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Abstract

We develop new techniques to compute the weighted LZ-cohomology of quasi-
fibered boundary metrics (QFB-metrics). Combined with the decay of L2-harmonic
forms obtained in a companion paper, this allows us to compute the reduced L>-
cohomology for various classes of QFB-metrics. Our results applies in particular to
the Nakajima metric on the Hilbert scheme of  points on C2, for which we can show
that the Vafa-Witten conjecture holds. Using the compactification of the monopole
moduli space announced by Fritzsch, the first author and Singer, we can also give a
proof of the Sen conjecture for the monopole moduli space of magnetic charge 3.
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1 Introduction

In [28], Joyce constructed complete Calabi-Yau metrics on crepant resolutions of
C"/T for I' C SU(n) a finite subgroup. When I' acts freely on C" \ {0}, this is
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an Asymptotically Locally Euclidean (ALE) metric. However, when the action is
not free away from the origin, the orbifold C"/I" has rays of singularities going
off to infinity and the metrics are only ALE away from these singularities, hence
the name Quasi-Asymptotically Euclidean (QALE) introduced by Joyce. To con-
struct these metrics, Joyce solved a complex Monge-Ampere equation for an ap-
propriate choice of Kihler QALE-metric using some mapping properties of the cor-
responding Laplacian. More recently, Mazzeo and Degeratu in [16] have introduced
the notion of Quasi-Asymptotically Conical (QAC) metrics, essentially generalizing
QALE-metrics in the same way that Asymptotically Conical (AC) metrics general-
ize ALE-metrics, and showed that the corresponding Laplacian is Fredholm when
acting on suitable weighted Holder or Sobolev spaces. The definition of [16] was
in terms of resolution blowups. In [13], a coordinate-free definition of QAC-metrics
was provided in terms of a Lie structure at infinity and a natural compactification by
a manifold with corners. Using this point of view, the first examples of Calabi-Yau
QAC-metrics that are not QALE or AC were constructed in [13]. More generally, the
notion of Quasi-Fibered Boundary (QFB) metrics was introduced in [13] by adding
a compact fiber at infinity.

Natural examples of hyperKihler QFB-metrics appear on moduli spaces. For in-
stance, on the Hilbert scheme Hilb’é ((Cz), it was shown in [11] that the Nakajima
metric is in fact a QALE-metric. In [31], a partial compactification of the moduli
space of SU(2)-monopoles on R3 is obtained via a gluing construction with the cor-
responding LZ-metric behaving like a QFB-metric in that direction. In fact, a full
compactification of the monopole moduli space was announced in [20] with the prop-
erty that the corresponding L>-metric is a QFB-metric. Similarly, on the moduli space
of SL(2, C)-Higgs bundles, a polynomial convergence at infinity of the L>-metric to-
wards the semi-flat metric was obtained in the regular part of the Hitchin system
in [34], a result that was subsequently improved to an exponential convergence in
[18, 19]. In this latter setting, it is expected that the L?-metric should be like a QFB-
metric, but with some singular fibers at infinity.

All these efforts to understand the asymptotic of these hyperKéhler metrics were
in part driven by various open conjectures about their Hodge cohomology, that is,
their space of L?-harmonic forms. The first conjecture of the sort is the Sen con-
jecture [42] coming from string theory and S-duality, which predicts that the Hodge
cohomology of the L?-metric of the universal cover Mg of the reduced moduli space
Mg of SU(2)-monopoles of magnetic charge k on R is only non-trivial in middle
degree and admits a complete description in terms of a natural Z-action. More pre-
cisely, if 7—[7, (M,(()) denotes the space of L2-harmonic forms of degree ¢ and weight
p with respect to the Zy-action, then the Sen conjecture predicts in middle degree
q =2k — 2 that 7—[?,]‘_2(./\/1,2) = Cif k and p are coprime and H?,k_z (Mg) = 0 other-
wise. Soon after the formulation of the conjecture, Segal and Selby in [41] computed
the relative and absolute cohomologies H* (/\/12) and H *(/\/12) of the universal cover
of the reduced moduli space and gave supporting evidence for the conjecture. Indeed,
they showed that the images Im[ HZ (M?) — HY(MY)] satisfy the predictions of
Sen’s conjecture, and since these images factor through the space of L?-harmonic
forms as composites of natural maps HI (./\/lg) — H4 (/\/lg) — HY (Mg), it follows
that ”H*(./{/lvg) is no smaller than Sen’s prediction [41, Sentence after Theorem 1.3].
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L2-Cohomology of QFB-metrics

In fact, since Segal and Selby prove that HY (/ﬁg) — H1Y (ﬂg) is an isomorphism in
middle degree and trivial otherwise, the composite maps split and Sen’s conjecture
can be reformulated as saying that the associated inclusion

Im [ch (MO — HY (Mg)] <> HI(MD) (1.1)

is in fact an isomorphism. A major step toward a proof of the conjecture was subse-
quently made by Hitchin [24], who showed that for many hyperKéhler metrics com-
ing from hyperKihler quotients, in particular the L2-metric on M?, the L>-harmonic
forms all lie in middle degree, giving a proof of the conjecture outside the middle de-
gree and a full proof of the conjecture when k = 2. In this specific case, an alternative
proof of the Sen conjecture was also subsequently obtained by Hausel-Hunsicker-
Mazzeo [23]. Since then, the unsettled part of the conjecture, that is, whether or not
in middle degree the map (1.1) is surjective, has remained open for k£ > 3.

Shortly after Sen formulated his conjecture, Vafa and Witten in [43, Discussion
after equation (4.43)] (see also [11, Conjecture 1.4]) made a similar S-duality pre-
diction for the Hodge cohomology of quiver varieties. For the Nakajima metric on
Hilbj (C?), their conjecture predicts that the natural inclusion

Im [ch (Hilbf}(C?)) — H (Hilb}} (<c2))] <> HI (Hilb}(C?)) (1.2)

constructed as above, must be surjective. Again, by the result of [24], it is automat-
ically true except possibly in middle degree, and the argument in [24, §5.5] gives
a complete proof of the conjecture when n = 2. Alternatively, when n = 2, a proof
of the conjecture follows from standard results about the L2-cohomology of AC-
metrics, see for instance [37] or [23, Theorem 1A]. When n = 3 instead, the con-
jecture follows from the computation by Carron [12] of the Hodge cohomology of
QALE-metrics of depth 2. For the moduli space of SL(2, C)-Higgs bundles, Hausel
showed in [22] that the image of relative cohomology into absolute cohomology is
trivial, so that inspired by [41], he was led to conjecture that the Hodge cohomology
should be trivial. Again in this case, the results of [24] prove this conjecture except
in middle degree.

In the present paper, we derive new results about the Hodge cohomology of QFB-
metrics. In particular, we obtain the following advances on the Sen conjecture and
the Vafa-Witten conjecture.

Theorem A The Sen conjecture holds on Mg) provided the natural L*>-metric on Mg
is a QFB-metric as announced in [20].

Theorem B The Vafa-Witten conjecture holds on Hilbj (C?) foralln > 2.

Remark Relying on a different approach, a proof of the Vafa-Witten conjecture on
Hilby (C?) for all n was announced by Melrose in [39].

Our general strategy to prove such a result is strongly inspired by the work of
Hausel-Hunsicker-Mazzeo [23], where a complete description of the Hodge coho-
mology of fibered boundary and fibered cusp metrics in terms of intersection coho-
mology was obtained. As the name suggests, fibered boundary metrics are a particular
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case of QFB-metrics. Let us recall that on a compact manifold M with boundary d M
equipped with a fiber bundle ¢ : 9M — Y over a closed manifold Y and a tubular
neighborhood ¢ : 9M x [0,5) — M of dM, an example of fibered boundary metric
is given by a Riemannian metric g4 on M \ 9 M such that

dx?  ¢*gy
c*gp=—
8 =3 +

2 + K,
where x is the coordinate on the factor [0, §), gy is a Riemannian metric on Y and
k is a symmetric 2-tensor on dM such that ¢*gy + « is a Riemannian metric on
dM making ¢ : 9M — Y a Riemannian submersion with respect to the Riemannian
metrics ¢*gy + « and gy. On the other hand, a fibered cusp metric g is a complete
metric on M \ d M which near d M is of the form

gfe = x84

for some fibered boundary metric g,. For instance, for gy and « as above, an example
of fibered cusp metric g is given by one such that

dx?
c*gre=—5 +¢"gr +x%k.

The main result of [23] roughly relies on two intermediate results. The first one,
topological in nature, consists in identifying weighted L?-cohomology groups of
fibered boundary and fibered cusp metrics with suitable intersection cohomology
groups. Since fibered cusp and fibered boundary metrics are conformally related,
one in fact only needs to establish such a result for the weighted L?-cohomology of a
fibered cusp metric. These weighted L2-cohomology groups can be understood as the
cohomology groups of a sheaf on an associated stratified space, so that using Mayer-
Vietoris long exact sequences, it suffices to identify these weighted L2-cohomology
groups with intersection cohomology for local models. These local identifications in
turn can be achieved thanks to the Kiinneth formula of Zucker [45, Corollary 2.34] for
the L2-cohomology of warped products. Except for certain types of fibered cusp met-
rics, notice that L2-cohomology itself is infinite dimensional and cannot be identified
with some intersection cohomology, hence the importance to introduce a weight to
obtain such an identification in general. The second intermediate result, more analyt-
ical in nature, consists in showing that a L?-harmonic form with respect to a fibered
boundary or a fibered cusp metric admits a polyhomogeneous expansion at infinity,
so that in particular it decays a bit faster compared to a general L>-form. This can be
established thanks to the pseudodifferential calculus of Mazzeo-Melrose [33] and the
parametrix construction of Vaillant [44]. These also allow to show that the Hodge-
deRham operator is Fredholm when acting on suitable Sobolev spaces, a result which
is also used in [23].

It turns out that both of these intermediate results can be suitably adapted to
study the Hodge cohomology of QFB-metrics. First, to compute the weighted L>-
cohomology of a QFB-metric, we can in fact introduce the analog of fibered cusp
metrics, namely the notion quasi-fibered cusp metrics (QFC-metrics), a class of met-
rics conformally related to QFB-metrics, see Definition 3.1 below for more details.
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Quasi-fibered cusp metrics should not be confused with the class of iterated fibered
cusp metrics considered in [15, 26], which constitutes yet another way of generaliz-
ing the notion of fibered cusp metrics to stratified spaces of higher depth. In fact, one
important difference is that as opposed to iterated fibered cusp metrics, QFC-metrics
do not admit nice local models in terms of warped products. In particular, the Kiin-
neth formula of Zucker for the L?-cohomology of a warped product cannot be used to
compute the L?-cohomology of local models of QFC-metrics. As described in (2.8)
below, a good local model for QFB-metrics is not given by a warped product, but by
a subset of a Cartesian product. To compute the weighted L?-cohomology of such a
local model, our main tool consists instead in using basic mapping properties of the
exterior differential on a half-line. As in [23], we need to show that we can define
weighted L2-cohomology using a sheaf of conormal forms, which can be achieved
using a soft parametrix inverting the Hodge Laplacian of a QFB-metric, for instance
using the general pseudodifferential calculus of [5] for Lie structures at infinity. With
this approach, we can in many cases identified weighted L?-cohomology groups with
some intersection cohomology groups. In the following case, we can even compute
the Hodge cohomology of a QFC-metric (see also Corollary 3.14 below for more
details).

Theorem C Let gqrc be a QFC-metric on the regular part of a smoothly stratified
space M. Suppose that the link Z of any singular stratum S of M is odd dimensional
and is such that

dim Z+1

H, > (Z)={0},

where IH,Z1 (2 ) denotes the intersection cohomology group of lower middle perversity

in degree q. Then the L>- -cohomology of gqrc and its Hodge cohomology are both
naturally identified with TH}, (M ).

In [26], a similar identification was obtained in the case of an iterated fibered cusp,
though in this latter case one only needs the weaker and simpler assumption that the
smoothly stratified space M be Witt.

For the computation of the Hodge cohomology of QFB-metrics, more analysis
must be involved, especially since already for fibered boundary metrics, the L? co-
homology is infinite dimensional and distinct from the Hodge cohomology. In par-
ticular, to study the asymptotic behavior of LZ-harmonic forms of a QFB-metric, we
have developed in the companion paper [30] a pseudodifferential calculus suitable
to construct parametrices for the Hodge-deRham operator of a QFB-operator. Such
parametrices allow us, for appropriate QFB-metrics, to show that L2-harmonic forms
decay at infinity a bit faster than a general L?-form. The specific result that we will
invoke from [30] is stated in Theorem 2.5 below.

This decay of L2-harmonic forms and our computation of the weighted L2-
cohomology of a QFC-metric allow us to compute the Hodge cohomology of various
QFB-metrics. In order to do this, we diverge from the approach used in the proof of
[23, Theorem 1C]. Instead, we propose a softer argument by considering the inverse
of the map considered in [23, Theorem 1C], e.g., in the case of the Sen conjecture
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and the Vafa-Witten conjecture, we consider the maps (1.1) and (1.2). Indeed, in [23],
the Fredholmness of the Hodge-deRham operator is used by the authors to show the
surjectivity of their map. The analogue in our setting corresponds to establishing the
injectivity of our map, which can be achieved following the approach of Segal and
Selby [41, Lemma 1.4], see for instance the proof of Theorem 4.5 or Proposition 6.2
below. On the other hand, the surjectivity of our map follows almost immediately
from the decay of LZ-harmonic forms.

In the particular setting of Theorem A and Theorem B, we also need to identify our
weighted L2-cohomology groups, already identified with some intersection cohomol-
ogy groups, with the usual relative and absolute cohomology groups. For Hilby (C?,
this follows essentially from a result of Nakajima [40, Corollary 5.10] asserting that
Hilbj (C?) has no absolute cohomology above the middle degree, see Corollary 4.3
below. For 1\7 9. we have a similar identification, but only in middle degree and using
a more 1ntrlcate argument relying instead on [41]; see Proposition 6.4 below. Unfor-
tunately, this argument does not seem to extend to M’ M0 for k > 4; see the discussion
after Theorem 6.5 for more details. Our approach can also be used to give a new proof
and a generalization of the results of Carron in [12], see in particular Theorem 5.6
and Corollary 5.9.

The paper is organized as follows. In Sect. 2, we review basic facts about QFB-
metrics and we state the result from [30] that we will used. In Sect. 3, we introduce
QFC-metrics and derive our results about their weighted L?-cohomology groups.
This is applied to the Nakajima metric on Hilbj (C?) in Sect. 4, where we derive in
particular a proof of Theorem B. In Sect. 5, this is applied instead to a large class
of QAC-metrics of depth 2 including those considered by Carron in [12]. Finally,
in Sect. 6, our results about weighted L?-cohomology are used to study the Hodge
cohomology on the reduced SU(2)-monopole moduli space of charge 3 and prove
Theorem A.

2 Quasi-fibered boundary metrics

Let M be a compact manifold with corners in the sense of [21, 35, 38]. Let
Hy, ..., Hy be a complete list of its boundary hypersurfaces.

Definition 2.1 ([2, 3, 15]) Let ¢ = {¢1, ..., ¢¢} be a collection of fiber bundles ¢; :
H; — S; over a compact manifold with corners S;. We say that ¢ is an iterated
fibration structure for M if there is a partial order on the boundary hypersurfaces of
M such that

e Any subset Z of boundary hypersurfaces such that N;c7 H; # @ is totally ordered,;
o If H; < Hj,then H;NH; # 0, ¢; |H[.m.1j : H;N Hj — §; is a surjective submersion,
S;ji :=¢;(H; N H;) is a boundary hypersurface of the manifold with corners S; and
there is a surjective submersion ¢;; : S;; — S; such that ¢j; o¢p; = ¢; on H; N H;
o The boundary hypersurfaces of S; are given by S;; for H; < H;.

In this case, we say that the pair (M, ¢) is a manifold with fibered corners.
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If (M, ¢) is a manifold with fibered corners, then for each fiber bundle ¢; : H; —
S, the base §; automatically inherits an iterated fibration structure specified by the
fiber bundles ¢;; : S;j; — S; for each i with H; < H;. Each fiberof ¢; : H; — §; has
also a natural iterated fibration structure induced by the fiber bundles ¢; : H; — S;
for each H; > H;.

As described in [3, 15], collapsing the fibers of ¢; onto d their base for each bound-
ary hypersurface H; yields a smoothly stratified space M¢, In particular, for each
boundary hypersurface H;, one can associate to S; a smoothly stratified space Si.
Each S; is naturally included in M¢ as a singular stratum and all the singular strata
of M¢ arise in this way. The depth of the stratified space M¢ then corresponds to the
depth of the manifold with corners M, which can be defined as the highest possible
codimension of a corner of M.

On a manifold with fibered corners (M, ¢), a maximal boundary hypersurface is a
boundary hypersurface which is maximal with respect to the partial order. A bound-
ary hypersurface which is not maximal is said to be non-maximal. A submaximal
boundary hypersurface of H; is a non-maximal boundary hypersurface such that

H; > H; = H;is maximal.

For each boundary hypersurface H;, let x; € C*°(M) be a boundary defining function,
that is, x; takes nonnegative values, x_l (0) = H; and dx; is nowhere zero on H;. We
say that x; is compatible with the 1terated fibration structure ¢ if x; restricted to H;
is constant in the fibers of ¢; : H; — §; whenever H; > H;. In this paper, we Wlll
always assume that our boundary deﬁnlng functions are compatible with the iterated
fibration structure ¢. This obviously imposes restrictions on the type of boundary
defining functions we will consider, but no restriction on the type of manifolds with
fibered corners by [15, Lemma 1.4].

Definition 2.2 Let v =[], x; be a total boundary defining function for the manifold
with fibered corners (M, ¢). The space Vorg (M) of quasi-fibered boundary vector
fields (QFB-vector fields) consists in smooth vector fields & in M such that

(1) £ is tangent to the fibers of ¢; : H; — S; for each boundary hypersurface H; of
M;
(i) Ev e v*C®(M).

Remark 2.3 As explained in [30], this definition is equivalent to the more complicated
definition originally provided in [13].

Notice that a QFB-vector field is in particular tangent to H; for each boundary hy-
persurface, so Vorg (M) is a subspace of the Lie algebra of b-vector fields of Melrose
(361,

V(M) =1{& €eC®°(M; TM) | £x; € x;C>(M) Vi}.

In fact, just imposing condition (i) gives the Lie algebra of edge vector fields V,(M)
of Mazzeo [1, 3, 32].
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Condition (ii) on the other hand clearly depends on the choice of v. By [30,
Lemma 1.1], two total boundary defining functions v and v’ will give the same space
of QFB-vector fields if and only if the function J; is constant on the fibers of ¢; for
each boundary hypersurface H;. Clearly, conditions (i) and (ii) are preserved by the
Lie bracket, so that Vorg (M) is a Lie subalgebra of V},(M). As explained in [13],
there is in fact a natural bundle BT M — M, called the QFB-tangent bundle, and a
natural map

a: BTy > TM (2.1
inducing a canonical inclusion
ay :C®(M; FBT M) — Vopg(M). (2.2)

This gives &BT M the structure of a Lie algebroid with anchor map (2.1). The anchor
map is not an isomorphism of vector bundles, but it becomes one when restricted to
the interior of M,

a: FBT M| pom—>T (M \ IM). (2.3)

Definition 2.4 ([13, 30]) A quasi-fibered boundary metric (QFB-metric) for a mani-
fold with fibered corners (M, ¢) and a choice of total boundary defining function v
is a Riemannian metric on the interior of M which is of the form

ax(hlamam)

for some choice of bundle metric & € C®°(M; S2(XBT*M)) for the vector bun-
dle ¥BT M. In this case, we say that the manifold with corners M is the QFB-
compactification of the corresponding Riemannian manifold. When (M, ¢) is such
that for each maximal boundary hypersurface H;, S; = H; and ¢; is the identity map,
a QFB-metric is also said to be a quasi-asymptotically conical metric (QAC-metric),
in which case M is also said to be the QAC-compactification of the corresponding
Riemannian manifold.

A good measure of the complexity of a QFB-metric is its depth, which we take! to
be the depth of the underlying manifold with fibered corners. When gqrg is a QFB-
metric, the pair (M \ dM, gorp) is a particular example of Riemannian manifold
with Lie structure at infinity in the sense of [4]. As such, a QFB-metric is a complete
Riemannian metric of infinite volume with curvature and all its covariant derivatives
bounded. By [13, Proposition 1.27] or [10], the injectivity radius of QFB-metric is
bounded below by a positive constant, so that QFB-metrics have bounded geometry.

Similarly to the Lie algebra of edge vector fields, one can associate the edge tan-
gent bundle T M — M and the class of edge metrics on M \ M. Again, for g, an
edge metric, the pair (M \ dM, g.) is a Riemannian manifold with Lie structure at
infinity. To (M, ¢), one can yet associated a third class of metrics, namely the class of

N slightly different convention is used in [16].
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wedge metrics (also called incomplete iterated edge metrics in [3]), given by metrics
gw on M\ M of the form

8w = Uzge

for some edge metric g.. A wedge metric g, is of finite volume and is geodesically
incomplete, so the pair (M \ M, g,,) is not a Riemannian manifold with Lie structure
at infinity.

In this paper, our main interest in wedge metrics is that they can be used to con-
struct simple examples of QFB-metrics as described in [30, § 1]. Indeed, let

¢i+H; x[0,8) > M (2.4)

be a collar neighborhood of H; compatible with the boundary defining functions in
the sense that c}x; corresponds to the projection H; x [0, ;) — [0, ;) and c¢}x; is
the pull-back of a function on H; for j # i. Instead of the level sets of x;, we can use
the level sets of the total boundary defining function v, that is, consider the open set

T
Ui ={(p,t) € H; x[0,8) | TTj%x;(p) > 5 C H; x [0, ;) (2.5)
1

with natural diffeomorphism

Yi: H;y\0H; x[0,8;) — U;

(p.1) = (Pt T % (P)). (26)

On U; seen as a subset of H; x [0, §;), let pr; and pr, be the restrictions of the
projections of H; x [0, §;) onto H; and [0, §;). Choose a connection for the fiber
bundle ¢; : H; — S;. On §; \ 95;, let g5, be a wedge metric compatible with the
iterated fibration structure of S;. Let «; be a family of fiberwise QFB-metrics in the
fibers of ¢; : H; — S;. Using the connection of ¢;, this can be lifted to a vertical
symmetric 2-tensor on H; \ dH;. In U;, still seen as a subset of H; x [0, §;), an
example of QFB-metric is then given by

dtz pl‘* ¢?kg5i
8QFB = —7 + lr—é + pri k. 2.7

When the fiber bundle ¢; : H; — S; is trivial with H; = S; x Z; and «; = gz, is a
constant family of QFB-metrics in the fiber Z;, the example (2.7) corresponds to a
Cartesian product of the QFB-metric gz; and the Riemannian cone

dt? 8S;

Rz
with cross-section (S; \ 95;, gs;). One important subtlety is that If; is only a subset
of this Cartesian product. In particular, for fixed v and s € S; \ 9S;, we only con-
sider the metric gz, in the region of Z; where [];;x; > 5. Still, a QFB-metric
of the form (2.7) near H; is said to be of product-type near H;. More generally, an

exact QFB-metric is a QFB-metric which is product-type near H; up to a term in
xiC®(M; S* (BT M) for each boundary hypersurface H; of M.
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Coming back to the model (2.7), on an open set B; C §; \ 9.S; over which the fiber
bundle ¢; is trivial, an example of QFB-metric on L4; N (¢;” ! (Bi) x [0, §;)) is given
by the restriction of the Cartesian product

dz? n gB;
o

) + gz (2.8)
with gp, a Riemannian metric on B; and gz, a QFB-metric on Z;. By the Ehres-
mann lemma of [29, Corollary A.6], a QFB-metric is always locally quasi-isometric
to a model of the form (2.8). Since Z; is of lower depth, one can use (2.8) to de-
fine QFB-metrics iteratively. This is how the subclass of QAC-metrics was originally
introduced in [16].

For the computation of weighted L2-cohomology of a QFB-metric in the next
section, the local model (2.8) is essentially all that we will use about QFB-metrics.
However, to obtain results about the reduced L2-cohomology of QFB-metrics, we
will need to invoke a result about the decay of harmonic forms obtained in our com-
panion paper [30]. For the convenience of the reader, let us describe in details the
specific result of [30] that we will use.

Suppose now that gorg is an exact QFB-metric and let dgrp be the corresponding
Hodge-deRham operator. If H; is maximal, the fibered of ¢; : H; — S; are closed
manifolds, so by Hodge theory and [23, Proposition 15], the space of fiberwise har-
monic forms on ¢; : H; — S; with respect to the fiberwise metric «; form a flat vector
bundle ’H:z (H;/S;) over S;. Let 05, be the Hodge-deRham operator associated to the
metric gs;, and acting on ’sz (H;/S;)-valued forms on S; \ 9S;. If H; is not maxi-
mal, the fibers of ¢; : H; — S; are instead manifolds with fibered corners and «; is
a family of QFB-metrics. Suppose that the fiberwise reduced L2-cohomology is fi-
nite dimensional. Thanks to [23, Theorem 1], the corresponding space of fiberwise
L2-harmonic forms on ¢; : H; — S; still form a flat vector bundle 7—[22 (H;/S;) over
S;. Thus, we can still consider the Hodge-deRham operator 95, associated now to a
wedge metric gs, and acting on H’Zz (H;/S;)-valued forms on S; \ 9S;. For H; < H;
and for each fiber Z;; of ¢;j : Sij — Sj let 9z, be the corresponding Hodge-deRham
operator acting on forms taking values in ’H,’ZZ (H;/S;) and associated to the wedge
metric gz;; induced by gs;. Let also B; be the subset of degrees where the fibers of

¢; : H; — S; have non-trivial reduced L?-cohomology and let
Pij € (Zijs A*(PT*(Zij) ® HE2 (Hi/Sh))
= C¥(Zijs A" ("T™(Zi)) @ Hy» (Hi /Si))
be the projection on sections of total degree g (that is, the sum of the degree in the

A*(YT*(Z;;)) factor and the degree in the sz(Hi/Si) is equal to ¢) such that g or
g + 1 arein‘B;.

Theorem 2.5 (Theorem 17.5 in [30]) Let gorB be a QFB-metric on (M, ¢) with re-
spect to a total boundary defining function v which is product-type near H; up to
a term in x?COO(M; SZ(ABTM)) for each boundary hypersurface H; of M. For
each boundary hypersurface H;, suppose that the fiberwise reduced L?*-cohomology
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in the fibers of ¢; : H; — S, is finite dimensional, so that the corresponding fiberwise
L2-harmonic forms yield a flat vector bundle ’H’Zz (H;/S;i) — S;i. For each boundary
hypersurface H; and for each H; < H;, suppose furthermore that

dim Zij

<1 = 0g; has trivial L?-kernel in degree q, 2.9)

‘q B
where we use the convention that Z;; := S;. If H; is maximal and H; is submaximal

with H; < H;, then (2.9) can in fact be replaced by the weaker condition

dim Z,‘j
2

<1 = 0z, has trivial L%-kernel in degree q. (2.10)

-
For Hj < H;, suppose also that

3
< > = Py (kerLi; Uz,-j)q is trivial, (2.11)

dim Z,‘j
2

o

where (kerleU 07,,)q isthe L2-kernel of 0z, for forms of degree q inthe N* (" T*(Z;;))

factor. Then there exists a QFB-metric gqrs with respect to the same total boundary
defining function v such that its space of L?-harmonic forms is finite dimensional and
contained in

v L2Q* (M \ OM, Zors)
for some € > 0.

Remark 2.6 Since reduced L>-cohomology only depends on the quasi-isometry class
of the metric, see for instance (3.8) below, when Theorem 2.5 applies, the space of
L?-harmonic forms is finite dimensional, and after possibly changing the QFB-metric
gQFB, We can always assume that it is contained in

vEL2Q* (M \ M, goFB)
for some € > 0.
As explained in [30], this yields the following two corollaries.

Corollary 2.7 (Corollary 17.7 in [30]) Let gors be an exact QFB-metric on (M, ¢)
with respect to a total boundary defining function v. Whenever the fibers of ¢; : H; —
S; have non-trivial reduced L*-cohomology with respect to the induced QFB-metrics,
suppose that the stratified space §, corresponding to S; is a quotient of a sphere by a
Sfinite group of isometries, that dim §; > 3 and that dim Z;; = dim §; —dim S; —1 > 3
for each boundary hypersurface H; < H;. Then there exists a QFB-metric gqrg with
respect to the same total boundary defining function v such that its space of L>-
harmonic forms is finite dimensional and contained in

vELEQ* (M \ M, Zgrs)

for some € > 0.
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Corollary 2.8 (Corollary 17.8 in [30]) Let gors be an exact QFB-metric on (M, ¢)
with respect to a total boundary defining function v. Suppose that, except possibly in
middle degree, the fibers of ¢; : H; — S; have trivial reduced L*-cohomology with
respect to the induced QFB-metrics. When it is non-trivial in middle degree, suppose
that the stratified space g’, corresponding to S; is a quotient of a sphere by a finite
group of isometries, that dim S; > 3 and that dim Z;; = dim S; —dim S; — 1 > 3 for
each boundary hypersurface H; < H;. Then there exists a QFB-metric gorg with
respect to the same total boundary defining function v such that its space of L>-
harmonic forms is finite dimensional and contained in

vELEQ* (M \ M, Zgrs)

for some € > 0.

3 Weighted L2-cohomology of QFB-metrics

Let (M, ¢) be a manifold with fibered corners. If Hi, ..., Hy are the boundary hy-
persurfaces of M, let x1, ..., xy be corresponding boundary defining functions com-
patible with ¢ in the sense of [13]. Suppose also that the labelling of the boundary
hypersurfaces is compatible with the partial order in the sense that

Hi<H; = i<]j.

On (M, ¢), let gorp be a QFB-metric with respect to the boundary defining functions
XlyoueyXp.

Definition 3.1 A quasi-fibered cusp metric (QFC-metric for short) is a Riemannian
metric on M \ dM of the form

gQFC i= v’g 3.D

for some QFB-metric g, where v := ]_[f=1 x; is the total boundary defining function
of (M, ®). When g is in fact a QAC-metric, such a metric is also called a quasi-
asymptotically cylindrical metric (QCyl-metric for short).

Example 3.2 When M is a manifold with boundary, a QFC-metric is just a fibered
cusp metric in the sense of [23], while a QCyl-metric is just a b-metric in the sense
of [36].

In a sense, the notion of QFC-metric can be seen as a generalization of the notion
of fibered cusp metrics to manifolds with fibered corners of arbitrary depth. Notice
however that QFC-metrics differ fundamentally from the notion of iterated fibered
cusp metrics of [15, 26], which are yet another way of generalizing fibered cusps
metrics to manifolds with fibered corners of higher depth. Similarly, QCyl-metrics
and the Qb-metrics introduced in [13] can both be seen as a generalization of the
notion of b-metrics (or asymptotically cylindrical metrics) to certain manifolds with
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fibered corners of higher depth, though in a different way. Indeed, as we will see,
QCyl-metrics correspond more to a geometric generalization, at least in terms of L>-
cohomology, while Qb-metrics correspond more to an analytic generalization in the
sense that it is for this type of metric that the b-calculus of Melrose is generalized
in [30].

Before discussing the weighted L2-cohomology of QFB-metrics and QAC-
metrics, let us first recall what is the weighted L?-cohomology of a complete Rie-
mannian manifold (X, g) with weight w € C®°(X) a positive function. In terms of the
space of weighted L2-forms of degree g

wL*Q9(X, g) = {w a mesurable section of AY(T*X) | / ||u)*]a)||§dg < 00},
X

(3.2)
the weighted L?-cohomology group of degree ¢ is the quotient
cwl?Q9(X,g) |do=0
WHY (X, g, w) = tw € wLTQ(X. g) [dw =0} . (33)
{dn|newL?Q4-1(X, g) such thatdn € wL2Q4(X, g)}
If w = 1, then this is just the L>-cohomology group of degree g
€ L*QI(X,g) |dw=0
Hp (X, 8) = 2{w 1 X, 8) | do }2 . (G4
{dn|neL*Q4~ (X, g) such thatdn € L-Q4(X, g)}
Considering the subset of weighted L?-forms
wL2Q4(X, g) :={w e wL*QI (X, g) | dw € wL*QIT (X, g)}, (3.5)

notice that the groups (3.3) correspond to the cohomology groups of the complex

d d d
- —— wliQY(X,g) —— wLliQiM(X,g) —— . (3.6)

Since the image of the exterior derivative is not necessarily closed, it is often in-
teresting to consider as well the reduced weighted L?-cohomology group of degree

q

WHY (X, g, w) :={w e wL?Q(X, g) | dw = 0}

3.7
/dn | n e wL?Q4-1(X, g) such thatdn € wL?w?(X, g)}.
When w = 1, this is just the reduced L2-cohomology group of degree ¢
Hi (X, g) = {0 e L’Q1(X, g) | do =0}
(3.8)

/{dn | n e L2Q4-1(X, g) such that dn € L2w9(X, g)}.

Now, if J, ., is the formal adjoint of d with respect to the inner product on
wL?Q*(X, g), then WH? (X, g, w) is naturally identified with the space of weighted
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L?-harmonic forms
L*HI(X, g, w) :={wewLl?Q4(X, g) | dw = 8gww = 0}. 3.9
Indeed, the isomorphism
WHY (X, g, w) = L>H9(X, g, w)

follows readily from the Kodaira decomposition [14, Théoreme 24 in § 32]

wL2Q (X, g) = L*HI (X, g, w) ®dQI ™ (X) @ 8,.,20T (), (3.10)

where Q¢ (X) denotes the space of compactly supported smooth ¢-forms. Notice that
(3.3), (3.4) and (3.7) only depend on the quasi-isometry class of g. That is, if g’ is
another complete metric such that for some positive constant C,

% < g’ < Cg everywhere on X,

then g’ has the same weighted L2-cohomology groups or reduced L2-cohomology
groups as g.

Now, if we take X = M \ dM and g = gorc a QFC-metric, a natural choice for
the weight function is to take

for some a = (ai,...,a;) € R® and consider the corresponding weighted L>-
cohomology group

WHpe (M. ¢, a) := WH? (M \ M, gorc. x*). @3.11)

For a QFB-metric ggrg, following [23, (13)] for the case of fibered boundary
metrics, we will consider the weighted L?-cohomology group

WH(éFB (Ma ¢7 a)

o {wexL2QI(M \ dM, ggrp) |[dw = 0} (3.12)
" {dnlnev'xeL2Q4-1(M \ 0M, gorB), dn € x*L2Q4(M, gqrs)}’

where we recall that v = ]_[f:1 x; is a total boundary defining function of M. Since
by (3.1), we have that

XL*QI(M \ 0M, gors) =v? “9x*L2Q4 (M \ dM, gorc), (3.13)

where m = dim M, we see that (3.12) can be reformulated in terms of QFC-metrics
as follows,

WHY e (M. ¢, a) = WHc (M, b.a+ (% - q)) : (3.14)
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where
a > q):=a > q),...,ag > q))-

Instead of working with general weighted L?-forms, it will be sometimes conve-
nient to work with weighted QFB-conormal forms, especially for arguments involv-
ing integration by parts. More precisely, consider the space

x4 Agrc 2 Q4 (M) := {w € x*L*QI (M \ M, gqrc) |

Vk € No,VX1,... Xx € Vors(M), Vy,---Vx,w € x"L*QI(M \ aM, gorc)},
(3.15)

with V a choice of covariant derivative for A(QCT*M) — M, where
QFCT* pp = (ABT* M) (3.16)
is the QFC-cotangent bundle.

Lemma 3.3 The weighted L*-cohomology group (3.11) can be written in terms of
weighted QFB-conormal forms as

a QIM)|dw=0
{dn|nex®Agrc 224~ 1 (M), dn e X“AQFc,qu(M)}3 |
3.17)

Proof Let d* = 84,0 be the formal adjoint of d with respect to some choice of
QFC-metric gqrc. Then the Hodge Laplacian (d + d*)? is such that v%(d + d*)? and
(d + d*)*v? are elliptic QFB-operators of order 2. Thus, using the small pseudodif-
ferential calculus of [30] (or even the calculus of pseudodifferential operators with
proper support of [5]), we know by standard arguments that there exist operators
01,0- € \IJ(SFzB(M s A*(WCT*M)) preserving the form degree such that

(d+d***Q =Id+R|, 0*(d+d")?=1d+R>,
(3.18)
with Ry, Ry € W5 (M; A (FCT* ).

Now, to prove the lemma, we need to show the natural map

{w € x? Aqrc2Q9(M) | dw = 0}
{dn | n € x? Agrc2Q29~1 (M), dn € x* Agrc 224 (M)}

—> WH{po (M, ¢, a)

(3.19)
is an isomorphism. To show it is surjective, we need to show that any class in
WH%FC(M ,¢,a) can be represented by a closed form in x“ Agrc, 2229 (M), while
to show it is injective, we need to show that given any form w € x“LfJQq_l(M \
M, gorc) with dw € x4 Agrc 2927 (M), there exists 1 € x* Agrc 29247 (M) such
that dn = dw. Clearly, as we allow g to vary, both assertions will follow if we can
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show that given w € x“Lleq (M \ dM, gqrc) such that dw € x“AQFcyqu“(M),
there exists n € x* Aqrc,2Q9(M) and ¢ € x“L?ZQq_I(M \ M, gqrc) such that

n=w+dy and dn=dw.

Thus, let @ € xYL2Q4(M \ dM, gqrc) be such that do € x* Agrc Q4T (M).
Applying (3.18) to w, we see that

dd* + d*d)v’ Q1w =0+ R,
so that
n:=d*dv’Qiw — Riw
differs from w by an exact form, namely
n=w+dy

with ¢ = —d* (v Q1) € x“LﬁQq_l(M \ M, gqrc) by the mapping properties of
[30, Theorem 7.4]. Hence, since dn = dw, we see that

d+dYn=do+d*n=dw—d*Riw
= 00°(d +d*)*n= Q*(d +d*)(dw—d*Riw),
— 1+ Rup = 0rv3d*dw — Qrv3dd* Ryw, 320
= 5= 0’d"dw— 0v’dd*Ri» — Ran.
By our assumption and the mapping properties of QFB-operators [30, Corollary 7.5],
0v’d*dw € x4 Aqrc,2Q4(M).

Moreover, since Qv>dd* Ry and R, are operators in \I'&;’g (M; A*(FCT*M)), we
deduce, using the L2-boundedness of QFB-operators of order zero [30, Theorem 7.4]

and the fact that QFB-operators of order —oo are stable under the action on the left
by QFB-vector fields [30, Corollary 5.2], that

n € x“ Agrc.2Q4 (M), dn € x* Agrc 211 (M),
completing the proof. O

Let 1\//7¢, be the Thom-Mather stratified space associated to (M, ¢). Recall that this
space is essentially obtained by collapsing the fibers of ¢; : H; — S; onto its image
for each i. There is in particular a canonical surjective map

c¢:M—>1\7I¢

sending H; onto a corresponding closed stratum s; in A//}(ﬁ. On M¢, we can consider
fora = (ay,...,ap) € Rf the sheaf x”LéFCQq associated to the presheaf x”ﬁéFCQq
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which to an open set U C M¢ associates the space of sections
X LR U) = x“L* Q4 (c;, ' U) \ (c; ' U) N IM), ggre). (3.21)

In particular, notice that the space of sections x“LéFCQq(M \ dM) of the sheaf
“LéFCQq over M \ M corresponds to g-forms on M \ dM that are locally in
LQFC, while on M¢,

quéFch(Mrb) = xL2Q1(M \ OM), gqrc).
Let us consider as well as the subsheaf x“LéFC’ 4524 defined by

X Lypc 4 Q1 U) = {w € x* Lgpc Q1 U) | dow € x* LypcQ4 T U)). (3.22)

This defines a complex

d d
QIU) — x"Lope M U) — - . (3.23)

 —

QFC d

In particular, the weighted L2-cohomology groups WHEFC(M ,¢,a) correspond to

the cohomology groups of this complex when we take U = M¢ However, taking
advantage of Lemma 3.3, we can instead work with QFB-conormal forms. That is,
on M¢, we can consider instead for a = (ay, ..., a;) € Rt the sheaf x* Agrc 204
associated to the presheaf x“ Lqrc 229 which to an open set U C M¢ associates

X Lqre 90 U) = {0 € x 1227 (c; U\ (¢ @) N M), gare) |
Vk € No,VX1,... Xk € Vors (M),
Vx, -+ Vo € xUL2Q4 (' U) \ (c; ' U) NIM), ggre)}). (3.24)
We consider as well the subsheaf x* Aqrc,¢ 27 defined by
x4 Agrc, 2,427 (U) == {w € x Agrc 290 (U) | dw € x* Agre 29 WD), (3.25)

This defines a complex

d d d
c—— X AQrc 2.4 U) — x* Agrc 2,40 U) — -+ (3.26)

and we denote by

{w € Agrc,2,4Q21U) | dw = 0}

WHL . (U, p,a) =
Qre - @ (@11 € Agreaa Qi 1)

the corresponding cohomology group in degree ¢. By Lemma 3.3, the weighted L2-
cohomology groups WHE‘)FC(M , ¢, a) correspond to the cohomology groups of this

complex when we take U = M.
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Now, let p; be a point in the regular part s; of 5;. Let § C s; be an open neigh-
borhood of p; in s;. Since the map ¢4 canonically identifies S; \ 95; with s;, let B; be
the corresponding open set in S; \ 9S;. Taking B; smaller if needed, we can assume
the fiber bundle ¢; : H; — S; is trivial over B;. Choosing a tubular neighborhood of
H; in M as in [13, Lemma 1.10], we see that we can choose an open neighborhood
U; of p; in Md) such that

¢y U) =10,8), x Zi x B; (3.27)

with ¢; corresponding to the projection Z; x B; — B; under this identification.

Recall however that, as opposed to the fibered corners metrics of [15], QFB-
metrics do not decompose nicely in terms of the factorization (3.27). Instead of x;,
one needs to use the total boundary defining function v and look at the decomposition
induced by its level sets. From that point of view, cqzl (U;) can be seen as a subset of
the Cartesian product

[073)0 X Zi X Biv
namely

C;I(Ui) =V; x Bi with V; :={(v,2) €[0,68)y X Z; | w;i(z) > g} c[0,68)y x Z;,
(3 28)

where w; is a choice of total boundary defining function for Z;. Now, on Cy (Ll) a

simple example of QFB-metric is given by the restriction to V; x B; of the metnc

dv? 8B;

— t8z+—> on(0,8), xZ xBj, (3.29)
v v

where gp, is a choice of Riemannian metric on B; and gz, is a choice of QFB-metric

on Z; with structure of manifold with fibered corners induced from the one on M.

Hence a corresponding example of QFC-metric on cdjl (U) is given by the restriction

to V; x B; of the metric

d 2
— +v’gz, +g5 on(0,8), x Z; x B;. (3.30)

By the Ehresmann lemma of [29, Corollary A.6], notice that a QFC-metric is always
locally quasi-isometric to a metric of the form (3.30). To compute the weighted L>-

cohomology in these local models, let us first assume that B; is a point. One then
needs to compute the weighted L2-cohomology of the metric

dv? 2
74‘1) 87; (331)

in the region

M=Ku@da&mZHw@>§}
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Now, the exterior differential may be decomposed in terms of the decomposition
(0, 8) x Z;, namely

9 d 9
d=dz, +dvn —=dz + = A(v—). (3.32)
dav v av

Lemma 3.4 The decomposition (3.32) holds on L2,

Proof Since V; is not quite a Cartesian product, we cannot directly apply [45, Propo-
sition 2.28]. However, V; sits inside the Cartesian product [0, §), x Z;. Moreover, by
[45, Proposition 2.27], the operator d on L? is the closure of the exterior derivative
of effectively compactly supported smooth forms (in the sense of [45, p.179]). But
those forms can be extended smoothly to [0, §), x Z;. This means that we can run the
approximation argument of the proof of [45, Proposition 2.28] on [0, §), x Z; and
then restrict to V; to obtain the desired result. O
On the other hand, on the interval [0, §) with b-metric dv%z, imposing absolute
boundary conditions, namely Neumann boundary conditions for 0-forms and Dirich-
let boundary conditions for 1-forms at v = §, we see from [36] that the exterior deriva-
tive induces a surjective Fredholm map
%” A ”aa_v M HL([0,8)) — v L3([0,8); AL ET*([0, 6)))) (3.33)
for A # 0, where Hb1 ([0, 8)) is the b-Sobolev space of order 1. Moreover, its kernel is
trivial for A > 0 and consists of constant functions for A < 0. Of course, when A > 0,
the inverse map G, _s can be written explicitly,

Gx,a(w)(v)=/0 f®dt ifw) = fdv.

For A < 0, we can consider an inverse G, s on the orthogonal complement of the
kernel with respect to the natural inner product on vkLi([O, 5)),

P dv
(figh=] v fwgw)—.
0 v
Thus, defining the map

5x,s(w)(v)=/(S fdt,  ifo)=f(@)dv,

we have that
Gis=(d—P; 5)Gs, (3.34)

where P s : v}‘Li([O, 8)) — v’\Li([O, 8)) is the orthogonal projection onto the con-
stant explicitly given by

24 [P d
PraDi==50 | rof. (3.35)
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Using that the dilation

D: [0,1] — [0,46]
v = v

induces a map D* : v)‘Li([O, 8)) — v’\Li([O, 1)) such that $~*D* is an isometry, a
simple computation shows that the operator norms of the inverse map G, s and the
projection P;_s do not depend on §.

Now, leta = (a1, ..., a¢) € R be a choice of weight and let @ € x* L 42 U)
be a closed form. In particular, we have that

dw; (2) dv
—2a 2 mi
x ol V' — ) dgz, < oo, (3.36)

where m; := dim Z; and w; is a total boundary defining function of Z; as in (3.28).
The form w decomposes as

dv
w=w;+— Awy, (3.37)
v

where w; and w; are forms involving no factor dv, so that in terms of (3.32),

d 0 ad
da)=dz.a)1+—v/\ vﬁ—dz.a)z , do=0=—= dz.w; =0, vﬂ=dz.a)2.
! v ov ! ! ov !

(3.38)
Thus, if we denote by hgrc = wizgzl. the QFC-metric on Z; associated to the QFB-
metric gz,, then in terms of the decomposition (3.37), the condition (3.36) means

that
Sw; (z) —2q d
—2a v 2 m; 4V
X — wi(v, z v —dgz, < o0,
/zfo <w,-) oW, Dlhgre ™ 78

Sw; (2) ) v\ 2D 5 dv
x4 — (v, 2 Vi —dgz < 0.
/Z | /0 (w) 200, DI g V™ V7,

In particular, for each fixed z € Z;, provided A =a; + (¢ — 1) — "% is non-zero, we

can consider the inverse G, . with € = dw;(z) to construct a map

(3.39)

G191 : XaLéFC’qu(Vi) - xaLéFCQq_l(Vi)

3.40
o+ he e Gy s Ao, O

Using the fact that in V;, QFB-vector fields are generated by v233—U and QFB-vector
fields on Z;, we see that this also induces a map

GY: xAgrc2,a(V) —  x Agrc Q071 (V)

d (341
w1 + T AN O)) = Ga,—-i—(q—l)—%,@wi(z)(Tv /\a)z(v, Z))
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By construction, notice that G?(w) has no dv factor and is such that dTU A
U%G" (w) = dTU A @y. When A > 0, this immediately yields the following vanish-
ing result.

Lemma3.5 Ifa = (ai,...,a¢) € R is a choice of weight, then for g — 1 > % —aj,
we have that

WHL(SF(:(VI', ¢,a) ={0}.

Proof Let w € x* Aqrc29(V;) be a closed form. Since we are assuming that A =
a; + (g — 1) — % > 0, we compute that

v dy (1) dv

v dt dv
dGl(w) = dZ;a)2(t)T+_/\w2= o1 dt+ — Awp
0 v 0 v (3.42)
dv
=w1+— ANw =w,
v
which shows that w is necessarily exact in this case. g

Ifinstead A =a; + (¢ — 1) — % < 0, then for each fixed z € Z;, G9(w) is orthog-
onal to the constant sections of

[0, 8w; (2)) x AT Z; — [0, 8w (2))

with respect to the weighted inner product

Sw; (2) v —2(g—-1) dv
(7'], 1p’)Z = A x_za ( ) (nv w>hQFCvml T

w; (2)

In this case, denote by P, , the projection

Prcl) == /awi P (3.43)
T T w2y U T '

on the constant section for fixed z induced by (3.35) and let

Py xaAQpcﬂqfl(Vi) — xa.AQFcﬂqfl(V,’)

3.44
m+%m72 = Piz(m) (044

be the induced map as z is allowed to vary. With this notation understood, we have
that

Gl =(1d—P,_1)G*

with G4 the operator defined by

5q(w)=/v wz(t)ﬂ
F) t

w; (2)

The computation of dGY(w) then yields the following result.
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Lemma3.6 Ifa = (ai,...,a;) € R is a choice of weight, then for q < "% —a;, we
have that

WH%FC(Viv ¢7 a) %‘ WH?)FC(Zis ¢7 (ai+1 LR ] af))'

Proof Let w € x* Agrc,a$24(V;) be a form such that dw has no dv factor, so that by
(3.39),

v— =dz,ws. (3.45)
ov

In particular, this holds if w € x%Aqrc,¢R27(V;) is a closed form. To compute
dGY(w), we need to perform a preliminal;y computation. First, for P, 1, notice that
for A; :=a; + (g — 1) — 5t <0 and = GY(w), we have that

21; dwi dv
dz,-Pq—l('?)=dz,«< 71/0 v 2x,n(v)7>

 (Bwi(2) "
dwi
= S A (@0 Py () = 2k (®w) + Py o(dzm) (346)
1
dwi
=—A (24i Py—1 () + Py, (dzm),
1

where Py, . was defined in (3.43) and in the last line, we have used the fact that
n(dw;) = G4 (w)(§w;) = 0. Hence, we compute that

~ d
d(G!(w)) =dz,(dd —P;_1)GY(w) + av . )
v
. G ~ d

i

(3.47)
But using that (Id — Py, ;) gives zero when acting on sections constant in v, we see
that

(Id— Py, .)dz,G* (@) = (Id =Py, ;)dz, (/v wz(t)%)

Sw,-

dw v

={d—-"Py, ;) (— i Aw2(8w1)+/

Sw,-

dt
dz;wa(t) T)

w;
v'9

— =Py, / D i@yt
Sw,- at

= (Id = Py;,2) (@1 (v) — w1 (8w;))

= (1d =Py, i1 (v).
(3.48)
Hence, we see that

dw; ~ dv
d(G1(w)) = T A (2Ai Py (Gq(a)))) + {d—=Py,; o1 + " Awy. (3.49)
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Since dw‘ has bounded pointwise norm with respect to the metric 2grc, we see that

dw;

wj

A (24 Py—1(GY (@)) € x* Agrc 2927 (V).

On the other hand, with respect to the pointwise norm | - |54 induced by the metric
hqrc, we have that

1Py, z o1 2 / - 2
i z@11h = T e <. ‘w1 -
4 QFC (Swl) 22X 0 t hQFC
24 dwi
__ i 2220, (t)
(Sw;)—2Mi t
’ 0 horc (3.50)
2% dwi dt
s / 0 () —
(Bwi)=* == |Jo t

l

= mlP‘I(wl)thFC,
which shows that P;, ;w1 € x“ Agrc,2Q2¢(U;). Hence, this shows that dGY(w) €
x* Agrc,2924(V;), that is, that

G4 (w) € x“ Agrc.2.4Q47 1 (V).

Finally this means that w and o’ = w — dG?(w) are such that dw = dw’, and by
construction, @’ has no dv factor. In particular, if w is closed, then @ and ' represent
the same cohomology class with @ having no dv factor. Since it is closed, it must be
constant in v. Clearly moreover, if ' = dn with n € x“.AQpc,ZQ‘]_l (Vi), then dn has
no dv factor, so by the same argument, ’ =1 — dG?~! (1) has no dv factor and is
such that dn’ = ’. Since o’ has no dv factor, this means that n” must also be constant
in v. This means that to compute weighted L2-cohomology in V; for QFB-conormal
forms, we only need to use weighted conormal forms in V; that have no dv factor and

are constant in v. Now, in c (Z/I ), we can suppose that x; =--- =x;_1 = 1, so we
can write
Git1—di o Ae—ai __ aj, 4 G+l o d4¢
= xH_1 X, =vTw; XL X, (3.51)

Thus, using the condition (3.39) with w; = @’ and w; = 0, we find using (3.51) and
integrating in v that

§Mi —2q—2aq; % 2
—2aj41 —2ay
o ”x“L2 Q4 U) <m, —2q — 2al>/ e’ ”hQFC i1 X dhqre <00
(3.52)

Hence, these weighted conormal forms constant in v are in one-to-one correspon-
dence with

. i
x?_l:ll . ~x?[AQpc,2,qu (Z;) forg < 71 —aj, (3.53)
from which the result follows. Il
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Let us now consider the case when g — 1 < % — a; < q. In this case, we can get
some vanishing result provided some extra condition is satisfied.

Lemma 3.7 Leta:(a],...,ag)EJR‘Z be a weight such that g — 1 <2t —q; <q.If

2!
the map WH%FC(Z,-, ¢, @it1,...,a¢)) > HI(Z;) is injective, then
WHY eV 6.a) = (0).

Proof Letwe x* Aqrc,2R29(V;) be a closed form. In this setting, it is easier to con-
sider G?(w) instead G7 (w). Then one computes that

dGi(w)=d (f a)z(t)£>
Sw; (z) t

dv dw; v dt
=— Awr(v) — ! /\a)z(Swi)—i—/ dz;w(t)—
v i Sw; (2) ! (3.54)
d dw; v
_av Awy(v) — Wi A w2 (Sw;) +/ ﬂ(t)dt
v i Sw; (2) ot

=) — (w|v:8wi) .

Since w|y=sy, 1S constantinv and g —1 < % —a; <q, the only way it can bE an ele-
ment of x* Agrc 2229 (V;) is if it vanishes trivially. If this is not the case, then G9 () is
an element of x“AQFCQZQq_l (V;), but not of x* Aqrc,2,4$2¢ —1(V;). However, thanks
to the fact thatg — 1 < % —a;, we can try to look for a form n € )c“leFc,ZQ‘f’1 )
constant in v such that

dn =dzi77 :w|v=8w,--

Indeed, if such a form exists, the result follows by replacing G1 (w) with G1 (w) +n,
since then

0=d(G%(w)+n) and G (®)+ nex*Agrc2.4Q0 V).

Clearly, such a form n exists if and only if the form w|,—sy; € xf'jj‘
xZ‘AQFC,QQ" (Z;) defines a trivial cohomology class in WH%FC(Z,-, o, @iy, -,
ay)), so that the proof is completed by the lemma below and our assumption that the

natural map WHqQFC(Z[, ¢, @i+1,...,a¢)) > H1(Z;) is an inclusion. O

Lemma 3.8 If w € x* Aqrc 2Q4(V;) is a closed form of degree q such that ¢ — 1 <

% —a; < q, then w|y=sw,; defines a trivial cohomology class in H1(Z;).

Proof Instead of the coordinates (v, z), we will use the coordinates (x;, z) in V;, so
that v = Sw; corresponds to x; = §. Write now w in terms of this decomposition,

w=w| +dx; ANwy,
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where this time the w; do not involve dx; and are distinct from those occurring in
(3.37). In terms of this decomposition,

Jdwi
ax,‘

= le‘ w2,
(3.55)
so we see that the cohomology class of w; € H7(Z;) does not depend on x;. To see

that this class must in fact vanish, let us restrict w; to the region C; of V; where
w; > € for some € > 0. Thus,

5
O:dwzdzia)l—i-dx,-/\( 1

—dzia)2> - dzia)l =0,
3)(1'

Ci g [Oa l)xi X Ki’

where K; C Z; is the compact region of Z; where w; > €. In the region C;, the QFC-
metric (3.31) is quasi-isometric to the cusp metric

dx?

L+ xPgk,. (3.56)

i

where gk, is some (geodesically incomplete) Riemannian metric on the manifold
with boundary K;. By the discussion above, w1 (x;) defines a class in H?(K;) which
does not depend on x;. Putting absolute boundary condition on the boundary 0 K;, let
v be the harmonic representative of w1 (x;) on K;. In particular, v does not depend on
x; and

lor )l 2 gy = IV li2 g Vo (3.57)

where || - |2 o, is the L?-norm induced by the metric gk;. However, since w €
OB

x“LéFCQq (V;), when we restrict to C;, we see that

§
—2a; dx; . m;
/0 ||a)1(x,-)||iz’gKixi %L <00 withe; =a;+q— 7 > 0. (3.58)

1

The combination of (3.57) and (3.58) implies that v = 0, that is, that the cohomology
class of wi(x1) in H4(Z;) must vanish. O

Combining all these lemmas yields the following local description of weighted
L?-cohomology of a QFC-metric.

Theorem 3.9 Let a = (ay, ..., as) € R be such that a; # % —q + 1 for each q €
{0, 1, ..., m;}. Suppose moreover that for q such that g — 1 < % —a; < q, the natural
map WH‘(SFC(Z,', ¢, @i+1,...,a¢)) > HI(Z;) is an inclusion. Then for an open set
U; as in (3.27) with B; contractible with smooth boundary, we have that

WHgFC(Zi,Qﬁ, (@iv1,....ap), ifq <5 —ay;

{0}, otherwise. (3.59)

WH?)FC(Z/{ia ¢7 a) = {
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Proof Since the model QFC-metric (3.30) corresponds to the Cartesian product of
Vi, dv—”; + vzgzl.) with (B;, gp;) and since the range of the exterior differential on
B; is closed for absolute boundary conditions, we can use [45, Theorem 2.29] to
conclude that

WHgFC(ul ’ ¢9 a) = WHZZFC(Vi ’ d)v Cl)

using the fact that B; is contractible. Hence, the result follows from Lemma 3.5,
Lemma 3.6 and Lemma 3.7. O

This has various consequences.

Corollary 3.10 Let a = (ay, ...,a¢) € R® be such that for each i and each q €
{0,1,...,m;}, a; # ’% — q + 1. Suppose moreover that for each i and q such that
g—1< % — a; < q, the natural map WHgFC(Zi,q), @it1,.-.,a0)) > HI(Z;) is
an inclusion. Then the cohomology groups WH%FC(M , ¢, a) are finite dimensional
for each q.

Proof When Z; is a closed manifold, the weighted L2-cohomology is identified with
de Rham cohomology, which is finite dimensional. Hence proceeding by induction
on the depth, we can show using Mayer-Vietoris long exact sequences in weighted
Lz—cohomology that WHBFC(Zi, ¢, a) is finite dimensional for each i. The same
argument then shows that WHEFC(M , ¢, a) is finite dimensional as well. O

Notice in particular that this corollary implies that the operator
d : x*Lgpe ¢ Q1 (M \ M) — x* Lope Q4T (M \ 0M) (3.60)
has closed range. Assuming slightly more yields the following.

Corollary 3.11 For a weight a € R such that both a and —a satisfy the hypotheses
of Corollary 3.10, the operator (3.60) has closed range, as well as it formal adjoint
d = x% od* o x72 with respect to the inner product on x“LéFCQ*(M \ OM).
Moreover, the self-adjoint extension of the Hodge-deRham operator 0, :=d + d; on
x“LéFCQ*(M \ 0M) is Fredholm. Finally, there is a natural identification

WHp(M, ¢, +a) = L?H4(M \ dM, ggrc, x=4) (3.61)

and the natural pairing

(0, 1) = WA
M\oM

between x°L*Q4(M \ M, g) and x " *L*Q™~9(M \ M, g) induces a non-degenerate
pairing (Poincaré duality) between WHY (M, ¢, a) and WH" 9 (M, ¢, —a).
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Proof As already noted, the operator (3.60) has closed range. Since d* = & * dx
where * is the Hodge star operator, we see also that d} has closed range from the fact
that the operator

d:x™“Lgpe Q4 (M \ OM) — x™“ Lgpc QI (M \ aM)

has closed range. Hence, the Kodaira decomposition (3.10) induces the natural iden-
tification (3.61). Since d and d have orthogonal images in x”LéFCQ*(M \ OM), the
domain of 9, is the intersection of the domains of d and d}. We also see from the
Kodaira decomposition that d, must have closed range. Moreover, its kernel corre-
sponds to L2*H*(M\ oM, 8QFC, x%), which is finite dimensional by (3.61). The same
is true for its cokernel by formal self-adjointness, so that d, must be Fredholm as
claimed. Finally, a quick computation shows that the operator s, := x>« induces
an isomorphism

sq : L*HI(M \ M, gorc, x*) — L*H™ 4 (M \ dM, gorc, x %)

with inverse (—1)7~49) x%¢x establishing Poincaré duality between WHY (M, ¢, a)
and WH" 9 (M, ¢, —a). O

For more specific choices of weights, these weighted L?-cohomology groups can
be identified with intersection cohomology.

Corollary 3.12 Suppose that dim Z; > 0 for each i, so M(;) has no singular stratum of
codimension 1. Let p be a perversity and let a = (ay, ..., ay) be the weight defined
byai=p(m;+1) — m,T—z — € for some fixed 0 < € < % Suppose that for each i and

q suchthatq — 1 < mT’ — a; < q, the natural map

WH?)FC(ZI" b, (@iy1,...,a0)) = Hq(Zi)
is an inclusion. Then there is an isomorphism
WHGpc (M, ¢, a) =THL (Mp).

Proof With this choice of weight, the statement of Theorem 3.9 can be reformulated
as

WHY(Z;, ¢, (aj+1,...,a¢), ifg<mj—1—pm;+1)+e¢;
WHIU:. ¢.a) = { {0}, otherwise.
(3.62)
This is the same behavior as IH;; (U;), cf. [23, (8)]. Thus, proceeding by induction
on the depth of (M, ¢), we can use [23, Proposition 1] with (3.62) to obtain the

result. O

Note that in this corollary, the upper middle perversity m defined by m(¢) = L%J
(also) corresponds to choosing the weight a = (e, .. ., €), while lower middle perver-
sity m defined by m(¢) = L%J (also) corresponds to the weight a = (—¢, ..., —€).
In this case, with some further assumptions on the dimensions of the fibers of the
fiber bundles ¢; : H; — S;, we can also compute L2-cohomology.
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Corollary 3.13 Suppose that for alli € {1, ..., £}, dim Z; is odd and the natural map
mj +|
QFC (Zi, ¢, O)_>H (Z)

is an inclusion. Then

LPH* (M \ OM, gqrc) = WHpc (M, ¢, 0) = TH(My) = THY, (My).  (3.63)

Proof First, since dim Z; is odd for all i, the stratified space Mq; is Witt, so there is a
natural identification

T (M) = TH;, (My).

m;+1
More 1mp0rtantly, the hypothesis that dim Z; is odd and that WHQFC Zi,¢,0) —

m;+

H™2 (Zi) is an inclusion for all i allows us to take a = (0, ..., 0) in Theorem 3.9,
Corollary 3.10 and Corollary 3.11, giving in particular the identification

L*H*(M \ M., ggrc) = WHpc (M. ¢, 0).

Finally, to obtain the identification with upper middle intersection cohomology, no-
tice that (3.59) gives in this case

WHY(Z;, ¢,0), ifg <5

{0}, otherwise, (3.64)

WH?(U;, ¢,0) = {
which, since m; is odd, is the same as the local behavior of upper middle and lower
middle intersection cohomology [23, (8)]. The result therefore follows from [23,
Proposition 1]. g

m;+1

Corollary 3.14 Ifdim Z; is odd and IHm2 ((/27)4,) = {0} for all i, then

LPH* (M \ M, gqrc) = WHpc (M., ¢, 0) = THZ (M) = TH, (My).

Proof 1In this case, one can check recursively with respect to the depth of 1\7¢ that the
hypotheses of Corollary 3.13 are satisfied, so that (3.63) holds. g

Remark 3.15 In [26], a related result was obtained for iterated fibered cusp metrics.

4 L2-Cohomology of the Nakajima metric
We can apply the results of the previous section to study the weighted L2-
cohomology of the Nakajima metric g, on the Hilbert scheme or Douady space

Hilbj (C?) of n points on C2. Recall that Hilbj (C?) is a crepant resolution

7 s Hilb (C%) — (C3/S, (4.1)
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of the quotient of

Cg=1ge@"| > q;=0)
J

by the action of the symmetric group S, given by
OESn, q 6(@2)8, g-q.= (qofl(l)v""qofl(n))’

For instance, when n = 2, (Cz)(z) =C? and Hilb%((Cz) = T*CP! is just the standard
crepant resolution 7*CP! — C?/Z, obtained by blowing up the origin of C?/Z,.

By the work of Nakajima [40], the Hilbert scheme Hilby (C?) admits a natural
complete hyperKihler metric g, obtained via the hyperKéhler quotient construction
of [25]. In [28], Joyce introduced the notion of QALE-metrics and constructed a hy-
perKahler example on Hilbj (C?) by solving an appropriate complex Monge-Ampére
equation. It was subsequently shown by Carron [11] that these two hyperKéhler met-
rics coincide, showing in particular that the Nakajima metric is a QALE-metric.

In particular, (Hilbg (C?, gn) admits a QAC-compactification. To describe it, let
us review from [11] how the crepant resolution (4.1) can be performed iteratively

using the notion of local product resolution of [28]. Let p = ({1, ..., I) be a partition
of {1, ..., n} and consider the associated vector space
Vo={qe (@ |Vee(l,....k}, gi=q; Vi, j € I} (4.2)

There are corresponding subgroups
Ap={y €Snly -q=qVqeVp} =8, x--- X8y,
By={yeS,|y-Vy=Vp}

(4.3)

Clearly, Ay is a normal subgroup of By, so the quotient Ny, := By /Ay is a group as
well.

Example 4.1 For i, j € {1, ..., n} two distincts elements, consider the partition
pij =i, jh k), - fhn—al), 4.4)

where {ki, ..., kn—2} ={1,....n}\ {i, j}. In this case, V; j := V), , ={q € (Cz)g |
qgi =q;}, Aij = APi,_;‘ =8, =7, Bj = BPL./ =S, xS, 2and N; j = NPi,j =
Sn—2. In fact, B; j = A; j x N; ; is just a product. In general however, By, is only a
semi-direct product of A, and Np. For instance, when n =4 and p = {{1, 2}, {3, 4}},
then Ay =Sy x Sy =Zp x Zy, Ny = Z acts by swapping or not the two clusters
{1,2} and {3, 4} of p, and By, = Ap X N, is only a semi-direct product.

Let also Wy, = VpJ- = @]z{: 1 (C2)gé be the orthogonal complement of V},, where
ng = |I¢|. Now, A, acts on W), and the quotient Wy, /A, = EB]z:l((Cz)”@/Sn( admits
a natural crepant resolution, namely

k
mp ¢ Hilbf) (C?) := [ [ Hilbg' (C*) — Wy /A,. 4.5)
¢
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On the other hand, the action of By on Wy x V,, = (Cz)g descends to an action of
Np = Bp/Apon (W x Vp)/Ap =(Wy/Ap) x Vy, which in turns lift to an action of
Ny on Hilbg (C?) x Vp. In fact, Ny acts on each factor of Hilbg (C?) x Vp separately,
so the quotient (Hilbg (C?) x Vp) /Ny is the total space of a flat orbibundle

Hilb) (C?) —— (Hilb}(C?) x V) /Ny
J/ 4.6)
Vp/Np.
Example4.2 For p =p; ;, the actionof N, =§,,_> on H1lbp' (C?) x Vy, ; is trivial on
the first factor, while on the second factor is the action of S,, > on the Vanables com-
plementary to g; and g; in Vy, ;. The corresponding orbibundle in (4.6) is therefore

trivial. If instead we take n =4 and p={{1, 2}, {3, 4}} then the corresponding action
of Ny = Z, on Hilb}) (C?) = Hilb3(C?)? = (T*CP')? is generated by the involution

Hilb§(C*)? 3 (21, 22) = (22, 21) € Hilb§(C?)?,

so the flat orbibundle (4.6) has some non-trivial holonomy and is therefore non-trivial.

To see how these resolutions sit inside Hilbg ((Cz), recall that there is a partial
order? on partitions given by

pP<q = Vp<V S

In other words, p < q if and only if q is a refinement of p. With respect to this partial
order, there is a unique maximal partition po, := {{1}, ..., {rn}}, as well as a unique
minimal partition po = {{1, ..., n}}. Notice that the partitions p; ; of (4.4) are pre-
cisely those that are just below the maximal one. In fact, for p # poo, we have that

Vo= [ Vi
pP=pi,;
Now, set
Ap=1{G. ) ell,,nf pLpij)
and consider the set

o= |J Vij|/Ap

@i,j)eAyp

2We use the convention opposite to the one of [11] to be consistent with the partial order of the boundary
hypersurfaces of the QAC-compactification of Hilbg ((CZ); see (4.11).
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For R > 0, consider the neighborhood
Tp = {q € (CHF 13, j) € Ap, lgi — q;| < R}/ Ay

of Xp,. With respect to the resolution (4.5), we can then consider the neighborhood
Uy = ((my x 10 (T)) /Ny
Then there are local biholomorphisms
Vp (((CZ)S/Ap) \ Tp) /Np — (CH/S, 4.8)
and
My ((H“bg (C?) x Vp) /Np) \ Uy — Hilb(C?) (4.9)

inducing the commutative diagram

((Hilb§ (C?) x Vp) /Np) \ Uy i> Hilb? (C?)
\L mp x1d l g (4.10)

(C8/A)\Ty) [Ny ——— (€S0

These commutative diagrams precisely indicate how the resolution 7 : Hilbj (C) —
((Cz)g /S, can be decomposed in terms of local product resolutions, at least away
from the origin.

There is of course a natural action of S, on partitions, namely, for o € S,

o-p=q o -V,=Vy.
This induces the equivalence relation
p~q = 30 €S,, oc-p=q.

In other words, if x : (C?)} — (C?)2/S, is the quotient map, then p ~ q if and only
if x(Vyp) = x(Vq). Under this equivalence relation, an equivalence class corresponds
to a partition of n indistinguishable points.

Denoting by (Hilbg((Cz), ¢n) the QAC-compactification of (Hilbj (C2), g,), we
see from (4.10) that each equivalence class [p] of a non minimal partition p corre-
sponds to a boundary hypersurface Hp) of Hilbg((Cz). In fact, [p] = Hpp) gives a
one-to-one correspondence between (non minimal) partitions of n indistinguishable
points and the boundary hypersurfaces of Hilbg (C?). Moreover, the partial order on
the boundary hypersurfaces of }ﬂfbg (C?) is the one induced by the one on partitions,

Hip) < Hiq) <= [p1 <[q]l <= 3p €[p], q € [q] such thatp <q. 4.11)
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To describe the associated fiber bundle on Hjp) coming from the iterated fibration
structure, notice that the vector space V}, can also be seen as a cone with cross-
section Ly a sphere of real dimension 2dimc V), — 1. The action of N, induces one
on this cross-section, so that Vp /Ny can be regarded as a cone with cross-section
Sp := Ly/Ny. This cross-section is singular, but it has at most orbifold singularities,
so it is a stratified space admitting a resolution by a manifold with fibered corners
that we will denote Sy,. This is precisely the base of the fiber bundle

@1p1 + Hip) = St (4.12)

whose fiber is then the QAC-compactification ﬁing (C?) of Hilbg (C?) =
Hilbg1 (C?) x - x Hilbgk (C?) equipped with the QALE-metric given by the prod-
uct of Nakajima metrics gp := gn; X gn, X - X gn,. Indeed, by [29], gy, is again
a QALE-metric and its QAC-compactification I—Tffbg (C?) can be obtained from the
Cartesian product

Hilby' (C?) x - - x Hilby* (C?)

by blowing-up (in the sense of Melrose [36]) certain corners. Let us denote by ¢ the
corresponding iterated fibration structure. By [29], for each boundary hypersurface of
ﬁing (C?), the fibers of the induced fiber bundle is of the form I—Ting (C?) for some
refined partition q > p.

We are now ready to apply Theorem 3.9 to the QAC-compactification (I—Ting (C?),
¢,). Since the corresponding QFC-metric is in fact a QCyl-metric, we will use the
notation

WHcy (Hilbg (C2), ¢, a) 1= WHp (Hilbg (C?), ¢y, ).

Corollary 4.3 Fix 0 <€ < % and let p be a partition of {1, ...,n}. If a is the multi-
weight equal to € for each boundary hypersurfaces of ﬁffbg (C?), then

WHcy (Hilb) (C?), ¢, @) = H(Hilb§ (C?))  and

—~ (4.13)
WHcy (Hilb) (C?), ¢, —a) = H* (Hilb} (C?)).
In particular, if p =po = {{1, ..., n}}, this gives
Hiyy) (Hilbg (C2), ¢, @) = H (Hilb)(C?)  and
(4.14)

WHcy; (Hilbg (C2), ¢, —a) = H* (Hilbj(C?).

Proof For this choice of multiweight a, the statement of Theorem 3.9 can be refor-
mulated as

{0}, otherwise.

WH{c, Ui, ¢, —a) = { (4.15)
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Now, by [40, Corollary 5.10], we know that Hilbg (C?) has no cohomology above the
middle degree for all n. By Kiinneth formula, the same is true for Hilbg (C?) for all
partitions p. Since for each i, Z; is I—ﬁfbg (C?) for some refined partition q > p, we
see proceeding by induction on dim Hilbg (C?) that we can assume already that

WHq(Zl'ﬂ ¢» (_ai+1 s ey _‘1@)) = Hq(Zi)ﬂ
so that Theorem 3.9 can be applied and implies that
WH{c, Ui, ¢, —a) = H(Z:)

since Z; has no cohomology above the middle degree. Hence, on the stratified space
associated to

(Hilb) (C?), ¢P),

the weighted L2-cohomology associated to the QCyl-metric and the multiweight —a
has the same local behavior as absolute cohomology on Hilbj (C?). Using the five-
lemma and commutative diagrams of Mayer-Vietoris long exact sequences, one can
therefore show that the natural map

WH g (HTbG (C?), ¢P, —a) — H* (Hilbf (C?)) (4.16)

is an isomorphism. For the multiweight a, using that the map H.> (Z;) — H 2 (Z))
is an isomorphism, one can dualize the argument, or more simply use Poincaré duality
to see that the map

H (Hilb} (C?)) — WHc, (Hilbg (C?), ¢*. a) (4.17)
dual to (4.16) is also an isomorphism. O

This can be used to compute the L2—coh0mology of (Hilbg (C2), g,)). For this, we
need to invoke the decay of L2-harmonic forms of [30].

Proposition 4.4 For n > 2, there exists € > 0 and a QALE-metric g, quasi-isometric
to gu such that the space of L*-harmonic forms on (Hilbg (C?), 8,) is finite dimen-
sional and included in v¢ L*Q* (Hilbg (C?), 8,), where v is a total boundary defining
function for I—ﬂfbg (C?).

Proof This is a consequence Corollary 2.8. First, by the vanishing theorem of Hitchin
[24], the fibers of (4.12) have only non-trivial L2-cohomology in middle degree. As
discussed, for any partition p > po, the stratified space 5, = Ly /N, is indeed the
quotient of a sphere by a finite group of isometries Ny,. Furthermore,

dimg S, = dimg Ly, =2dimg Vy — 1 > 3,
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where dimc V}, is a positive even integer. Similarly, for partitions p > q > po, we
have that

dimg Sy — dimg Sq — 1 =2(dim¢ Vy, — dime V) — 1>2(2) — 1 =3.

Hence, all the hypotheses of Corollary 2.8 are satisfied. Applying it yields the result.
O

Corollary 4.3 and Proposition 4.4 can then be combined to give a proof of the
Vafa-Witten conjecture [43].

Theorem 4.5 Foralln > 2,
LZ’H*(Hilbg ((Cz), gn) EIm(H} (Hilbg ((CZ)) — H*(Hilbg ((CZ))). (4.18)

Proof By the vanishing result of Hitchin [24] and [40, Corollary 5.10], we only need
to show that (4.18) holds in middle degree, that is, in degree 2n — 2. In other words, by
the result of [6, § 1.3] or [41, Lemma 1.4], we need to show that the natural injective
map

Im(H (Hilb3(C?)) — H*(Hilb}(C?))) — L*H* (Hilb(C?), g,)
(4.19)
= L2H* (Hilb} (C?), &)

is also surjective. To see this, it suffices to show by Corollary 4.3 and the conformal
invariance of the L?-norm of middle degree forms, that the map

Im(WH ey (Hilbg (C2), . @) — WHeyy (Hilbg (C2), . —a)) w20
— L2H*(Hilb](C2), &) '

is surjective, where a is the multiweight given by a; = € for all i with € > 0 suffi-
ciently small. However, by Proposition 4.4, a harmonic form w € Lz'H*(Hilbg ((C2),
&n) defines a class in (WHZ‘2Cy1 (I—Ting (C?), ¢n, a) and is therefore in the image of
(4.20), showing that the map is surjective. g

5 L2-Cohomology of quasi-asymptotically conical metrics of depth 2

In this section, we consider a QAC-metric ggac of depth 2, that is, the corresponding
manifold with fibered corners (M, ¢) is of depth 2. We make the following assump-
tion on goac.

Assumption 5.1 For each submaximal boundary hypersurface H;, we suppose that
each fiber Z; of ¢; AI/—I, — §; is at least 4-dimensional with boundary 9Z; such that
its universal cover 0Z; is a closed manifold which is a rational homology sphere.

We will make use of the following basic fact about the L?-cohomology of b-
metrics.
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Lemma 5.2 Let Z be a compact manifold with boundary dZ and let x € C*°(Z) be a
boundary defining function. If gp is a b-metric on Z \ dZ, then

H1(Z), a<0

q ay o~ ’ ’

WHY(Z\JZ, gp. x )—{ch(z)’ 0>0 (5.1

Moreover, if dZ is a rational homology sphere and a # 0, then the natural map
WH?Y(Z\dZ, gp,x) — HI(Z) 5.2)

is injective unless a > 0 and g =dim Z.

Proof The description (5.1) is a standard result which is essentially a particular and
easier case of [23, Proposition 2]. Indeed, given p € dZ, choosing a neighborhood ¢/
of p of the form U = B x [0, €) with B C dZ a contractible neighborhood of p in
dZ, we see applying the Kiinneth formula of [45, Corollary 2.34] that for a # 0,

a~ |H'B) =R, a<0,g=0

WHIUNUNDZ), gp. x7) = { {0}, otherwise.
Thus, for a < 0, the weighted L2-cohomology behaves locally like absolute cohomol-
ogy, while for a > 0, it behaves locally like compactly supported cohomology. Using
the five-lemma and commutative diagrams of Mayer-Vietoris long exact sequences,
one can therefore establish (5.1).

For (5.2), notice that the assumption that 9 Z is a rational homology sphere implies
through the long exact sequence in cohomology of the pair (Z, dZ) that the natural
map

HI(Z)— HY(Z) isan isomorphism for 0 <g <dimZ. 5.3)

Since HCO(Z) = {0}, the injectivity of (5.2) (unless a > 0 and g = dim Z) follows
from (5.1) and (5.3). O

This observation allows us to apply the results of § 3 as follows.

Proposition 5.3 Suppose that gqac is a QAC-metric of depth 2 satisfying Assump-

tion 5.1. Leta = (ay, ...,a;) € Rt be a multiweight such that a; #* % —q+1 for
each q €{0, 1, ..., m;}. Then the natural map
WHchyl(Zi \3Zi, ¢, (@iy1,....ap)) = HY(Z;) 5.4

is an inclusion whenever g — 1 < % —a; < q. In particular, the conclusions of The-

orem 3.9 and Corollaries 3.10 and 3.11 hold for WHacyl(M, ¢,a).

Proof By (5.2) in the previous lemma, the only way (5.4) could fail to be an inclusion
isif g =m;,in whichcase a; < 1 — % < 0 since we assume m; > 4. Hence, the map
(5.4) is still an inclusion by Lemma 5.2. Il
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This has the following consequences for the weighted cohomology of ggac.

Proposition 5.4 Suppose goac is a QAC-metric of depth 2 satisfying Assumption 5.1.
For0<e < %, consider the multiweight a = (€, ..., €) € RE. Then

m
WH??AC(M’ ¢ +a) = WHqQCyl (M, ¢, xa+ (5 - q))

m

is finite dimensional and WH%AC(M, ¢, a) is Poincaré dual to WHQ;g M, ¢, —a).
More importantly, there are natural maps

WH{ (M, ¢, a) — L*H9(M \ 3M, gqac), (5.5)
L*HI(M \ OM, goac) = WH (M, ¢, —a), (5.6)
with composition
WH{ (M, ¢, a) > L*HI(M \ 0M, ggac) > WHE (M, ¢, —a) (5.7
corresponding to the obvious map.

Proof Finite dimensionality and Poincaré duality is a consequence of Proposition 5.3,
Corollary 3.10 and Corollary 3.11. Clearly, there is a map

{w € x"L?QI(M \ M, gqac) | dw = 0} — WH' (M \ 8M, gqac)
= L*HI(M \ 9M, gQac)-
To see that it induces a well-defined map (5.5), we need to check that
{dn|nevx"L2QI™1 (M \ 8M. goac). dn € xL*Q1 (M \ M, gqac))

maps to zero in WH? (M \ M, gqac), where v € C*° (M) is a total boundary defining
function inducing the QAC-structure on (M, ¢). To this end, let € C*°(R) be a
function equal to 1 on (—o0, 1] and to 0 on [2, 0o) and consider the sequence

=y (—logv—k)n, forkeN.

Then 5y is of compact support and clearly
, dv
dnr =v'(—logv —k) — 2 A (vn) + ¥ (—logv — k)dn — dn

e L*(M \ dM, ggac)

since % is bounded with respect to the norm induced by goac and vy € x?L*(M \
0M, goac). Approximating each 7, by a smooth compactly supported form, we thus
see that d7 is in the L2-closure of the image of d : Q™' (M\ M) — QI(M\IM), so
vanishes in WH' (M \ OM, gqac). On the other hand, the map (5.6) is just the natural
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map. Finally, to see that the composition (5.7) is the obvious map, we proceed as in
[41, Lemma 1.4]. More precisely, if

B = Jim dyyin L?Q4(M \ M, goac)
— 00

with y € Q(Z._](M \ M), then df = 0. Moreover, for o € x*L?>Q"~9(M \
dM, goac) with da = 0 representing a class in WHng (M, ¢, a), we have that

/ BAa= lim diyxk ANa) =0.
M\OM k—o0 J oM

Hence, by Poincaré duality, 8 =0 in WHE’2 ac(M, @, —a). This shows that the map

(5.6) can be defined by looking at the image of a representative of a class in WH? (M \
dM, ggac), hence that the composition (5.7) is just the obvious map. O

This can be used to compute the L?-cohomology of goac provided we make the
following assumption.

Assumption 5.5 For each boundary hypersurface H;, we suppose that (2.9) holds
H; = H; and that (2.10) holds for each H; < H;. For H; submaximal, we suppose
also that a fiber Z; of ¢ : H; — S; has only non-trivial L?-cohomology in middle
degree whenever dim Z; = 4.

Theorem 5.6 Let goac be a QAC-metric of depth 2 on (M, ) and suppose that
Assumption 5.1 and Assumption 5.5 hold. In this case, the reduced L?-cohomology

of goac is given by
L*HI(M \ oM, 8QAC) = Im(WH‘éAC(M, ¢,a) > WHI(M, ¢, —a)), (5.8)

wherea:(e,...,e)eleith0<e<%.

Proof First, notice that by Assumption 5.1 and Assumption 5.5, Theorem 2.5 holds.
In particular, for H; submaximal with dim Z; > 4, (2.11) holds thanks to Assump-
tion 5.1, while it holds also appealing to Assumption 5.5 when dim Z; = 4. Hence,
changing goac in its quasi-isometry class, we can assume that

L*HI(M \ M, ggac) C v L*Q4 (M \ dM, goac)

for some small € > 0, where v = [ [, x; is a total boundary defining function. This
induces a map

L>H9(M \ M, goac) = WHY (M, ¢, a) 5.9)

and shows that the natural map (5.5) is surjective. This also shows that the natural
map (5.6) is injective. Indeed, if w € L>H9 (M \ dM, goac) is non-zero, then

2
f wAxo =, #0,
M\OM QAC
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which implies by Poincaré duality that w represents a non-zero element in
*

WHY (M, ¢, —a) = [WHE L (M. 6, 0)]
We are ready to conclude. The map (5.9) induces the map
L2HI(M \ OM., goac) — Im(WHY (M, ¢, a) — WHY (M., ¢, —a)),

which by Proposition 5.4, the surjectivity of (5.5) and the injectivity of (5.6) must be
a bijection. g

Remark 5.7 By Proposition 5.3 and Theorem 3.9, the cohomology groups

m
WHY (M. . £a) = WHi),, <M, b+ (2 q))

are computable through Mayer-Vietoris long exact sequences in that they can be de-
scribed as the Cech cohomology of sheaves on M(/) whose local cohomology admits a
local description. In fact, Corollary 3.12 suggests that they should correspond to some
sort of intersection cohomology groups, but with the caveat that 1\7¢ has a singular
stratum of codimension 1.

Our result can be applied in particular to QALE-metrics of depth 2 on crepant
resolutions of C"/T" with I" a finite subgroup of SU(n).

Corollary 5.8 Let goaLe be a QALE-metric of depth 2 on a crepant resolution of
C"/T with T a finite group of SU(n). Denote by (M, @) the associated manifold
with fibered corners. For H; submaximal with dim S; = 1, suppose that kerds, =
{0} where vg, is the Hodge-deRham operator on S; associated to the flat bundle of
fiberwise L*-harmonic forms on H; — S;. In this case, the reduced L>-cohomology

of 8QALE is given by

L*H (M \ M. gqaLe) = Im(WHY (M, . a) — WHL \o (M. ¢, —a)), (5.10)
where a = (e, ...,€) e REwith0 < € < %

Proof Let us first check that Assumption 5.1 holds. Thus, let H; be submaximal and
let Z; be a fiber of the fiber bundle ¢; : H; — S;. Since an element y € SU(n) is such
that dimc ker(y —1Id) > n — 1 if and only if y = Id, we see that Z; must at least be of
complex dimension 2, that is, at least of real dimension 4. On the other hand, since
Z; \ 9Z; is a crepant resolution of a quotient C¥/ " of C by a finite subgroup I" of
SU(k), we see that d Z; is a quotient of sphere, so Assumption 5.1 holds.

Again since Z; is a crepant resolution of Ck /', we know by [8, 17, 27] that
it has trivial cohomology in odd degree. By Poincaré duality, we deduce from [23,
Theorem 1A] that Z; \ 9 Z; with its induced ALE-metric has only possibly non-trivial
L?-cohomology in middle degree when dim Z; = 4. This shows that the last part of
Assumption 5.5 holds. For the first part of this assumption, notice that S; is a manifold
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with fibered corners resolving an orbifold quotient of an odd dimensional sphere. In
particular, by Assumption 5.1, for H; maximal, (2.9) automatically holds. For H;
submaximal, it holds if dim S; > 3, while if dim §; = 1 then it holds trivially since
we assume in this case that kerdg, is trivial. Hence, we see that Assumption 5.1 and
Assumption 5.5 are fulfilled and Theorem 5.6 holds. g

This result provides an alternative description to the one of Carron [12, Théo-
réme E], where reduced L2-cohomology of a QALE metric 8QALE is computed in
terms of the cohomologies of different complexes of differential forms. In fact, when
M\ M is a crepant resolution of C*/ I" with I" a finite of Sp(2), one recovers exactly
[12, Théoréme 7.14] from Corollary 5.8 as the next corollary shows.

Corollary 5.9 (Carron) If goaLk is a QALE-metric on a crepant resolution of C* /T’
where n =4 and T is a subgroup of Sp(2), then

HI(M\ M), g <n,
L*HY(M \ M, goaLg) = { Im(HI (M \ dM) — HY(M)), q=n,
HY(M), q >n.

Proof 1In this case the fibers Z; of ¢; : H; — S; are 4-dimensional whenever H; is
submaximal, so dim S; = 3 and Corollary 5.8 applies. As discussed in [12], we know
from [8, 17, 27] that the cohomology of a crepant resolution of C¥/ T for I' a finite
subgroup of SU(k) has trivial cohomology in odd degrees. This means that H?(Z;)
is non-trivial only for g € {0, 2}. In particular, from Lemma 5.2, Proposition 5.3
and Theorem 3.9, we see that WHECyl(M , ¢, —d) has the same local behavior as

H*(M \ dM), ford = (8, ...,8) € R with § > 0 such that § ¢ N. Using commuta-
tive diagrams of Mayer-Vietoris long exact sequences, one can therefore show as in
the proof of Corollary 4.3 that

WHY e, (M. ¢, —d) = HT (M \ M) 5.11)

for d as described above. Applying a similar argument for —d or directly applying
Poincaré duality to the isomorphism (5.11), one can check that there is also an iso-
morphism

WHécyl(M,cb,d)EHCq(M\aM). (5.12)
Hence, fora = (e, ..., €) e RE with 0 < € < % and g # n, we see that
HI(M\ M), q<n
b = q >~ ’ )
WHoac (M. ¢, +a) = WHycy (M. ¢, Fa + (n — q)) = { H (M), q>n,
(5.13)

while for ¢ = n, we have instead
WHirc(M, ¢, a) = WHc (M, ¢, a) = H! (M \ 9M),
(5.14)
WH{ (M, ¢, —a) = WHqQCyl(M, ¢, —a)=HI(M\ IM).

Plugging (5.13) and (5.14) in (5.10) then gives the result. U
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A similar result was obtained by Carron [12, Théoréme 7.12] when ggaLE is a
QALE-metric on a crepant resolution of C3/T" for I a finite subgroup of SU(3). In
this case however, for H; submaximal, dim S; = 1, so unless we are in the special case
where kerdg, = {0}, we cannot deduce this result from Corollary 5.8. Notice however
that the proof of Corollary 5.9 shows that the statement of [12, Théoreme 7.12] is
consistent with the formulation provided in (5.10).

6 L2-Cohomology of the moduli space of monopoles

We can also apply Corollary 3.12 to the moduli space of SU(2)-monopoles of mag-
netic charge 3. More precisely, let M denote the moduli space of SU(2)-monopoles
of magnetic charge k on R3, let N = M, /R> be the corresponding space of cen-
tered monopoles and let M{ = A /S! be the reduced moduli space. Finally, let M}
be the universal cover of Mg. When k =2, we know [23, § 7.1.2] that

M) = S*\RP? and MY =CP?\ RP?.

In this case, the natural L2-metric on /\/lg is a fibered boundary metric. Let gg. be
a conformally related fibered cusp metric. Let x be a boundary defining function
for the associated boundary compactification. Since the associated stratified spaces,
which are respectively S* and CP?, are smooth and that intersection cohomology
does not depend on the choice of stratification, we know by [23, Prgposition 2] that
for 0 < € < 1, the weighted L?-cohomologies gf. and its lift g¢. to /\/lg are given by

WH* (MY, gre, x7) = H*(SY),  WH*(MY, Zre, x*€) = H*(CP?). 6.1)

Now, by [7, p.34], we know that the circle bundle Ny — Mg is flat, so that its lift
toM ,? is trivial. In other words, N} admits a k-fold cover

N = st x M. 6.2)

Lemma 6.1 For0 <e < % and for the fibered cusp metric conformally related to the
natural L*-metric on N and Na, we have that

WHpc(Na. ¢, £6) =R Vg €{0,1,2,3,4,5),

R €{0,1,4,5}

q 2 9 q 9 9 b 9

WHpc V2, ¢, £6) = {{0}’ e 23]

Proof On ./Vz ~s! x /\78, the L2-metric is a fiber boundary metric with the factor
S! part of the fiber with respect to the fiber bundle on the boundary. Thus, for the
purpose of computing the weighted L2-cohomology of a conformally related fibered
cusp metric, we can consider a fibered cusp metric of the form

g./\N/’z :g/{‘/l’(z) —|—x2g§1 (63)
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where g iy is the corresponding fibered cusp metric on /ﬁg and x is the boundary

defining function of the QFB-compactification on ./Wg In particular, since (6.3) is
a warped product and the exterior differential 4 on S' is closed, we can apply [45,
Theorem 2.29] to compute weighted L2-cohomology. Combined with (6.1), this gives
~ N ~ 1 1~ 1
WHYpc (N2, ¢, £€) = WH e (M9, ¢, £ — 5 ® WHER (M9, ¢, e + 5)
= H(CP*) ® H?™ ' (CP?)

6.4)

as claimed. For N>, it suffices to take the Z;-invariant part of (6.4) under the action of

7 and to notice that H2(CP?) has no ngn—trivial Zo-invariant, this latter fact being
a consequence of the Sen conjecture on Mg proved by Hitchin [24]. |

Proposition 6.2 Let (Mg, @) be the QFB-compactification constructed in [20] of /\72
and let Mg be the corresponding stratified space. Fix 0 < € < % If a is a multiweight
such that a; = € for all i, then

WHr (M3, ¢, @) ZTHE(MY)  and - WHyee (M3, ¢, —a) = TH (MD). (6.5)

—0
i —0
Moreover, for ¢ = 5 = d1m2M3 =4, the space WH4QFB (M3, ¢, a) is Poincaré dual

—0
to VVH‘(‘)F]3 (M3, ¢, —a) and there are natural maps

_() ~
WHgp (M3, ¢, a) > L*H* (M3, gqrs), (6.6)
~ —0
L*HM (MY, gorp) — WHps (Ms. ¢, —a), ©.7)
with composition
j—, —_ I
WHe (Ms, 6. a) = L*H (MY, gors) — WHEes (M. ¢, —a)  (6.8)

corresponding to the obvious map, where gqQrg is a choice of QFB-metric compatible
—0
with the manifold with fibered corners (M3, ¢).

Proof As described in [20], the manifold with fibered corners Mg has two boundary
hypersurfaces. Denoting them H; and H> with H; < H>, we know that the fiber Z;
of H; is a Z3-cover of a 2-dimensional torus. In particular, Z> is a closed manifold
and the assumption of Corollary 3.12 is automatically satisfied for i =2. Fori =1,
the typical fiber Z; of ¢ : H; — Sy is a Zz-cover of N>.

Now, by the discussion in [7, p.20], 1 (M) = Z and a generator of this group is
sent to a generator of g (Mg) = Z3 under the inclusion A, — ./\/lg. Hence, on the
universal cover Mg N> lifts to a (connected) Zs-cover of N>. We claim that this
cover is in fact A itself. Assuming this, then Lemma 6.1 ensures that the assump-
tion of Corollary 3.12 is also satisfied for i = 1, so that (6.5) follows by applying
Corollary 3.12.
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To prove the remaining claim, consider the long exact sequence in homotopy
groups induced by the circle bundle N3 — ./\/lg. In particular, we see from [7, p.20]
that it induces a short exact sequence

0— m1(S") = 11 (N2) = (M) = 0

which is just the standard exact sequence

023717, 0.

Now, the Z3-cover W, of A, corresponds to the normal subgroup 37Z of w1 (N>) =
Z. Hence, by standard homotopy lifting properties, under the canonical projection
v : W, — N3, the pre-image of a fiber F of N — /\/lg is a circle which is a Z3-
cover of F. In other words, if L is the complex line bundle associated to the circle
bundle W, — Mg, then Ny — Mg is the circle bundle associated to the line bundle
L ® L ® L. However, according to [41, Theorem 1.1], Mg has the rational homology
of a point. Hence, since m(/\/lg) = Z», we conclude by the universal coefficient
theorem that H2(./\/l(2)) =7Z»,sothat L ® L ® L = L. This means that W, = A5 as
claimed.

When g = 5 = 4, Poincaré duality follows from Corollary 3.11 and the fact that
in middle degree

WH‘(SFB (M3, ¢, +a) = WHEFC(M:;, ¢, *a).

For the definition of the maps (6.6) and (6.7) and the proof that the composition (6.8)
is the obvious map, we can proceed exactly as in the proof of Proposition 5.4. g

Combining this with the decay of harmonic forms of Theorem 2.5 yields the fol-
lowing.

Theorem 6.3 Let gqrp be a choice of QFB-metric compatible with (Mg, @). Then
there is a natural identification

LMV, gorp) = Im (WHgFBW‘;, $,a) —> WHAes (M3, 6, —a),)
(6.9)
= Im (THE (M) — THE (VD). )

where the multiweight a := (€, €) for 0 <€ < % is as in Proposition 6.2.
Proof By Proposition 6.2, there is an inclusion

_0 _O —~
Im(WH{pg (M3, ¢, a) > WHpg (M, ¢, —a)) <> L*H* (M3, gors),  (6.10)

so it suffices to show that this inclusion is surjective. Since the statement only depends
on the quasi-isometry class of ggrg, to show this, we can choose gqrp as we want
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within this class. Now, if all the hypotheses of Theorem 2.5 are fulfilled, then we
know by this theorem that gorg can be chosen so that

L*H* (MY, gorp) C (xix)*L*Q* (MY, gors) (6.11)

for some p > 0, so that all L2-harmonic forms come from the inclusion (6.10) as
claimed.

Thus, to complete the proof, it suffices to show that Theorem 2.5 can be applied.
First, by the discussion in [20], the base S is RP2, while S, is the manifold with
fibered corners (in fact more simply the manifold with fibered boundary) resolving
the quotient

S =S/8;3 (6.12)

of S® C RO by the action of the symmetric group S3 on R® generated by

(ﬁ 1103) and <£ _E) (6.13)
Under this action, the subsets of points of S> where the action is not free correspond
to three disjoint 2-spheres S? in S°. Under the quotient map, these three 2-spheres are
mapped onto the singular stratum of S5, which is just §1 = RP?. Moreover, the link of
the stratum is also diffeomorphic to RPP?. Since RP? has no cohomology in middle
degree, condition (2.10) is satisfied for H; < H,. Moreover, since §2 is a quotient
of SS taking the wedge metric g,, induced by the standard metric on S°, we see
that S> has no non-trivial L2-harmonic forms in degrees bzzil Sil Obv10usly, for
dimensional reasons, there are no L?-harmonic forms in degrees '322 =3 2 and bz £2
so that condition (2.9) holds for Hy < H,. On the other hand, let g, be the natural
hyperKéhler metric on Mz, which is known to be a fibered boundary metric. From
[24], we know that

R, g¢g=2,

{0}, otherwise. (6.14)

L*HI(M3, ) = {
Correspondingly, the natural fibered boundary metric on Ny =S! % /\7(2) is the Carte-

sian product metric gg1 + > with ggi the standard metric on S!. Using separation of
variables, we obtain from (6.14) that

R, ¢=2,3,

{0}, otherwise, (6.15)

L*HI(N3, gs, + 32) = {

a result that follows alternatively from [23, Corollary 1]. Since the corresponding L>-
harmonic forms are not invariant under the natural Z;-action by the Sen conjecture
for MY, this means that the quotient A3 = N>/Z, has no non-trivial L?-harmonic
forms with respect to the induced metric gy,

L*HY (N2, gns) = {0} (6.16)
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In particular, this means that condition (2.11) is autmatically satisfied and that the
operator 0, is trivial, which implies that condition (2.9) for H; < H; is automatically
satisfied. By Theorem 2.5, this means that we can find a QFB-metric ggrg such that
(6.11) holds, completing the proof of the theorem. d

In middle degree, the intersection cohomology with lower or upper middle perver-
sity can in fact be described in terms of the usual cohomology as the next proposition
shows.

Proposition 6.4 The natural maps
H}(M$) - IHEMD)  and  THY, (M) — H*(M9)
are isomorphisms.

Proof Since these two maps are Poincaré dual to one another, it suffices to prove that
the first one is an isomorphism. Now, by [41, Theorem 1.3], the composition

HY(MY) — THE (M) — HY (MY
is an isomorphism, implying that the map
HX(MY) — THE (M) 6.17)

is injective. To show it is surjective will require more work and local computations.

Let U be a collar nelghborhood of H; in ./\/l3 Denote by U the corresponding neigh-
borhood of the stratum S; in /\/l3 Let V be an open neighborhood of S2 \UNSy)

which retracts onto it. With these choices, we can assume as well that MO retracts
onto /T/l\g \ (U UYV), so that

HL(MS, U UY) = HI (MD). (6.18)

Hence, from the relative long exact sequence in cohomology

D HL (MO, U UY) —— HLMY) —— HLAUD) —— -,
R (6.19)

we see that (6.17) will be surjective provided we can show that IH%(Z/{ Uy) ={0}. To
see this, we will first compute IH%(Z/[ ). Recall that by the proof of Proposition 6.2, the
fibers of the fiber bundle ¢ : H; — S are each diffeomorphic to A>. Since U comes

from a collar neighborhood of Hj in Mé’, this means that there is a corresponding
fiber bundle

é1:U— S (6.20)

whose fibers are cones C (ﬁz) over /Vz, the stratified space associated to the manifold
with fibered boundary N;. According to (3.62) and [23, Proposition 1], we have that

HL (N2, g <2,

{0}, otherwise. 6.21)

HL (C(Nh)) = {

@ Springer



L2-Cohomology of QFB-metrics

By Lemma 6.1 and [23, Proposition 2], we thus have that

-~ R g<l1
q ~ ’ =1,
IHW(C(NZ)) - { {0}, otherwise. (6.22)
Now S; = RP? with universal cover §; = S2. Let
é,:U— S (6.23)

denote the pull-back of the fiber bundle (6.20) to §~1. The space U is then a Z,-cover
of U with Z-action covering the Zs-action on §;. This implies in particular that
IHqﬁ(Zj) corresponds to the Z,-invariant part of IH%(Z:{\). By (6.21), we see as in [9,
Theorem 14.18] that the second page of the Leray spectral sequence of (6.23) for
intersection cohomology with upper middle perversity is given by

R, p €{0,2}, g €{0, 1},

{0}, otherwise. (6.24)

EP? = HP(S)) ® HL(C(NY)) = {

In particular, as in [9, Example 14.22], for dimensional reasons, the spectral sequence
degenerates at page E3, allowing us to conclude that

H (@) = {0} forq > 4.
Taking the Z;-invariant part thus implies that
9 77y —
IHZ(U) = {0} forg > 4. (6.25)

On ]7, the local behavior of intersection cohomology for upper middle perversity
also admits a simple description. Indeed, the fibers of ¢ : Hy — S, are 2-dimensional
tori. Hence, from (3.62), given p € SN V and a small neighborhood ]71, of pin %
retracting onto p, we have that

~ R HYT?), ¢=0
q ~ 5 s
HE(Vp) = { 0], q>0. (6.26)
Since V retracts onto ¥ N §2, this means that
HLV)=HIV)=HI(VNS). (6.27)

Now, from (6.12) and (6.13), we know that the universal cover of yn §2 is homeo-
morphic to S° \ £ with ¥ a disjoint union of three 2-spheres S? inside S°. In partic-
ular, from the relative long exact sequence in cohomology

. —— HIS’, %) —— HYS) —— HI(Z) —— --- (6.28)

associated to the pair (SS, Y), we deduce that

HEU UV, U) ZHEQ, VNl = HX(VN'S,) = (0). (6.29)
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Hence, from (6.25) and (6.29) and the relative long exact sequence in cohomology

- —— IHLUuY,U) —— HLUUY) —— HLU) —— -

A (6.30)
associated to the pair ((/ UV, U), we deduce that
4
IHZU UV) = {0} (6.31)
as claimed. O

Let g3 be the natural hyperKéhler metric on /ﬁg In [20], it was announced that g3

is a QFB-metric with respect to the manifold with fibered corners (Mg, ¢). Assuming
this result, we can extract from Theorem 6.3 and Proposition 6.4 a proof of the Sen
conjecture [41, 42].

Theorem 6.5 The Sen conjecture holds on /\72, namely
L*HI (MY, &3) = Im(HI (M) — HI(MY) (6.32)
for all g € Ny.

Proof By the work of Hitchin [24], the result holds for ¢ # 4. For ¢ = 4, the iso-
morphism (6.32) follows from Theorem 6.3 and Proposition 6.4, thanks to the result
announced in [20] that g3 is a QFB-metric. d

Unfortunately, the same approach does not seem to work to prove the Sen conjec-
ture on Mvg. As the next lemma indicates, the main problem is that on /’\710’ one of the
assumptions of Corollary 3.12 does not hold, compromising the use of this corollary
to obtain an analogue of Proposition 6.2 for /\72.

Lemma 6.6 Fix 0 <€ < % If a is a multiweight such that a; = € for all i, then the
natural map

WHrc (N3, ¢, €) —> H>(N3) (6.33)
is not injective.
Proof By (6.2),
HY(N3) = HY (M),

while by [41], H 4(/%2) has no Zs3-invariant part, so
H(N3) = (0},
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Hence to show that (6.33) is not injective, it suffices to show that WH%FC (N3, 0, ¢€)
is non-trivial. Applying the same idea as in the proof of Lemma 6.1, we have that

~ - —0 1 —} 1
WHrc (N3, ¢, €) = WHyee(Ms, ¢, € = 5) @ WHgre (M, 6, € + )
— — 1
= WHYrc (M3, ¢, —€) @ WHpe (M3, ¢, € + 5 634

= H3, (M) @ WH (M, 6, € + %).
Now, by (6.28) and (6.29), notice that
HEU UV, U)=C?,
so by (6.24) and (6.30),
dime IH2 U U V) > 2.

Hence, by (6.19), the fact that IH2_ (MY, U V) = H3(M3) = {0} by [41] and the
fact that the map

HE MY, U UY) — THEMY)

is injective by Proposition 6.4, we see that dim¢ IH? (/\//Tg) > 2. By duality, this means
that dimg IH, (M9) > 2, which by (6.34) implies that

dime WHypc (N3, 6, €) > 2.

Since these non-trivial elements of WHSQFC (f\73, ¢, €) ‘come from’ IH%(Z?I\ U 17 ﬁ),
they are automatically Zs-invariant, so we can conclude that

dime WH (N3, ¢, €) > 2. O
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