuum Periodic Orbits

The linearized operator about the solutions, zil) and sz”), of Type I and Type II is

given by the expression

d2
L, = (@ + v”@;’kr))) 00 — YinO1 (3.6)

where J = [ corresponds to states of Type I and J = I corresponds to states of
Type 11
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To study the nullspace of L., acting in the space HTZb , we first diagonalize it using

11

the eigenvectors of o1; let M = < ) Then, oy M = Mdiag(1, —1), and hence,

1 -1
» 7 AV )~ 0
MLm= |dt £ y (3.7)
0 32 V'@ O) +

Therefore, determining the nullspace of L., acting in the space HTZ,, , reduces to sepa-

rately determining the H? - nullspaces of the scalar operators
Tp

Lo =15+ V'@ 0) — v, and
2
Ly = 25+ V'@ ) +vin (3.8)

3.2.1 The Nullspaces of L, and L,_ for Type | States

HTZb - nullspace of L,_: The HTZb - nullspace of L, has dimension no larger than two.
We first produce two linearly independent solutions which span the set of all solutions
to the second-order ODE L,_Z = 0 and then investigate whether any element in
this two-dimensional space qualifies as an element of the Hsz - nullspace of L,_, in
particular whether any of these solutions is even and T}, periodic.

Type I states correspond to periodic solutions, z, )(t) of the equation 7 = —V'(z) +
yinZ. Differentiation with respect to ¢ yields that Z = z, )(t) satisfies L, Z = 0 with
initial conditions Z(0) = 0 and Z (0) # 0. However, since zi )(t) is an even function
of ¢, Z(¢t) is odd and hence Z does not belong to the Hrzh - nullspace of L.

To obtain a second, linearly independent, solution we proceed as follows. Denote
by z(¢, a) the solution of the initial value problem

t==V'@+ynl, ¢O0)=a, £0)=0. 3.9)
Then, of course we have ¢ (f, a,) = z5 )(t) We have from (3.9) that

; 2
@ww ))—@@(r a))> —V()—@az—E(a)

Let W(t) = 0,¢(¢, a) . Differentiation of (3.9) with respect to a and setting
a=ay
a = ay yields

L. W=0, WO =1, W(Q) =0.
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Since E'(ay) = V'(ay) — Yinas # 0 (kal)(t) is not an equilibrium point), the map
a — E(a) is invertible near a = a, and we may equivalently write ¢ (¢, E(a)) for a
near a, with ¢(t, E) = z\"(¢) for E = E(ay).
We claim now that 9,¢ (z, E(a))‘ = (0gl)(t, E(as))E'(ay) = W(t) is not
a=ax

T, — periodic and is therefore not in the Hsz - nullspace of L,_. It suffices to check
that dg¢(f, Ey) is not T — periodic. For all E in an open interval, ¢ (¢, E) is periodic
of some period T (E) which is a smooth function of E and such that T (E,) = Tp.
Differentiation of the relation ¢ (r + T (E), E) = ¢ (t, E) with respect to E and setting
E = E, yield

(t E)a—T(E)+8—€(t+T E)—a—g(t E.)
i B gp B+ op by Zx) = G

Since ¢(t, E,) is a non-constant periodic solution, it follows that dg¢ (¢, E) is not
T, — periodic if E +— T (E) satisfies:

aTE 0 3.10
SE(E) £0. (3.10)

For the case of hardening nonlinearity, the relation (3.10) is proved in Levi (1991).
Figure 2c displays representative dimer frequency plots E + w,(E) = 27T, (E)~!
for periodic orbits of Type I (solid-curves) and Type II (dashed-curves), for both
hardening and softening nonlinearities. In all our simulations, the condition (3.10) is
seen to hold. This concludes our verification that Hfb - nullspace of L,_ is equal to

{0}.

Remark 3.1 Condition (3.10) is equivalent to the condition of MacKay and Aubry
(1994) on the non-degeneracy of the classical action.

HTZ[, -nullspace of L. Since L, is a second-order ordinary differential operator, its

nullspace is at most two-dimensional. Further, V" (z,(¢)) is an even function, and so
the nullspace is the direct sum of orthogonal eigenspaces of even and odd functions.
Since L, is considered on the space Hsz , consisting of even functions (see 2.20), it
follows that either O is not an eigenvalue or O is a simple eigenvalue. As we move
continuously among the phase curves of periodic orbits by varying the “energy”,
E (see Fig.4), the periodic orbits and hence the coefficients of L, vary analytically.
Hence, the simple eigenvalues of the family of self-adjoint operators E +— L, (E) vary
analytically. Therefore, zero can be an eigenvalue for only a discrete set of energies.

Summarizing, we have that for Theorem 2.2 on the existence of discrete breathers
applies to all Type I states (in-phase periodic orbits), except possibly for an exceptional
discrete set of energies, E.

3.2.2 The Nullspaces of L, for Type Il States

Type 11 states correspond to periodic solutions, sz”) (1), of the equation 7 = —V'(z) —
¥inZ; +Vin in the ODE for Type I states is replaced by —yin. The corresponding
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replacement of +yi, by —¥in in the linearized analysis shows that verifying the non-
degeneracy hypothesis of Theorem 2.2 on the nullspace of L, reduces to studying the
nullspace of the diagonal operator diag(L, L.—); compare with (3.7). Hence, for
Type I states, the nullspace of L, reduces to the nullspace of the same two scalar
linear operators as in the case of Type I states, and hence, the arguments presented
in Sect.3.2.1 can be applied to Type II states as well. We conclude that Theorem 2.2
applies to all Type II states (out-of-phase periodic orbits), except at a possibly discrete
set of energies, E. Of course, for any fixed E, it is easy to numerically verify the
non-degeneracy hypothesis of Theorem 2.2. O

4 Exponential Spatial Localization of Discrete Breathers

The breather solutions constructed in Sect. 2 lie in a Banach with weak spatial decay.
Let A — X* € H be C! with respect to A and solve F(X*, 1) =0, A el0,xr).
Here,

X = a0} w2 € Hiy D Ml <00 (4D

nez

and X0 = X, is the anti-continuum limit solution. In this section, we prove the
following result on exponential spatial decay.

Theorem 4.1 Consider the setting of Theorem 2.2 and let ) — X’ denote a curve of
discrete breathers, defined for A € [0, Ap). Then, there exist constants C1 > 0, C3 > 0
and || < 1 such that for all » € [0, Ap) foralln € Z

ln Ml = Crexp(Can) "

Our arguments are related to those presented in MacKay and Aubry (1994). In our
proof, we reduce spatial decay to a Combes—Thomas type bound given in Proposition
4.2.

Differentiation of equation F(X*, 1) = 0 (see (2.7)) yields

dx*

_1dF (XM M)
dx ’

- _ A
= —Fx (X" 2) 5

X*‘ - X,. 42)
=0

Written out componentwise, we have for all n € Z

dx, (2 T =1 AF(X™; 1)
a 2 [Fx(X%:2) _nm< N )m
mez
=Y [ (x0T R,
L dnm
mez
_ [ Aoy
== |Fx (x*:2) _anlexl
mez 1
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—Z[Z [Fx ()] le] X

=3 0u(X* 1) x, 4.3)
1

where we have used (2.17). Our goal is to prove exponential decay of the sequence of
norms

[ 0l |

nez’
Since the mapping A +— {x, (-, 1)} is C([0, r,); H?), we have

M g, _

- H > [ omedtn H ylae Dl @
The key to estimating ||x, (-, A) ||H¥ from (4.4) is:
b

Proposition 4.2 There are constants M > 0 and up € (0, 1) such that for all A €
[0, X)), and alln,m € 7Z

H (FX (x*; A)_l>n ) < Myl (4.5)

The proof of Proposition 4.2 is presented in Sect.4.1. Using (4.5) together with the
assumed bound on R in (2.2), we have:

-1
10u(x* il = | (Fx (X:2)™") R
< Mﬂln m| « Cl)lm 1] <MCM\n l|7
where
0 < up = max{up, v} < 1.

Applying (4.5) in (4.4), we have

Al Dlg0 g
—— <[ <MY Tl Wy (@46)
mez
where
Jln | = \m n+1|+ \m n— l\ (47)
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Recall that 0 < pup < 1. We shall use (4.6) to show that for any u such that pp, <
u < 1, the sequence

{wn ) = {1 G g |
b

is uniformly bounded for n € Z.
Since, a priori, we only know that {||x,(-, 1)|| HY } is square summable we work

with a cutoff sequence. For each N > 1, define

(™) = {1o™ o1 D“H%,}

where
I
" In| < N
p™M(n) = {M 4.8)

Multiplying (4.6) by [0™)(n)]~!, we obtain

)
dwtix(k)‘ < M Y 1p ™M1 e p ™ mywiV (), (4.9)

meZ

where w,gN)(O) = [,O(N)(n)]_1 | B ||H(T)h. One checks easily, using the form of (4.7)

and 0 < up < @ < 1, that there is a constant, C; > 0, which is independent of N,
such that:

sup Y [pN 1 T o™ m) < 5.

nez me?Z

Integrate (4.9) with respect to A over the interval [0, A), A < A,, to obtain

s
w00 = 101 el + M Co [ sup wfd 60
0 meZ

Finally, let [w®™)](A) = sup,,.; wir’ (1) and note that for all N > 1

[w™1(0) = sup[p™ )T xsnll o < supw xsnll o = cx < 00
neZ Tp neZ Ty

Then,

A
[w™I) < e +M Cy / [w ™I )dA, 1 € [0, Ay).
0

It follows from Gronwall’s inequality that

[w™MI) < cxexp(M'Cy2), A €[0,A,). (4.10)
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Since N > 1 is arbitrary and the right-hand side of (4.10) is independent of N, we
have that

1% (- M”’*& <ciexpM'Cy0) ™, nez, relo,r,).

This completes the proof of exponential decay, modulo Proposition 4.2, which we
prove in the following subsection.

4.1 Proof of Proposition 4.2
We prove the bound (4.5) using a strategy of proof for the Combes—Thomas estimate
in Aizenman and Warzel (2015).

From expression for (X, A) given in (2.7), we have

Fx(X(A),2) = A(L) — AR @.11)

where A()) is the block diagonal operator

0L"D@) 0

AR = 0o LOw o
0 LYo
with
d? s
, — + V(x4 1) 0 01
LY@ = | 4 ' & ~ ¥in (1 0) SENCR b
"B
0 @‘i‘v (xj(t’)t))

and R satisfies the bound (2.2). For the special case of nearest neighbor interactions,
corresponding to the model (1.5),

RT 0 R

R = RT 0 R , (4.13)
RT O R

with

00
RZVout<10>-
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Note that A(0) = Fx(X,;0) is invertible by non-resonance and non-degeneracy
hypotheses of Theorem 2.2:

1

AO) Yo g0 <
” ”HTb_)HTb Ceap

By smoothness of F' and A +— X* we have, for some 0 < | < A,, that A(}) has a
bounded inverse satisfying

IIA(/\)‘IHH%_)HO < A ef0,A)).

Tp Cgap

We shall study decay of the (m, n) matrix element of Fy (X (1), 2L by studying
the solution of the equation

(AN — AR u = v

in an exponentially weighted space. Fix n € Z and define f(m) = n|m — n|, for all
m € 7, where n > 0 is to be chosen. We denote by ¢/ the multiplication operator on
HY, given by {an} > {e/ ™May,).

el (A(A) — AR) e felu=elv or (A()\.) —A efRe_f) efu = elv

Therefore,

el (A(L) — )»R)f1 v = (A(k) —A eJCReﬂC)_l elv.

Coordinatewise, we have
-1 .
S MIAG) = AR, vy = [(AG) —heReT ) T, /Dy @14)

where we sum over repeated indices.
Now take v = ¢, whose only nonzero entry is a one in the n'” slot. Then, (4.14)
becomes

e/ MAR) — AR = [(A(A) — efRe*f)_l]mn (4.15)

Since A(x)~! is invertible, we have from (4.14) and that e/ ™ = enlm—nl.

mn

eNm=rl [(A(A) _ AR)—I] - [(1 A AG)! efRe_f)_l A(x)—l] (4.16)

mn

We have that

|2 AT e Re | < il < IAGY T X e R |
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2

Cgap

<C Al le/Re™ 1, 4.17)

with norm in the space B (H%j). Let’s now bound |le/Re~/||. With summation over
repeated indices implied, we have:

(efReff X) = e/ MR, e TDX; = Ryjenmni=li-nhx

m

— m—j i —
< Ryje" X ;| < =il x| < (uge™) I X ;).

Since |ug| < 1, by taking 0 < n < np sufficiently small we have by Young’s
inequality that

le"Re™ Xz = CliXllyeg -

Restricting A > 0 possibly further, by taking 0 < A < A, sufficiently small
(A2 < A1), depending on ng, we have that [(I —AA)! efRe_f)_1 is invertible
on H(%b , and hence,

[(AQ) —AR) ™' < M e M=l = pp plm=nl, (4.18)

mn

where u = ™" < 1 with 0 < 1 < n9. This completes the proof of Proposition 4.2.

5 Analysis of the Weakly Nonlinear Long-Wave Regime: Continuum
Theory

From Fig.2b, c we have that, as A tends to A,: the maximum amplitude of the discrete
breather decreases toward zero and its spatial width becomes large on the scale of the
lattice-spacing. To describe this behavior precisely, we use a multiple scale analysis
designed to capture the weakly nonlinear long-wave regime. To carry this out, it is
useful making a suitable rescaling and recentering of (1.5).

5.1 Introducing the Natural Small Parameter

Since we are interested in the regime where the band gap width tends toward zero, we
introduce the parameter:

€ = Yin — AMYout (5.1

which tends to zero as the phonon gap width tends to zero at A« = |¥in/Youtl, and we
rewrite (1.5) as

¥ = x4 B +xB )+ (VO — V() —ex?P |
8 = —0fxf + yin Gt + x5 )+ (VIOxE — V(6B —exit . (5.2)
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Here, we set w(z) = V”(0). The frequency wy is at the center of the phonon gap. We
study breather solutions whose frequency wy, lies within the order € width gap and we

express this as:
€v
wp = wy — —. (5.3)
2w
The order one parameter, v, in (5.3) determines the offset from wq within the € — width

gap.
5.2 Balancing Weak Nonlinearity with Linear (Phonon) Dispersion

Since V (z) is assumed to be smooth with V/(—z) = —V’(z), and V'(0) = 0, the
leading-order nonlinearity is cubic; V/(z) = V”(0)z + %V””(O)z3 + ....To fix an
example, we choose the leading-order behavior: V(z) = 3z + 23 +...;see (1.3).

Let us assume that € = yin — AYout 18 strictly positive and small; we shall comment
on the case where € is negative and small below. In order to balance the linear phonon
dispersion with nonlinearity, we rescale the amplitude:

A A
(i) == () 5

¥t = —dyit + v +yE ) — e () —eyB |
o ==y + vin O+ ) — D) — ey, (5.5)

and we obtain:

where we have dropped terms of order €2 and higher.
In terms of our parameter €, defined in (5.1), the two band functions (1.7) may be
re-expressed as:

(@) (k) — 0} = i\/ez + 4¥in (Vin — €) cos? (g) wg = V"(0). (5.6)

As noted in Introduction, for € # 0, there are two disconnected intervals of spectrum.
The interval of spectrum associated with the +branch is called the optical band and that
associated with the —branch is called the acoustic band. The open interval of energies
lying between these bands is called the phonon gap; see Fig. 1b with E = »? — a)%.
The maximum and minimum of (w?)4 (k) — a)g (top of the optical band) occur for
k = 0, and phonon gap width is at its smallest for k = . We next carry out, for €

small, an asymptotic study which yields discrete breathers in three regimes

(A) wi in the O(e) spectral gap,
B) wi below and near the minimum of the acoustic band, and
©) a)}% above and near the maximum of the optical band.

In all three regimes, the solution will be shown to have the structure of slow modulation
of rapidly oscillatory plane wave states. Since the dispersion relation for regimes
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(B) and (C) is approximately quadratic, the governing envelope equations will be of
(nonlinear) Schrodinger type. And since the dispersion relation for regime (A) is that
of a gapped linear crossing (Dirac point), the governing envelope equations will be of
(nonlinear) massive Dirac type.

5.3 Asymptotic Study of Discrete Breathers in Regime (A); @2 in the O (¢)
Spectral Gap

5.3.1 Centering the Analysis Near the Asymptotic Linear Band Crossing

Recall that as € ~ 0 (A ~ A,) the spectral gap of the linear band structure is narrowest
in a neighborhood of k = 7 and closes at quasimomentum k = 7 as € — 0. The
asymptotic solution we seek is of the form of a wave-packet, spectrally localized at
k = 7, and hence, we set

A A A
@B) = i <§B> Y (Y"B) 5.7)

VA = —2YA + yn(VF —YE ) —er (v + vk,
YnB = _w(%YnB + yin(YnA n+1) - 6F(YB)3 + €7, n+1' (5.8)

and we obtain

In the next section, we embark on an asymptotic analysis construction of nonlinear
standing wave states of the rescaled and recentered system (5.8).

The solutions we seek are to be spectrally concentrated on the set of momentum g =
k — m = 0 over a band width of order €. We now deduce a continuum approximation
flowing from this requirement. Using the discrete Fourier inversion formula, we write,
for J = A, B:

v/ leninq:tiquqd
ntl c e (e —)X;q,

—TT

where x7(z) is rapidly decaying away from z = 0 and smooth. The overall factor
of €1 ensures that ¥, is of order one for small € (consistent with the multiple scale
expansion below). Changing variables (¢ = € Q) and using the approximation e*€¢ —
1 ~ +ieQ, we have

/€ . 0o
Y, — YJ~6//elQ“”)(iiQ)xj(Q)dQ~e/ e 9em (£ 0y x' (0)dQ

—00

=dedzuj(Z)|z=en = Xouj(n), Z =ez.

Here, z and Z = ez are fast and slow continuum spatial scales, which we systematically
introduce below as independent variables in a multiple scale analysis.
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This continuum approximation gives

B,ZMA = —w%uA + YinO;up — eFui + e(up — d,up)
8,2u3 = —a)%uB — Yin0OzU A —61"u33 +€e(upg + 0uq). 5.9)
We now seek a solution to (5.9) having a multi-scale structure, depending on both

fast space and time variables z and ¢, as well as newly introduced “slow" space and
time variables Z and 7', all treated as independent variables:

uap=uap(t,z,T,Z), where Z=¢€z, T =e€t (5.10)

We rewrite (5.9) in terms of the extended set of variables, by making the replacements
0y — 0y +€dr, 0, — 0, + €dz. This gives

(& +€dr)? up = —wiua + yin (3; +€dz)up — elu’y, + e(up — (3, + €dz) up)

(0 + €dr)’ up = —wjup — Vin (3; + €9z) us — €Tuy + e(ua + (0, + €dz) ua).

(5.11)

Further, we expand ua g = ua,5(t,z, T, Z) in powers of e:
UA B = ug)’)B(z, t,2,T)+ eufql’)B(z, t,2,T)+ ezuf‘)B(z, t,Z,T)+--- (5.12)
Recall that we are in the regime of an order O(e)— frequency gap around wy. Since

we seek breather-like (spatially localized) states, we impose the boundary condition
at infinity:

w321, 2.T) =0 as [Z] > 00, j=0,1,... (5.13)

~We then substitute (5.12) into (5.11) and obtain a hierarchy of equations of order
€/, j=1,2,....Each equation is of the form

(97 = Lo) U = F9, (5.14)

where UV) = (ui{), usgj))—r and FU) = (Flgj), Fl(gj))T. Here,

I
ﬁoz( @} Vm"’z). (5.15)

2
—Yind; —wj

We view each equation in the hierarchy (5.14) as a PDE with respect to the fast variables
z and t and seek bounded solutions at each order. This imposes solvability conditions
on the source terms F/) which, along with the decay condition (5.13), prescribes the
behavior with respect to the slow variables, Z, T'.

We now implement this expansion procedure. Here, we only require only the first
two equations in this hierarchy: the equations arising at order €” and €'.
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At order €Y, we have the system

, o)
(3 — o) (Ut ) = 0. (5.16)
B
We solve (5.16) by taking a time-harmonic solution
0) 0 .
(Z t, 7, T) <M (Z, T)) iwot
e +c.c., 5.17
( Oz, 2, T)) vz, 1) G17

where c.c. denotes the complex conjugate of the first term. The amplitudes
u©@(Z, T) and v (Z, T), which are constant on the fast scales, will be determined
at the next order.

At order ¢!, we have the system

(e9)
> Fiz1.Z.T)
(4 _£°)< m) (Fz(z 17, T)> (5.18)

0)

where the right-hand side forcing term depends on u , ', and is given by:

Fi(z,t,Z, T) = —28t8Tu§)) + uB + ymazug)) — Bzug)) —T (uf?)S
Fr(z.1,Z,T) = —28;07uy) +u — yindzu) + 0.’ —T (ugg>)3 (5.19)
Substituting (5.17) into (5.19) gives
F = —207[iwou@ e 4 cc]+ (1 + yind)[v Qe 4 cc] —T [Mo)el’wﬂ’ + c.c]3
Fr = —207[iwgu@ei® 4 cc]+ (1 — yind) @ e 4 cc] —T [v“’)eiwﬂ’ 4 c.c]3 (5.20)

Equation (5.18) may be expressed as:

(1)
2 u JiZ, T iw 8U(Z,T)\ iie
(v _L°>< ﬁ})) (hz )+ (G m)

h(Z,T)\ 3ie
+ <h2(Z, T)> e coc. (5.21)

The source terms proportional to /0" and e /0’ are resonant and the others are not.
Hence, a necessary and sufficient condition for the solution to be bounded in ¢ is that
fi(Z,T) = f,(Z,T) =0. Thus,

2iwpdru® = (1 4 ynd2)v @ — 3T 1@ 2@

2iw0d7v? = (1 = yind)u® — 3r|w@ 2@ (5.22)
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5.3.2 Gap Solitons

In order that

0
ua@ . 2.0 (12 Z DY ot .,
up(z,t,Z2,T) Wz, 1) w

approximate a solution with frequency w; given by (5.3), we seek time-harmonic
solutions of the following form:

0 . .

u(Z, T _ U(Z;v

<U(O)EZ7 T;) = ¢ IVT/20 (‘E \ v;) . (5.23)
Then, (U, V) coupled system of ODEs:

vU = (1 4+ yindz)V = 3T|UPU
vV = (1 — %nd2)U — 3T |V|?V. (5.24)

We consider the case where (U, V) are real-valued:

YU =U — vV = 3IV3
YV ==V +vU 4 3IU°>. (5.25)

The above expansion leads to formal asymptotic solutions of (1.5) (equivalently
(5.2)), for € = yin — Ayou positive and small (A & A,):

A . €V
(2’?8) ~ 2/ (=1)" <g$;’ E;) cos ([wo - 2—600} t) . 0<e< 1.
(5.26)
Since we shall use (5.26) as an analytical approximation for discrete breathers, we
focus on the orbits of (5.25) which are homoclinic to (0, 0), i.e., solutions (U, V) =
(U(Z;v), V(Z;v)) of (5.26) for which (U(Z; v), V(Z; v)) tends to (0,0) as Z —
Fo00. In the following subsection, we discuss the phase portrait of (5.25), giving special
attention given to these homoclinic orbits. Comparison of the wave form (5.26) with
the numerical continuation of breathers is presented in Sect. 6.
We conclude this subsection with a remark on the case where € is negative and
small. In this case, we replace (5.4) by

A
(x%) =V <y2> , (5.27)

Xn

which leads to the following gap soliton envelope system analogous to (5.25):
YinU' = —U — vV —3rV3

yinV' =V + U + 3TU°. (5.28)
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The system (5.28) has an emergent symmetry— a symmetry not present in the
original discrete model. If (U, V) T is a solution of (5.25) which is homoclinic to (0, 0),
then ion(U, V)T is a solution of (5.28) which is homoclinic to (0, 0). It follows that
for € small and negative we have discrete breathers approximated by the expression:

x;lq(l) ~ / n —V(—en;v) (—e)v
<xf(f)> 2/ (=) < U(—en;v) > cos <[w0 " 2wo ]t) ;o 0<—exl
(5.29)

5.3.3 Phase Portraits and Symmetries of Midgap Asymptotic Description

The two-dimensional phase portrait of the system (5.25) is given by the family of level
curves of the Hamiltonian:

YnHU, Vi) = UV—%\J(UZ—FVZ) —Zr (U4+V4). (5.30)

InFig. 5, we display phase portraits for representative values of v,and I' > 0. Darkened
(blue) points are equilibria. As can be seen from the linearization of (5.25) about
the zero solution, homoclinic (exponentially decaying) solutions to (5.25) can exist
only if |[v| < 1, and in fact do exist for all |v| < 1. Homoclinic orbits (level sets
H(U, V;v) =0, displayed as red contours), corresponding to different choices of v,
are displayed in Fig. 5.

As v is continuously increased from v = 0 toward v = +1, the homoclinic figure-
eight contracts to a point, and as v is continuously decreased from v = 0 toward
v = —1, the homoclinic figure-eight expands till the two lobes of the figure become
tangent at (U, V) = (0, 0).

5.3.4 Preparation for Comparison of Asymptotic Wave form (5.26) with Numerical
Discrete Breather in the Continuum Regime

With a view toward approximating the continuation of discrete breathers, whose
breather frequency lie within O(e) width of the phonon gap (A near A,), we take
a breather frequency, wp, of the form

€V

o =00 =5 (5.31)

Here v specifies the frequency offset from the center of the phonon gap at wy.
From (1.7) and the relation € = yin — AYout, the width of the phonon gap can be
computed at k = 7; it is given to first order by

w+(n)—w_(n)—=\/w(z)—{—e—\/a)%—e%wio (5.32)

Therefore, wy, is in the spectral gap if and only if

€
wp —wo| < —
| | o0
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1.5
v=-0.5
1.0
0.5
> 0.0
-0.5
-1.0
-1.5 -1.50 "
-15-1.0-05 00 05 1.0 15> 00 -15-10-05 00 05 10 15
U U
1.5 1.5
v=+0.5 =
1.0 1oV +1
-1.5
0 -15-1.0-05 00 05 10 15 05
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-0.5 -0.5
-1.0 -1.0
-1. -1.5
-15-1.0-05 00 05 1.0 15 -15-1.0-05 0.0 05 10 15
U U

Fig. 5 Phase portraits of (5.25) for I' > 0 and different values of v are given by the level sets of the
Hamiltonian H (U, V). Equilibrium points are marked (blue). Homoclinic orbits to the equilibrium at
(U, V) = (0, 0), which correspond to the level set H (U, V; v) = 0 (red curves) are indicated in subpanels.
For frequencies |v| > 1, there are no homoclinic orbits (Color figure online)

or equivalently, using (5.31), [v| < 1.

Thus, for € small, a choice of breather frequency (5.31) selects a distinguished
homoclinic orbit (specified by the parameter v) which defines the slowly varying
envelope in the multi-scale approximation (5.26) to the discrete breather. In Sect. 6,
we assess the accuracy of this analytic approximation through a comparison with
discrete breathers which are numerically continued from the highly discrete (anti-
continuous) regime. As we shall see, the approximation is excellent in representative
examples.

5.4 Asymptotics of Discrete Breathers in Regimes (B) and (C); @2 Just Below/Just
Above the Acoustic/Optical Bands

We now search for asymptotic solutions of (5.5) spectrally localized just below/above
the minimum/maximum of the phonon bands at k = 0, again as € ~ 0 (A ~ A,). We
again introduce the continuum variables u4 p(z, t) and here expand to second order
in the spatial derivative

In analogy with discussion in Sect.5.3, we consider (y,) spectrally concentrated
near k = 0 over a band width of order /€. We write

1 T . k
J J ink , +tik J
Varl —Vn == [ €7 (" =Dy (—) dk,
nxl n \/E x ﬁ
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We set k = /€K and make the approximation, (ei‘/gK - l) ~ +iJeK — €K?)2,
due to the parabolic behavior of the bands near k = 0. Now we have

0o K2
Ve = i ~ﬁf e Kem (iiK—JE—z )x’(K)dK
—0o0

(@020 2+ S50 DD) 1 = ity ) + 53250, 7 = Ve
This motivates the multiple-scale scaling below. Plugging the expansion

ynjﬂ :uJ:I:Z)ZuJ—i-%B?uJ
into (5.5), gives

1
0us = — wdus — eTu’, — e(up — dup + EB?MB)

1
+ Vin (2u3 — dup + EazzuB)

Pup =— wiug — eTuy — 9 L2
‘up =—wgup —€lup —e(us + ZMA+2 up)
1
+ Yin <2u,4 + doup + EaguA) ) (5.33)

We introduce slow spatial and temporal scales (contrast with (5.10))
Z=1lez, T =cet (5.34)

and expand us p = ua p(t,z, T, Z) in powers of \/e:

2
uap =uyy@ 1. Z. T +veuly@ 1. Z. T+ /€ u 21, Z, T)+ - . (5.35)

We now implement the same expansion procedure as before to obtain a hierarchy of
PDEs with respect to the fast variables, z and ¢, at orders \/EO e ﬁz, .. We
solve (the first three equations of) the hierarchy recursively, subject to the condition that
(z,t) — u(z,t, -, -) is bounded. This imposes non-resonance conditions on the source
terms in this hierarchy which then constrain the dependence on the slow variables Z
and 7.

At order \/EO , we have the system

L, O
cla)=0 (5.36)
u
B
where W
L= (3,2 + w(%) o0 — <2ym n %a;) o1 + (i¥ind.) 02 (5.37)
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Here o} are standard Pauli 2 x 2 matrices. Our solution, u(z, t, €z, €t), will be a
constructed as a slow modulation of a plane wave state of (5.36). Since we shall seek
a solution which is spectrally supported near maximum or minimum of the phonon
spectrum, we solve (5.36) by seeking a time-harmonic solution with k = 0 of the form:
R(Z, T)Sei“’t, & € C2. Here, R(Z, T) is constant with respect to the fast variables
z, t. Substitution into (5.36) yields @ = w4, where

wi = a)g + 2y corresponding to £ = (:Fll) . (5.38)

Remark 5.1 For € small and positive, and y;, > 0, we have from (5.6) that the
upper/lower limits of the phonon spectrum (in terms of E = w?(k), see Fig. 1) are
given by:

a)(z):l:2yin:|:e =a)i:|:e.

Hence, w%_ corresponds to a breather frequency O(¢) above the optical band, and &>

corresponds to a frequency O(¢) below the acoustic band.

We have at order \/EO = 1, solutions of the form
u®H (1,2, T) = R(Z, TP ' 4 coc. (5.39)

At order /e l, we have

) o (OB (0) '
r Mé) _ VlnaZ"z(g + Vlnazazl/(t(g = YindzR(Z, T) (ZI:%.(:F)) PUCEey (5.40)
Yindzu g + Vin0z0zu 4

Note that (§®), ), = 0, from which it follows that the right-hand side of (5.40) is
non-resonant. (Had it turned out to be resonant, this would have called for an additional
time-scale, \/€r.) A particular solution of (5.40) can be constructed in the form of a
constant multiple of its forcing term:

T WA —%GZR(Z, T)ePel®+! 4 ¢ c. (5.41)
At order /e, we have the system
£ (“%iii) (G s ) (5:42)
Uy 2,+(z,8, Z,T)
where
Gy =—20,07u® —T (uﬁf))3 —u® + ol — %afug)’ — Yindzu
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Gy =—20,0ru — T (ugg>) 0 9@ — 1520 4y a0

2 Z
n %aguﬁf) + Yindo 7). (5.43)

(1,£)
P

Substitution of the expressions of u©%) and u into (5.42)-(5.43) gives

Lu®® = (“2iwsdr R —3TIRPR = R F D0ZR) 6@l +ec (544

-+ non-resonant source terms. (5.45)

Boundedness of u®®) imposes the constraint that the envelope function, R(Z, T),
satisfies an equation of nonlinear Schrodinger (NLS) type:

iwsdr R = :F?az R —3T|RPR+R (5.46)

We remark that the NLS equation (5.46) is of “focusing"-type and thus has spatially
localized solitary standing wave solutions (solitons), provided

I' > 0 (hardening nonlinearity) for w4, and

I' < 0 (softening nonlinearity) for w_.

We choose a solution to (5.46) of the form R(Z, T) = 'T/29+§(Z; v), respec-
tively. If ' > 0, we have a long-wave asymptotic description of the discrete dimer
lattice at frequencies just above the optical band and if ' < 0, we have a long-
wave asymptotic description of the discrete dimer lattice at frequencies just below the
acoustic band, given, respectively, by

)t N ve
xf(t) ~ 2/€S(\/en; v) 71 cos wi+m t). 5.47)

Localized solutions of S exist above the optical band as long as v > —1 and below
the acoustic band when v < 1. Of course, because of the homogeneity of the nonlin-
earity, one can rescale the positive decaying solution of S” — § + §3 = 0 to obtain
S(Z: v, Yin, 01).

6 Global Numerical Continuation of Discrete Breathers and
Comparison with Analytical Results

In this section, we bring together our analytical results with numerical simulations. In
previous sections, we analytically constructed discrete breather states in the regime of
weak coupling, a regime in which very few lattice sites are significantly active (anti-
continuum limit, A ~ 0). In the weakly nonlinear, long- wave regime (continuum
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limit, A 1 A4) we provided an asymptotic (multiple scale) construction of discrete
breather states which bifurcate from the phonon band; see (5.26).

Our global numerical continuation, for A € [0, A,), of discrete breathers for numer-
ous initializing choices of isolated dimer frequencies, wj, shows that weakly nonlinear
limiting states are continuations of the highly discrete breathers of Type I or Type 11
or both Type I and Type II, depending on the prescribed location of wy, relative to
the phonon spectrum. We numerically construct discrete breather solutions to (1.5)
via the iterative Fourier method outlined in Appendix. In the following subsections,
we specify an isolated dimer periodic orbit of Type I (in-phase) or Type II (out-of-
phase)—see Sect. 3—and discuss its continuation. In Sect. 6.3, we discuss dynamical
stability.

6.1 Breather Solutions of (1.5) Inside the Phonon Gap

We numerically solve for discrete breathers with a specified frequency, wp = wo —
€v/(2wp), where |v| < 1, in the phonon gap; see (5.31). For different choices of
v, we find good agreement with the v-dependent “gap solitons” and the constructed
breathers in the following subsections.

6.1.1 Asymptotic Localization of Mid-gap Discrete Breathers on Sublattices

It is interesting to note that discrete breathers with a frequency located at the center
of the phonon gap (v = 0) are, for |n| sufficiently large, dominantly supported on
either the A— sublattice or on the B— sub-lattice. This asymmetric localization of
the spatial fails of midgap breathers is seen in Fig. 2e, f of introduction. Recently, gap
solitons showing related behavior were observed experimentally in nonlinear SSH-like
photonic lattices (Solnyshkov et al. 2017; Pernet et al. 2022).

This behavior can be explained as follows. We expect that the asymptotic (large
|n|) spatial localization of discrete breathers with midgap frequency is determined by
the zero energy, exponentially decaying solutions of SSH:

0 = AYourX | + Vinx.
0= )“Vinx;:‘ + )\Voutx;:‘+1 . 6.1)

Here, we consider the regime: Ayou < ¥in and look for exponential solutions of (6.1)
of the form p" (§4, &8 )T. This leads to

0) _ 0 AMour "+ ¥in\ (4
<0> B (ym + MYourp 0 ) (éza)- 6.2)

There exist nontrivial solutions if and only if A you0 ™! + ¥in = 0 0F AYourP + ¥in = 0,
which yields

A .
p1 = — you[v E = <(1)> and P2 = — Vin ) é = ((1)> . (63)
Vin AYout
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o (?) and pj ((1)) . (6.4)

Since our parameter regime is 0 < AYou < ¥in, We have that |p;| < 1 and |p2| > 1.
Hence, the first solution in (6.4) decays as n — +o00 and the second solution in (6.4)
decays as n — —oo. The above hypothesis therefore implies that midgap discrete
breathers are concentrated on B sites for n — 400 and on A sites for n — —oo. This
is corroborated by both the discrete profiles and our leading-order asymptotics shown
in Fig. 2. Indeed, from the homoclinic orbit in Fig.5 with v = 0 (see (5.30)), we have
that U = O(V3)as Z — +ooand V = O(U?) as Z — —o0.

A numerical fit of the tails of the breather shown in Fig. 2f corroborates this predic-
tion; we find x2 > x2! ~ (xB)3 asn — +ooand x > xB ~ (xA)3 asn - —cc.
Furthermore, when the breather’s frequency is slightly tuned away from the center of
the gap, v # 0 (see Figs.7, 8) we find that to leading-order x,lf ~ x,f asn — oo,
consistent with our asymptotics in (5.25) and (5.26) for 0 < |v| < 1. We remark
that the discrete breathers in regimes (B) and (C) from Sect. 5 (where the breather
frequency is not in the narrow phonon gap) do not exhibit the asymmetric sub-lattice
concentration seen in Fig.2 at all; see Figs.9 and 10.

Exponential solutions are

6.1.2 Type | (In-Phase) Breathers with Mid-gap Frequency; ®, = @o,v =0, >0

Figure 2, shown in introduction, displays the numerical continuation of (1.5), seeded
with Type I data at the central dimer cell, from A = O to just before the phonon gap
closes at A« = ¥in/Yout = 1/3; see the caption of Fig.2 for all parameter values.
The breather frequency, wp, is fixed at the center of the phonon gap, wg, and we use
a hardening on-site potential, I' > 0. Our numerical scheme converges to a discrete
breather up to A = 0.31. The red dots in Fig.2b chart the £°°-norm of the family of
discrete breathers, X*(+ = 0), as a function of A. As the phonon gap width is O(e),
we expect that as . — A, (¢ — 0), the leading-order envelope approximation, (5.26),
becomes relevant.

For comparison, the solid blue curve in Fig.2b displays the L°°(R)-norm of the
asymptotic solution, (5.26), as a function of A. Figure 2b shows that the £°°-norm of
X*(0) are nearly constant for A small (around the anti-continuum limit, A = 0), but
decreases quickly as A approaches A,, where there is excellent agreement with the
norm derived from (5.26).

Similarly, the £2-norm of X*(0) is shown in Fig. 2c with red x’s. As A approaches
Ax, we have from the continuum approximation (5.26) that

IX* )13 = Y xH0)7 + x2(0)* ~ 4e Y " Ulen; v)> + V(en; v)*

nez nez

o0
~4 / (UG + v v fore<1, 65)

—00

where U and V are the homoclinic solutions of system (5.25) when |v| < 1. The
horizontal blue line in Fig.2c is at the level ~ 1.72, predicted by (6.5) for v = 0
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(mid-gap discrete breather). The numerically continued discrete breather’s /% norm,
| X*(0)]l2, is consistent with this prediction, as A — A.

Figure 2d—f shows the corresponding spatial profiles of discrete breathers for various
values of A. For A near zero, the discrete solution bears little resemblance to the
envelope profile, but as A — A,, we find that the breather’s spatial outline closely
resembles the long-wave, midgap vector soliton given in (5.26). For comparison,
Fig.2g shows U and V in (5.25), scaled with the same value of A (equivalently € =
Yin — MYout) as the plot to its left. Figure 2f, g shows that near the point where the
linear phonon bands close, there is remarkable agreement between the two profiles,
whose origins lie in very different scaling regimes.

6.1.3 Type Il (Out-of-Phase) Breathers with Mid-gap Frequency; ®, = @,V = 0,
r<o

Next, we continue discrete breathers into the long-wave regime, again with a breather
frequency centered inside the phonon gap, but seeding the lattice with Type II (out-of-
phase) data. By (3.5) (and Fig.4), to initialize (at A = 0) an out-of-phase state at the
mid-gap frequency, wg, we require a softening nonlinearity (I" < 0). Figure 6 shows
the results of this continuation, analogous to Fig. 2.

Remark 6.1 The absent sections in plots of norms of X * versus A in Fig.6b, c, and
likewise in other figures are regions where the numerical scheme for the discrete
breather failed to converge to the required tolerance. In these cases, we find that the
Jacobian is nearly singular. We are presently investigating whether or not bifurcations
occur.

For A near A,, the Type II discrete breathers displayed in Fig.6 are very well
approximated by the same family of weakly nonlinear, long-wave gap solitons as in
Fig. 2. Note, however, that this is the case even though for all A € [0, A,), the lattice
breathers maintain an odd-spatial-symmetry about their center (as seen in panels (d—
f)), in contrast with the even spatial symmetry of the breathers shown in Fig.2. On the
microscale, the states are very different, but on the macroscale they agree.

Note that, due to the odd-power nonlinearity in (1.5), both the original equations and
system (5.25) have inversion symmetry—if (U, V) is a solution then so is (—U, —V).
System (5.25) has an additional symmetry—if (U, V) is a solution then (U, —V)
is a solution to (5.25) with I' — —I" and v — —v. In particular, for a softening
nonlinearity, the homoclinic orbits at v = 0 shown in Fig.5 rotate into the second
and fourth quadrants, explaining the nearly identical limiting profiles in Figs. 2 and 6f,
having opposite spatial symmetry.

6.1.4 Breathers with Frequency Inside the Phonon Gap with Frequency @y # @¢
(v#£0),I>0

As in the previous subsections, we compare discrete breathers with the leading-order

continuum approximation, (5.26), but with fixed breather frequencies slightly above
or below the center of the O(¢€) phonon gap (v # 0 in (5.25) and (5.26)).
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Fig. 6 a Phonon spectrum schematic (black) with breather frequency, wp, (red); b /°° norm of computed
(dotted) discrete breather and its approximation from the weakly nonlinear long-wave theory (1.10); ¢
12 norm of computed (x’s) discrete breather and its approximation from the weakly nonlinear long-wave
theory (1.10); (d—f) show numerically computed discrete breather profiles for A = 0, .2, .31, respectively;
and g shows envelope obtained from analytical approximation z +— (U (z), V (z)), a homoclinic orbit of
the system (5.25). The continuation is initialized, for A = 0, with an anti-continuum out-of-phase periodic
orbit of the nonlinear dimer (2.5) of frequency w, = wg = /V”(0) = +/3, corresponding to the initial
value parameter ayx ~ 0.81; see Sect.3.1. Parameter values: I' = —1, yjp = 0.5, Your = 1.5, (A« = 1/3),
N = 201 (Color figure online)

Since the homoclinic trajectories in the phase portraits in Fig.5 deform asymmet-
rically with respect to the sign of v, we expect the continued discrete breather profiles
to deform correspondingly, depending on whether the breather frequency is chosen
inside the O(¢) spectral gap with a value slightly above or below the gap’s center.

To compare our envelope approximation (5.25) with numerically computed discrete
breathers of frequency wp 7# wg, we use the homoclinic solution (U (+; v), V(-; v))
(see (5.25)), where |v| < 1 is given by:
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Fig. 7 a Phonon spectrum schematic (black) with breather frequency, wp, (red); b [°° norm of computed
(dotted) discrete breather and its approximation from the weakly nonlinear long-wave theory (1.10); ¢ 2
norm of computed (x’s) discrete breather and its approximation from the weakly nonlinear long-wave theory
(1.10); d shows numerically computed discrete breather profile for A = 0.3 (the inset is simply a zoomed-in
view); and e shows envelope obtained from analytical approximation z +— (U (z; v(})), V(z, v(r))) at
A = 0.3, a homoclinic orbit of the system (5.25). The continuation is initialized, for A = 0, with an anti-
continuum in-phase periodic orbit of the nonlinear dimer (2.5) with wy, slightly above w(), |wg—wp| ~ 0.005.
Parameter values: I' = 1, v(0.3) ~ —0.35, ax = 0.833, yin, = 0.5, your = 1.5, (ks = 1/3), N = 201
(Color figure online)

2 _ 2 _
by = 20 =) 10,30, and dy = 1, — 2200 Z el oo
Yin — AYout Yout

is the value of the coupling parameter, A, for which the phonon band edge touches wy,.

Figure 7 shows the continuation of Type I seeded data with a breather frequency,
wp, just slightly above the center of the spectral gap located at w(z) (see schematic in
Fig. 7a). Panels (b) and (c) again show the variations with A of the £>° and ¢>-norms of
X*(0), respectively, along with the corresponding > and L? norms obtained from
the continuum asymptotic theory.

Figure 7b shows that as the distance between w, and the upper band edge approaches
zero (A 1 Ac), the £°°-norms closely follows the continuum-theory curve (computed
using (6.5) and (6.6)), which in this case limits to a nonzero value at A = A.; the
bifurcation from the phonon edge takes place a nonzero [°° norm.
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Fig. 8 a Phonon spectrum schematic (black) with breather frequency, wp, (red); b [°° norm of computed
(dotted) discrete breather and its approximation from the weakly nonlinear long-wave theory (1.10); ¢
12 norm of computed (x’s) discrete breather and its approximation from the weakly nonlinear long-wave
theory (1.10); d shows numerically computed discrete breather profile for A = 0.29; and e shows envelope
obtained from analytical approximation z — (U(z; v(*)), V(z, v(A))) at A = 0.29, a homoclinic orbit of
the system (5.25). The continuation is initialized, for A = 0, with an anti-continuum in-phase periodic orbit
of the nonlinear dimer (2.5) with wy, slightly below wq, |wg — wp| ~ 0.005. Parameter values: I' = 1,
v(0.29) ~ 0.27, ay = 0.819, yin = 0.5, Your = 1.5, (A4 = 1/3), N = 201 (Color figure online)

Likewise, Fig. 7c shows that the distance of the upper band edge to wj, tends to zero,
the £2-norm approaches the continuum theory curve from below. In contrast with the
case of discrete breathers with wp in the center of the phonon gap, the computed
£?-norms and the approximating continuum theory in Fig.7¢ do not level-off near
Xc. Figure7d, e displays a comparison of the discrete breather spatial profile and the
continuum theory envelope at a point near A.; they show remarkably good agreement
(see the zoomed-in inset in panel (d)).

Figure 8 shows the continuation of a family of discrete breathers for wy, just below
the center of the spectral gap. In this case, A, < A4, where A, is the value of A for
which the phonon band edge touches wjp. The continuum theory applies for A near and
below A.. Note that the oco— norms approaches zero as A — A, < Ay, as anticipated
by the continuum theory.

In contrast with Fig.7¢c and Fig. 8c shows that the numerically computed £2-norm
and its continuum theory L? approximation of X*(0) level-off below the constant mid-
gap asymptotic solution (~ 1.72); see Figs.2 and 6. The breather profile is compared
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with the asymptotic solution (5.26), for A near A., in Fig. 8. Panels panels (d) and (e)
show agreement.

Remark 6.2 In both Figs.7 and 8, we have continued a Type I (in-phase) isolated dimer
state periodic orbit with I > 0. In the case of a Type II (out-of-phase) initiating state
with I' < 0, we can again continue breathers with frequencies slightly below or above
the center of the spectral gap near .. However, due to the symmetry mentioned in
the concluding remarks of the previous subsection, the asymptotic homoclinic orbits
deform with respect to v in the opposite direction.

6.2 Discrete Breathers with @, Below/Above the Phonon Spectrum: “Out-of-Gap”
Discrete Breathers

We now turn to the continuation of discrete breathers of (1.5) with w), fixed and O(¢)-
distant (with ¢ — 0) below the acoustic (lower phonon) band or above the optical
(upper phonon) band. This corresponds to regimes (B) and (C); see Sect. 5.

As shown in Sect. 5.4, the relevant leading-order continuum approximation is given
by the cubic nonlinear Schrédinger equation (5.46) and its family of explicit soliton
solutions. For example, for frequencies in regime (B) (whose frequencies are below
the acoustic band), we have:

S(z;v) = %sech |:2 |v): ]|z:| , 6.7)

where v € (—oo, 1) and I < 0. In analogy with (6.5), we may use (6.7) to obtain (in
regime (B)):

81V — Ilyin€

3T for0 < e <« 1. (6.8)

IX )3 ~ 4ve / S(z: v)2dz =

Expressions (6.7) and (6.8) also apply above the optical band in regime (C), with
I'>0and v — 1 replaced by v+ 1 and v € (1, 00).

We remark that the spatial asymptotic descriptions in regimes (B) and (C) are
identical, with the exception of the vector & &) in (5.47). The vector & &) determines the
sign of the envelope solution on each sub-lattice site, either constant or alternating. To
leading order, we observe this behavior in the computed discrete breathers in regimes
(B) and (C), respectively (see Figs. 9, 10). As before, the parameter v in the asymptotic
expression (5.47) represents a modulation about the frequency w+. In the following
figures, we set v = 0.

First, we consider regime (B). Figure 9 shows a family of continued breathers with
frequency w_, seeded by Type I data and with a softening potential, I' < 0. Panels (b)
and (c) in Fig. 9 again track the £°° and £2-norms as the O (¢)-distance between w_ and
the acoustic band approaches zero. The norms of the asymptotic expressions, (5.46)
and (5.47), are again shown by the solid curves. Figure 9b, c shows that both norms
of X*(0), seeded by Type I data, can be continued near A, and closely approach
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Fig. 9 a Phonon spectrum schematic (black) with breather frequency, wp, (red); b [°° norm of computed
(dotted) discrete breather and its approximation from the weakly nonlinear long-wave theory (5.47); ¢ 2
norm of computed (dotted) discrete breather and its approximation from the weakly nonlinear long-wave
theory (5.46); d—f show numerically computed discrete breather profiles for A = 0, .2, .32, respectively; and
g shows envelope obtained from analytical approximation z + R(z), ahomoclinic orbit of the system (5.46).
The continuation is initialized, for A = 0, with a anti-continuum in-phase periodic orbit of the nonlinear
dimer (2.5) of frequency wp = w_ = +/2, corresponding to the initial value parameter a5 ~ 0.81; see
Sect.3.1. Parameter values: I' = —1, yi, = 0.5, yout = 1.5 (A« = 1/3), N = 161 (Color figure online)

the asymptotic curves, which in this case both limit to zero. Figure 9d—f shows the
deformation of Type I discrete breather profiles at different values of A and panel
(g) shows the corresponding NLS soliton from (5.47) at A = 0.32, again showing
excellent agreement.

Figure 10 is analogous to Fig. 9, but with a breather frequency fixed just above the
optical band (regime (C)). To respect the sub-lattice spatial symmetry of the envelope
solution (5.47), we seed the breather family with Type II data. Figure 10 shows that
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Fig. 10 a Phonon spectrum schematic (black) with breather frequency, wp, (red); b /°° norm of computed
(dotted) discrete breather and its approximation from the weakly nonlinear long-wave theory (5.47); ¢ 12
norm of computed (dotted) discrete breather and its approximation from the weakly nonlinear long-wave
theory (5.46); d—f show numerically computed discrete breather profiles for . = 0, .2, .32, respectively;
and g shows envelope obtained from analytical approximation z — R(z), a homoclinic orbit of the system
(5.46). The continuation is initialized, for A = 0, with a anti-continuum out-of-phase periodic orbit of the
nonlinear dimer (2.5) of frequency w; = w4 = 2, corresponding to the initial value parameter as ~ 0.82;
see Sect. 3.1. Parameter values: I' = 1, yip = 0.5, yout = 1.5 (A = 1/3), N = 161 (Color figure online)

out-of-phase states can indeed be continued near the band-edge, where our asymptotics
again capture the breather’s spatial outline.

6.3 Dynamical Stability
In this section, we discuss the linear dynamical stability of discrete breathers. In par-
ticular, we study the time evolution for the linearization of the dynamical system (1.5)

about representative numerically computed discrete breathers. This dynamical system
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Fig. 11 Corresponding numerically obtained Floquet spectra (linear stability) for the converged breathers
shown in Fig. 2 with a frequency centered inside the phonon gap at various values of A. The panels indicate
that the discrete breathers obtained in Fig. 2 are linearly spectrally stable

is an infinite system of coupled linear ordinary equations (ODEs) with 7}, = 27 /w),—
periodic coefficients. Its stability/instability properties are characterized by the spec-
trum of the monodromy operator: the operator which maps an initial state to the
state at time 7. The monodromy operator is the Jacobian of the Poincaré mapping,
3, G (1(0); A), where the Poincaré map: X (0) — G («(0); ) maps an initial data vec-
tor X (0) for (1.5) into the solution at time 7}. The spectrum of 9, G (u(0); A) is called
the Floquet spectrum, and points in the Floquet spectrum are called Floguet multipli-
ers. A discrete breather, X*, is spectrally stable if its associated Floquet spectrum lies
in the closed unit disc in C. Since our coupled dimer network is Hamiltonian, if w is
a Floquet multiplier, then so are i, 1/ and 1/x; complex Floquet multipliers come
in quartets and real Floquet multipliers in reciprocal pairs. It follows that a discrete
breather of the system is spectrally stable only if the Floquet spectrum is a subset of
the unit circle.

If, for the purpose of numerical approximation, we truncate the linearized dynamics
to a finite system with N — dimers, we have a system of 2N coupled linear ODEs of
second order with T}, = 2w /wp— periodic coefficients. Written as a system of first-
order ODESs, we have an equivalent system of 4N ODESs. The Poincaré mapping is then
a mapping u(0) € R*™N > G™M(u(0); 1) € R*N, and the monodromy operator is
approximated by 3, G™ (u(0); 1), a4N x 4N matrix. We investigate the linear spectral
stability of representative choices of numerically computed breathers by computing
the eigenvalues of 8,G™)(u(0); 1), for tractable and appropriately large values of
N. These eigenvalues are taken as approximations to the exact Floquet spectrum
associated with the X*. The choices of N are provided in figures.

Figure 11 shows the eigenvalues w; (I < j < 4N) of 3,G™) (u(0); 1) for
numerically computed discrete breathers with values of A (and other parameters) cor-
responding to those for Fig.2d-f.

Atx = 0,3,G™ (u(0); A) is block diagonal with each 4 x 4 block corresponding to
one of the N — non-interacting dimers. The n = 0 block has four Floquet multipliers.
One Floquet multiplier is equal to +1. It has algebraic multiplicity 2 and geometric
multiplicity 1; this follows because z.(¢; E) is periodic solution of L,_Y = 0 and
dpz(t; E) solves this ODE and has linear growth in ¢; see Sect.2. The other two
Floquet multipliers are associated with the linear time-periodic ODE L, Y = 0.
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Their product is equal to one. These values are indicated with x’s on the unit circle in
Fig.11a.

The n # 0 blocks are identical (corresponding to a constant coefficient system of
ODEs), and thus, each n contributes the same four Floquet multipliers. They are of the
form ¢'“T» where w varies over the four roots of: det(—w? + V" (0) — yino1) = 0. We
indicate these multipliers with blue points in Fig. 11a. In this particular simulation,
there are two very nearby Floquet multipliers on the unit circle in the second and
fourth quadrants. For A = 0, these four points on the unit circle are eigenvalues of the
monodromy operator of infinite multiplicity; they lie in the essential spectrum.

As A is varied away from zero, these infinitely degenerate eigenvalues perturb into
continuous arcs of spectrum along the unit circle. These arcs of Floquet multipliers,
for A # 0, are clearly seen in the center panel of Fig.11. & = 1 remains a Floquet
multiplier, and the other two simple Floquet multipliers, associated with n = 0 for
A = 0, can move around and perhaps collide with these growing arcs of Floquet
multiplier spectrum. In Fig. 11, the Floquet multipliers continue to lie along the unit
circle as A is varied till close to A.. We conclude that the discrete breather discussed in
Fig. 2 is linearly spectrally stable. For the other branches of discrete breathers discussed
in Sect. 6, we found that those corresponding to frequencies near the phonon band edge
were linearly stable as well.

Finally, in Hamiltonian contexts similar to this, it has been shown that spectrally
stable states are stable on exponentially long, but finite, time scales (Bambusi 1996).

6.4 More General Nonlinearity

In this section, we remark on extensions of our results to a general class of anharmonic
potentials:
V@) = 22 4 1 o >0, (6.9)
2 20 +2

which satisfies (2.3) and agrees with special case considered above for o = 1. Since the
potential (6.9)is C2 and even, Theorems 2.2 and 4.1 on existence and exponential decay
of discrete breathers, for A small, extend to the dimer network (1.6) with potential,
V (x), given by (6.9).

Our asymptotic analysis of the weakly nonlinear long-wave regime A — A,(¢ —
0) can be implemented for sufficiently smooth nonlinearities and yields envelope
equations (effective nonlinear Dirac equations for wp in-gap; Case (A) of Sect. 5)
and effective nonlinear Schrodinger equations for w, out-of-gap; Cases (B) or (C) of
Sect.5). We next highlight characteristics of discrete breathers in this regime which
depend strongly on the nonlinearity, in particular the parameter o

Consider the case where wy, is in-gap: Case (A) of Sect. 5 and o € N. In this case, our
asymptotic analysis yields, at leading order, a discrete breather X 1) = {xn(t, Onez
of the form:

A |
w0 = () <2 0 (G e (v -egip) ]
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Fig. 12 Bifurcation curves of mid-gap discrete breathers with ¢ = 1 and ¢ = 3: a phonon spectrum

schematic (black) with breather frequency, wy, (red); b, d show the /°° norm of computed (dotted) discrete
breather and its approximation from the weakly nonlinear long-wave theory (6.10) (blue); ¢, e show the
corresponding / 2 norm of computed (x’s) discrete breather and its approximation from the weakly nonlinear
theory (6.10) (blue) (Color figure online)

here (U, V) is a decaying solution (homoclinic orbit to (0, 0)) of the system

20 +1
yinU' =U — vV —< 0; >rv2"+1 (6.11)

20 + 1
YV ==V +0U + ( U; )FUZ"“.

A computation analogous to the one given in Sect.5 yields
1_
1XM13 ~ der ™ (10 @ W) + 1V @ 0)I2g)) - (6.12)

The case 0 = op = 1is L2— scaling critical. In Fig. 12, we contrast the £°° and 02
norms of mid-gap discrete breathers continued from the anti-continuum in the cases:
o = 1 and o = 3. The behavior of the /°° and /2 norms X*(0) agrees well with the
asymptotic expressions, based on (6.10) and (6.11), as A — A,.

Remark 6.3 We also considered the case & = 1/2, where the potential is C3 but not
smooth enough near 0 to implement our multiple scale expansion. Our calculations are
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consistent with /2— subcritical scaling behavior; both the /> and /> norms appeared
to approach zero as A — A,.

Here, we have assumed that € is positive; however, the emergent symmetry argument
given in Sect.5 can be used again to obtain discrete breather envelopes, from (6.10)
and (6.11), in the topologically non-trivial regime (¢ small and negative).

As L — Ay, the tails of the mid-gap breathers in Fig. 12 have asymmetric decay
rates on A and B sites. For A 1 Ay x8 > x2 ~ (x5)?°+! asn — +ooand x4 >
xB ~ ()c;:‘)z"+1 asn — —oo. Again, our long-wave asymptotics implies that past the
topological transition point of the linear system for A | Ay: x,f > xB~ (x,f‘)z‘”rl as
n— 4ooand xB > xA ~ (xB)?o*tlasn — —cc.

Finally, a short remark on the out-of-gap case (B) or (C) is given in Sect.5. Here
there is an effective nonlinear Schrodinger equation and we have that

M2 A g 2—1 L2
IXH 113 ~ 47 IR I3,
where R(Z, v) is the localized solution of (5.46) with a 20 4+ 1-order nonlinearity.
Hence, for breathers in regimes (B) and (C) o = o5 = 2 is L?>— scaling critical.

7 Discussion and Final Remarks

We have studied—analytically and numerically—discrete breathers of a SSH-like
network of nonlinear dimer oscillators. In particular, we have proved existence of
discrete breathers (or DBs, solutions which are periodic in time and exponentially
localized in space,) near the anti-continuous limit, in which our coupling parameter,
A, is small and nonzero. We numerically continue branches of discrete breathers till
near the critical coupling value, 1., at which the phonon gap closes, corresponding to
the topological transition in linear SSH. In this latter limiting regime, discrete breathers
have a multi-scale wave-packet structure, where the envelope of this wave-packet is
characterized by long-wave envelope nonlinear envelope PDEs of nonlinear Dirac
type (for DB frequencies in the phonon gap) and nonlinear Schrodinger type (for
DB frequencies above or below the phonon spectrum). For discrete breather’s whose
frequencies are “in-gap,” the continuum limit states are a type of gap-soliton. Our
envelope theory shows excellent agreement with simulations of the discrete breathers
for A near A,.

Moreover, an emergent symmetry, present for the continuum (vanishing phonon
gap) limit, but not present in the discrete model enables us to construct—from DBs
for A in the topologically trivial linear regime of SSH (A — A, < 0 and small)—DBs
in the topologically nontrivial linear regime (A — A, > 0 and small).

A further consequence of our analysis is clarification of the chiral character of
mid-gap discrete breathers.

This work is influenced by the agenda (for photonics, phononics, and mechanical
systems) of exploring the interplay between nonlinearity and novel band structures for
which, in the linear regime, there are topological phenomena; see references in Sect. 1.3
and those cited therein. While aspects of linear band structure topology arise in the
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bifurcation and continuation of nonlinear discrete breathers, a theory of topological
states in nonlinear systems remains an open challenge.
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Appendix A. Fourier Coefficient Method

A numerical method for computing discrete breathers was originally described in
Marin and Aubry (1996) based on solving for fixed points of a Poincaré mapping.
Here we describe a Fourier-based numerical method for constructing time-reversible
discrete breathers of system (2.4), in the setting of Theorem 2.2.

Given that both the non-resonance and non-degeneracy conditions in Theorem
2.2 are satisfied, we know that there exists A, > 0 and a unique time-periodic and
reversible, exponentially localized solution to (2.4) for 0 < A < Ap. To construct
such solutions, we will truncate the infinite-dimensional system in space and time and
iteratively solve a large system of nonlinear equations, transforming between the time
and frequency domains.

We will employ the Newton—Raphson method to solve the system, which requires
knowledge of the non-singular Jacobian of the mapping (2.7). To begin, we define the
Fourier series

. 1 [ .
A,B _ ~A,B iwpmt ~A,B __ A,B —iwpmt
X, 0(t) = E X e Xpoy = — X, 7 (e e de
0

meZz

where recall wp, = 27 /T), is the breather frequency. Next we define the transformed
mapping forn,m € Z

2 2~A 1o A ~B ~B
—miwpx, , + FV e )m — )Lyoutxn_l,m — YinXy

2 2~B

FIF(X(0), 0) = s " o
—mwpXy + F{V (xn Mim — AyOUtxn«H,m = YinXy ;-

(A1)

where F denotes the isometric Fourier mapping F : Lger [0, T] — 1%(Z). Linearizing

the above system about X (¢) in the time domain and transforming leads to

2 242A e AN A ~B ~B
- + ]: Vv m — /1 —A Ul —
FUEe X 0 @) = 1 O I V0N b = Yindum = Mowdn—tm x5y

2 24 sA sA
—m a)byf,m + }—{Vﬁ(xr?)ynB }m —YinYym — )‘you‘yn+1,m'
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where Y ={y; e H 2(R/ZTy; R?)} jez. The expression above can be rewritten as

F{Fx (X (), )} % Y (1)

- mzwzﬁ,?m + (J’-‘{V”(X,f)} * i’;?) - Vinf’;ﬁm - )L)/out)A’f_Lm
Bl e BB\ ea i (A3)
=05+ (FIV @D 5E) = vinSitn = RvouSar

where * denotes the convolution operation: 12(Z) x 12(Z) — 12(Z).

We now truncate the above exact expressions for N lattice sites with zero boundary
conditions at the lattice edges, as an approximation for exponentially decaying lattice
breathers. Taking N; equally spaced points in [0, 7}], we use the following definition
of the discrete Fourier transform

N;—1 N;—1
K=Y Xpe lonphim = N~ x p=2mipm/Ni (A4)
p=0 p=0
and inverse
1 N;—1
X, = v Z XpeZrirm/Ne (A.5)
! m=0

We can write the 2N N; x 2N N; truncated block tri-diagonal Jacobian matrix of
(A.3) as

MGg)  —vinlw,.N, 0 oz 0
—Yinln,n,  MGE)  —youln, n, 0
F{Fx(X, M)} = 0 —Youln,. N, M) —viln,.N,
0 M(xB)

(A.6)
where Iy, n, is the N; x N; identity matrix. M (x) is the N; x N; circulant matrix

formed by incrementally circularly shifting the vector m /N; and then adding the
diagonal matrix diag{(—02w§, —12a)1%, o, —(N; — 1)2a)}2,)}.

We can now utilize fast-Fourier-transform FFT libraries and evaluate the nonlinear
terms in the systems above by evaluating them in the time-domain via an inverse FFT
and then transforming back into the frequency-domain. Also recall that a necessary
condition to invoke Theorem 2.2 is the restriction of the solution space to be time-
reversible, i.e., X (t) = X(—t). Since X (¢) is real valued, we have Xm = )A(fm, and
furthermore, since we require the solutions to be even in time, we have X m = X _m-
Thus, the number of nonlinear equations to solve is essentially reduced by half, which
is equivalent to using the discrete cosine transform.
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To solve F{F (X(t), )} = 0 for X(#) with 1 ## 0, we use the following Newton—
Raphson scheme

XU+ — xO + I:]:{FX(XU)a A)}]_l f{F(X(j), )} (A7)

and iterate to a prescribed tolerance (here j denotes the iteration counter). To initialize
the iteration, we use the anti-continuum solution: X0 =% «. Note the inverse above
is never explicitly computed, and instead, the system is solved via, for instance, LU -
decomposition. Finally, we remark that in order to analyze the stability of breathers,
once the solution has converged, we take the initial values in the time-domain and
numerically integrate the linearized equations independently out to 7} to construct the
monodromy matrix and compute its eigensystem (see Sect. 6.3).
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