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Hurricanes pose a significant challenge to the resilience of coastal communities, causing not only direct physical,
social, and economic impacts but also indirect or cascading effects. Among these, debris-related impacts can
cause structural damage from debris collisions and disrupt essential services by blocking roadways, thereby
slowing the recovery of other infrastructures. As a result, it is essential to better understand and model debris and
its uncertain impacts on coastal communities in the face of storm hazards. This paper puts forward a method-
ology to probabilistically evaluate hurricane-induced debris and its impacts on community-scale transportation
infrastructure. Selected features of the proposed methodology are showcased using testbed community data and
input models relevant to the Galveston region in Texas, USA. The findings highlight the need to account for
debris impacts when assessing transportation network resilience metrics in coastal areas. Without this consid-
eration, the impacts of such events, including equitable access to emergency facilities, could be underestimated.
The results reveal that when debris and roadway damages are considered together, connectivity loss to emer-

gency facilities could increase from 2% to 17% under a representative 500-year storm event.

1. Introduction

Climate disasters such as hurricanes and tsunamis significantly
impact communities, posing critical challenges to their resilience. For
instance, overall costs and damages from weather and climate disasters
in the U.S. since 1980 exceed $2.275 trillion [1]. Furthermore, the
resilience of coastal communities and their infrastructure is also
impacted by cascading consequences of these extreme events [2,3]. Such
consequences can range from connectivity loss to critical facilities (e.g.,
due to debris accumulation) to long-term physical and mental health
issues [3,4]. In particular, debris generated during these events results in
approximately 27% of the total disaster recovery cost, while, together
with the damages to roadway infrastructure, it can also decrease the
functionality of the transportation network [5-7]. For example, acces-
sibility to emergency facilities is critical in the aftermath of extreme
events, which highly relies on transportation network functionality
[8-11]. Although the impact of debris following seismic hazards has
been explored in several studies, the complexity of storm events leaves
more knowledge gaps yet to be addressed [12-15]. Additionally, the
effects of debris can have long-term consequences, highlighting the
necessity for preparedness and disaster debris management planning [7,
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16]. The heightened potential of these consequences is further exacer-
bated by the increased frequency of weather-related disasters due to
climate change and land-use modification [17-20].

Several studies have focused on predicting debris generated from
weather and climate disasters such as hurricanes, tsunamis, and floods.
Escobedo et al. [21] proposed a model to predict tree debris using data
from seven hurricanes in Florida. Hughes et al. [22] developed a fragility
model for tree damage that takes into account wind speed and integrates
tree failure impacts into an evaluation of community-level resilience.
HAZUS [23] proposed models to predict hurricane-induced debris from
the built environment and trees using hazard and structural measures,
which is one of the most widespread methods but emphasizes wind
alone and has been shown to yield significant errors [24].
Gonzalez-Duenas et al. [24] developed a data-driven model to predict
the amount of debris from different sources following a severe storm
using machine learning techniques. However, these models only predict
the total volume of the debris in specific areas without giving a high
resolution distribution of it, which is important for evaluating infra-
structure impacts such as connectivity loss of roadway networks. As a
result, a few studies have recently addressed debris dispersion and
considered the effect of debris on community-level connectivity [22,
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25-27]. Nevertheless, the proposed models and methodologies lack a
comprehensive simulation that considers high-resolution probabilistic
debris evaluation and its cascading impact at the community-level.

Transportation infrastructure is one of the key systems affected by
debris from storm events. Roads could become impassable as a conse-
quence of damage to the roadway infrastructure or debris accumulation
due to flooding-related hazards, such as hurricanes and tsunamis [28,
29]. Identifying areas without access to emergency facilities, including
emergency medical centers and fire stations, is crucial, without which
emergency response can be delayed [9,30,31]. There are few studies
that assess the impact of both infrastructure damage and debris on the
connectivity to emergency facilities, and a comprehensive approach for
capturing the entire process is yet to be developed [27]. To address the
aforementioned gaps, this paper proposes a probabilistic debris disper-
sion model to evaluate the distribution of debris in the aftermath of
hurricane events, and couples this model with connectivity analysis of
the transportation network for emergency response taking into account
both the effects of uncertain debris and damage to roadway
infrastructure.

This paper presents a methodology for the probabilistic assessment
of the effects of hurricane-induced debris on coastal transportation
infrastructure at a community scale. The proposed approach addresses
uncertainty in both debris dispersion and connectivity analysis by
employing probabilistic models in conjunction with Monte Carlo sam-
pling [32]. Moreover, it offers flexibility as it can be applied at different
levels of detail, such as census tracts or blocks. This methodology is
showcased by a comprehensive application to Galveston Island, TX,
comprising a detailed transportation network, emergency facilities
including emergency medical centers and fire stations subject to a hur-
ricane event. Utilizing Monte Carlo simulation, in each sample, a hur-
ricane hazard scenario is used to predict the volume of debris and
damage to roadway infrastructure using state-of-the-art models. Then,
based on the proposed debris dispersion model outputs and roadway
infrastructure damages, the transportation network condition is upda-
ted. Here, the uncertainty in the analysis is described using a random
field concept and random variables that serve as input to roadway and
bridge fragility models [33]. For the first time, this study introduces the
use of the random field method for spatially distributing the predicted
debris volume on the ground. Finally, connectivity loss to emergency
facilities is evaluated for both census blocks and tracts within Galveston
Island. Moreover, to evaluate connectivity loss, the ground clearance
height of the vehicles is considered as another source of uncertainty,
which is an important measure to determine their movement ability in
the presence of debris.

In the following sections, the overarching probabilistic methodology
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is first presented with details of models, which includes the introduction
of the newly developed debris dispersion model (Section 2). Then, the
proposed methodology is showcased by applying it to Galveston Island,
TX (Section 3), testing model integration and demonstrating results
visualization and insights gained. Finally, Section 4 concludes the paper
with the key contributions, findings, conclusions, and recommendations
for future work.

2. Overarching probabilistic methodology

Fig. 1 shows the general methodology to probabilistically evaluate
the hurricane impacts on coastal communities, focusing on debris gen-
eration and transportation infrastructure. In summary, this methodol-
ogy requires a set of interacting probabilistic models. These models are
classified into three different groups: hazard models including event
selection and intensity estimation, which indicate the hazard scenario(s)
and their intensity; exposure models encompass debris models, which
assess debris volume and distribution of it given the hazard event in-
tensity parameters, and damage models, which evaluate the damage to
roadways and bridges using fragilities given the hazard event; and
finally impact models, which evaluate the impact of a hurricane on
transportation infrastructure and the emergency response given debris
distribution and roadway damages. It is emphasized that the proposed
methodology is not limited to adoption of the specific models showcased
in the application of this study.

Given a hazard scenario, intensity measures are calculated, which
are inputs for the subsequent models. Debris models use hazard intensity
results first to evaluate debris volume in the area of interest and second
to disperse debris on the ground based on the volume of it. In parallel,
damage models use hazard intensity results to evaluate damages to the
roadways and bridges utilizing damage fragilities. Subsequently, the
distribution of the debris and damages to the roadways and bridges are
used to update the condition of the transportation network, which
inform analysis of the connectivity to emergency facilities in the area of
interest. In each sample, realizations of outputs are evaluated in the
chain of probabilistic models using a set of random variables. Moreover,
the probability distribution of each model’s output can be obtained
using Monte Carlo sampling. In the following sections, the models are
described in detail.

2.1. Hagzard modeling

Hazard models consist of event selection and intensity estimation
models. Multiple scenarios with various return periods can be consid-
ered along with hindcasts of previous historical events or scenarios of
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Fig. 1. Overview of the methodology. Inputs and outputs are shown in each step along with the relation between them and section of the paper that presents the

proposed or adopted models. Images derived from [34,35].
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interest to stakeholders of a region. In the present study, output from the
current state-of-the-art dynamically coupled versions of Advanced Cir-
culation (ADCIRC) and Simulating Waves Nearshore (SWAN) simulation
model is used to evaluate the intensity measures needed for debris and
damage models [36,37]. As mentioned before, the proposed methodol-
ogy is not limited to the particular model classes in the application of
this study. Any model or scenario that has the ability to evaluate the
required intensity measures for the next steps can be used in the current
methodology. For instance, transportation infrastructure damage
models use fragilities, which require maximum wave height, relative
surge elevation, and inundation duration as their input.

2.2. Debris modeling

2.2.1. Debris volume prediction model

This model receives the event intensity measures evaluated by haz-
ard models and then predicts the volume of the debris in the interested
area. There are different debris volume prediction models in the litera-
ture that require a particular set of input and give the results in various
levels of refinement. For example, Gonzalez-Duenas et al. [38] devel-
oped a data-driven model that predicts waterborne debris using machine
learning methods. While this model offers one viable option for use in
the proposed framework, it requires eleven storm variables and nine
land cover variables, and provides a deterministic estimate. As an
alternative, the state-of-the-art probabilistic model developed by
Gonzalez-Duenas et al. [24] is adopted, which was developed using
Gaussian process regression to predict uncertain debris volume. More-
over, it uses a wide range of variables related to the storm, built envi-
ronment, demographics of the region, and natural environment, which
makes it an advantageous choice compared to other available models.

Incorporating a comprehensive set of parameters, the model reflects
the complexity of factors influencing debris volume. Storm parameters,
including wind field intensities, storm surge, and momentum flux, are
evaluated at the cell level [24]. Built-environment variables encapsulate
urban landscape patterns and vulnerability, using measures such as
developed area percentages, urban lag, and road density [24,39,40].
Crucially, a weighted probability of structural failure in each grid cell,
based on data from a housing unit inventory for Galveston Island [41], is
integrated into the model. Human systems aspects are taken into ac-
count with demographic and socioeconomic variables, analyzed at the
census block group resolution [42]. This inclusion represents an
acknowledgement of the human impact of natural disasters on debris
generation, which includes parameters such as population density,
median household income, and percentage renters. The natural envi-
ronment is also given consideration, with spatial coverage and diversity
measurements for each grid cell, including land-cover classes, shoreline
proximity, and elevation data [41]. The model operates at three distinct
resolutions (500 m, 250 m, and 125 m grid cells) aligning with the
approach outlined by Gonzalez-Duenas [24]. Model training was un-
dertaken with data from the Hurricane Ike debris removal database,
leveraging nearly 25,000 unique debris pick-up locations [24,43,44]. To
guarantee high data quality, the geospatial data was processed using a
dedicated workflow integrating Google APIs, Jupyter notebooks, and
the Design-Safe CI platform [24]. The model’s comprehensive approach
and high-resolution capability present a robust tool for debris predic-
tion, thus enabling effective disaster management planning and in-
terventions. The results of this model (debris volume in each cell) are
used as an input for the debris dispersion model, which is proposed in
the next section.

2.2.2. Debris dispersion model

Existing models can estimate the volume of debris within an area (or
cell), but fail to indicate the spatial distribution of it at a resolution
required for subsequent analyses of infrastructure impacts. For instance,
considering debris impacts on the transportation network, we are
interested in knowing not only the volume of debris within a specific
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area but also if the debris is accumulated on roadways and whether it
hinders the functionality of the network. This process is uncertain,
which necessitates the use of probabilistic models with high resolutions.
Although some studies have recently begun to address the question of
debris dispersion experimentally and numerically, they are either
limited to other hazard events, such as a tsunami, or disperse debris in a
deterministic way that can result in a bias in the predictions [27]. Hence,
to address the knowledge gap, a probabilistic debris dispersion model is
developed in the current study.

The debris dispersion model is developed using the concept of
random fields. A random field is a random function over an arbitrary
domain that takes a random value at each point in that domain [33]. In
fact, a random field is the representation of the joint probability distri-
bution for a set of random variables. While it has many applications in
physics, biology, data science, and even civil engineering, this is the first
time that it has been used for debris dispersion [45-47]. Given the total
volume of debris, the distribution of it can be evaluated using a spatial
random field in a way that the sum of the debris volume is equal to the
total volume of the debris in a specific area (or cell). To generate a
random field over a certain field, a semi-variogram can be used. A
semi-variogram is a function describing the spatial dependencies be-
tween every two points of a random field using their distance. Normally
in physical problems, points far apart will vary more than points close to
each other. For the purposes of this study, the following semi-variogram
is adopted [48,49]:

y(r) = 62-<1 —cor(s~§>> +n @

where r = the lag distance; [ = the main correlation length; s = scaling
factor for unit conversion or normalization; 6> = variance; n = nugget
(subscale variance used to generate noise in the model); and cor(h) = the
normalized correlation function depending on the non-dimensional
distance (h = s}). The characteristics of the semi-variogram can be
described using the mentioned parameters and the covariance model
that has been considered. The covariance model describes how much
two random variables can change together with varying spatial locations
(i.e., their covariance). The Gaussian covariance model (exp( — h?)) has
been adopted in this study since it is the most widely used model in
generating random fields that can properly characterize the physical
behaviors of common natural problems. Using the Gaussian covariance
model, Eq. (2) can be written as below [49]:

y(r):62-<lfexp<f (s%)z)> +n (2)

Using the above formulation and the help of GSTools python pack-
age, the random field can be generated for all the areas with debris,
which are separated by grids [50,51]. To illustrate the functionality of
this method, Fig. 2(a) shows a one-dimensional random field as a sto-
chastic process. In fact, a random field is a generalization of a stochastic
process, in which the underlying parameter can instead take values that
are multi-dimensional [52]. As it can be seen, 100 realizations of a
Gaussian-distributed random stochastic process are displayed, with
values in each realization highly correlated through the Gaussian
covariance model, making the process almost continuous. Moreover, the
aggregation of all realizations would result in a Gaussian distribution
with the prior mean and variance that has been used for the generation
of the semi-variogram function. By generalizing the concept in
two-dimensions, Fig. 2(b) illustrates a realization of a random field in
two-dimensional Euclidean space.

The presented formulation is fully random, taking into account only
the mean value and the variance when generating the random field. To
model debris dispersion with higher accumulation chances at certain
locations, the conditional random field concept is used. This method
combines given observations with a random field generated according to
a covariance model, using the Kriging or Gaussian process regression
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Fig. 2. (a) Random field in one dimension; (b) Random field in two di-
mensions; (¢) Conditional random field in one dimension; (d) Conditional
random field in two dimension.

method for data interpolation [53]. Kriging tries to estimate the value of
a field at some point xy, when there are some fixed observed values
Z(x1)...2(xn) at given points x;. The estimation of z, can be calculated as
below [50]:

20 = Z ®;°Z; 3

where W = (w1, ..., ®,) are weights that depend on the given covari-
ance model and the location of the target points. Fig. 2(c) shows the
Kriging model in the one-dimensional field for 100 realizations. It can be
seen that while the model captures all the observation points, the pro-
cess is still random between the points. The generalized form of the
Kriging model in a two-dimensional field is illustrated in Fig. 2(d). Here,
the points are set to have higher values compared to the mean value of
the random field. In the proposed method for debris dispersion, this
feature has been used to address the higher chance of debris accumu-
lation in some points, such as building locations [27].

The debris dispersion model presented in this section has limited
input (i.e., debris volume) along with conditioning parameters. In this
study, the conditioning parameters hinge solely on the locations of
buildings. However, should future studies introduce more sophisticated,
weighted conditional random fields, there would inevitably be a need to
expand the range of required input data. Such additional inputs could
span various parameters influencing debris location and accumulation,
including factors like hazard intensity measures, land use and land
cover, socio-demographic data, and more. The current model enables
conversion of debris volume per grid cell into a high-resolution distri-
bution, taking into account the locations with a higher propensity for
debris accumulation. By distributing the debris volume within each grid
cell, the resulting conditional random field value signifies the debris
height at each point. This information can be used to assess the potential
impact of debris on transportation infrastructure, including whether
roadways are becoming blocked due to debris accumulation. The sub-
sequent sections of the methodology will delve deeper into how these
impacts are considered.

2.3. Transportation network performance

In this section, the performance of the transportation network is
evaluated, given the damages to the roadway infrastructures and debris
accumulated on the network. Coastal roadways are susceptible to
damage because of wave attacks, overtopping, bluff erosion, shoreline
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recession, wave-induced structural loads, and wave runup [54]. More-
over, coastal bridges have been shown to have a significant vulnerability
to damage during hurricane-induced waves and surge events [55].
Furthermore, debris accumulation on the roadways can prevent normal
and emergency vehicles from having access to different parts of the
transportation network. While most of the studies only consider dam-
ages to the roadway infrastructures, this study aims to combine roadway
infrastructure damages with debris impacts on the transportation
network, without which the connectivity loss in the aftermath of hur-
ricane events can be underestimated. A detailed explanation of the
methods is described in the following sections.

2.3.1. Roadway infrastructure damage
For coastal roadways, a data-driven fragility model proposed by
Darestani et al. [54] is adopted, which is based on logistic regression.
The probability of failure for each road segment is as follows:
1

P, Dy, 1) = 4
Sssegmen (OW 1) 1+ exp(ap + a; x In(Dy) + a2 x In(1,)) S

where Dy = distance from the shoreline (m); and Iy = inundation
duration (hr). ao, a1, and a, are the coefficients of the logistic regression.
A value of 200 m is recommended for the length of each road segment.
As a result, roads should first be divided into 200-m segments. There-
fore, the probability of failure for each road link is calculated using the
probability of the union of failure events of its 200-m segments as
follows:

n

mead =1- H (1 - memkegmenll ) (5)

i=1

where Py, ... = probability of failure of segment i obtained from Eq.
(4). In each sample, a set of realizations of a uniform random variable
between zero and one are compared with the failure probability of roads
to determine whether each of the road links has failed in that particular
sample or not. Therefore, using Monte Carlo sampling, different sets of
road links fail in each sample of the analysis.

To evaluate the probability of failure for the bridges, the fragility
model developed by Ataei and Padgett [55] is adopted. The probability
of failure is conditioned on maximum wave height, relative storm surge
elevation, and unit mass of spans. The bridge failure that is considered in
this study is deck unseating, which is one of the most common severe
modes of failure for bridges in the face of hurricanes [55]. Like road-
ways, in each sample, uniform random variables are compared with the
failure probability of bridges to determine whether each of the bridges
has failed in that specific sample or not. The fragility model for evalu-
ating the probability of failure is as follows:

Pflwdgz' =a+b-Hyux + cZ 6)

where a, b, and ¢ are known parameters based on the length of the
bridge; Hpqy is the maximum wave height in meters; and Z is relative
surge elevation.

2.3.2. Debris impact on transportation network

Given the spatial distribution of debris, accumulations on the road-
ways can render them impassable. This impassability is significantly
influenced by the ground clearance height associated with the specific
vehicle type. In the current study, two different scenarios have been
considered: normal vehicles and emergency vehicles. Normal vehicles
are the usual passenger cars, while emergency vehicles are those used by
emergency services, such as ambulances and fire trucks. Lognormal
distributions with means of 15 and 25 cm and a coefficient of variation
of 0.2 are considered for the ground clearance height of the normal and
emergency vehicles, respectively [56]. Therefore, the updated trans-
portation network and available road links are different for various
vehicle groups in each sample. In each sample, one realization of ground
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clearance height is compared to the height of the debris on each road to
determine whether the road links are impassable for the particular group
of vehicles or not. Essentially, for every road segment, the peak debris
height within that specific segment - ascertained from the conditional
random field created by the debris dispersion model - is juxtaposed with
the uncertain ground clearance height of the vehicle. Eventually, using
Monte Carlo sampling, the probability of each road becoming impassible
is evaluated for different types of vehicles.

2.4. Serviceability of emergency facilities

While having updated transportation network condition is crucial for
emergency response, it is not sufficient for identifying isolated regions
with limited access to critical facilities such as emergency medical
centers and fire stations. These facilities play a critical role in reducing
life-threatening impacts in the aftermath of hurricane events, which
emphasizes the importance of having access to different parts of the
affected region. To evaluate the access of different parts of the region to
the nearest emergency medical center or fire station, the Connectivity
Loss Ratio (CLR) is used as a performance measure [54,57]. CLR is
defined as 1 — D"/Df where D" is the shortest distance between the
considering node to the nearest particular type of emergency facilities
(e.g., fire stations) under normal situations and Df is the shortest dis-
tance for the same pair of nodes after road links condition became
updated due to the hurricane event. CLR can vary between 0 and 1, with
zero denoting no impact from the hurricane event on the network
accessibility and one denoting complete loss of connectivity to the
nearest emergency facility of a certain type [57]. Eventually, the node
results can be aggregated at certain geographic levels, such as census
blocks or census tracts, to visualize the impacts of hurricane events on
the accessibility of different parts of the community to emergency fa-
cilities. This way, decision-makers can identify the most vulnerable re-
gions and priorities risk-reduction activities based on the results.

3. Case study: Galveston island

In this section, a testbed community is used to demonstrate the
proposed methodology. First, an overview of the testbed is presented,
followed by choosing a hazard scenario and intensity measures that have
been used as inputs to subsequent models. Afterward, the proposed
debris dispersion model is applied to showcase the distribution of debris
in the aftermath of a hurricane event. Subsequently, transportation
network condition is updated based on the presence of debris and
damages due to the hurricane event. Finally, network-level impacts are
evaluated with a focus on connectivity to emergency facilities, which is
crucial in the immediate response after hurricanes.

3.1. Overview of Galveston island

Galveston Island, TX, is used to demonstrate the methodology pre-
sented in the previous section. Galveston is a coastal town in Texas with
a total population of more than 53,000 that forms about 22,000
households [58]. Galveston is primarily adopted for this study due to its
susceptibility to hurricane hazards since it is located in the
hurricane-prone Gulf of Mexico region. This island has experienced
several major hurricane events, such as Ike (2008) and Harvey (2017)
with $752 million and $345 million cost respectively for debris removal
activities, which make it an ideal testbed for considering debris impacts
on coastal communities [59]. Consequently, several studies have high-
lighted vulnerability of Galveston Island to hurricane events [60]. As an
instance, Darestani et al. [54] developed a fragility analysis to assess the
performance of coastal roadways subjected to storm hazards; and Fer-
eshtehnejad et al. [41] conducted a probabilistic risk assessment of
hurricanes on coupled physical and social systems. Fig. 3 shows Gal-
veston Island and its location in the Gulf of Mexico.
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Fig. 3. The study area showing the location of Galveston Island in the
hurricane-prone Gulf of Mexico.

The current study focuses on the impacts of hurricane-induced debris
on the transportation network and its cascading effects on emergency
response. Consequently, a detailed transportation network and emer-
gency facilities including fire stations and emergency medical centers
were considered to assess debris impacts along with damages to
roadway infrastructures. Fig. 4 shows the transportation network of
Galveston Island and the locations of fire stations and emergency med-
ical centers. The network includes 13,410 roadway segments and 10
bridges that provide connectivity to emergency facilities including seven
fire stations and six emergency medical centers. Furthermore, Galveston
Island is divided into 23 census tracts and 2071 census blocks, whose
connectivity to emergency facilities has been evaluated in the next
sections.

3.2. Hazard scenario

While the proposed methodology is compatible with various sets of
hazard models, dynamically coupled versions of ADCIRC and SWAN
simulation results of a storm references as "FEMA 36" were used to es-
timate needed storm hazard parameters to assess the damage inflicted
on roadways and bridges and to estimate the volume of debris in the
subsequent models [36,37]. FEMA 36 approximately corresponds to a
500-year return period storm surge event in the Houston-Galveston area,
and has been widely used in past research studies [61,62]. Some of the
storm parameters estimated are the surge depth, wave height and di-
rection, flow velocity, and wind field characteristics. Moreover, wind
steadiness was evaluated using the hourly wind velocity estimates from
the simulation of the storm following the procedure proposed by Ber-
kovic [63]. These parameters are taken as inputs for the debris estima-
tion and damage fragilities for roadways and bridges.

3.3. Debris dispersion

Having the outputs of the hazard model, debris volume can be pre-
dicted probabilistically for each grid in the area of interest. In this study,
250 m grids are used to predict the volume of the debris based on the
recommendations by Gonzalez-Duenas [24]. Fig. 5(a) shows the output
of the debris volume prediction model in Galveston Island for one
realization. It can be seen that most of the debris has concentrated in the
populated area, where buildings and infrastructures are located.
Furthermore, the southern part of the island is more impacted by the
debris since the storm hit the island from the south, and measurements
that are directly correlated with the volume of debris were more im-
pactful at those parts of the island. Fig. 5(b) demonstrates the distribu-
tion of debris using the debris dispersion model introduced in Section
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Fig. 4. Transportation network and the locations of emergency facilities in Galveston Island.
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Fig. 5. A realization result of (a) debris volume prediction model; and (b) debris dispersion model.

2.2.2. for the same sample. The debris dispersion is consistent with the
debris volume results. Moreover, the debris dispersion model accounts
for the correlation and consistency of debris distribution at the grid in-
terfaces, which results in smooth and realistic variation in the spatial
domain without any change in the total volume of the debris in each
grid. A consistent random field generation for the entire area is achieved
by using the same random seed for the Gaussian covariance model in
generating random fields within each grid in a sample. The resulting
random field in each grid is then normalized so that the total debris in
each grid corresponds to the expected debris volume.

As mentioned before, the random field domain generated for each
grid is not purely random and here is conditioned to the location of the
buildings. Fig. 6 plots the random field domain showing debris height
for one sample and aggregated ones for 10 and 100 samples within a
specific grid. Considering only one sample, there are some peaks in
debris height, while there is no noticeable trend in the generated
random field. However, after conducting the conditional random field
generation for 10 and 100 samples, the aggregation of the results shows
debris presence is most likely to converge to the places where buildings
are located confirming the formulation of the debris dispersion model.
This capability strengthens the proposed model for debris dispersion to

be more realistic, which can be used for considering other effective
parameters in predicting the location, accumulation, or deposition of
debris in the aftermath of hurricane events. For instance, debris
convergence could happen in certain areas due to local topographic
characteristics of the area, which can be considered using the proposed
model in future work [41].

3.4. Transportation network condition

In this study, both emergency and normal vehicles are considered.
However, for simplicity, all subsequent results focus solely on the con-
nectivity of emergency vehicles as the primary form of emergency
response, unless a comparison with normal vehicles is being made. Fig. 7
illustrates the probability of road closure for emergency vehicles
considering various reasons that can lead roadways to become impass-
able. The probability of road closure is shown only for damages to
roadways and bridges in Fig. 7(a), while Fig. 7(b) demonstrates this
probability due to debris presence in the aftermath of the hurricane
event. Moreover, the combined probability of road closure for the whole
transportation network due to debris presence and damage to roadway
infrastructure is shown in Fig. 7(c). The results demonstrate that when
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Fig. 6. Aggregated debris distribution (debris height) for various number
of samples.

the impact of debris is considered, the mean closure probability of
roadways in the transportation network increases from 2% to 19%.
Fig. 7 indicates the importance of considering debris in the risk and
resilience analysis of coastal communities facing hurricane events. As
demonstrated, roadway infrastructure damage mostly happens near the

Road Probability of Closure

1.0
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shoreline, where the intensity of wave attacks and overtopping are
higher. However, debris tends to accumulate in the most populated area,
mainly in the central parts of the island. Consequently, considering
debris impacts is crucial in the coastal community risk and resilience,
particularly in the transportation network analysis, without which the
impacts of hurricanes would be underestimated. In fact, these roadway
infrastructure damages and debris seem to be complementary and affect
different locations, which emphasizes the need to consider both of them
simultaneously. This is a key feature in the proposed methodology that
combines debris impacts with other damage models to comprehensively
evaluate transportation network condition immediately after a hurri-
cane event.

In the absence or shortage of emergency response, normal vehicles
can also be used for emergency purposes. Moreover, having access to
different parts of the community for these types of vehicles indicates
whether the community can immediately get back to its normal func-
tionality or not. As another insight, Fig. 8 compares the condition of the
transportation network for normal and emergency vehicles immediately
after the hurricane event. As it can be seen, roadways have less proba-
bility of being closed for the use of emergency vehicles compared to
normal vehicles since they have higher ground clearance height, making
them capable of moving among a broader range of debris height on the
roads. The results show that the average roadway link probability of
closure is 0.32 for normal vehicles compared to 0.19 for emergency
vehicles, which means that emergency vehicles on average have access
to 13% more roadway links. However, connectivity to specific locations
such as emergency medical centers might be even harder for normal
vehicles since the whole path must be passable for a vehicle to reach that
location from its origin. This is one of the main reasons that the network
level impacts are also considered in this study through connectivity
analysis, which is the main focus of the next section.

Fig. 7. Probability of road links closure in the aftermath of hurricane event considering (a) only road and bridge infrastructure damage; (b) only debris impact; and

(c) both together.
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Fig. 8. Probability of road links closure in the aftermath of hurricane event considering both roadway infrastructure and debris impact for (a) normal vehicles; and

(b) emergency vehicles.

3.5. Network level impact

This section evaluates the serviceability of emergency services using
the CLR performance measure as defined in Section 2.4. Again, the an-
alyses are mainly conducted considering only emergency vehicles in the
transportation network. Furthermore, emergency medical centers are
assigned to be the main locations of interest in the connectivity analyses

Connectivity Loss Ratio
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and fire stations are only used for comparison. Fig. 9 indicates the
connectivity loss ratio for census blocks to emergency medical centers
considering the damage to roadway infrastructure, debris, and both
together. According to Fig. 9(a), a similar pattern as noted in Section 3.4.
is observed; since census blocks near shorelines have a high CLR, that
means they have a high probability of losing their connection to emer-
gency medical centers and the possible path for them would be longer

Fig. 9. Connectivity loss ratio to emergency medical centers in the aftermath of hurricane event considerong (a) only road and brideg infrastructure damage; (b) only

debris impact; and (c) both toghether.
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compared to the normal condition. On the other hand, census blocks in
the middle parts of the island did not lose their connection to emergency
medical centers and have a connection similar to the pre-event condi-
tion. To highlight the impacts of debris, Fig. 9(b) illustrates CLR by only
considering the effects of debris on the transportation network, which
has a higher impact in the populated areas further from the shoreline.
Again, damage to roadway infrastructure and debris have a comple-
mentary impact on the serviceability of emergency services, which in-
dicates the importance of considering them simultaneously as shown in
Fig. 9(c). The importance of leveraging the newly proposed framework
that allows incorporation of debris effects when evaluating post-event
network performance is underscored by comparing the average CLR of
0.02 considering only roadway infrastructure damage to the CLR of 0.17
that results when debris impact is also considered.

The proposed methodology provides further insights into the eval-
uation of debris impact by first estimating the probable location and
height of debris to capture the impacts on the transportation network,
and second considering different emergency facilities and types of ve-
hicles to conduct a comprehensive simulation for various scenarios.
Fig. 10 compares various emergency facilities and types of vehicles
together in the aftermath of hurricane event. The average CLR for
normal vehicles is almost twice that of emergency vehicles, which in-
dicates the importance of emergency facilities and their dispatch ser-
vices and vehicles being functional immediately after hurricane hazards.
Moreover, the average CLR of fire stations for normal vehicles is 0.50
compared to 0.56 for emergency medical centers, which indicates the
importance of number and locations of these facilities that can effec-
tively cover the specified area. As it can be seen, not only is there one
more fire station on the island, but they are also spread more efficiently
to have access to different parts of it. These kinds of analyses can also be
used within a risk mitigation process to find the optimum location of
emergency facilities, so they can have better access to various parts of
the serviceability area.

Since the proposed framework allows estimation of not only the
expected value key performance metrics but also their uncertain out-
comes, the results can be evaluated in terms of distribution or percen-
tiles of performance metrics like CLR. Such information can support risk-
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informed decision-making or even be tailored to the risk tendencies of
stakeholders. For instance, Fig. 11 shows the exceedance probability
having a CLR of 0.9 for emergency vehicles considering their access to
emergency medical centers. Censuses blocks having exceedance proba-
bility near one are highly vulnerable to losing access to emergency
medical centers for the given hurricane event. This information can be
used to identify areas with the most susceptibility and plan for risk
mitigation solutions in preparation for future hurricane events. As the
results indicate, the west side of the island, along with the shoreline and
regions near E4 are the most vulnerable areas.

As another insight into the capabilities of the proposed methodology,
Fig. 12 shows the average CLR for census tracts, underscoring that the
level of resolution or aggregation of results may be varied per user in-
terest. Moreover, this figure highlights that applying the proposed
probabilistic method enables new insight into the distributions of CLR,
and that different tracts present varying distribution types and charac-
teristics. For instance, census tract A in Fig. 12 has two major probability
masses near 1 and 0.5 making them the most probable outcomes for CLR
in that specific census tract, but also highlighting that these outcomes
are more bimodal in nature than other tracts. This is an artifact of some
key links in that census tract that are vital, whose closure can cut the
connectivity of the census tract to emergency medical centers. As a
result, identifying and reducing the closure probability of those links in
the mentioned census tract can dramatically decrease the chance of that
census tract losing access to emergency medical centers. On the other
hand, CLR distribution for census tract B shows a more even distribution
of link importance.

4. Conclusion

This study advances the state-of-the-art in evaluating hurricane-
induced debris impacts on coastal community risks by proposing a
novel probabilistic methodology that introduces a new model for high
resolution debris distribution estimation rooted in conditional random
fields, and integrating it within a framework from hazard to cascading
consequence analysis. In particular, this paper distinguishes itself from
the current state-of-the-art by developing a debris dispersion model that

Fig. 10. Connectivity loss ratio in the aftermath of hurricane event considering (a) normal vehicles-fire stations; (b) normal vehicles-emergency medical centers; (c)
emergency vehicles-fire stations; and (d) emergency vehicles-emergency medical centers.
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Fig. 11. Probability of exceeding a connectivity loss ratio of 0.9 for census blocks considering access to emergency medical centers via emergency vehicles.

Connectivity Loss Ratio

Wos-1.0
Boc-0s ;
0.4-0.6

| —
L ]0.2-04 ;

J

| ]0.0-0.2

0

Fig. 12. Connectivity loss ratio and its distribution for census tracts considering emergency vehicles and emergency medical centers.

probabilistically estimates the location and height of debris and facili-
tates capturing cascading consequences on the transportation network
in a fully probabilistic fashion. In this case, analysts can for the first time
distinguish the relative importance and impact of capturing function-
ality inhibition from debris alongside physical damage to bridges and
roadways on uncertain metrics of infrastructure performance, like con-
nectivity loss ratio—at different scales (e.g. census tract vs. census
block), for different vehicle types, or considering percentiles of the
distribution of the performance metric.

The proposed methodology is showcased by its application to Gal-
veston Island community under hurricane hazard, using a realistic and
detailed transportation network, socio-demographic units, and spatial
distribution of emergency facilities. The results indicate the importance
of considering debris impacts along with damages to roadway infra-
structure in the risk assessment of coastal transportation networks,
without which the impacts of hurricane events would be under-
estimated. Alternative ways of presenting and analyzing the results can
support and range of risk-informed decisions, ranging from identifying
critical regions and infrastructure components for which to target pre-
event mitigation resources to estimating debris quantities, their distri-
bution, and impact on access to support post-event debris management
and recovery efforts.

Despite the advances made in this paper, there are remaining chal-
lenges that should be addressed in future work. While the debris
dispersion model is able to probabilistically estimate the location and

10

height of debris in each sample and cell, it is conditioned only to the
location of buildings in this study. Other factors such as the type of
building, local topography, and intensity-correlated variables such as
surge flow could be considered leveraging the proposed approach using
conditional random field. Additional research should be conducted to
investigate how these conditions can influence the local dispersion of
debris and inform weighting parameters in the model. This could be
informed by further field data collection, processing high resolution
areal imagery, remote sensing, or even cutting-edge numerical models
[64]. The results presented in this paper leverage the existing debris
volume model from Gonzalez-Duenas et al. [24], which was empirically
derived with data from the Houston-Galveston area. However, further
validation or updating of the model is required with data from other
regions in order to generalize its applicability and apply it within the
proposed framework to other regions. Alternatively, this network level
impact framework is amenable to incorporating next generation debris
estimation models as they emerge from future work. Additionally, other
cascading consequences of debris could be added to the framework, such
as the physical damage due to debris impact, which was neglected in this
study. Moreover, this study lays the groundwork for assessing the im-
pacts of hurricane-driven debris on other infrastructures like power
networks, taking into account their interdependencies. With future
climate projections, debris could likewise pose more physical and
operational risks to these systems. Finally, this work can be extended to
include models of the recovery dynamics and the process of debris
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removal which can influence diverse metrics of community resilience.
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