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Abstract
Emerging evidence points out that the responses of soil organic carbon (SOC) to nitro-
gen (N) addition differ along the soil profile, highlighting the importance of synthesiz-
ing results from different soil layers. Here, using a global meta-analysis, we found that 
N addition significantly enhanced topsoil (0–30 cm) SOC by 3.7% (±1.4%) in forests 
and grasslands. In contrast, SOC in the subsoil (30–100 cm) initially increased with 
N addition but decreased over time. The model selection analysis revealed that ex-
perimental duration and vegetation type are among the most important predictors 
across a wide range of climatic, environmental, and edaphic variables. The contrast-
ing responses of SOC to N addition indicate the importance of considering deep soil 
layers, particularly for long-term continuous N deposition. Finally, the lack of depth-
dependent SOC responses to N addition in experimental and modeling frameworks 
has likely resulted in the overestimation of changes in SOC storage under enhanced 
N deposition.
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1  |  INTRODUC TION

Excessive nitrogen (N) deposition from human activities has con-
tinuously increased over the past decades (Fowler et  al.,  2013; 
Gruber & Galloway,  2008; IPCC,  2021), with substantial con-
sequences on soil organic carbon (SOC) dynamics (Liu & 
Greaver, 2010; Pregitzer et al., 2008; Xu et al., 2021). Despite the 
rapid increase in the number of studies reporting the effects of N 
addition on SOC, no consensus has been reached on the response 
along the soil profile. For example, Bowden et al. (2019) found that 
N addition significantly increased SOC in the topsoil in boreal for-
ests (0–30 cm), whereas N addition significantly decreased SOC in 
temperate grasslands when the whole soil profile (0–100 cm) was 
considered (Li et  al., 2014; Poeplau et  al., 2018). Thus, a better 
understanding of N deposition impacts on SOC at different depths 
is urgently needed to accurately predict carbon (C) cycle–climate 
feedbacks.

The topsoil typically receives the majority of plant-derived 
C inputs, and it thus has the highest SOC and microbial biomass 
content (Cochran et al., 1989). It is proposed that topsoil SOC dis-
plays a relatively high decomposition rate and a rapid exchange of 
C with the atmosphere (Hartemink et al., 2020; Rumpel & Kögel-
Knabner, 2011). In contrast, SOC buried in the subsoil is generally 
assumed to be more persistent, with a longer turnover time (Hicks 
Pries et al., 2017). Based on this assumption, the Intergovernmental 
Panel on Climate Change has primarily emphasized the 0–30 cm 
soil layer in the greenhouse gas inventory (IPCC,  2006, 2021). 
Indeed, this sampling depth has been adopted by many experi-
ments and models when investigating SOC dynamics under var-
ious conditions. However, the assumption of the persistence of 
SOC in the subsoil has recently been challenged (Chen et al., 2023; 
Li et al., 2022; Luo et al., 2019). Several studies have demonstrated 
the depth-dependent responses of SOC to nutrient addition 
(Fierer et al., 2003), climate warming (Wang et al., 2022), and land 
use change (Chen et al., 2022; Mobley et al., 2015). Furthermore, 
long-term regional and global studies have revealed different SOC 
accumulation rates and driving forces when comparing topsoil to 
subsoil (Balesdent et al., 2018; He et al., 2022; Li et al., 2022; Sun 
et al., 2023). These results imply that a lack of exploration for sub-
soil SOC may hamper our ability to assess the potential of soil C 
sequestration under future climate change scenarios.

Despite the growing recognition of the importance in sub-
soil SOC, only a limited number of studies have investigated the 

effects of N addition on SOC in subsoil across the globe. Several 
recent meta-analyses indicated that the effects of N addition on 
SOC were highly dependent on soil and microbial properties (Ni 
et al., 2022; Niu et al., 2021), with both types of variables show-
ing substantial variations along soil profiles (Eilers et  al.,  2012; 
Federle et al., 1986; Mathieu et al., 2015). Other studies further 
suggested that the response of SOC to N addition may not always 
be aligned in the topsoil and subsoil, and in some cases, responses 
may even be contradictory. For example, Canary et al. (2000) and 
Li et al.  (2014) found that N addition significantly increased SOC 
in the topsoil, whereas SOC decreased in the subsoil, leading to 
neutral or even negative responses of SOC to N addition when 
the whole soil profile was considered. These results demonstrate 
that neglecting the effects of N addition on subsoil SOC may lead 
to biased interpretations, or even misleading conclusions about 
the potential consequences of increased N deposition on SOC 
sequestration.

In this study, we conducted a comprehensive meta-analysis 
to examine the effects of N addition on SOC in both topsoil and 
subsoil. We compiled data from 177 N addition experiments con-
ducted worldwide, regarding 0–30 cm as topsoil and 30–100 cm as 
subsoil according to the recommendations from IPCC (IPCC, 2021; 
Minasny et al., 2017). We also recorded information on environ-
mental factors (mean annual temperature and precipitation) and 
experimental protocols (N addition form, rate, frequency, and du-
ration) that may be relevant in determining the responses of SOC 
to N addition in both topsoil and subsoil. Given that N addition 
effects on SOC may be cumulative, we also distinguished the re-
sponses of SOC to N addition between short-term (<5 years) and 
long-term (≥5 years) studies. Overall, we addressed two specific 
questions in this study: (1) How did SOC in topsoil and subsoil re-
spond to N addition at the global scale? (2) What were the import-
ant modulators of the responses of SOC to N addition in topsoil 
and subsoil?

2  |  MATERIAL S AND METHODS

2.1  |  Data collection

We searched for peer-reviewed articles published before December 
2023 from Web of Science (http://​apps.​webof​knowl​edge.​com/​ ), 
Google Scholar (http://​schol​ar.​google.​com/​), and China National 
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Knowledge Infrastructure (http://​www.​cnki.​net/​). In order to find 
articles reporting the effects of N addition on SOC from different 
soil depths, the used keywords or combinations of keywords were: 
(a) “nitrogen addition” or “nitrogen enrichment” or “nitrogen ferti-
lizer” or “nitrogen elevated” or “nitrogen deposition” and (b) “soil 
organic carbon” or “soil organic matter” and (c) “soil depth” or “soil 
layer” and (d) “terrestrial” or “soil” or “land.”

To explore the N-induced changes in SOC across different soil 
layers, observations were removed according to the following 
criteria (Figure S1): (1) Measurements from croplands and other 
managed ecosystems, because disturbance through agricultural 
practices may alter the response of SOC to N addition along soil 
depth; (2) studies did not clearly specify soil sampling depth; (3) 
studies where other nutrients were added (e.g., P, K, Ca, com-
post, or slurry additions) or other treatments were imposed (e.g., 
CO2, warming, or precipitation change); (4) missing details on N 
addition methods (fertilization rate, frequency, form, and dura-
tion); (5) N addition studies without directly applying N to the soil. 
Following the common soil sampling method, we did not consider 
the response of SOC to N addition in the litter layer in this study. 
Finally, we synthesized data (overview is provided in Data S1) on 
the responses of SOC to N addition from 177 published articles 
(Figure S2).

We recorded SOC concentration (percentage of SOC per soil 
mass) in the corresponding treatments with and without N addi-
tion of each study involved in this dataset, respectively. Overall, 
8.5% of the observations in this dataset reported SOC storage 
representing mass C per volume, which could not be converted 
to SOC concentration on a mass basis because of unreported 
soil bulk density. To identify the influence of changes in soil bulk 
density on the responses of SOC to long-term N addition (Chen 
et al., 2019), we also recorded soil bulk density with and without 
N addition. The soil sampling depth in this dataset ranged from 5 
to 100 cm, with an average depth of 25 cm. To be consistent with 
the IPCC's soil layer classification method, data from different 
soil layers were categorized into 0–30 cm (topsoil) and 30–100 cm 
(subsoil).

Furthermore, to explore the underlying mechanisms related to 
the responses of SOC to N addition, we also recorded vegetation 
type (grassland and forest), mean annual temperature (MAT), mean 
annual precipitation (MAP), longitude, latitude, background N depo-
sition rate (BND), and N addition method (experimental duration, 
added N rate, the ratio of BND to added N rate and added N fre-
quency) for each experimental site. The experimental duration of N 
addition studies included in our analysis ranged from 1 to 58 years. 
The cutoff of 5 years for short-term versus Longer term studies was 
chosen based on a large survey of long-term research in ecology and 
evolution, indicating that experiments lasting less than 5 years often 
quantified only the immediate and transient effects of perturbation 
(Kuebbing et al., 2018). Most studies added N in each year along the 
experimental duration, except for the study conducted by Canary 
et al. (2000), in which N was added intermittently every few years. 
In this dataset, the N addition rate ranged from 0.5 to 64 g m−2 year−1. 

As N application forms, we considered inorganic N (NH4, NO3, or 
NH4NO3), organic N (urea), and the mixture of inorganic and organic 
N (NH4, NO3, and urea). Besides, we obtained unreported MAT and 
MAP from the WorldClim database (Fick & Hijmans, 2017), which 
resulted in the inclusion of a broad range of MAT (−4.6 to 26°C) and 
MAP (69–4300 mm year−1) in our dataset. Unreported background N 
deposition rate was collected from the Global N deposition database 
(ORNL DAAC, 2017). The missing standard deviation was imputed 
using Rubin and Schenker's resampling approach from studies with 
similar means (Rubin & Schenker,  1991). When results were pre-
sented graphically, we used GetData Graph Digitizer v.2.24 (http://​
getda​ta-​graph​-​digit​izer.​com/​) to digitize the data.

2.2  |  Data analysis

We used the natural log response ratio to assess the effect of N ad-
dition on each variable. Each individual observation was weighted by 
the inverse of the mixed model variance, ensuring that meta-analysis 
data statistics have simpler standard sampling distributions while 
avoiding the possibility of unequal variance effects on statistical re-
sults (Hedges et al., 1999).

The natural log response ratio (ln R) was calculated as:

where XC and XN are the mean values of the studied variables in the 
control and N addition treatments, respectively.

The variance (V) of the logarithmic effect size was calculated as:

where SC and SN are the standard deviation in the control and N addi-
tion treatments, respectively, and nC and nN are the number of repli-
cates in the control and N addition treatments, respectively.

A mixed-effects model was used to determine the effect of 
N addition on the selected variables through “rma.mv” function 
from the R package “metafor” (Viechtbauer, 2010). We considered 
the “Publication” as random effect in the mixed-effects model, 
which would ensure the independence of each observation (Chen 
et al., 2018). The effects of N addition were considered significant if 
the 95% confidence intervals did not overlap with zero. The results 
were reported as mass percentage change with N addition to ease 
interpretation.

We carried out a model selection analysis to determine which 
were the main environmental and procedural variables driving the 
response of SOC to N across depths. Model selection was based on 
the corrected Akaike information criterion (AIC corrected for small 
samples). A predictor including models with large Akaike weights 
was assigned with a high importance value. Thus, the cumulative 
Akaike weight of the models containing the specific predictor was 
used to indicate the relative importance value for this predictor. A 
cutoff value of 0.8 was set to identify the critical and non-critical 
predictors (Terrer et  al.,  2016; van Groenigen et  al.,  2011). This 
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analysis was conducted through the “glmulti” package in R (Calcagno 
& De Mazancourt, 2010).

3  |  RESULTS

Averaged across all studies, N addition significantly increased SOC 
in the topsoil by 3.7% (95% CIs, 2.2–5.1%, p < .001). However, N ad-
dition did not affect subsoil SOC (Figure 1a). The depth-dependent 
responses of SOC to N addition were consistent regardless of veg-
etation type (forest and grassland; Figure  1b). Based on the cor-
rected Akaike information criterion, the responses of SOC to N 
addition were best predicted by soil layer and experimental duration 
(Figure S3). The results from mixed linear regression model showed a 
significant interactive effect of soil layer and experimental duration 
on the responses of SOC to N addition (Table S1).

In the topsoil, experimental duration and vegetation type were 
the important predictors of the response of SOC to N addition 
(Figure 2a). Short-term (<5 years) N addition did not change top-
soil SOC (−0.6% to 3.3%, p = .18; Figure  3a), whereas long-term 
(≥5 years) N addition significantly increased topsoil SOC by 5.6% 
(3.7%–7.5%, p < .001). The time-dependent responses of topsoil 
SOC to N addition were consistent regardless of vegetation type 
(Figure S4).

Regarding the subsoil, the responses of SOC to N addition 
were best predicted by experimental duration (Figure  2b). Short-
term (<5 years) N addition significantly increased SOC by 4.3% 
(1.1%–7.6%, p < .05; Figure 3b), whereas long-term (≥5 years) N ad-
dition decreased SOC by −3.9% (−1.4% to −6.3%, p < .01). The sig-
nificant decreases in subsoil SOC under long-term N addition were 
only observed in forests; however, there was a lack of significant 
interactive effects of vegetation type and experimental duration 
on the responses of subsoil SOC to N addition (Table S1; Figure S4). 
Additionally, there was a positive relationship between the re-
sponses of topsoil and subsoil SOC to N addition in the short-term 

N addition studies, whereas no significant relationship was found 
between the responses of topsoil and subsoil SOC to N addition in 
the long-term studies (Figure 3c).

4  |  DISCUSSION

4.1  |  Nitrogen addition increased topsoil organic 
carbon over time

We found an increase in topsoil SOC under N addition (Figure 1a). 
Increased N availability under N addition likely stimulates plant 
growth and litter inputs (Greaver et  al.,  2016; Reay et  al., 2008). 
The additional litter inputs can be partly incorporated into soils, 
contributing to enhanced topsoil SOC, as demonstrated in several 
N addition studies (Canary et al., 2000; Hyvönen et al., 2008; Liao 
et  al., 2023). Nitrogen addition may also enhance topsoil SOC by 
repressing soil C losses (Janssens et al., 2010; Lu et al., 2021). For 
example, N addition often causes soil acidification or an increase in 
osmotic stress, potentially suppressing microbial growth and activ-
ity, and consequently reducing C losses from microbial respiration 
(Treseder, 2008; Zhou et al., 2014). The N-induced plant growth may 
also lead to increased uptake of base cations, thereby accelerating 
soil acidification and inhibiting microbial activity (Duan et al., 2004). 
Similarly, N addition may inhibit the phenol oxidase activity of white-
rod basidiomycetous fungi in the floor of hardwood forests, lead-
ing to a greater accumulation of under-decomposed litter (Chen 
et al., 2018; Waldrop et al., 2004). In addition, the potential reduc-
tion in soil C losses under N addition may also be related to the en-
hanced stabilization of SOC compounds that are typically subject 
to physical and chemical shielding (Figure  S5; Jilling et  al.,  2021; 
Treseder, 2004).

Our study indicated that the increased topsoil SOC only mani-
fested with long-term N addition (Figure 3a), which was supported 
by recent meta-analyses (Lu et al., 2023; Xu et al., 2021). First, this 

F I G U R E  1 Nitrogen (N) addition only increased soil organic carbon (SOC) in the topsoil but not in the subsoil. (a) Meta-analysis of the 
effects of N addition on SOC when grouped by soil layers. (b) Meta-analysis of the effects of N addition on SOC when grouped by soil layers 
and vegetation types. Error bars represented bootstrap 95% confidence intervals (CIs). The effects of N addition were considered significant 
if the 95% CIs did not overlap with zero; the numbers above or below the error bars indicated sample sizes.
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result may suggest that it takes time for SOC accumulation to be 
observable. For example, Xu et  al.  (2021) suggested that signif-
icant increases in plant C inputs and topsoil SOC were typically 
observed in N addition studies lasting more than 3 years. Some 
studies also indicated that the plant C inputs at the initial stage 
of N addition may not cause as rapid SOC storage as previously 
assumed (Lu et al., 2023; Vourlitis & Hentz, 2016). However, a re-
cent study based on global grasslands showed that SOC increased 
significantly under short-term N addition (<5 years), probably due 
to the inclusion of both topsoil and subsoil SOC in the database 

(Liu et  al., 2023). Alternatively, the time-dependent response of 
topsoil SOC to N addition may be linked to the balance between 
plant C inputs and soil C losses (Janssens et  al., 2010; Pregitzer 
et  al., 2008; Zhou et  al., 2014). For example, in the initial stage 
of N addition, alleviation of microbial N limitation may be asso-
ciated with stimulated microbial respiration and C losses, which 
may offset the positive effects of plant C inputs on topsoil SOC, 
especially in N-poor ecosystems (Figure  S6; Ågren et  al., 2001; 
Lu et al., 2011). In the later stage of N addition, microbial activi-
ties may be repressed by N-induced soil acidification or increased 

F I G U R E  2 Experimental duration was the most important predictor in the responses of soil organic carbon (SOC) to nitrogen (N) addition 
in both topsoil and subsoil. (a) Model selection analysis identified that experimental duration and vegetation type were the important 
predictors of the response of SOC to N addition in the topsoil; the dashed line indicated the cutoff to distinguish important predictors that 
exceeded the 0.8 sum-of-Akaike-weights threshold. (b) Model selection analysis identified that experimental duration was the important 
predictor of the response of SOC to N addition in the subsoil. BND, background N deposition rates; duration, experimental duration; 
frequency, N addition frequency; MAP, mean annual precipitation; MAT, mean annual temperature; rate, N addition rate.

F I G U R E  3 The effects of nitrogen (N) addition on soil organic carbon (SOC) depend on experimental duration. (a) In the topsoil, short-
term N addition (<5 years) had nonsignificant effect on SOC, whereas long-term N addition (≥5 years) significantly increased SOC. In the 
subsoil, short-term N addition significantly increased SOC, whereas long-term N addition decreased SOC; error bars represented bootstrap 
95% confidence intervals (CIs); the effects of N addition were considered significant if the 95% CIs did not overlap with zero; the numbers 
above or below the error bars indicated sample sizes. (b) In the short-term N addition studies, there was a significant positive relationship 
between the responses of SOC (lnR-SOC) in the topsoil and in the subsoil [coefficient of determination (r2) = .23, p < .001]; the light gray area 
indicated the confidence interval around the regression line. (c) In the long-term studies, the relationship between the responses of SOC in 
the topsoil and the subsoil was not significant (r2 = .01, p = .88).
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osmotic stress (Zhou et al., 2014). Suppressed microbial activities 
and associated C losses have indeed been found to be significant 
under long-term N addition (Ning et al., 2021; Treseder, 2008).

4.2  |  Long-term N addition decreased 
subsoil organic carbon

In contrast to the N-induced increases in topsoil SOC, we found that 
subsoil SOC significantly increased in short-term N addition studies 
(<5 years) but decreased in the long-term studies (≥5 years; Figure 3a). 
One possible reason for the increased subsoil SOC under short-term 
N addition may be attributed to the increased C leaching from above-
ground litter decomposition (Li et al., 2021; Sinsabaugh et al., 2004). 
For example, the increased C leaching was likely associated with ac-
celerated decomposition of N-induced additional litter inputs in the 
topsoil under short-term N addition (Wang et al., 2019). In the early 
stages of N addition, aboveground C input is typically associated with 
less efficient decomposition and lower C stabilization, which may 
stimulate the leaching of dissolved C downward to the subsoil, result-
ing in increased subsoil SOC (Pregitzer et al., 2004). In contrast to the 
topsoil, increased N availability within short-term N addition may not 
stimulate subsoil SOC mineralization and associated C losses due to 
the lack of fresh C and energy supply in this soil layer (Figure S6; Wang 
et al., 2014). Additionally, the positive effects of increased plant C in-
puts on subsoil SOC in the short term may also be related to the inher-
ently lower SOC in this layer (Balesdent et al., 2018).

Why did long-term N addition significantly decrease subsoil 
SOC? This unexpected result can be partly attributed to the potential 
reduction in the downward movement of C along the soil profile in 
the later stage of N addition. For example, long-term N addition may 
repress litter decomposition, which likely results in accumulation of 
fresh aboveground litter in the humus layer instead of being trans-
ported into deeper soil layers (Franklin et al., 2003; Treseder, 2004). 
A 10-year N addition study conducted in northern American broad-
leaved forests revealed that the accumulation of SOC derived from 
leaf litter was observed only in the topsoil (Pregitzer et al., 2008). 
Besides, in the long term, the alleviated microbial N limitation with N 
addition is generally associated with decreased oxidase activities and 
increased formation of stable SOC in the topsoil (Chen et al., 2018; 
Lu et al., 2021), thereby reducing the C leaching along the soil pro-
file (Kaiser & Kalbitz, 2012). This explanation is supported by both 
increased particulate and mineral-associated organic carbon in the 
topsoil only observed in long-term N addition studies (Figure S5; Qi 
et al., 2023). Similarly, bioturbation contributes to mixing SOC from 
the topsoil to the subsoil (Wilkinson et al., 2009), whereas this pro-
cess may be repressed in the later stage of N addition due to pos-
sible soil acidification or toxicity effects on soil organisms (Jansone 
et al., 2020).

There was a lack of a significant positive correlation between 
the responses of SOC in the topsoil and the subsoil to long-term 
(as opposed to short-term) N addition (Figure  3c). This is likely 
attributed to contrasting mechanisms driving the responses of 

SOC to N addition in shallow versus deeper layers. In contrast to 
the topsoil, the subsoil may become more susceptible to losing C 
through microbial-mediated SOC decomposition in the later stage 
of N addition (Fontaine et al., 2007; Karhu et al., 2016). For example, 
long-term N addition may stimulate the decomposition of mineral-
associated SOC in the subsoil as indicated by increases in microbial 
biomass (Figure S6), while this process is generally suppressed by 
insufficient energy supply within this soil layer compared to the 
topsoil (Henneron et al., 2022; Jilling et al., 2021). This explanation 
could be attributed to more energy investment from plants in the 
form of root exudates for resource acquisition, such as phosphorus 
and water, as the demand of plants for these resources gradually 
increases with the continuous N addition (Li et al., 2016; Peñuelas 
et  al.,  2013). For example, N addition significantly increased fine 
root biomass in the subsoil after 5 years (Yan et al., 2017), but de-
creased it in the first year of N addition (Zhu et al., 2021). Similarly, 
more C investment from plants in root growth for resource uptake 
in the later stage of N addition may induce priming effects of SOC 
decomposition. This N-induced root exploration for resource acqui-
sition may also increase the accessibility of subsoil SOC that is often 
persistent due to physical separation from decomposers (Henneron 
et al., 2022; Salomé et al., 2010). The C losses from the decomposi-
tion of recalcitrant SOC may outweigh the potential increases in root 
C inputs (Mobley et al., 2015; Shahzad et al., 2019). Additionally, a 
recent 20-year study even found that N addition could accelerate 
the decomposition of ancient SOC in the subsoil by mitigating the 
oxygen limitation of SOC mineralization through the accumulation 
of nitrate (Qin et al., 2023), as nitrate is an alternative electron ac-
cepter for microbial respiration (Sierra & Renault, 1998).

4.3  |  Implications

Understanding the depth-dependent responses of SOC to N addi-
tion can help us reconcile the apparently conflicting results often 
reported from individual studies (Deng et al., 2020; Xu et al., 2021; 
Zheng et al., 2022). It is widely recognized that responses of SOC to 
N addition are often cumulative, which takes time to be statistically 
significant. This meta-analysis study underlines the importance of 
considering soil depth together with time, as we found the contrast-
ing responses of topsoil and subsoil SOC to short‐ and long‐term N 
additions. Our finds thus imply that both topsoil and subsoil layers 
need to be evaluated for a more realistic understanding of the re-
sponses of SOC to N addition, especially in the context of long-term 
field experiments. Importantly, the sharp decline in subsoil SOC in 
response to long-term N addition presented here may challenge the 
previously assumed role of soils as a global SOC sink under increased 
N deposition (Janssens et al., 2010; Lu et al., 2011; Nave et al., 2009; 
Xu et  al.,  2021). However, most current N addition studies have 
primarily focused on the responses of SOC in the topsoil (typically 
in 0–20 cm or 0–30 cm), which may lead to biased conclusions re-
garding SOC sequestration. In addition, to be consistent with the 
IPCC's soil layer classification method, some observations of SOC in 
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the soil layers of 20–40 cm or 20–60 cm were considered as subsoil 
SOC in this study (Figure S7). Considering the crucial role of subsoils 
for SOC sequestration (Jobbágy & Jackson, 2000; Rumpel & Kögel-
Knabner, 2011; Shi et al., 2020), our study highlights the necessity to 
distinguish the responses of SOC to increased N deposition across 
different soil layers, rather than typically extrapolating the responses 
of SOC to subsoil based on its responses in the topsoil. Overall, our 
findings suggest the overestimation of soil C sequestration under 
N addition if without considering the subsoil C dynamics, highlight-
ing the necessity for explicit incorporation of depth-dependent re-
sponses of SOC into current global C cycle models.
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