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Abstract
We develop new techniques to compute the weighted L2-cohomology of quasi-
fibered boundary metrics (QFB-metrics). Combined with the decay of L2-harmonic
forms obtained in a companion paper, this allows us to compute the reduced L2-
cohomology for various classes of QFB-metrics. Our results applies in particular to
the Nakajima metric on the Hilbert scheme of n points on C

2, for which we can show
that the Vafa-Witten conjecture holds. Using the compactification of the monopole
moduli space announced by Fritzsch, the first author and Singer, we can also give a
proof of the Sen conjecture for the monopole moduli space of magnetic charge 3.
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1 Introduction

In [28], Joyce constructed complete Calabi-Yau metrics on crepant resolutions of
C

n/� for � ⊂ SU(n) a finite subgroup. When � acts freely on C
n \ {0}, this is
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an Asymptotically Locally Euclidean (ALE) metric. However, when the action is
not free away from the origin, the orbifold C

n/� has rays of singularities going
off to infinity and the metrics are only ALE away from these singularities, hence
the name Quasi-Asymptotically Euclidean (QALE) introduced by Joyce. To con-
struct these metrics, Joyce solved a complex Monge-Ampère equation for an ap-
propriate choice of Kähler QALE-metric using some mapping properties of the cor-
responding Laplacian. More recently, Mazzeo and Degeratu in [16] have introduced
the notion of Quasi-Asymptotically Conical (QAC) metrics, essentially generalizing
QALE-metrics in the same way that Asymptotically Conical (AC) metrics general-
ize ALE-metrics, and showed that the corresponding Laplacian is Fredholm when
acting on suitable weighted Hölder or Sobolev spaces. The definition of [16] was
in terms of resolution blowups. In [13], a coordinate-free definition of QAC-metrics
was provided in terms of a Lie structure at infinity and a natural compactification by
a manifold with corners. Using this point of view, the first examples of Calabi-Yau
QAC-metrics that are not QALE or AC were constructed in [13]. More generally, the
notion of Quasi-Fibered Boundary (QFB) metrics was introduced in [13] by adding
a compact fiber at infinity.

Natural examples of hyperKähler QFB-metrics appear on moduli spaces. For in-
stance, on the Hilbert scheme Hilbn

0(C2), it was shown in [11] that the Nakajima
metric is in fact a QALE-metric. In [31], a partial compactification of the moduli
space of SU(2)-monopoles on R

3 is obtained via a gluing construction with the cor-
responding L2-metric behaving like a QFB-metric in that direction. In fact, a full
compactification of the monopole moduli space was announced in [20] with the prop-
erty that the corresponding L2-metric is a QFB-metric. Similarly, on the moduli space
of SL(2,C)-Higgs bundles, a polynomial convergence at infinity of the L2-metric to-
wards the semi-flat metric was obtained in the regular part of the Hitchin system
in [34], a result that was subsequently improved to an exponential convergence in
[18, 19]. In this latter setting, it is expected that the L2-metric should be like a QFB-
metric, but with some singular fibers at infinity.

All these efforts to understand the asymptotic of these hyperKähler metrics were
in part driven by various open conjectures about their Hodge cohomology, that is,
their space of L2-harmonic forms. The first conjecture of the sort is the Sen con-
jecture [42] coming from string theory and S-duality, which predicts that the Hodge
cohomology of the L2-metric of the universal cover ˜M0

k of the reduced moduli space
M0

k of SU(2)-monopoles of magnetic charge k on R
3 is only non-trivial in middle

degree and admits a complete description in terms of a natural Zk-action. More pre-
cisely, if Hq

p(˜M0
k) denotes the space of L2-harmonic forms of degree q and weight

p with respect to the Zk-action, then the Sen conjecture predicts in middle degree
q = 2k− 2 that H2k−2

p (˜M0
k)
∼=C if k and p are coprime and H2k−2

p (˜M0
k)= 0 other-

wise. Soon after the formulation of the conjecture, Segal and Selby in [41] computed
the relative and absolute cohomologies H ∗

c (˜M0
k) and H ∗(˜M0

k) of the universal cover
of the reduced moduli space and gave supporting evidence for the conjecture. Indeed,
they showed that the images Im

[

H
q
c (˜M0

k) → Hq(˜M0
k)
]

satisfy the predictions of
Sen’s conjecture, and since these images factor through the space of L2-harmonic
forms as composites of natural maps H

q
c (˜M0

k) →Hq(˜M0
k) → Hq(˜M0

k), it follows
that H∗(˜M0

k) is no smaller than Sen’s prediction [41, Sentence after Theorem 1.3].
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In fact, since Segal and Selby prove that H
q
c (˜M0

k)→Hq(˜M0
k) is an isomorphism in

middle degree and trivial otherwise, the composite maps split and Sen’s conjecture
can be reformulated as saying that the associated inclusion

Im
[

H
q
c (M0

k)→Hq(M0
k)
]

↪→Hq(M0
k) (1.1)

is in fact an isomorphism. A major step toward a proof of the conjecture was subse-
quently made by Hitchin [24], who showed that for many hyperKähler metrics com-
ing from hyperKähler quotients, in particular the L2-metric on ˜M0

k , the L2-harmonic
forms all lie in middle degree, giving a proof of the conjecture outside the middle de-
gree and a full proof of the conjecture when k = 2. In this specific case, an alternative
proof of the Sen conjecture was also subsequently obtained by Hausel-Hunsicker-
Mazzeo [23]. Since then, the unsettled part of the conjecture, that is, whether or not
in middle degree the map (1.1) is surjective, has remained open for k ≥ 3.

Shortly after Sen formulated his conjecture, Vafa and Witten in [43, Discussion
after equation (4.43)] (see also [11, Conjecture 1.4]) made a similar S-duality pre-
diction for the Hodge cohomology of quiver varieties. For the Nakajima metric on
Hilbn

0(C2), their conjecture predicts that the natural inclusion

Im
[

H
q
c (Hilbn

0(C2))→Hq(Hilbn
0(C2))
]

↪→Hq(Hilbn
0(C2)) (1.2)

constructed as above, must be surjective. Again, by the result of [24], it is automat-
ically true except possibly in middle degree, and the argument in [24, §5.5] gives
a complete proof of the conjecture when n = 2. Alternatively, when n = 2, a proof
of the conjecture follows from standard results about the L2-cohomology of AC-
metrics, see for instance [37] or [23, Theorem 1A]. When n = 3 instead, the con-
jecture follows from the computation by Carron [12] of the Hodge cohomology of
QALE-metrics of depth 2. For the moduli space of SL(2,C)-Higgs bundles, Hausel
showed in [22] that the image of relative cohomology into absolute cohomology is
trivial, so that inspired by [41], he was led to conjecture that the Hodge cohomology
should be trivial. Again in this case, the results of [24] prove this conjecture except
in middle degree.

In the present paper, we derive new results about the Hodge cohomology of QFB-
metrics. In particular, we obtain the following advances on the Sen conjecture and
the Vafa-Witten conjecture.

Theorem A The Sen conjecture holds on ˜M0
3 provided the natural L2-metric on ˜M0

3
is a QFB-metric as announced in [20].

Theorem B The Vafa-Witten conjecture holds on Hilbn
0(C2) for all n≥ 2.

Remark Relying on a different approach, a proof of the Vafa-Witten conjecture on
Hilbn

0(C2) for all n was announced by Melrose in [39].

Our general strategy to prove such a result is strongly inspired by the work of
Hausel-Hunsicker-Mazzeo [23], where a complete description of the Hodge coho-
mology of fibered boundary and fibered cusp metrics in terms of intersection coho-
mology was obtained. As the name suggests, fibered boundary metrics are a particular
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case of QFB-metrics. Let us recall that on a compact manifold M with boundary ∂M

equipped with a fiber bundle φ : ∂M → Y over a closed manifold Y and a tubular
neighborhood c : ∂M × [0, δ) → M of ∂M , an example of fibered boundary metric
is given by a Riemannian metric gφ on M \ ∂M such that

c∗gφ = dx2

x4
+ φ∗gY

x2
+ κ,

where x is the coordinate on the factor [0, δ), gY is a Riemannian metric on Y and
κ is a symmetric 2-tensor on ∂M such that φ∗gY + κ is a Riemannian metric on
∂M making φ : ∂M → Y a Riemannian submersion with respect to the Riemannian
metrics φ∗gY + κ and gY . On the other hand, a fibered cusp metric gfc is a complete
metric on M \ ∂M which near ∂M is of the form

gfc = x2gφ

for some fibered boundary metric gφ . For instance, for gY and κ as above, an example
of fibered cusp metric gfc is given by one such that

c∗gfc = dx2

x2 + φ∗gY + x2κ.

The main result of [23] roughly relies on two intermediate results. The first one,
topological in nature, consists in identifying weighted L2-cohomology groups of
fibered boundary and fibered cusp metrics with suitable intersection cohomology
groups. Since fibered cusp and fibered boundary metrics are conformally related,
one in fact only needs to establish such a result for the weighted L2-cohomology of a
fibered cusp metric. These weighted L2-cohomology groups can be understood as the
cohomology groups of a sheaf on an associated stratified space, so that using Mayer-
Vietoris long exact sequences, it suffices to identify these weighted L2-cohomology
groups with intersection cohomology for local models. These local identifications in
turn can be achieved thanks to the Künneth formula of Zucker [45, Corollary 2.34] for
the L2-cohomology of warped products. Except for certain types of fibered cusp met-
rics, notice that L2-cohomology itself is infinite dimensional and cannot be identified
with some intersection cohomology, hence the importance to introduce a weight to
obtain such an identification in general. The second intermediate result, more analyt-
ical in nature, consists in showing that a L2-harmonic form with respect to a fibered
boundary or a fibered cusp metric admits a polyhomogeneous expansion at infinity,
so that in particular it decays a bit faster compared to a general L2-form. This can be
established thanks to the pseudodifferential calculus of Mazzeo-Melrose [33] and the
parametrix construction of Vaillant [44]. These also allow to show that the Hodge-
deRham operator is Fredholm when acting on suitable Sobolev spaces, a result which
is also used in [23].

It turns out that both of these intermediate results can be suitably adapted to
study the Hodge cohomology of QFB-metrics. First, to compute the weighted L2-
cohomology of a QFB-metric, we can in fact introduce the analog of fibered cusp
metrics, namely the notion quasi-fibered cusp metrics (QFC-metrics), a class of met-
rics conformally related to QFB-metrics, see Definition 3.1 below for more details.
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Quasi-fibered cusp metrics should not be confused with the class of iterated fibered
cusp metrics considered in [15, 26], which constitutes yet another way of generaliz-
ing the notion of fibered cusp metrics to stratified spaces of higher depth. In fact, one
important difference is that as opposed to iterated fibered cusp metrics, QFC-metrics
do not admit nice local models in terms of warped products. In particular, the Kün-
neth formula of Zucker for the L2-cohomology of a warped product cannot be used to
compute the L2-cohomology of local models of QFC-metrics. As described in (2.8)
below, a good local model for QFB-metrics is not given by a warped product, but by
a subset of a Cartesian product. To compute the weighted L2-cohomology of such a
local model, our main tool consists instead in using basic mapping properties of the
exterior differential on a half-line. As in [23], we need to show that we can define
weighted L2-cohomology using a sheaf of conormal forms, which can be achieved
using a soft parametrix inverting the Hodge Laplacian of a QFB-metric, for instance
using the general pseudodifferential calculus of [5] for Lie structures at infinity. With
this approach, we can in many cases identified weighted L2-cohomology groups with
some intersection cohomology groups. In the following case, we can even compute
the Hodge cohomology of a QFC-metric (see also Corollary 3.14 below for more
details).

Theorem C Let gQFC be a QFC-metric on the regular part of a smoothly stratified
space ̂M . Suppose that the link ̂Z of any singular stratum ̂S of ̂M is odd dimensional
and is such that

IH
dim̂Z+1

2
m (̂Z)= {0},

where IHq
m(̂Z) denotes the intersection cohomology group of lower middle perversity

in degree q . Then the L2-cohomology of gQFC and its Hodge cohomology are both
naturally identified with IH∗

m(̂M).

In [26], a similar identification was obtained in the case of an iterated fibered cusp,
though in this latter case one only needs the weaker and simpler assumption that the
smoothly stratified space ̂M be Witt.

For the computation of the Hodge cohomology of QFB-metrics, more analysis
must be involved, especially since already for fibered boundary metrics, the L2 co-
homology is infinite dimensional and distinct from the Hodge cohomology. In par-
ticular, to study the asymptotic behavior of L2-harmonic forms of a QFB-metric, we
have developed in the companion paper [30] a pseudodifferential calculus suitable
to construct parametrices for the Hodge-deRham operator of a QFB-operator. Such
parametrices allow us, for appropriate QFB-metrics, to show that L2-harmonic forms
decay at infinity a bit faster than a general L2-form. The specific result that we will
invoke from [30] is stated in Theorem 2.5 below.

This decay of L2-harmonic forms and our computation of the weighted L2-
cohomology of a QFC-metric allow us to compute the Hodge cohomology of various
QFB-metrics. In order to do this, we diverge from the approach used in the proof of
[23, Theorem 1C]. Instead, we propose a softer argument by considering the inverse
of the map considered in [23, Theorem 1C], e.g., in the case of the Sen conjecture
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and the Vafa-Witten conjecture, we consider the maps (1.1) and (1.2). Indeed, in [23],
the Fredholmness of the Hodge-deRham operator is used by the authors to show the
surjectivity of their map. The analogue in our setting corresponds to establishing the
injectivity of our map, which can be achieved following the approach of Segal and
Selby [41, Lemma 1.4], see for instance the proof of Theorem 4.5 or Proposition 6.2
below. On the other hand, the surjectivity of our map follows almost immediately
from the decay of L2-harmonic forms.

In the particular setting of Theorem A and Theorem B, we also need to identify our
weighted L2-cohomology groups, already identified with some intersection cohomol-
ogy groups, with the usual relative and absolute cohomology groups. For Hilbn

0(C2),
this follows essentially from a result of Nakajima [40, Corollary 5.10] asserting that
Hilbn

0(C2) has no absolute cohomology above the middle degree, see Corollary 4.3
below. For ˜M0

3 , we have a similar identification, but only in middle degree and using
a more intricate argument relying instead on [41]; see Proposition 6.4 below. Unfor-
tunately, this argument does not seem to extend to ˜M0

k for k ≥ 4; see the discussion
after Theorem 6.5 for more details. Our approach can also be used to give a new proof
and a generalization of the results of Carron in [12], see in particular Theorem 5.6
and Corollary 5.9.

The paper is organized as follows. In Sect. 2, we review basic facts about QFB-
metrics and we state the result from [30] that we will used. In Sect. 3, we introduce
QFC-metrics and derive our results about their weighted L2-cohomology groups.
This is applied to the Nakajima metric on Hilbn

0(C2) in Sect. 4, where we derive in
particular a proof of Theorem B. In Sect. 5, this is applied instead to a large class
of QAC-metrics of depth 2 including those considered by Carron in [12]. Finally,
in Sect. 6, our results about weighted L2-cohomology are used to study the Hodge
cohomology on the reduced SU(2)-monopole moduli space of charge 3 and prove
Theorem A.

2 Quasi-fibered boundary metrics

Let M be a compact manifold with corners in the sense of [21, 35, 38]. Let
H1, . . . ,H� be a complete list of its boundary hypersurfaces.

Definition 2.1 ([2, 3, 15]) Let φ = {φ1, . . . , φ�} be a collection of fiber bundles φi :
Hi → Si over a compact manifold with corners Si . We say that φ is an iterated
fibration structure for M if there is a partial order on the boundary hypersurfaces of
M such that

• Any subset I of boundary hypersurfaces such that ∩i∈IHi 	= ∅ is totally ordered;
• If Hi < Hj , then Hi ∩Hj 	= ∅, φi |Hi∩Hj

:Hi ∩Hj → Si is a surjective submersion,
Sji := φj (Hj ∩Hi) is a boundary hypersurface of the manifold with corners Sj and
there is a surjective submersion φji : Sji → Si such that φji ◦φj = φi on Hi ∩Hj ;

• The boundary hypersurfaces of Sj are given by Sji for Hi < Hj .

In this case, we say that the pair (M,φ) is a manifold with fibered corners.
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If (M,φ) is a manifold with fibered corners, then for each fiber bundle φj :Hj →
Sj , the base Sj automatically inherits an iterated fibration structure specified by the
fiber bundles φji : Sji → Si for each i with Hi < Hj . Each fiber of φj :Hj → Sj has
also a natural iterated fibration structure induced by the fiber bundles φi : Hi → Si

for each Hi > Hj .
As described in [3, 15], collapsing the fibers of φi onto their base for each bound-

ary hypersurface Hi yields a smoothly stratified space ̂Mφ . In particular, for each
boundary hypersurface Hi , one can associate to Si a smoothly stratified space ̂Si .
Each ̂Si is naturally included in ̂Mφ as a singular stratum and all the singular strata
of ̂Mφ arise in this way. The depth of the stratified space ̂Mφ then corresponds to the
depth of the manifold with corners M , which can be defined as the highest possible
codimension of a corner of M .

On a manifold with fibered corners (M,φ), a maximal boundary hypersurface is a
boundary hypersurface which is maximal with respect to the partial order. A bound-
ary hypersurface which is not maximal is said to be non-maximal. A submaximal
boundary hypersurface of Hj is a non-maximal boundary hypersurface such that

Hi > Hj =⇒ Hi is maximal.

For each boundary hypersurface Hi , let xi ∈ C∞(M) be a boundary defining function,
that is, xi takes nonnegative values, x−1

i (0)=Hi and dxi is nowhere zero on Hi . We
say that xi is compatible with the iterated fibration structure φ if xi restricted to Hj

is constant in the fibers of φj : Hj → Sj whenever Hj > Hi . In this paper, we will
always assume that our boundary defining functions are compatible with the iterated
fibration structure φ. This obviously imposes restrictions on the type of boundary
defining functions we will consider, but no restriction on the type of manifolds with
fibered corners by [15, Lemma 1.4].

Definition 2.2 Let v =∏i xi be a total boundary defining function for the manifold
with fibered corners (M,φ). The space VQFB(M) of quasi-fibered boundary vector
fields (QFB-vector fields) consists in smooth vector fields ξ in M such that

(i) ξ is tangent to the fibers of φi : Hi → Si for each boundary hypersurface Hi of
M ;

(ii) ξv ∈ v2C∞(M).

Remark 2.3 As explained in [30], this definition is equivalent to the more complicated
definition originally provided in [13].

Notice that a QFB-vector field is in particular tangent to Hi for each boundary hy-
persurface, so VQFB(M) is a subspace of the Lie algebra of b-vector fields of Melrose
[36],

Vb(M)= {ξ ∈ C∞(M;T M) | ξxi ∈ xiC∞(M) ∀i}.
In fact, just imposing condition (i) gives the Lie algebra of edge vector fields Ve(M)

of Mazzeo [1, 3, 32].
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Condition (ii) on the other hand clearly depends on the choice of v. By [30,
Lemma 1.1], two total boundary defining functions v and v′ will give the same space
of QFB-vector fields if and only if the function v

v′ is constant on the fibers of φi for
each boundary hypersurface Hi . Clearly, conditions (i) and (ii) are preserved by the
Lie bracket, so that VQFB(M) is a Lie subalgebra of Vb(M). As explained in [13],
there is in fact a natural bundle QFBT M →M , called the QFB-tangent bundle, and a
natural map

a : QFBT M → T M (2.1)

inducing a canonical inclusion

a∗ : C∞(M;QFBT M)→ VQFB(M). (2.2)

This gives QFBT M the structure of a Lie algebroid with anchor map (2.1). The anchor
map is not an isomorphism of vector bundles, but it becomes one when restricted to
the interior of M ,

a : QFBT M|M\∂M ˜−→T (M \ ∂M). (2.3)

Definition 2.4 ([13, 30]) A quasi-fibered boundary metric (QFB-metric) for a mani-
fold with fibered corners (M,φ) and a choice of total boundary defining function v

is a Riemannian metric on the interior of M which is of the form

a∗(h|M\∂M)

for some choice of bundle metric h ∈ C∞(M;S2(QFBT ∗M)) for the vector bun-
dle QFBT M . In this case, we say that the manifold with corners M is the QFB-
compactification of the corresponding Riemannian manifold. When (M,φ) is such
that for each maximal boundary hypersurface Hi , Si =Hi and φi is the identity map,
a QFB-metric is also said to be a quasi-asymptotically conical metric (QAC-metric),
in which case M is also said to be the QAC-compactification of the corresponding
Riemannian manifold.

A good measure of the complexity of a QFB-metric is its depth, which we take1 to
be the depth of the underlying manifold with fibered corners. When gQFB is a QFB-
metric, the pair (M \ ∂M,gQFB) is a particular example of Riemannian manifold
with Lie structure at infinity in the sense of [4]. As such, a QFB-metric is a complete
Riemannian metric of infinite volume with curvature and all its covariant derivatives
bounded. By [13, Proposition 1.27] or [10], the injectivity radius of QFB-metric is
bounded below by a positive constant, so that QFB-metrics have bounded geometry.

Similarly to the Lie algebra of edge vector fields, one can associate the edge tan-
gent bundle eT M → M and the class of edge metrics on M \ ∂M . Again, for ge an
edge metric, the pair (M \ ∂M,ge) is a Riemannian manifold with Lie structure at
infinity. To (M,φ), one can yet associated a third class of metrics, namely the class of

1A slightly different convention is used in [16].
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wedge metrics (also called incomplete iterated edge metrics in [3]), given by metrics
gw on M \ ∂M of the form

gw = v2ge

for some edge metric ge. A wedge metric gw is of finite volume and is geodesically
incomplete, so the pair (M \∂M,gw) is not a Riemannian manifold with Lie structure
at infinity.

In this paper, our main interest in wedge metrics is that they can be used to con-
struct simple examples of QFB-metrics as described in [30, § 1]. Indeed, let

ci :Hi × [0, δi)→M (2.4)

be a collar neighborhood of Hi compatible with the boundary defining functions in
the sense that c∗i xi corresponds to the projection Hi × [0, δi) → [0, δi) and c∗i xj is
the pull-back of a function on Hi for j 	= i. Instead of the level sets of xi , we can use
the level sets of the total boundary defining function v, that is, consider the open set

Ui = {(p, τ ) ∈Hi × [0, δi) |�j 	=ixj (p) >
τ

δi

⊂Hi × [0, δi) (2.5)

with natural diffeomorphism

ψi : Hi \ ∂Hi × [0, δi) → Ui

(p, t) �→ (p, t
∏

j 	=i xj (p)).
(2.6)

On Ui seen as a subset of Hi × [0, δi), let pr1 and pr2 be the restrictions of the
projections of Hi × [0, δi) onto Hi and [0, δi). Choose a connection for the fiber
bundle φi : Hi → Si . On Si \ ∂Si , let gSi

be a wedge metric compatible with the
iterated fibration structure of Si . Let κi be a family of fiberwise QFB-metrics in the
fibers of φi : Hi → Si . Using the connection of φi , this can be lifted to a vertical
symmetric 2-tensor on Hi \ ∂Hi . In Ui , still seen as a subset of Hi × [0, δi), an
example of QFB-metric is then given by

gQFB = dτ 2

τ 4
+ pr∗1 φ∗

i gSi

τ 2
+ pr∗1 κi . (2.7)

When the fiber bundle φi : Hi → Si is trivial with Hi = Si × Zi and κi = gZi
is a

constant family of QFB-metrics in the fiber Zi , the example (2.7) corresponds to a
Cartesian product of the QFB-metric gZi

and the Riemannian cone

dτ 2

τ 4 + gSi

τ 2

with cross-section (Si \ ∂Si, gSi
). One important subtlety is that Ui is only a subset

of this Cartesian product. In particular, for fixed τ and s ∈ Si \ ∂Si , we only con-
sider the metric gZi

in the region of Zi where
∏

j 	=i xj > τ
δi

. Still, a QFB-metric
of the form (2.7) near Hi is said to be of product-type near Hi . More generally, an
exact QFB-metric is a QFB-metric which is product-type near Hi up to a term in
xiC∞(M;S2(QFBT ∗M)) for each boundary hypersurface Hi of M .



C. Kottke, F. Rochon

Coming back to the model (2.7), on an open set Bi ⊂ Si \ ∂Si over which the fiber
bundle φi is trivial, an example of QFB-metric on Ui ∩ (φ−1

i (Bi) × [0, δi)) is given
by the restriction of the Cartesian product

dτ 2

τ 4
+ gBi

τ 2
+ gZi

(2.8)

with gBi
a Riemannian metric on Bi and gZi

a QFB-metric on Zi . By the Ehres-
mann lemma of [29, Corollary A.6], a QFB-metric is always locally quasi-isometric
to a model of the form (2.8). Since Zi is of lower depth, one can use (2.8) to de-
fine QFB-metrics iteratively. This is how the subclass of QAC-metrics was originally
introduced in [16].

For the computation of weighted L2-cohomology of a QFB-metric in the next
section, the local model (2.8) is essentially all that we will use about QFB-metrics.
However, to obtain results about the reduced L2-cohomology of QFB-metrics, we
will need to invoke a result about the decay of harmonic forms obtained in our com-
panion paper [30]. For the convenience of the reader, let us describe in details the
specific result of [30] that we will use.

Suppose now that gQFB is an exact QFB-metric and let ðQFB be the corresponding
Hodge-deRham operator. If Hi is maximal, the fibered of φi : Hi → Si are closed
manifolds, so by Hodge theory and [23, Proposition 15], the space of fiberwise har-
monic forms on φi :Hi → Si with respect to the fiberwise metric κi form a flat vector
bundle H∗

L2(Hi/Si) over Si . Let dSi
be the Hodge-deRham operator associated to the

metric gSi
and acting on H∗

L2(Hi/Si)-valued forms on Si \ ∂Si . If Hi is not maxi-
mal, the fibers of φi : Hi → Si are instead manifolds with fibered corners and κi is
a family of QFB-metrics. Suppose that the fiberwise reduced L2-cohomology is fi-
nite dimensional. Thanks to [23, Theorem 1], the corresponding space of fiberwise
L2-harmonic forms on φi : Hi → Si still form a flat vector bundle H∗

L2(Hi/Si) over
Si . Thus, we can still consider the Hodge-deRham operator dSi

associated now to a
wedge metric gSi

and acting on H∗
L2(Hi/Si)-valued forms on Si \ ∂Si . For Hj < Hi

and for each fiber Zij of φij : Sij → Sj let dZij
be the corresponding Hodge-deRham

operator acting on forms taking values in H∗
L2(Hi/Si) and associated to the wedge

metric gZij
induced by gSi

. Let also Pj be the subset of degrees where the fibers of
φj :Hj → Sj have non-trivial reduced L2-cohomology and let

Pij : C∞(Zij ;
∗(wT ∗(Zij ))⊗H∗
L2(Hi/Si))

→ C∞(Zij ;
∗(wT ∗(Zij ))⊗H∗
L2(Hi/Si))

be the projection on sections of total degree q (that is, the sum of the degree in the

∗(wT ∗(Zij )) factor and the degree in the H∗

L2(Hi/Si) is equal to q) such that q or
q + 1 are in Pj .

Theorem 2.5 (Theorem 17.5 in [30]) Let gQFB be a QFB-metric on (M,φ) with re-
spect to a total boundary defining function v which is product-type near Hi up to
a term in x2

i C∞(M;S2(QFBT ∗M)) for each boundary hypersurface Hi of M . For
each boundary hypersurface Hi , suppose that the fiberwise reduced L2-cohomology
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in the fibers of φi :Hi → Si is finite dimensional, so that the corresponding fiberwise
L2-harmonic forms yield a flat vector bundle H∗

L2(Hi/Si) → Si . For each boundary
hypersurface Hi and for each Hj ≤Hi , suppose furthermore that
∣

∣

∣

∣

q − dimZij

2

∣

∣

∣

∣

≤ 1 =⇒ dZij
has trivial L2-kernel in degree q, (2.9)

where we use the convention that Zii := Si . If Hi is maximal and Hj is submaximal
with Hj < Hi , then (2.9) can in fact be replaced by the weaker condition
∣

∣

∣

∣

q − dimZij

2

∣

∣

∣

∣

< 1 =⇒ dZij
has trivial L2-kernel in degree q. (2.10)

For Hj < Hi , suppose also that
∣

∣

∣

∣

q − dimZij

2

∣

∣

∣

∣

≤ 3

2
=⇒ Pij (kerL2

w
dZij

)q is trivial, (2.11)

where (kerL2
w
dZij

)q is the L2-kernel of dZij
for forms of degree q in the 
∗(wT ∗(Zij ))

factor. Then there exists a QFB-metric g̃QFB with respect to the same total boundary
defining function v such that its space of L2-harmonic forms is finite dimensional and
contained in

vεL2�∗(M \ ∂M, g̃QFB)

for some ε > 0.

Remark 2.6 Since reduced L2-cohomology only depends on the quasi-isometry class
of the metric, see for instance (3.8) below, when Theorem 2.5 applies, the space of
L2-harmonic forms is finite dimensional, and after possibly changing the QFB-metric
gQFB, we can always assume that it is contained in

vεL2�∗(M \ ∂M,gQFB)

for some ε > 0.

As explained in [30], this yields the following two corollaries.

Corollary 2.7 (Corollary 17.7 in [30]) Let gQFB be an exact QFB-metric on (M,φ)

with respect to a total boundary defining function v. Whenever the fibers of φi :Hi →
Si have non-trivial reduced L2-cohomology with respect to the induced QFB-metrics,
suppose that the stratified space ̂Si corresponding to Si is a quotient of a sphere by a
finite group of isometries, that dimSi ≥ 3 and that dimZij = dimSi −dimSj −1 > 3
for each boundary hypersurface Hj < Hi . Then there exists a QFB-metric g̃QFB with
respect to the same total boundary defining function v such that its space of L2-
harmonic forms is finite dimensional and contained in

vεL2�∗(M \ ∂M, g̃QFB)

for some ε > 0.
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Corollary 2.8 (Corollary 17.8 in [30]) Let gQFB be an exact QFB-metric on (M,φ)

with respect to a total boundary defining function v. Suppose that, except possibly in
middle degree, the fibers of φi : Hi → Si have trivial reduced L2-cohomology with
respect to the induced QFB-metrics. When it is non-trivial in middle degree, suppose
that the stratified space ̂Si corresponding to Si is a quotient of a sphere by a finite
group of isometries, that dimSi ≥ 3 and that dimZij = dimSi − dimSj − 1 ≥ 3 for
each boundary hypersurface Hj < Hi . Then there exists a QFB-metric g̃QFB with
respect to the same total boundary defining function v such that its space of L2-
harmonic forms is finite dimensional and contained in

vεL2�∗(M \ ∂M, g̃QFB)

for some ε > 0.

3 Weighted L2-cohomology of QFB-metrics

Let (M,φ) be a manifold with fibered corners. If H1, . . . ,H� are the boundary hy-
persurfaces of M , let x1, . . . , x� be corresponding boundary defining functions com-
patible with φ in the sense of [13]. Suppose also that the labelling of the boundary
hypersurfaces is compatible with the partial order in the sense that

Hi < Hj =⇒ i < j.

On (M,φ), let gQFB be a QFB-metric with respect to the boundary defining functions
x1, . . . , x�.

Definition 3.1 A quasi-fibered cusp metric (QFC-metric for short) is a Riemannian
metric on M \ ∂M of the form

gQFC := v2g (3.1)

for some QFB-metric g, where v :=∏�
i=1 xi is the total boundary defining function

of (M,φ). When g is in fact a QAC-metric, such a metric is also called a quasi-
asymptotically cylindrical metric (QCyl-metric for short).

Example 3.2 When M is a manifold with boundary, a QFC-metric is just a fibered
cusp metric in the sense of [23], while a QCyl-metric is just a b-metric in the sense
of [36].

In a sense, the notion of QFC-metric can be seen as a generalization of the notion
of fibered cusp metrics to manifolds with fibered corners of arbitrary depth. Notice
however that QFC-metrics differ fundamentally from the notion of iterated fibered
cusp metrics of [15, 26], which are yet another way of generalizing fibered cusps
metrics to manifolds with fibered corners of higher depth. Similarly, QCyl-metrics
and the Qb-metrics introduced in [13] can both be seen as a generalization of the
notion of b-metrics (or asymptotically cylindrical metrics) to certain manifolds with
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fibered corners of higher depth, though in a different way. Indeed, as we will see,
QCyl-metrics correspond more to a geometric generalization, at least in terms of L2-
cohomology, while Qb-metrics correspond more to an analytic generalization in the
sense that it is for this type of metric that the b-calculus of Melrose is generalized
in [30].

Before discussing the weighted L2-cohomology of QFB-metrics and QAC-
metrics, let us first recall what is the weighted L2-cohomology of a complete Rie-
mannian manifold (X,g) with weight w ∈ C∞(X) a positive function. In terms of the
space of weighted L2-forms of degree q

wL2�q(X,g)= {ω a mesurable section of 
q(T ∗X) |
∫

X

‖w−1ω‖2
gdg <∞},

(3.2)
the weighted L2-cohomology group of degree q is the quotient

WHq(X,g,w)= {ω ∈wL2�q(X,g) | dω = 0}
{dη | η ∈wL2�q−1(X,g) such that dη ∈wL2�q(X,g)} . (3.3)

If w = 1, then this is just the L2-cohomology group of degree q

H
q

(2)
(X,g)= {ω ∈ L2�q(X,g) | dω = 0}

{dη | η ∈ L2�q−1(X,g) such that dη ∈ L2�q(X,g)} . (3.4)

Considering the subset of weighted L2-forms

wL2
d�q(X,g) := {ω ∈wL2�q(X,g) | dω ∈wL2�q+1(X,g)}, (3.5)

notice that the groups (3.3) correspond to the cohomology groups of the complex

· · · d

wL2
d�q(X,g)

d

wL2
d�q+1(X,g)

d · · · . (3.6)

Since the image of the exterior derivative is not necessarily closed, it is often in-
teresting to consider as well the reduced weighted L2-cohomology group of degree
q

WH
q
(X,g,w) := {ω ∈wL2�q(X,g) | dω = 0}

/{dη | η ∈wL2�q−1(X,g) such that dη ∈wL2ωq(X,g)}.
(3.7)

When w = 1, this is just the reduced L2-cohomology group of degree q

H
q

(2)(X,g) := {ω ∈ L2�q(X,g) | dω = 0}
/{dη | η ∈ L2�q−1(X,g) such that dη ∈ L2ωq(X,g)}.

(3.8)

Now, if δg,w is the formal adjoint of d with respect to the inner product on
wL2�∗(X,g), then WH

q
(X,g,w) is naturally identified with the space of weighted
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L2-harmonic forms

L2Hq(X,g,w) := {ω ∈wL2�q(X,g) | dω = δg,wω = 0}. (3.9)

Indeed, the isomorphism

WH
q
(X,g,w)∼= L2Hq(X,g,w)

follows readily from the Kodaira decomposition [14, Théorème 24 in § 32]

wL2�q(X,g)= L2Hq(X,g,w)⊕ d�
q−1
c (X)⊕ δg,w�

q+1
c (X), (3.10)

where �
q
c (X) denotes the space of compactly supported smooth q-forms. Notice that

(3.3), (3.4) and (3.7) only depend on the quasi-isometry class of g. That is, if g′ is
another complete metric such that for some positive constant C,

g

C
< g′ < Cg everywhere on X,

then g′ has the same weighted L2-cohomology groups or reduced L2-cohomology
groups as g.

Now, if we take X = M \ ∂M and g = gQFC a QFC-metric, a natural choice for
the weight function is to take

w = xa = x
a1
1 · · ·xa�

�

for some a = (a1, . . . , a�) ∈ R� and consider the corresponding weighted L2-
cohomology group

WHq

QFC(M,φ,a) := WHq(M \ ∂M,gQFC, xa). (3.11)

For a QFB-metric gQFB, following [23, (13)] for the case of fibered boundary
metrics, we will consider the weighted L2-cohomology group

WHq

QFB(M,φ,a)

:= {ω ∈ xaL2�q(M \ ∂M,gQFB) |dω = 0}
{dη | η ∈ v−1xaL2�q−1(M \ ∂M,gQFB), dη ∈ xaL2�q(M,gQFB)} ,

(3.12)

where we recall that v =∏�
i=1 xi is a total boundary defining function of M . Since

by (3.1), we have that

xaL2�q(M \ ∂M,gQFB)= v
m
2 −qxaL2�q(M \ ∂M,gQFC), (3.13)

where m = dimM , we see that (3.12) can be reformulated in terms of QFC-metrics
as follows,

WHq

QFB(M,φ,a)= WHq

QFC

(

M,φ,a +
(m

2
− q
)

)

, (3.14)
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where

a +
(m

2
− q
)

:=
(

a1 +
(m

2
− q
)

, . . . , a� +
(m

2
− q
))

.

Instead of working with general weighted L2-forms, it will be sometimes conve-
nient to work with weighted QFB-conormal forms, especially for arguments involv-
ing integration by parts. More precisely, consider the space

xaAQFC,2�
q(M) := {ω ∈ xaL2�q(M \ ∂M,gQFC) |

∀k ∈N0,∀X1, . . .Xk ∈ VQFB(M), ∇X1 · · ·∇Xk
ω ∈ xaL2�q(M \ ∂M,gQFC)},

(3.15)

with ∇ a choice of covariant derivative for 
q(QFCT ∗M)→M , where

QFCT ∗M = v(QFBT ∗M) (3.16)

is the QFC-cotangent bundle.

Lemma 3.3 The weighted L2-cohomology group (3.11) can be written in terms of
weighted QFB-conormal forms as

WHq

QFC(M,φ,a) := {ω ∈ xaAQFC,2�
q(M) | dω = 0}

{dη | η ∈ xaAQFC,2�q−1(M), dη ∈ xaAQFC,2�q(M)} .
(3.17)

Proof Let d∗ = δgQFC,0 be the formal adjoint of d with respect to some choice of
QFC-metric gQFC. Then the Hodge Laplacian (d + d∗)2 is such that v2(d + d∗)2 and
(d + d∗)2v2 are elliptic QFB-operators of order 2. Thus, using the small pseudodif-
ferential calculus of [30] (or even the calculus of pseudodifferential operators with
proper support of [5]), we know by standard arguments that there exist operators
Q1,Q2 ∈�−2

QFB(M;
∗(QFCT ∗M)) preserving the form degree such that

(d + d∗)2v2Q1 = Id+R1, Q2v
2(d + d∗)2 = Id+R2,

with R1,R2 ∈�−∞
QFB(M;
∗(QFCT ∗M)).

(3.18)

Now, to prove the lemma, we need to show the natural map

{ω ∈ xaAQFC,2�
q(M) | dω = 0}

{dη | η ∈ xaAQFC,2�q−1(M), dη ∈ xaAQFC,2�q(M)} −→ WHq

QFC(M,φ,a)

(3.19)
is an isomorphism. To show it is surjective, we need to show that any class in
WHq

QFC(M,φ,a) can be represented by a closed form in xaAQFC,2�
q(M), while

to show it is injective, we need to show that given any form ω ∈ xaL2
d�q−1(M \

∂M,gQFC) with dω ∈ xaAQFC,2�
q(M), there exists η ∈ xaAQFC,2�

q−1(M) such
that dη = dω. Clearly, as we allow q to vary, both assertions will follow if we can
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show that given ω ∈ xaL2
d�q(M \ ∂M,gQFC) such that dω ∈ xaAQFC,2�

q+1(M),
there exists η ∈ xaAQFC,2�

q(M) and ψ ∈ xaL2
d�q−1(M \ ∂M,gQFC) such that

η = ω + dψ and dη = dω.

Thus, let ω ∈ xaL2
d�q(M \ ∂M,gQFC) be such that dω ∈ xaAQFC,2�

q+1(M).
Applying (3.18) to ω, we see that

(dd∗ + d∗d)v2Q1ω = ω +R1ω,

so that

η := d∗dv2Q1ω −R1ω

differs from ω by an exact form, namely

η = ω + dψ

with ψ =−d∗(v2Q1ω) ∈ xaL2
d�q−1(M \ ∂M,gQFC) by the mapping properties of

[30, Theorem 7.4]. Hence, since dη = dω, we see that

(d + d∗)η = dω+ d∗η = dω− d∗R1ω

=⇒ Q2v
2(d + d∗)2η =Q2v

2(d + d∗)(dω − d∗R1ω),

=⇒ η +R2η =Q2v
2d∗dω−Q2v

2dd∗R1ω,

=⇒ η =Q2v
2d∗dω−Q2v

2dd∗R1ω −R2η.

(3.20)

By our assumption and the mapping properties of QFB-operators [30, Corollary 7.5],

Q2v
2d∗dω ∈ xaAQFC,2�

q(M).

Moreover, since Q2v
2dd∗R1 and R2 are operators in �−∞

QFB(M;
∗(QFCT ∗M)), we

deduce, using the L2-boundedness of QFB-operators of order zero [30, Theorem 7.4]
and the fact that QFB-operators of order −∞ are stable under the action on the left
by QFB-vector fields [30, Corollary 5.2], that

η ∈ xaAQFC,2�
q(M), dη ∈ xaAQFC,2�

q+1(M),

completing the proof. �

Let ̂Mφ be the Thom-Mather stratified space associated to (M,φ). Recall that this
space is essentially obtained by collapsing the fibers of φi : Hi → Si onto its image
for each i. There is in particular a canonical surjective map

cφ :M → ̂Mφ

sending Hi onto a corresponding closed stratum si in ̂Mφ . On ̂Mφ , we can consider
for a = (a1, . . . , a�) ∈R

� the sheaf xaL2
QFC�q associated to the presheaf xaL2

QFC�q
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which to an open set U ⊂ ̂Mφ associates the space of sections

xaL2
QFC�q(U) := xaL2�q(c−1

φ (U) \ (c−1
φ (U)∩ ∂M),gQFC). (3.21)

In particular, notice that the space of sections xaL2
QFC�q(M \ ∂M) of the sheaf

xaL2
QFC�q over M \ ∂M corresponds to q-forms on M \ ∂M that are locally in

L2
QFC, while on ̂Mφ ,

xaL2
QFC�q(̂Mφ) := xaL2�q(M \ ∂M),gQFC).

Let us consider as well as the subsheaf xaL2
QFC,d�q defined by

xaL2
QFC,d�q(U) := {ω ∈ xaL2

QFC�q(U) | dω ∈ xaL2
QFC�q+1(U)}. (3.22)

This defines a complex

· · · d

xaL2
QFC,d�q(U)

d

xaL2
QFC,d�q+1(U)

d · · · . (3.23)

In particular, the weighted L2-cohomology groups WH∗
QFC(M,φ,a) correspond to

the cohomology groups of this complex when we take U = ̂Mφ . However, taking
advantage of Lemma 3.3, we can instead work with QFB-conormal forms. That is,
on ̂Mφ , we can consider instead for a = (a1, . . . , a�) ∈ R

� the sheaf xaAQFC,2�
q

associated to the presheaf xaLQFC,2�
q which to an open set U ⊂ ̂Mφ associates

xaLQFC,2�
q(U) :=

{

ω ∈ xaL2�q(c−1
φ (U) \ (c−1

φ (U)∩ ∂M),gQFC) |
∀k ∈N0,∀X1, . . .Xk ∈ VQFB(M),

∇X1 · · ·∇Xk
ω ∈ xaL2�q(c−1

φ (U) \ (c−1
φ (U)∩ ∂M),gQFC)}. (3.24)

We consider as well the subsheaf xaAQFC,d�q defined by

xaAQFC,2,d�q(U) := {ω ∈ xaAQFC,2�
q(U) | dω ∈ xaAQFC,2�

q+1(U)}. (3.25)

This defines a complex

· · · d

xaAQFC,2,d�q(U)
d

xaAQFC,2,d�q+1(U)
d · · · (3.26)

and we denote by

WHq

QFC(U , φ, a)= {ω ∈AQFC,2,d�q(U) | dω = 0}
{dη | η ∈AQFC,2,d�q−1(U)}

the corresponding cohomology group in degree q . By Lemma 3.3, the weighted L2-
cohomology groups WH∗

QFC(M,φ,a) correspond to the cohomology groups of this

complex when we take U = ̂Mφ .
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Now, let pi be a point in the regular part si of si . Let ̂Bi ⊂ si be an open neigh-
borhood of pi in si . Since the map cφ canonically identifies Si \ ∂Si with si , let Bi be
the corresponding open set in Si \ ∂Si . Taking ̂Bi smaller if needed, we can assume
the fiber bundle φi : Hi → Si is trivial over Bi . Choosing a tubular neighborhood of
Hi in M as in [13, Lemma 1.10], we see that we can choose an open neighborhood
Ui of pi in ̂Mφ such that

c−1
φ (Ui )∼= [0, δ)xi

×Zi ×Bi (3.27)

with φi corresponding to the projection Zi ×Bi → Bi under this identification.
Recall however that, as opposed to the fibered corners metrics of [15], QFB-

metrics do not decompose nicely in terms of the factorization (3.27). Instead of xi ,
one needs to use the total boundary defining function v and look at the decomposition
induced by its level sets. From that point of view, c−1

φ (Ui ) can be seen as a subset of
the Cartesian product

[0, δ)v ×Zi ×Bi,

namely

c−1
φ (Ui )∼= Vi ×Bi with Vi := {(v, z) ∈ [0, δ)v ×Zi |wi(z) >

v

δ
} ⊂ [0, δ)v ×Zi,

(3.28)
where wi is a choice of total boundary defining function for Zi . Now, on c−1

φ (U), a
simple example of QFB-metric is given by the restriction to Vi ×Bi of the metric

dv2

v4 + gZi
+ gBi

v2 on (0, δ)v ×Zi ×Bi, (3.29)

where gBi
is a choice of Riemannian metric on Bi and gZi

is a choice of QFB-metric
on Zi with structure of manifold with fibered corners induced from the one on M .
Hence a corresponding example of QFC-metric on c−1

φ (U) is given by the restriction
to Vi ×Bi of the metric

dv2

v2
+ v2gZi

+ gBi
on (0, δ)v ×Zi ×Bi. (3.30)

By the Ehresmann lemma of [29, Corollary A.6], notice that a QFC-metric is always
locally quasi-isometric to a metric of the form (3.30). To compute the weighted L2-
cohomology in these local models, let us first assume that Bi is a point. One then
needs to compute the weighted L2-cohomology of the metric

dv2

v2
+ v2gZi

(3.31)

in the region

Vi = {(v, z) ∈ [0, δ)v ×Zi |wi(z) >
v

δ
}.
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Now, the exterior differential may be decomposed in terms of the decomposition
(0, δ)×Zi , namely

d = dZi
+ dv ∧ ∂

∂v
= dZi

+ dv

v
∧
(

v
∂

∂v

)

. (3.32)

Lemma 3.4 The decomposition (3.32) holds on L2.

Proof Since Vi is not quite a Cartesian product, we cannot directly apply [45, Propo-
sition 2.28]. However, Vi sits inside the Cartesian product [0, δ)v ×Zi . Moreover, by
[45, Proposition 2.27], the operator d on L2 is the closure of the exterior derivative
of effectively compactly supported smooth forms (in the sense of [45, p.179]). But
those forms can be extended smoothly to [0, δ)v ×Zi . This means that we can run the
approximation argument of the proof of [45, Proposition 2.28] on [0, δ)v × Zi and
then restrict to Vi to obtain the desired result. �

On the other hand, on the interval [0, δ) with b-metric dv2

v2 , imposing absolute
boundary conditions, namely Neumann boundary conditions for 0-forms and Dirich-
let boundary conditions for 1-forms at v = δ, we see from [36] that the exterior deriva-
tive induces a surjective Fredholm map

dv

v
∧ v

∂

∂v
: vλH 1

b ([0, δ))→ vλL2
b([0, δ);
1(bT ∗([0, δ)))) (3.33)

for λ 	= 0, where H 1
b ([0, δ)) is the b-Sobolev space of order 1. Moreover, its kernel is

trivial for λ > 0 and consists of constant functions for λ < 0. Of course, when λ > 0,
the inverse map Gλ,δ can be written explicitly,

Gλ,δ(ω)(v)=
∫ v

0
f (t)dt if ω(v)= f (v)dv.

For λ < 0, we can consider an inverse Gλ,δ on the orthogonal complement of the
kernel with respect to the natural inner product on vλL2

b([0, δ)),

〈f,g〉λ =
∫ δ

0
v−2λf (v)g(v)

dv

v
.

Thus, defining the map

˜Gλ,δ(ω)(v)=
∫ v

δ

f (t)dt, if ω(v)= f (v)dv,

we have that

Gλ,δ = (Id−Pλ,δ)˜Gλ,δ, (3.34)

where Pλ,δ : vλL2
b([0, δ)) → vλL2

b([0, δ)) is the orthogonal projection onto the con-
stant explicitly given by

Pλ,δ(f ) := − 2λ

δ−2λ

∫ δ

0
t−2λf (t)

dt

t
. (3.35)
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Using that the dilation

D : [0,1] → [0, δ]
v �→ δv

induces a map D∗ : vλL2
b([0, δ)) → vλL2

b([0,1)) such that δ−λD∗ is an isometry, a
simple computation shows that the operator norms of the inverse map Gλ,δ and the
projection Pλ,δ do not depend on δ.

Now, let a = (a1, . . . , a�) ∈R
� be a choice of weight and let ω ∈ xaL2

QFC,d�q(U)

be a closed form. In particular, we have that

∫

Zi

(

∫ δwi(z)

0
x−2a‖ω‖2

gQFC
vmi

dv

v

)

dgZi
<∞, (3.36)

where mi := dimZi and wi is a total boundary defining function of Zi as in (3.28).
The form ω decomposes as

ω = ω1 + dv

v
∧ω2, (3.37)

where ω1 and ω2 are forms involving no factor dv, so that in terms of (3.32),

dω = dZi
ω1 + dv

v
∧
(

v
∂ω1

∂v
− dZi

ω2

)

, dω = 0 =⇒ dZi
ω1 = 0, v

∂ω1

∂v
= dZi

ω2.

(3.38)
Thus, if we denote by hQFC = w2

i gZi
the QFC-metric on Zi associated to the QFB-

metric gZi
, then in terms of the decomposition (3.37), the condition (3.36) means

that

∫

Zi

∫ δwi(z)

0
x−2a

(

v

wi

)−2q

‖ω1(v, z)‖2
hQFC

vmi
dv

v
dgZi

<∞,

∫

Zi

∫ δwi(z)

0
x−2a

(

v

wi

)−2(q−1)

‖ω2(v, z)‖2
hQFC

vmi
dv

v
dgZi

<∞.

(3.39)

In particular, for each fixed z ∈ Zi , provided λ = ai + (q − 1)− mi

2 is non-zero, we
can consider the inverse Gλ,ε with ε = δwi(z) to construct a map

Gq : xaL2
QFC,d�q(Vi ) → xaL2

QFC�q−1(Vi )

ω1 + dv
v
∧ω2 �→ Gai+(q−1)−mi

2 ,δwi(z)
( dv

v
∧ω2(v, z)).

(3.40)

Using the fact that in Vi , QFB-vector fields are generated by v2 ∂
∂v

and QFB-vector
fields on Zi , we see that this also induces a map

Gq : xaAQFC,2,d�q(Vi ) → xaAQFC,2�
q−1(Vi )

ω1 + dv
v
∧ω2 �→ Gai+(q−1)−mi

2 ,δwi(z)
( dv

v
∧ω2(v, z)).

(3.41)
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By construction, notice that Gq(ω) has no dv factor and is such that dv
v

∧
v ∂

∂v
Gq(ω) = dv

v
∧ ω2. When λ > 0, this immediately yields the following vanish-

ing result.

Lemma 3.5 If a = (a1, . . . , a�) ∈R
� is a choice of weight, then for q − 1 >

mi

2 − ai ,
we have that

WHq

QFC(Vi , φ, a)= {0}.
Proof Let ω ∈ xaAQFC�q(Vi ) be a closed form. Since we are assuming that λ =
ai + (q − 1)− mi

2 > 0, we compute that

dGq(ω)=
∫ v

0
dZi

ω2(t)
dt

t
+ dv

v
∧ω2 =

∫ v

0

∂ω1(t)

∂t
dt + dv

v
∧ω2

= ω1 + dv

v
∧ω2 = ω,

(3.42)

which shows that ω is necessarily exact in this case. �

If instead λ= ai + (q − 1)− mi

2 < 0, then for each fixed z ∈ Zi , Gq(ω) is orthog-
onal to the constant sections of

[0, δwi(z))×
q−1T ∗
z Zi →[0, δwi(z))

with respect to the weighted inner product

〈η,ψ〉z =
∫ δwi(z)

0
x−2a

(

v

wi(z)

)−2(q−1)

〈η,ψ〉hQFCvmi
dv

v
.

In this case, denote by Pλ,z the projection

Pλ,z(η) := − 2λ

(δwi(z))−2λ

∫ δwi

0
v−2λη(v)

dv

v
(3.43)

on the constant section for fixed z induced by (3.35) and let

Pq−1 : xaAQFC�q−1(Vi ) → xaAQFC�q−1(Vi )

η1 + dv
v
∧ η2 �→ Pλ,z(η1)

(3.44)

be the induced map as z is allowed to vary. With this notation understood, we have
that

Gq = (Id−Pq−1)˜G
q

with ˜Gq the operator defined by

˜Gq(ω)=
∫ v

δwi(z)

ω2(t)
dt

t
.

The computation of dGq(ω) then yields the following result.
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Lemma 3.6 If a = (a1, . . . , a�) ∈ R
� is a choice of weight, then for q <

mi

2 − ai , we
have that

WHq

QFC(Vi , φ, a)∼= WHq

QFC(Zi,φ, (ai+1, . . . , a�)).

Proof Let ω ∈ xaAQFC,d�q(Vi ) be a form such that dω has no dv factor, so that by
(3.38),

v
∂ω1

∂v
= dZi

ω2. (3.45)

In particular, this holds if ω ∈ xaAQFC,d�q(Vi ) is a closed form. To compute
dGq(ω), we need to perform a preliminary computation. First, for Pq−1, notice that
for λi := ai + (q − 1)− mi

2 < 0 and η = ˜Gq(ω), we have that

dZi
Pq−1(η)= dZi

(

− 2λi

(δwi(z))−2λi

∫ δwi

0
v−2λi η(v)

dv

v

)

= dwi

wi

∧ (2λiPq−1(η)− 2λiη(δwi)
)+ Pλi,z(dZi

η)

= dwi

wi

∧ (2λiPq−1(η)
)+ Pλi,z(dZi

η),

(3.46)

where Pλi,z was defined in (3.43) and in the last line, we have used the fact that
η(δwi)= ˜Gq(ω)(δwi)= 0. Hence, we compute that

d(Gq(ω))= dZi
(Id−Pq−1)˜G

q(ω)+ dv

v
∧ω2

=−dwi

wi

∧ (2λiPq−1(˜G
q(ω)))+ (Id−Pλi,z)dZi

˜Gq(ω)+ dv

v
∧ω2.

(3.47)
But using that (Id−Pλi,z) gives zero when acting on sections constant in v, we see
that

(Id−Pλi,z)dZi
˜Gq(ω)= (Id−Pλi,z)dZi

(∫ v

δwi

ω2(t)
dt

t

)

= (Id−Pλi,z)

(

−dwi

wi

∧ω2(δwi)+
∫ v

δwi

dZi
ω2(t)

dt

t

)

= (Id−Pλi,z)

∫ v

δwi

∂

∂t
ω1(t)dt

= (Id−Pλi,z)(ω1(v)−ω1(δwi))

= (Id−Pλi,z)ω1(v).

(3.48)
Hence, we see that

d(Gq(ω))=−dwi

wi

∧ (2λiPq−1(˜G
q(ω))
)+ (Id−Pλi,z)ω1 + dv

v
∧ω2. (3.49)
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Since dwi

wi
has bounded pointwise norm with respect to the metric hQFC, we see that

dwi

wi

∧ (2λiPq−1(˜G
q(ω)
) ∈ xaAQFC,2�

q(Vi ).

On the other hand, with respect to the pointwise norm | · |hQFC induced by the metric
hQFC, we have that

|Pλi,zω1|hQFC =− 2λi

(δwi)−2λi

∣

∣

∣

∣

∫ δwi

0
t−2λi ω1(t)

dt

t

∣

∣

∣

∣

hQFC

=− 2λi

(δwi)−2λi

∣

∣

∣

∣

∫ δwi

0
t−2λi−2t2ω1(t)

dt

t

∣

∣

∣

∣

hQFC

≤− 2λi

(δwi)−2λi−2

∣

∣

∣

∣

∫ δwi

0
t−2λi−2ω1(t)

dt

t

∣

∣

∣

∣

= −2λi

−2λi − 2
|Pq(ω1)|hQFC ,

(3.50)

which shows that Pλi,zω1 ∈ xaAQFC,2�
q(Ui ). Hence, this shows that dGq(ω) ∈

xaAQFC,2�
q(Vi ), that is, that

Gq(ω) ∈ xaAQFC,2,d�q−1(Vi ).

Finally this means that ω and ω′ = ω − dGq(ω) are such that dω = dω′, and by
construction, ω′ has no dv factor. In particular, if ω is closed, then ω and ω′ represent
the same cohomology class with ω′ having no dv factor. Since it is closed, it must be
constant in v. Clearly moreover, if ω′ = dη with η ∈ xaAQFC,2�

q−1(Vi ), then dη has
no dv factor, so by the same argument, η′ = η − dGq−1(η) has no dv factor and is
such that dη′ = ω′. Since ω′ has no dv factor, this means that η′ must also be constant
in v. This means that to compute weighted L2-cohomology in Vi for QFB-conormal
forms, we only need to use weighted conormal forms in Vi that have no dv factor and
are constant in v. Now, in c−1

φ (Ui ), we can suppose that x1 = · · · = xi−1 = 1, so we
can write

xa = vai x
ai+1−ai

i+1 · · ·xa�−ai

� = vai w
−ai

i x
ai+1
i+1 · · ·xa�

� . (3.51)

Thus, using the condition (3.39) with ω1 = ω′ and ω2 = 0, we find using (3.51) and
integrating in v that

‖ω′‖2
xaL2

QFC�q(U)
=
(

δmi−2q−2ai

mi − 2q − 2ai

)∫

Zi

‖ω′‖2
hQFC

x
−2ai+1
i+1 · · ·x−2a�

� dhQFC <∞.

(3.52)
Hence, these weighted conormal forms constant in v are in one-to-one correspon-
dence with

x
ai+1
i+1 · · ·xa�

� AQFC,2,d�q(Zi) for q <
mi

2
− ai, (3.53)

from which the result follows. �
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Let us now consider the case when q − 1 <
mi

2 − ai < q . In this case, we can get
some vanishing result provided some extra condition is satisfied.

Lemma 3.7 Let a = (a1, . . . , a�) ∈ R
� be a weight such that q − 1 <

mi

2 − ai ≤ q . If
the map WHq

QFC(Zi,φ, (ai+1, . . . , a�))→Hq(Zi) is injective, then

WHq

QFC(Vi , φ, a)= {0}.

Proof Let ω ∈ xaAQFC,2�
q(Vi ) be a closed form. In this setting, it is easier to con-

sider ˜Gq(ω) instead Gq(ω). Then one computes that

d˜Gq(ω)= d

(∫ v

δwi(z)

ω2(t)
dt

t

)

= dv

v
∧ω2(v)− dwi

wi

∧ω2(δwi)+
∫ v

δwi(z)

dZi
ω2(t)

dt

t

= dv

v
∧ω2(v)− dwi

wi

∧ω2(δwi)+
∫ v

δwi(z)

∂ω1

∂t
(t)dt

= ω(v)− (ω|v=δwi

)

.

(3.54)

Since ω|v=δwi
is constant in v and q−1 <

mi

2 −ai ≤ q , the only way it can be an ele-
ment of xaAQFC,2�

q(Vi ) is if it vanishes trivially. If this is not the case, then ˜Gq(ω) is
an element of xaAQFC,2�

q−1(Vi ), but not of xaAQFC,2,d�q−1(Vi ). However, thanks
to the fact that q −1 <

mi

2 −ai , we can try to look for a form η ∈ xaAQFC,2�
q−1(Vi )

constant in v such that

dη = dZi
η = ω|v=δwi

.

Indeed, if such a form exists, the result follows by replacing ˜Gq(ω) with ˜Gq(ω)+ η,
since then

ω = d(˜Gq(ω)+ η) and ˜Gq(ω)+ η ∈ xaAQFC,2,d�q−1(Vi ).

Clearly, such a form η exists if and only if the form ω|v=δwi
∈ x

ai+1
i+1 · · ·

x
a�

� AQFC,2�
q(Zi) defines a trivial cohomology class in WHq

QFC(Zi,φ, (ai+1, . . . ,

a�)), so that the proof is completed by the lemma below and our assumption that the
natural map WHq

QFC(Zi,φ, (ai+1, . . . , a�))→Hq(Zi) is an inclusion. �

Lemma 3.8 If ω ∈ xaAQFC,2�
q(Vi ) is a closed form of degree q such that q − 1 <

mi

2 − ai ≤ q , then ω|v=δwi
defines a trivial cohomology class in Hq(Zi).

Proof Instead of the coordinates (v, z), we will use the coordinates (xi, z) in Vi , so
that v = δwi corresponds to xi = δ. Write now ω in terms of this decomposition,

ω = ω1 + dx1 ∧ω2,
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where this time the ωj do not involve dx1 and are distinct from those occurring in
(3.37). In terms of this decomposition,

0 = dω = dZi
ω1 + dxi ∧

(

∂ω1

∂xi

− dZi
ω2

)

=⇒ dZi
ω1 = 0,

∂ω1

∂xi

= dZi
ω2,

(3.55)
so we see that the cohomology class of ω1 ∈ Hq(Zi) does not depend on xi . To see
that this class must in fact vanish, let us restrict ω1 to the region Ci of Vi where
wi ≥ ε for some ε > 0. Thus,

Ci
∼= [0,1)xi

×Ki,

where Ki ⊂ Zi is the compact region of Zi where wi ≥ ε. In the region Ci , the QFC-
metric (3.31) is quasi-isometric to the cusp metric

dx2
i

x2
i

+ x2
i gKi

, (3.56)

where gKi
is some (geodesically incomplete) Riemannian metric on the manifold

with boundary Ki . By the discussion above, ω1(xi) defines a class in Hq(Ki) which
does not depend on xi . Putting absolute boundary condition on the boundary ∂Ki , let
ν be the harmonic representative of ω1(xi) on Ki . In particular, ν does not depend on
xi and

‖ω1(xi)‖L2,gKi
≥ ‖ν‖L2,gKi

∀xi, (3.57)

where ‖ · ‖L2,gKi
is the L2-norm induced by the metric gKi

. However, since ω ∈
xaL2

QFC�q(Vi ), when we restrict to Ci , we see that

∫ δ

0
‖ω1(xi)‖2

L2,gKi

x
−2αi

i

dxi

xi

<∞ with αi = ai + q − mi

2
≥ 0. (3.58)

The combination of (3.57) and (3.58) implies that ν ≡ 0, that is, that the cohomology
class of ω1(x1) in Hq(Zi) must vanish. �

Combining all these lemmas yields the following local description of weighted
L2-cohomology of a QFC-metric.

Theorem 3.9 Let a = (a1, . . . , a�) ∈ R
� be such that ai 	= mi

2 − q + 1 for each q ∈
{0,1, . . . ,mi}. Suppose moreover that for q such that q−1 <

mi

2 −ai ≤ q , the natural
map WHq

QFC(Zi,φ, (ai+1, . . . , a�)) → Hq(Zi) is an inclusion. Then for an open set
Ui as in (3.27) with Bi contractible with smooth boundary, we have that

WHq

QFC(Ui , φ, a)=
{

WHq

QFC(Zi,φ, (ai+1, . . . , a�)), if q <
mi

2 − ai;
{0}, otherwise.

(3.59)
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Proof Since the model QFC-metric (3.30) corresponds to the Cartesian product of

(Vi ,
dv2

v2 + v2gZi
) with (Bi, gBi

) and since the range of the exterior differential on
Bi is closed for absolute boundary conditions, we can use [45, Theorem 2.29] to
conclude that

WHq

QFC(Ui , φ, a)= WHq

QFC(Vi , φ, a)

using the fact that Bi is contractible. Hence, the result follows from Lemma 3.5,
Lemma 3.6 and Lemma 3.7. �

This has various consequences.

Corollary 3.10 Let a = (a1, . . . , a�) ∈ R
� be such that for each i and each q ∈

{0,1, . . . ,mi}, ai 	= mi

2 − q + 1. Suppose moreover that for each i and q such that
q − 1 <

mi

2 − ai ≤ q , the natural map WHq

QFC(Zi,φ, (ai+1, . . . , a�)) → Hq(Zi) is

an inclusion. Then the cohomology groups WHq

QFC(M,φ,a) are finite dimensional
for each q .

Proof When Zi is a closed manifold, the weighted L2-cohomology is identified with
de Rham cohomology, which is finite dimensional. Hence proceeding by induction
on the depth, we can show using Mayer-Vietoris long exact sequences in weighted
L2-cohomology that WH∗

QFC(Zi,φ, a) is finite dimensional for each i. The same
argument then shows that WH∗

QFC(M,φ,a) is finite dimensional as well. �

Notice in particular that this corollary implies that the operator

d : xaL2
QFC,d�q(M \ ∂M)→ xaL2

QFC�q+1(M \ ∂M) (3.60)

has closed range. Assuming slightly more yields the following.

Corollary 3.11 For a weight a ∈ R
� such that both a and −a satisfy the hypotheses

of Corollary 3.10, the operator (3.60) has closed range, as well as it formal adjoint
d∗
a = x2a ◦ d∗ ◦ x−2a with respect to the inner product on xaL2

QFC�∗(M \ ∂M).
Moreover, the self-adjoint extension of the Hodge-deRham operator ða := d + d∗

a on
xaL2

QFC�∗(M \ ∂M) is Fredholm. Finally, there is a natural identification

WHq

QFC(M,φ,±a)∼= L2Hq(M \ ∂M,gQFC, x±a) (3.61)

and the natural pairing

(ω,η)→
∫

M\∂M

ω ∧ η

between xaL2�q(M \M,g) and x−aL2�m−q(M \M,g) induces a non-degenerate
pairing (Poincaré duality) between WHq(M,φ,a) and WHm−q(M,φ,−a).
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Proof As already noted, the operator (3.60) has closed range. Since d∗ = ± ∗ d∗
where ∗ is the Hodge star operator, we see also that d∗a has closed range from the fact
that the operator

d : x−aL2
QFC,d�q(M \ ∂M)→ x−aL2

QFC�q+1(M \ ∂M)

has closed range. Hence, the Kodaira decomposition (3.10) induces the natural iden-
tification (3.61). Since d and d∗

a have orthogonal images in xaL2
QFC�∗(M \ ∂M), the

domain of ða is the intersection of the domains of d and d∗a . We also see from the
Kodaira decomposition that ða must have closed range. Moreover, its kernel corre-
sponds to L2H∗(M \ ∂M,gQFC, xa), which is finite dimensional by (3.61). The same
is true for its cokernel by formal self-adjointness, so that ða must be Fredholm as
claimed. Finally, a quick computation shows that the operator ∗a := x−2a∗ induces
an isomorphism

∗a : L2Hq(M \ ∂M,gQFC, xa)→ L2Hm−q(M \ ∂M,gQFC, x−a)

with inverse (−1)q(m−q)x2a∗, establishing Poincaré duality between WHq(M,φ,a)

and WHm−q(M,φ,−a). �

For more specific choices of weights, these weighted L2-cohomology groups can
be identified with intersection cohomology.

Corollary 3.12 Suppose that dimZi > 0 for each i, so ̂Mφ has no singular stratum of
codimension 1. Let p be a perversity and let a = (a1, . . . , a�) be the weight defined
by ai = p(mi + 1)− mi−2

2 − ε for some fixed 0 < ε < 1
2 . Suppose that for each i and

q such that q − 1 <
mi

2 − ai ≤ q , the natural map

WHq

QFC(Zi,φ, (ai+1, . . . , a�))→Hq(Zi)

is an inclusion. Then there is an isomorphism

WH∗
QFC(M,φ,a)∼= IH∗

p(
̂Mφ).

Proof With this choice of weight, the statement of Theorem 3.9 can be reformulated
as

WHq(Ui , φ, a)=
{

WHq(Zi,φ, (ai+1, . . . , a�)), if q < mi − 1 − p(mi + 1)+ ε;
{0}, otherwise.

(3.62)
This is the same behavior as IH∗

p(Ui ), cf. [23, (8)]. Thus, proceeding by induction
on the depth of (M,φ), we can use [23, Proposition 1] with (3.62) to obtain the
result. �

Note that in this corollary, the upper middle perversity m defined by m(�)= � �−1
2 �

(also) corresponds to choosing the weight a = (ε, . . . , ε), while lower middle perver-
sity m defined by m(�) = � �−2

2 � (also) corresponds to the weight a = (−ε, . . . ,−ε).
In this case, with some further assumptions on the dimensions of the fibers of the
fiber bundles φi :Hi → Si , we can also compute L2-cohomology.
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Corollary 3.13 Suppose that for all i ∈ {1, . . . , �}, dimZi is odd and the natural map

WH
mi+1

2
QFC (Zi,φ,0)→H

mi+1
2 (Zi)

is an inclusion. Then

L2H∗(M \ ∂M,gQFC)∼= WH∗
QFC(M,φ,0)∼= IH∗

m(̂Mφ)= IH∗
m(̂Mφ). (3.63)

Proof First, since dimZi is odd for all i, the stratified space ̂Mφ is Witt, so there is a
natural identification

IH∗
m(̂Mφ)= IH∗

m(̂Mφ).

More importantly, the hypothesis that dimZi is odd and that WH
mi+1

2
QFC (Zi,φ,0) →

H
mi+1

2 (Zi) is an inclusion for all i allows us to take a = (0, . . . ,0) in Theorem 3.9,
Corollary 3.10 and Corollary 3.11, giving in particular the identification

L2H∗(M \ ∂M,gQFC)∼= WH∗
QFC(M,φ,0).

Finally, to obtain the identification with upper middle intersection cohomology, no-
tice that (3.59) gives in this case

WHq(Ui , φ,0)=
{

WHq(Zi,φ,0), if q <
mi

2 ;
{0}, otherwise,

(3.64)

which, since mi is odd, is the same as the local behavior of upper middle and lower
middle intersection cohomology [23, (8)]. The result therefore follows from [23,
Proposition 1]. �

Corollary 3.14 If dimZi is odd and IH
mi+1

2
m (̂(Zi)φ)= {0} for all i, then

L2H∗(M \ ∂M,gQFC)∼= WH∗
QFC(M,φ,0)∼= IH∗

m(̂Mφ)= IH∗
m(̂Mφ).

Proof In this case, one can check recursively with respect to the depth of ̂Mφ that the
hypotheses of Corollary 3.13 are satisfied, so that (3.63) holds. �

Remark 3.15 In [26], a related result was obtained for iterated fibered cusp metrics.

4 L2-Cohomology of the Nakajima metric

We can apply the results of the previous section to study the weighted L2-
cohomology of the Nakajima metric gn on the Hilbert scheme or Douady space
Hilbn

0(C2) of n points on C
2. Recall that Hilbn

0(C2) is a crepant resolution

π : Hilbn
0(C2)→ (C2)n0/Sn (4.1)
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of the quotient of

(C2)n0 = {q ∈ (C2)n |
∑

j

qj = 0}

by the action of the symmetric group Sn given by

σ ∈ Sn, q ∈ (C2)n0, σ · q := (qσ−1(1), . . . , qσ−1(n)).

For instance, when n = 2, (C2)2
0 = C

2 and Hilb2
0(C

2) = T ∗
CP

1 is just the standard
crepant resolution T ∗

CP
1 →C

2/Z2 obtained by blowing up the origin of C2/Z2.
By the work of Nakajima [40], the Hilbert scheme Hilbn

0(C2) admits a natural
complete hyperKähler metric gn obtained via the hyperKähler quotient construction
of [25]. In [28], Joyce introduced the notion of QALE-metrics and constructed a hy-
perKähler example on Hilbn

0(C2) by solving an appropriate complex Monge-Ampère
equation. It was subsequently shown by Carron [11] that these two hyperKähler met-
rics coincide, showing in particular that the Nakajima metric is a QALE-metric.

In particular, (Hilbn
0(C2), gn) admits a QAC-compactification. To describe it, let

us review from [11] how the crepant resolution (4.1) can be performed iteratively
using the notion of local product resolution of [28]. Let p= (I1, . . . , Ik) be a partition
of {1, . . . , n} and consider the associated vector space

Vp = {q ∈ (C2)n0 | ∀� ∈ {1, . . . , k}, qi = qj ∀i, j ∈ I�}. (4.2)

There are corresponding subgroups

Ap = {γ ∈ Sn | γ · q = q ∀q ∈ Vp} ∼= Sn1 × · · · × Snk
,

Bp = {γ ∈ Sn | γ · Vp = Vp}.
(4.3)

Clearly, Ap is a normal subgroup of Bp, so the quotient Np := Bp/Ap is a group as
well.

Example 4.1 For i, j ∈ {1, . . . , n} two distincts elements, consider the partition

pi,j = {{i, j}, {k1}, . . . , {kn−2}}, (4.4)

where {k1, . . . , kn−2} = {1, . . . , n} \ {i, j}. In this case, Vi,j := Vpi,j
= {q ∈ (C2)n0 |

qi = qj }, Ai,j := Api,j
∼= S2 ∼= Z2, Bi,j := Bpi,j

= S2 × Sn−2 and Ni,j = Npi,j
=

Sn−2. In fact, Bi,j = Ai,j × Ni,j is just a product. In general however, Bp is only a
semi-direct product of Ap and Np. For instance, when n= 4 and p= {{1,2}, {3,4}},
then Ap = S2 × S2 = Z2 × Z2, Np = Z2 acts by swapping or not the two clusters
{1,2} and {3,4} of p, and Bp =Ap �Np is only a semi-direct product.

Let also Wp = V ⊥
p

∼=⊕k
�=1(C

2)
n�

0 be the orthogonal complement of Vp, where

n� = |I�|. Now, Ap acts on Wp and the quotient Wp/Ap =⊕k
�=1(C

2)n�/Sn�
admits

a natural crepant resolution, namely

πp : Hilbp0 (C2) :=
k
∏

�

Hilbn�

0 (C2)→Wp/Ap. (4.5)
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On the other hand, the action of Bp on Wp × Vp = (C2)n0 descends to an action of
Np = Bp/Ap on (Wp ×Vp)/Ap = (Wp/Ap)×Vp, which in turns lift to an action of
Np on Hilbp0 (C2)×Vp. In fact, Np acts on each factor of Hilbp0 (C2)×Vp separately,
so the quotient

(

Hilbp0 (C2)× Vp

)

/Np is the total space of a flat orbibundle

Hilbp0 (C2)
(

Hilbp0 (C2)× Vp

)

/Np

Vp/Np.

(4.6)

Example 4.2 For p= pi,j , the action of Np
∼= Sn−2 on Hilb

pi,j

0 (C2)×Vpi,j
is trivial on

the first factor, while on the second factor is the action of Sn−2 on the variables com-
plementary to qi and qj in Vpi,j

. The corresponding orbibundle in (4.6) is therefore
trivial. If instead we take n= 4 and p= {{1,2}, {3,4}}, then the corresponding action
of Np

∼= Z2 on Hilbp0 (C2)= Hilb2
0(C

2)2 = (T ∗
CP

1)2 is generated by the involution

Hilb2
0(C

2)2 � (z1, z2) �→ (z2, z1) ∈ Hilb2
0(C

2)2,

so the flat orbibundle (4.6) has some non-trivial holonomy and is therefore non-trivial.

To see how these resolutions sit inside Hilbn
0(C2), recall that there is a partial

order2 on partitions given by

p≤ q ⇐⇒ Vp ≤ Vq. (4.7)

In other words, p≤ q if and only if q is a refinement of p. With respect to this partial
order, there is a unique maximal partition p∞ := {{1}, . . . , {n}}, as well as a unique
minimal partition p0 = {{1, . . . , n}}. Notice that the partitions pi,j of (4.4) are pre-
cisely those that are just below the maximal one. In fact, for p 	= p∞, we have that

Vp =
⋂

p≤pi,j

Vi,j .

Now, set

�p = {(i, j) ∈ {1, . . . , n}2 | p� pi,j }
and consider the set

�p :=
⎛

⎝

⋃

(i,j)∈�p

Vi,j

⎞

⎠/Ap.

2We use the convention opposite to the one of [11] to be consistent with the partial order of the boundary
hypersurfaces of the QAC-compactification of Hilbn

0(C2); see (4.11).
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For R > 0, consider the neighborhood

Tp = {q ∈ (C2)n0 | ∃(i, j) ∈�p, |qi − qj |< R}/Ap

of �p. With respect to the resolution (4.5), we can then consider the neighborhood

Up =
(

(πp × Id)−1(Tp)
)

/Np.

Then there are local biholomorphisms

νp :
((

(C2)n0/Ap

)

\ Tp

)

/Np → (C2)n0/Sn (4.8)

and

μp :
((

Hilbp0 (C2)× Vp

)

/Np

)

\ Up → Hilbn
0(C2) (4.9)

inducing the commutative diagram

((

Hilbp0 (C2)× Vp

)

/Np

) \ Up

μp

πp×Id

Hilbn
0(C2)

π

((

(C2)n0/Ap

) \ Tp
)

/Np

νp

(C2)n0/Sn.

(4.10)

These commutative diagrams precisely indicate how the resolution π : Hilbn
0(C2)→

(C2)n0/Sn can be decomposed in terms of local product resolutions, at least away
from the origin.

There is of course a natural action of Sn on partitions, namely, for σ ∈ Sn,

σ · p= q ⇐⇒ σ · Vp = Vq.

This induces the equivalence relation

p∼ q =⇒ ∃σ ∈ Sn, σ · p= q.

In other words, if χ : (C2)n0 → (C2)n0/Sn is the quotient map, then p∼ q if and only
if χ(Vp)= χ(Vq). Under this equivalence relation, an equivalence class corresponds
to a partition of n indistinguishable points.

Denoting by (˜Hilb
n

0(C2),φn) the QAC-compactification of (Hilbn
0(C2), gn), we

see from (4.10) that each equivalence class [p] of a non minimal partition p corre-
sponds to a boundary hypersurface H[p] of ˜Hilb

n

0(C2). In fact, [p] �→ H[p] gives a
one-to-one correspondence between (non minimal) partitions of n indistinguishable
points and the boundary hypersurfaces of ˜Hilb

n

0(C2). Moreover, the partial order on
the boundary hypersurfaces of ˜Hilb

n
0(C2) is the one induced by the one on partitions,

H[p] ≤H[q] ⇐⇒ [p] ≤ [q] ⇐⇒ ∃p ∈ [p],q ∈ [q] such that p≤ q. (4.11)



C. Kottke, F. Rochon

To describe the associated fiber bundle on H[p] coming from the iterated fibration
structure, notice that the vector space Vp can also be seen as a cone with cross-
section Lp a sphere of real dimension 2 dimC Vp − 1. The action of Np induces one
on this cross-section, so that Vp/Np can be regarded as a cone with cross-section
sp := Lp/Np. This cross-section is singular, but it has at most orbifold singularities,
so it is a stratified space admitting a resolution by a manifold with fibered corners
that we will denote Sp. This is precisely the base of the fiber bundle

φ[p] :H[p] → S[p], (4.12)

whose fiber is then the QAC-compactification ˜Hilb
p

0 (C2) of Hilbp0 (C2) =
Hilbn1

0 (C2) × · · · × Hilbnk

0 (C2) equipped with the QALE-metric given by the prod-
uct of Nakajima metrics gp := gn1 × gn2 × · · · × gnk

. Indeed, by [29], gp is again
a QALE-metric and its QAC-compactification ˜Hilb

p

0 (C2) can be obtained from the
Cartesian product

˜Hilb
n1
0 (C2)× · · · ×˜Hilb

nk

0 (C2)

by blowing-up (in the sense of Melrose [36]) certain corners. Let us denote by φp the
corresponding iterated fibration structure. By [29], for each boundary hypersurface of
˜Hilb

p

0 (C2), the fibers of the induced fiber bundle is of the form ˜Hilb
q

0 (C2) for some
refined partition q≥ p.

We are now ready to apply Theorem 3.9 to the QAC-compactification (˜Hilb
n

0(C2),

φn). Since the corresponding QFC-metric is in fact a QCyl-metric, we will use the
notation

WH∗
QCyl(
˜Hilb

n

0(C2),φn, a) := WH∗
QFC(˜Hilb

n

0(C2),φn, a).

Corollary 4.3 Fix 0 < ε < 1
2 and let p be a partition of {1, . . . , n}. If a is the multi-

weight equal to ε for each boundary hypersurfaces of ˜Hilb
p

0 (C2), then

WH∗
QCyl(
˜Hilb

p

0 (C2),φp, a)∼=H ∗
c (Hilbp0 (C2)) and

WH∗
QCyl(
˜Hilb

p

0 (C2),φp,−a)∼=H ∗(Hilbp0 (C2)).
(4.13)

In particular, if p= p0 = {{1, . . . , n}}, this gives

WH∗
QCyl(
˜Hilb

n

0(C
2),φn, a)∼=H ∗

c (Hilbn
0(C2)) and

WH∗
QCyl(
˜Hilb

n

0(C
2),φn,−a)∼=H ∗(Hilbn

0(C2)).
(4.14)

Proof For this choice of multiweight a, the statement of Theorem 3.9 can be refor-
mulated as

WHq

QCyl(Ui , φ,−a)=
{

WHq

QCyl(Zi,φ, (−ai+1, . . . ,−a�)), if q ≤ mi

2 ;
{0}, otherwise.

(4.15)
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Now, by [40, Corollary 5.10], we know that Hilbn
0(C2) has no cohomology above the

middle degree for all n. By Künneth formula, the same is true for Hilbp0 (C2) for all
partitions p. Since for each i, Zi is ˜Hilb

q

0 (C2) for some refined partition q ≥ p, we
see proceeding by induction on dim Hilbp0 (C2) that we can assume already that

WHq(Zi,φ, (−ai+1, . . . ,−a�))=Hq(Zi),

so that Theorem 3.9 can be applied and implies that

WHq

QCyl(Ui , φ,−a)=Hq(Zi)

since Zi has no cohomology above the middle degree. Hence, on the stratified space
associated to

(˜Hilb
p

0 (C2),φp),

the weighted L2-cohomology associated to the QCyl-metric and the multiweight −a

has the same local behavior as absolute cohomology on Hilbn
0(C2). Using the five-

lemma and commutative diagrams of Mayer-Vietoris long exact sequences, one can
therefore show that the natural map

WH∗
QCyl(
˜Hilb

p

0 (C2),φp,−a)→H ∗(Hilbp0 (C2)) (4.16)

is an isomorphism. For the multiweight a, using that the map H
mi
2

c (Zi) → H
mi
2 (Zi)

is an isomorphism, one can dualize the argument, or more simply use Poincaré duality
to see that the map

H ∗
c (Hilbp0 (C2))→ WH∗

QCyl(
˜Hilb

p

0 (C2),φp, a) (4.17)

dual to (4.16) is also an isomorphism. �

This can be used to compute the L2-cohomology of (Hilbn
0(C2), gn). For this, we

need to invoke the decay of L2-harmonic forms of [30].

Proposition 4.4 For n≥ 2, there exists ε > 0 and a QALE-metric ĝn quasi-isometric
to gn such that the space of L2-harmonic forms on (Hilbn

0(C2), ĝn) is finite dimen-
sional and included in vεL2�∗(Hilbn

0(C2), ĝn), where v is a total boundary defining
function for ˜Hilb

n

0(C2).

Proof This is a consequence Corollary 2.8. First, by the vanishing theorem of Hitchin
[24], the fibers of (4.12) have only non-trivial L2-cohomology in middle degree. As
discussed, for any partition p > p0, the stratified space sp = Lp/Np is indeed the
quotient of a sphere by a finite group of isometries Np. Furthermore,

dimR Sp = dimR Lp = 2 dimC Vp − 1 ≥ 3,
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where dimC Vp is a positive even integer. Similarly, for partitions p > q > p0, we
have that

dimR Sp − dimR Sq − 1 = 2(dimC Vp − dimC Vq)− 1 ≥ 2(2)− 1 = 3.

Hence, all the hypotheses of Corollary 2.8 are satisfied. Applying it yields the result.
�

Corollary 4.3 and Proposition 4.4 can then be combined to give a proof of the
Vafa-Witten conjecture [43].

Theorem 4.5 For all n≥ 2,

L2H∗(Hilbn
0(C2), gn)∼= Im(H ∗

c (Hilbn
0(C2))→H ∗(Hilbn

0(C2))). (4.18)

Proof By the vanishing result of Hitchin [24] and [40, Corollary 5.10], we only need
to show that (4.18) holds in middle degree, that is, in degree 2n−2. In other words, by
the result of [6, § 1.3] or [41, Lemma 1.4], we need to show that the natural injective
map

Im(H ∗
c (Hilbn

0(C2))→H ∗(Hilbn
0(C2)))→ L2H∗(Hilbn

0(C2), gn)

∼= L2H∗(Hilbn
0(C2), ĝn)

(4.19)

is also surjective. To see this, it suffices to show by Corollary 4.3 and the conformal
invariance of the L2-norm of middle degree forms, that the map

Im(WH∗
QCyl(
˜Hilb

n

0(C2),φn, a)→ WH∗
QCyl(
˜Hilb

n

0(C2),φn,−a))

→ L2H∗(Hilbn
0(C2), ĝn)

(4.20)

is surjective, where a is the multiweight given by ai = ε for all i with ε > 0 suffi-
ciently small. However, by Proposition 4.4, a harmonic form ω ∈ L2H∗(Hilbn

0(C2),

ĝn) defines a class in (WH∗
QCyl(
˜Hilb

n

0(C2),φn, a) and is therefore in the image of
(4.20), showing that the map is surjective. �

5 L2-Cohomology of quasi-asymptotically conical metrics of depth 2

In this section, we consider a QAC-metric gQAC of depth 2, that is, the corresponding
manifold with fibered corners (M,φ) is of depth 2. We make the following assump-
tion on gQAC.

Assumption 5.1 For each submaximal boundary hypersurface Hi , we suppose that
each fiber Zi of φi : Hi → Si is at least 4-dimensional with boundary ∂Zi such that
its universal cover˜∂Zi is a closed manifold which is a rational homology sphere.

We will make use of the following basic fact about the L2-cohomology of b-
metrics.
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Lemma 5.2 Let Z be a compact manifold with boundary ∂Z and let x ∈ C∞(Z) be a
boundary defining function. If gb is a b-metric on Z \ ∂Z, then

WHq(Z \ ∂Z,gb, x
a)∼=
{

Hq(Z), a < 0,

H
q
c (Z), a > 0.

(5.1)

Moreover, if ∂Z is a rational homology sphere and a 	= 0, then the natural map

WHq(Z \ ∂Z,gb, x
a)→Hq(Z) (5.2)

is injective unless a > 0 and q = dimZ.

Proof The description (5.1) is a standard result which is essentially a particular and
easier case of [23, Proposition 2]. Indeed, given p ∈ ∂Z, choosing a neighborhood U
of p of the form U ∼= B × [0, ε) with B ⊂ ∂Z a contractible neighborhood of p in
∂Z, we see applying the Künneth formula of [45, Corollary 2.34] that for a 	= 0,

WHq(U \ (U ∩ ∂Z), gb, x
a)∼=
{

H 0(B)∼=R, a < 0, q = 0
{0}, otherwise.

Thus, for a < 0, the weighted L2-cohomology behaves locally like absolute cohomol-
ogy, while for a > 0, it behaves locally like compactly supported cohomology. Using
the five-lemma and commutative diagrams of Mayer-Vietoris long exact sequences,
one can therefore establish (5.1).

For (5.2), notice that the assumption that ∂Z is a rational homology sphere implies
through the long exact sequence in cohomology of the pair (Z, ∂Z) that the natural
map

H
q
c (Z)→Hq(Z) is an isomorphism for 0 < q < dimZ. (5.3)

Since H 0
c (Z) = {0}, the injectivity of (5.2) (unless a > 0 and q = dimZ) follows

from (5.1) and (5.3). �

This observation allows us to apply the results of § 3 as follows.

Proposition 5.3 Suppose that gQAC is a QAC-metric of depth 2 satisfying Assump-
tion 5.1. Let a = (a1, . . . , a�) ∈ R

� be a multiweight such that ai 	= mi

2 − q + 1 for
each q ∈ {0,1, . . . ,mi}. Then the natural map

WHq

QCyl(Zi \ ∂Zi,φ, (ai+1, . . . , a�))→Hq(Zi) (5.4)

is an inclusion whenever q − 1 <
mi

2 − ai ≤ q . In particular, the conclusions of The-
orem 3.9 and Corollaries 3.10 and 3.11 hold for WH∗

QCyl(M,φ,a).

Proof By (5.2) in the previous lemma, the only way (5.4) could fail to be an inclusion
is if q =mi , in which case ai < 1− mi

2 ≤ 0 since we assume mi ≥ 4. Hence, the map
(5.4) is still an inclusion by Lemma 5.2. �
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This has the following consequences for the weighted cohomology of gQAC.

Proposition 5.4 Suppose gQAC is a QAC-metric of depth 2 satisfying Assumption 5.1.
For 0 < ε < 1

2 , consider the multiweight a = (ε, . . . , ε) ∈R
�. Then

WHq

QAC(M,φ,±a)= WHq

QCyl

(

M,φ,±a +
(m

2
− q
)

)

is finite dimensional and WHq

QAC(M,φ,a) is Poincaré dual to WHm−q

QAC(M,φ,−a).
More importantly, there are natural maps

WHq

QAC(M,φ,a)→ L2Hq(M \ ∂M,gQAC), (5.5)

L2Hq(M \ ∂M,gQAC)→ WHq

QAC(M,φ,−a), (5.6)

with composition

WHq

QAC(M,φ,a)→ L2Hq(M \ ∂M,gQAC)→ WHq

QAC(M,φ,−a) (5.7)

corresponding to the obvious map.

Proof Finite dimensionality and Poincaré duality is a consequence of Proposition 5.3,
Corollary 3.10 and Corollary 3.11. Clearly, there is a map

{ω ∈ xaL2�q(M \ ∂M,gQAC) | dω = 0}→ WH
q
(M \ ∂M,gQAC)

∼= L2Hq(M \ ∂M,gQAC).

To see that it induces a well-defined map (5.5), we need to check that

{dη | η ∈ v−1xaL2�q−1(M \ ∂M,gQAC), dη ∈ xaL2�q(M \ ∂M,gQAC)}

maps to zero in WH
q
(M \∂M,gQAC), where v ∈ C∞(M) is a total boundary defining

function inducing the QAC-structure on (M,φ). To this end, let ψ ∈ C∞(R) be a
function equal to 1 on (−∞,1] and to 0 on [2,∞) and consider the sequence

ηk =ψ(− logv − k)η, for k ∈N.

Then ηk is of compact support and clearly

dηk =ψ ′(− logv − k)

(

−dv

v2

)

∧ (vη)+ψ(− logv − k)dη → dη

∈ L2(M \ ∂M,gQAC)

since dv
v2 is bounded with respect to the norm induced by gQAC and vη ∈ xaL2(M \

∂M,gQAC). Approximating each ηk by a smooth compactly supported form, we thus

see that dη is in the L2-closure of the image of d :�q−1
c (M \∂M)→�

q
c (M \∂M), so

vanishes in WH
q
(M \ ∂M,gQAC). On the other hand, the map (5.6) is just the natural
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map. Finally, to see that the composition (5.7) is the obvious map, we proceed as in
[41, Lemma 1.4]. More precisely, if

β = lim
k→∞dγk in L2�q(M \ ∂M,gQAC)

with γk ∈ �
q−1
c (M \ ∂M), then dβ = 0. Moreover, for α ∈ xaL2�m−q(M \

∂M,gQAC) with dα = 0 representing a class in WHm−q

QAC(M,φ,a), we have that

∫

M\∂M

β ∧ α = lim
k→∞

∫

M\∂M

d(γk ∧ α)= 0.

Hence, by Poincaré duality, β ≡ 0 in WHq

QAC(M,φ,−a). This shows that the map

(5.6) can be defined by looking at the image of a representative of a class in WH
q
(M \

∂M,gQAC), hence that the composition (5.7) is just the obvious map. �

This can be used to compute the L2-cohomology of gQAC provided we make the
following assumption.

Assumption 5.5 For each boundary hypersurface Hi , we suppose that (2.9) holds
Hj = Hi and that (2.10) holds for each Hj < Hi . For Hi submaximal, we suppose
also that a fiber Zi of φ : Hi → Si has only non-trivial L2-cohomology in middle
degree whenever dimZi = 4.

Theorem 5.6 Let gQAC be a QAC-metric of depth 2 on (M,φ) and suppose that
Assumption 5.1 and Assumption 5.5 hold. In this case, the reduced L2-cohomology
of gQAC is given by

L2Hq(M \ ∂M,gQAC)∼= Im(WHq

QAC(M,φ,a)→ WHq(M,φ,−a)), (5.8)

where a = (ε, . . . , ε) ∈R
� with 0 < ε < 1

2 .

Proof First, notice that by Assumption 5.1 and Assumption 5.5, Theorem 2.5 holds.
In particular, for Hi submaximal with dimZi > 4, (2.11) holds thanks to Assump-
tion 5.1, while it holds also appealing to Assumption 5.5 when dimZi = 4. Hence,
changing gQAC in its quasi-isometry class, we can assume that

L2Hq(M \ ∂M,gQAC)⊂ vεL2�q(M \ ∂M,gQAC)

for some small ε > 0, where v =∏i xi is a total boundary defining function. This
induces a map

L2Hq(M \ ∂M,gQAC)→ WHq(M,φ,a) (5.9)

and shows that the natural map (5.5) is surjective. This also shows that the natural
map (5.6) is injective. Indeed, if ω ∈ L2Hq(M \ ∂M,gQAC) is non-zero, then

∫

M\∂M

ω ∧ ∗ω = ‖ω‖2
L2

QAC
	= 0,
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which implies by Poincaré duality that ω represents a non-zero element in

WHq

QAC(M,φ,−a)∼=
[

WHm−q

QAC(M,φ,a)
]∗

.

We are ready to conclude. The map (5.9) induces the map

L2Hq(M \ ∂M,gQAC)→ Im(WHq(M,φ,a)→ WHq(M,φ,−a)),

which by Proposition 5.4, the surjectivity of (5.5) and the injectivity of (5.6) must be
a bijection. �

Remark 5.7 By Proposition 5.3 and Theorem 3.9, the cohomology groups

WHq

QAC(M,φ,±a)= WHq

QCyl

(

M,φ,±a +
(m

2
− q
)

)

are computable through Mayer-Vietoris long exact sequences in that they can be de-
scribed as the Cech cohomology of sheaves on ̂Mφ whose local cohomology admits a
local description. In fact, Corollary 3.12 suggests that they should correspond to some
sort of intersection cohomology groups, but with the caveat that ̂Mφ has a singular
stratum of codimension 1.

Our result can be applied in particular to QALE-metrics of depth 2 on crepant
resolutions of Cn/� with � a finite subgroup of SU(n).

Corollary 5.8 Let gQALE be a QALE-metric of depth 2 on a crepant resolution of
C

n/� with � a finite group of SU(n). Denote by (M,φ) the associated manifold
with fibered corners. For Hi submaximal with dimSi = 1, suppose that kerdSi

=
{0} where dSi

is the Hodge-deRham operator on Si associated to the flat bundle of
fiberwise L2-harmonic forms on Hi → Si . In this case, the reduced L2-cohomology
of gQALE is given by

L2Hq(M \ ∂M,gQALE)∼= Im(WHq

QAC(M,φ,a)→ WHq

QAC(M,φ,−a)), (5.10)

where a = (ε, . . . , ε) ∈R
� with 0 < ε < 1

2 .

Proof Let us first check that Assumption 5.1 holds. Thus, let Hi be submaximal and
let Zi be a fiber of the fiber bundle φi :Hi → Si . Since an element γ ∈ SU(n) is such
that dimC ker(γ − Id)≥ n− 1 if and only if γ = Id, we see that Zi must at least be of
complex dimension 2, that is, at least of real dimension 4. On the other hand, since
Zi \ ∂Zi is a crepant resolution of a quotient Ck/� of Ck by a finite subgroup � of
SU(k), we see that ∂Zi is a quotient of sphere, so Assumption 5.1 holds.

Again since Zi is a crepant resolution of C
k/�, we know by [8, 17, 27] that

it has trivial cohomology in odd degree. By Poincaré duality, we deduce from [23,
Theorem 1A] that Zi \∂Zi with its induced ALE-metric has only possibly non-trivial
L2-cohomology in middle degree when dimZi = 4. This shows that the last part of
Assumption 5.5 holds. For the first part of this assumption, notice that Si is a manifold
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with fibered corners resolving an orbifold quotient of an odd dimensional sphere. In
particular, by Assumption 5.1, for Hi maximal, (2.9) automatically holds. For Hi

submaximal, it holds if dimSi ≥ 3, while if dimSi = 1 then it holds trivially since
we assume in this case that kerdSi

is trivial. Hence, we see that Assumption 5.1 and
Assumption 5.5 are fulfilled and Theorem 5.6 holds. �

This result provides an alternative description to the one of Carron [12, Théo-
rème E], where reduced L2-cohomology of a QALE metric gQALE is computed in
terms of the cohomologies of different complexes of differential forms. In fact, when
M \∂M is a crepant resolution of C4/� with � a finite of Sp(2), one recovers exactly
[12, Théorème 7.14] from Corollary 5.8 as the next corollary shows.

Corollary 5.9 (Carron) If gQALE is a QALE-metric on a crepant resolution of Cn/�

where n= 4 and � is a subgroup of Sp(2), then

L2Hq(M \ ∂M,gQALE)∼=
⎧

⎨

⎩

H
q
c (M \ ∂M), q < n,

Im(H
q
c (M \ ∂M)→Hq(M)), q = n,

Hq(M), q > n.

Proof In this case the fibers Zi of φi : Hi → Si are 4-dimensional whenever Hi is
submaximal, so dimSi = 3 and Corollary 5.8 applies. As discussed in [12], we know
from [8, 17, 27] that the cohomology of a crepant resolution of Ck/� for � a finite
subgroup of SU(k) has trivial cohomology in odd degrees. This means that Hq(Zi)

is non-trivial only for q ∈ {0,2}. In particular, from Lemma 5.2, Proposition 5.3
and Theorem 3.9, we see that WH∗

QCyl(M,φ,−d) has the same local behavior as

H ∗(M \ ∂M), for d = (δ, . . . , δ) ∈ R
� with δ > 0 such that δ /∈ N. Using commuta-

tive diagrams of Mayer-Vietoris long exact sequences, one can therefore show as in
the proof of Corollary 4.3 that

WHq

QCyl(M,φ,−d)∼=Hq(M \ ∂M) (5.11)

for d as described above. Applying a similar argument for −d or directly applying
Poincaré duality to the isomorphism (5.11), one can check that there is also an iso-
morphism

WHq

QCyl(M,φ,d)∼=H
q
c (M \ ∂M). (5.12)

Hence, for a = (ε, . . . , ε) ∈R
� with 0 < ε < 1

2 and q 	= n, we see that

WHq

QAC(M,φ,±a)= WHq

QCyl(M,φ,±a + (n− q))∼=
{

H
q
c (M \ ∂M), q < n,

Hq(M), q > n,

(5.13)
while for q = n, we have instead

WHq

QAC(M,φ,a)= WHq

QCyl(M,φ,a)=H
q
c (M \ ∂M),

WHq

QAC(M,φ,−a)= WHq

QCyl(M,φ,−a)=Hq(M \ ∂M).
(5.14)

Plugging (5.13) and (5.14) in (5.10) then gives the result. �
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A similar result was obtained by Carron [12, Théorème 7.12] when gQALE is a
QALE-metric on a crepant resolution of C3/� for � a finite subgroup of SU(3). In
this case however, for Hi submaximal, dimSi = 1, so unless we are in the special case
where kerdSi

= {0}, we cannot deduce this result from Corollary 5.8. Notice however
that the proof of Corollary 5.9 shows that the statement of [12, Théorème 7.12] is
consistent with the formulation provided in (5.10).

6 L2-Cohomology of the moduli space of monopoles

We can also apply Corollary 3.12 to the moduli space of SU(2)-monopoles of mag-
netic charge 3. More precisely, let Mk denote the moduli space of SU(2)-monopoles
of magnetic charge k on R

3, let Nk =Mk/R
3 be the corresponding space of cen-

tered monopoles and let M0
k =Nk/S

1 be the reduced moduli space. Finally, let ˜M0
k

be the universal cover of M0
k . When k = 2, we know [23, § 7.1.2] that

M0
2
∼= S4 \RP2 and ˜M0

2
∼=CP

2 \RP2.

In this case, the natural L2-metric on M0
2 is a fibered boundary metric. Let gfc be

a conformally related fibered cusp metric. Let x be a boundary defining function
for the associated boundary compactification. Since the associated stratified spaces,
which are respectively S4 and CP

2, are smooth and that intersection cohomology
does not depend on the choice of stratification, we know by [23, Proposition 2] that
for 0 < ε < 1, the weighted L2-cohomologies gfc and its lift g̃fc to ˜M0

2 are given by

WH∗(M0
2, gfc, x

±ε)∼=H ∗(S4), WH∗(˜M0
2, g̃fc, x

±ε)∼=H ∗(CP2). (6.1)

Now, by [7, p.34], we know that the circle bundle Nk →M0
k is flat, so that its lift

to ˜M0
k is trivial. In other words, Nk admits a k-fold cover

˜Nk
∼= S

1 × ˜M0
k. (6.2)

Lemma 6.1 For 0 < ε < 1
2 and for the fibered cusp metric conformally related to the

natural L2-metric on N2 and ˜N2, we have that

WHq

QFC(˜N2, φ,±ε)∼=R ∀q ∈ {0,1,2,3,4,5},

WHq

QFC(N2, φ,±ε)∼=
{

R, q ∈ {0,1,4,5},
{0}, q ∈ {2,3}.

Proof On ˜N2 ∼= S
1 × ˜M0

2, the L2-metric is a fiber boundary metric with the factor
S

1 part of the fiber with respect to the fiber bundle on the boundary. Thus, for the
purpose of computing the weighted L2-cohomology of a conformally related fibered
cusp metric, we can consider a fibered cusp metric of the form

g
˜N2

= g
˜M0

2
+ x2gS1 (6.3)
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where g
˜M0

2
is the corresponding fibered cusp metric on ˜M0

2 and x is the boundary

defining function of the QFB-compactification on ˜M0
2. In particular, since (6.3) is

a warped product and the exterior differential d on S
1 is closed, we can apply [45,

Theorem 2.29] to compute weighted L2-cohomology. Combined with (6.1), this gives

WHq

QFC(˜N2, φ,±ε)∼= WHq

QFC(˜M0
2, φ,±ε − 1

2
)⊕ WHq−1

QFC(˜M0
2, φ,±ε + 1

2
)

∼=Hq(CP2)⊕Hq−1(CP2)

(6.4)
as claimed. For N2, it suffices to take the Z2-invariant part of (6.4) under the action of
Z2 and to notice that H 2(CP2) has no non-trivial Z2-invariant, this latter fact being
a consequence of the Sen conjecture on ˜M0

2 proved by Hitchin [24]. �

Proposition 6.2 Let (M0
3, φ) be the QFB-compactification constructed in [20] of ˜M0

3
and let ̂M0

3 be the corresponding stratified space. Fix 0 < ε < 1
2 . If a is a multiweight

such that ai = ε for all i, then

WH∗
QFC(M0

3, φ, a)∼= IH∗
m(̂M0

3) and WH∗
QFC(M0

3, φ,−a)∼= IH∗
m(̂M0

3). (6.5)

Moreover, for q = m
2 = dimM0

3
2 = 4, the space WH4

QFB(M0
3, φ, a) is Poincaré dual

to WH4
QFB(M0

3, φ,−a) and there are natural maps

WH4
QFB(M0

3, φ, a)→ L2H4(˜M0
3, gQFB), (6.6)

L2H4(˜M0
3, gQFB)→ WH4

QFB(M0
3, φ,−a), (6.7)

with composition

WH4
QFB(M0

3, φ, a)→ L2H4(˜M0
3, gQFB)→ WH4

QFB(M0
3, φ,−a) (6.8)

corresponding to the obvious map, where gQFB is a choice of QFB-metric compatible

with the manifold with fibered corners (M0
3, φ).

Proof As described in [20], the manifold with fibered corners M0
3 has two boundary

hypersurfaces. Denoting them H1 and H2 with H1 < H2, we know that the fiber Z2
of H2 is a Z3-cover of a 2-dimensional torus. In particular, Z2 is a closed manifold
and the assumption of Corollary 3.12 is automatically satisfied for i = 2. For i = 1,
the typical fiber Z1 of φ1 :H1 → S1 is a Z3-cover of N2.

Now, by the discussion in [7, p.20], π1(N2) ∼= Z and a generator of this group is
sent to a generator of π1(M0

3)
∼= Z3 under the inclusion N2 →M0

3. Hence, on the
universal cover ˜M0

3, N2 lifts to a (connected) Z3-cover of N2. We claim that this
cover is in fact N2 itself. Assuming this, then Lemma 6.1 ensures that the assump-
tion of Corollary 3.12 is also satisfied for i = 1, so that (6.5) follows by applying
Corollary 3.12.
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To prove the remaining claim, consider the long exact sequence in homotopy
groups induced by the circle bundle N2 →M0

2. In particular, we see from [7, p.20]
that it induces a short exact sequence

0 → π1(S
1)→ π1(N2)→ π1(M0

2)→ 0

which is just the standard exact sequence

0 → Z
×2→ Z→ Z2 → 0.

Now, the Z3-cover W2 of N2 corresponds to the normal subgroup 3Z of π1(N2) ∼=
Z. Hence, by standard homotopy lifting properties, under the canonical projection
ν : W2 → N2, the pre-image of a fiber F of N2 → M0

2 is a circle which is a Z3-
cover of F . In other words, if L is the complex line bundle associated to the circle
bundle W2 →M0

2, then N2 →M0
2 is the circle bundle associated to the line bundle

L⊗L⊗L. However, according to [41, Theorem 1.1], M0
2 has the rational homology

of a point. Hence, since π1(M0
2)

∼= Z2, we conclude by the universal coefficient
theorem that H 2(M0

2)
∼= Z2, so that L ⊗ L ⊗ L ∼= L. This means that W2 ∼=N2 as

claimed.
When q = m

2 = 4, Poincaré duality follows from Corollary 3.11 and the fact that
in middle degree

WH4
QFB(M0

3, φ,±a)= WH4
QFC(M0

3, φ,±a).

For the definition of the maps (6.6) and (6.7) and the proof that the composition (6.8)
is the obvious map, we can proceed exactly as in the proof of Proposition 5.4. �

Combining this with the decay of harmonic forms of Theorem 2.5 yields the fol-
lowing.

Theorem 6.3 Let gQFB be a choice of QFB-metric compatible with (M0
3, φ). Then

there is a natural identification

L2H4(˜M0
3, gQFB)∼= Im

(

WH4
QFB(M0

3, φ, a)→ WH4
QFB(M0

3, φ,−a),
)

∼= Im
(

IH4
m(̂M0

3)→ IH4
m(̂M0

3),
)

(6.9)

where the multiweight a := (ε, ε) for 0 < ε < 1
2 is as in Proposition 6.2.

Proof By Proposition 6.2, there is an inclusion

Im(WH4
QFB(M0

3, φ, a)→ WH4
QFB(M0

3, φ,−a)) ↪→ L2H4(˜M0
3, gQFB), (6.10)

so it suffices to show that this inclusion is surjective. Since the statement only depends
on the quasi-isometry class of gQFB, to show this, we can choose gQFB as we want
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within this class. Now, if all the hypotheses of Theorem 2.5 are fulfilled, then we
know by this theorem that gQFB can be chosen so that

L2H4(˜M0
3, gQFB)⊂ (x1x2)

μL2�4(˜M0
3, gQFB) (6.11)

for some μ > 0, so that all L2-harmonic forms come from the inclusion (6.10) as
claimed.

Thus, to complete the proof, it suffices to show that Theorem 2.5 can be applied.
First, by the discussion in [20], the base S1 is RP2, while S2 is the manifold with
fibered corners (in fact more simply the manifold with fibered boundary) resolving
the quotient

̂S2 = S
5/S3 (6.12)

of S5 ⊂R
6 by the action of the symmetric group S3 on R

6 generated by

(

0 I3
I3 0

)

and

(

0 −I3
I3 −I3

)

. (6.13)

Under this action, the subsets of points of S5 where the action is not free correspond
to three disjoint 2-spheres S2 in S

5. Under the quotient map, these three 2-spheres are
mapped onto the singular stratum of̂S2, which is just S1 =RP

2. Moreover, the link of
the stratum is also diffeomorphic to RP

2. Since RP
2 has no cohomology in middle

degree, condition (2.10) is satisfied for H1 < H2. Moreover, since ̂S2 is a quotient
of S

5, taking the wedge metric gw induced by the standard metric on S
5, we see

that ̂S2 has no non-trivial L2-harmonic forms in degrees b2 ±1
2 = 5±1

2 . Obviously, for

dimensional reasons, there are no L2-harmonic forms in degrees b2
2 = 5

2 and b2 ±2
2 ,

so that condition (2.9) holds for H2 ≤ H2. On the other hand, let g̃2 be the natural
hyperKähler metric on ˜M0

2, which is known to be a fibered boundary metric. From
[24], we know that

L2Hq(˜M0
2, g̃2)∼=

{

R, q = 2,

{0}, otherwise.
(6.14)

Correspondingly, the natural fibered boundary metric on ˜N2 = S
1 × ˜M0

2 is the Carte-
sian product metric gS1 + g̃2 with gS1 the standard metric on S

1. Using separation of
variables, we obtain from (6.14) that

L2Hq(˜N2, gS1 + g̃2)∼=
{

R, q = 2,3,

{0}, otherwise,
(6.15)

a result that follows alternatively from [23, Corollary 1]. Since the corresponding L2-
harmonic forms are not invariant under the natural Z2-action by the Sen conjecture
for ˜M0

2, this means that the quotient N2 = ˜N2/Z2 has no non-trivial L2-harmonic
forms with respect to the induced metric gN2 ,

L2Hq(N2, gN2)= {0}. (6.16)
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In particular, this means that condition (2.11) is autmatically satisfied and that the
operator dS1 is trivial, which implies that condition (2.9) for H1 ≤H1 is automatically
satisfied. By Theorem 2.5, this means that we can find a QFB-metric gQFB such that
(6.11) holds, completing the proof of the theorem. �

In middle degree, the intersection cohomology with lower or upper middle perver-
sity can in fact be described in terms of the usual cohomology as the next proposition
shows.

Proposition 6.4 The natural maps

H 4
c (˜M0

3)→ IH4
m

(̂M0
3) and IH4

m(̂M0
3)→H 4(˜M0

3 )

are isomorphisms.

Proof Since these two maps are Poincaré dual to one another, it suffices to prove that
the first one is an isomorphism. Now, by [41, Theorem 1.3], the composition

H 4
c (˜M0

3)→ IH4
m(̂M0

3)→H 4(˜M0
3)

is an isomorphism, implying that the map

H 4
c (˜M0

3)→ IH4
m(̂M0

3) (6.17)

is injective. To show it is surjective will require more work and local computations.

Let U be a collar neighborhood of H1 in M0
3. Denote by ̂U the corresponding neigh-

borhood of the stratum S1 in ̂M0
3. Let ̂V be an open neighborhood of ̂S2 \ (̂U ∩̂S2)

which retracts onto it. With these choices, we can assume as well that ˜M0
3 retracts

onto ̂M0
3 \ (̂U ∪̂V), so that

IHq

m(̂M0
3,
̂U ∪̂V)∼=H

q
c (˜M0

3). (6.18)

Hence, from the relative long exact sequence in cohomology

· · · IHq

m
(̂M0

3,
̂U ∪̂V) IHq

m
(̂M0

3) IHq

m
(̂U ∪̂V) · · · ,

(6.19)
we see that (6.17) will be surjective provided we can show that IH4

m
(̂U ∪̂V)= {0}. To

see this, we will first compute IH4
m

(̂U). Recall that by the proof of Proposition 6.2, the
fibers of the fiber bundle φ1 :H1 → S1 are each diffeomorphic to N2. Since ̂U comes

from a collar neighborhood of H1 in M0
3, this means that there is a corresponding

fiber bundle

φ̂1 : ̂U → S1 (6.20)

whose fibers are cones C(̂N2) over ̂N2, the stratified space associated to the manifold
with fibered boundary N2. According to (3.62) and [23, Proposition 1], we have that

IHq

m
(C(̂N2))∼=

{

IHq

m
(̂N2), q ≤ 2,

{0}, otherwise.
(6.21)
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By Lemma 6.1 and [23, Proposition 2], we thus have that

IHq

m
(C(̂N2))∼=

{

R, q ≤ 1,

{0}, otherwise.
(6.22)

Now S1 ∼=RP2 with universal cover ˜S1 ∼= S2. Let

˜

φ̂1 : ˜̂U →˜S1 (6.23)

denote the pull-back of the fiber bundle (6.20) to ˜S1. The space ˜̂U is then a Z2-cover
of ̂U with Z2-action covering the Z2-action on ˜S1. This implies in particular that

IHq

m
(̂U) corresponds to the Z2-invariant part of IHq

m
(˜̂U). By (6.21), we see as in [9,

Theorem 14.18] that the second page of the Leray spectral sequence of (6.23) for
intersection cohomology with upper middle perversity is given by

E
p,q

2 =Hp(˜S1)⊗ IHq

m
(C(̂N2))=

{

R, p ∈ {0,2}, q ∈ {0,1},
{0}, otherwise.

(6.24)

In particular, as in [9, Example 14.22], for dimensional reasons, the spectral sequence
degenerates at page E3, allowing us to conclude that

IHq

m
(˜̂U)= {0} for q ≥ 4.

Taking the Z2-invariant part thus implies that

IHq

m
(̂U)= {0} for q ≥ 4. (6.25)

On ̂V , the local behavior of intersection cohomology for upper middle perversity
also admits a simple description. Indeed, the fibers of φ2 :H2 → S2 are 2-dimensional
tori. Hence, from (3.62), given p ∈̂S2 ∩ ̂V and a small neighborhood ̂Vp of p in ̂V
retracting onto p, we have that

IHq

m
(̂Vp)∼=

{

R∼=H 0(T2), q = 0,

{0}, q > 0.
(6.26)

Since ̂V retracts onto ̂V ∩̂S2, this means that

IHq

m
(̂V)=Hq(̂V)=Hq(̂V ∩̂S2). (6.27)

Now, from (6.12) and (6.13), we know that the universal cover of ̂V ∩̂S2 is homeo-
morphic to S

5 \� with � a disjoint union of three 2-spheres S2 inside S
5. In partic-

ular, from the relative long exact sequence in cohomology

· · · Hq(S5,�) Hq(S5) Hq(�) · · · (6.28)

associated to the pair (S5,�), we deduce that

IH4
m(̂U ∪̂V,̂U)∼= IH4

m(̂V,̂V ∩ ̂U)∼=H 4
c (̂V ∩̂S2)= {0}. (6.29)
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Hence, from (6.25) and (6.29) and the relative long exact sequence in cohomology

· · · IHq

m
(̂U ∪̂V,̂U) IHq

m
(̂U ∪̂V) IHq

m
(̂U) · · ·

(6.30)
associated to the pair (̂U ∪̂V,̂U), we deduce that

IH4
m(̂U ∪̂V)= {0} (6.31)

as claimed. �

Let g̃3 be the natural hyperKähler metric on ˜M0
3. In [20], it was announced that g̃3

is a QFB-metric with respect to the manifold with fibered corners (M0
3, φ). Assuming

this result, we can extract from Theorem 6.3 and Proposition 6.4 a proof of the Sen
conjecture [41, 42].

Theorem 6.5 The Sen conjecture holds on ˜M0
3, namely

L2Hq(˜M0
3, g̃3)∼= Im(H

q
c (˜M0

3)→Hq(˜M0
3)) (6.32)

for all q ∈N0.

Proof By the work of Hitchin [24], the result holds for q 	= 4. For q = 4, the iso-
morphism (6.32) follows from Theorem 6.3 and Proposition 6.4, thanks to the result
announced in [20] that g̃3 is a QFB-metric. �

Unfortunately, the same approach does not seem to work to prove the Sen conjec-
ture on ˜M0

4. As the next lemma indicates, the main problem is that on ˜M0
4, one of the

assumptions of Corollary 3.12 does not hold, compromising the use of this corollary
to obtain an analogue of Proposition 6.2 for ˜M0

4.

Lemma 6.6 Fix 0 < ε < 1
2 . If a is a multiweight such that ai = ε for all i, then the

natural map

WH5
QFC(N3, φ, ε)−→H 5(N3) (6.33)

is not injective.

Proof By (6.2),

H 5(˜N3)∼=H 4(˜M0
3),

while by [41], H 4(˜M0
3) has no Z3-invariant part, so

H 5(N3)= {0}.
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Hence to show that (6.33) is not injective, it suffices to show that WHq

QFC(N3, φ, ε)

is non-trivial. Applying the same idea as in the proof of Lemma 6.1, we have that

WH5
QFC(˜N3, φ, ε)∼= WH5

QFC(M0
3, φ, ε − 1

2
)⊕ WH4

QFC(M0
3, φ, ε + 1

2
)

∼= WH5
QFC(M0

3, φ,−ε)⊕ WH4
QFC(M0

3, φ, ε + 1

2
)

∼= IH5
m(̂M0

3)⊕ WH4
QFC(M0

3, φ, ε + 1

2
).

(6.34)

Now, by (6.28) and (6.29), notice that

IH3
m

(̂U ∪̂V,̂U)∼=C
3,

so by (6.24) and (6.30),

dimC IH3
m

(̂U ∪̂V)≥ 2.

Hence, by (6.19), the fact that IH3
m

(̂M0
3,
̂U ∪ ̂V) = H 3

c (˜M0
3) = {0} by [41] and the

fact that the map

IH4
m(̂M0

3,
̂U ∪̂V)−→ IH4

m(̂M0
3)

is injective by Proposition 6.4, we see that dimC IH3(̂M0
3)≥ 2. By duality, this means

that dimC IH5
m(̂M0

3)≥ 2, which by (6.34) implies that

dimC WH5
QFC(˜N3, φ, ε)≥ 2.

Since these non-trivial elements of WH5
QFC(˜N3, φ, ε) ‘come from’ IH3

m
(̂U ∪ ̂V,̂U),

they are automatically Z3-invariant, so we can conclude that

dimC WH5
QFC(N3, φ, ε)≥ 2. �
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