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Abstract

Manifolds with fibered corners arise as resolutions of stratified spaces, as ‘many-body’
compactifications of vector spaces, and as compactifications of certain moduli spaces includ-
ing those of non-abelian Yang—Mills—Higgs monopoles, among other settings. However,
Cartesian products of manifolds with fibered corners do not generally have fibered corners
themselves and thus fail to reflect the appropriate structure of products of the underlying
spaces in the above settings. Here, we determine a resolution of the Cartesian product of
fibered corners manifolds by blow-up which we call the ‘ordered product,” which leads to
a well-behaved category of fibered corners manifolds in which the ordered product satisfies
the appropriate universal property. In contrast to the usual category of manifolds with cor-
ners, this category of fibered corners not only has all finite products, but all finite transverse
fiber products as well, and we show in addition that the ordered product is a natural product
for wedge (aka incomplete edge) metrics and quasi-fibered boundary metrics, a class which
includes QAC and QALE metrics.

Keywords Fibered corners - Stratified space - Many-body space - Wedge metric -
Quasi-fibered boundary metric

1 Introduction

There is a large body of work in geometric analysis in which non-compact and/or singu-
lar spaces are compactified and/or resolved to manifolds with corners, on which detailed
analysis, especially of asymptotic expansions at boundary faces, gives precise results not
readily available by other means. The manifolds with corners associated with products of
such spaces are naturally of interest, not least because the typical approach in such problems
is to consider operators via their distributional Schwartz kernels. Particularly when there
are many boundary faces involved, the identification of the ‘correct’ version of the product
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can be a subtle problem which may involve seemingly arbitrary choices and can often seem
somewhat ad hoc. However, in many (if not most) of these problems, the manifolds with
corners additionally admit a natural fibered corners structure in which each boundary hyper-
surface is the total space of a fiber bundle comparable in a precise sense to its neighboring
bundles at the corners. We show here that consideration of this additional structure leads to
a remarkably well-behaved theory of products and fiber products.

Fibered corners structures arise in particular in two settings: The first setting is the resolu-
tion of (smoothly) stratified spaces [1,3-5], which are often equipped with wedge (or ‘iterated
incomplete edge’) metrics, Riemannian metrics degenerating conically along the strata in an
iterated fashion. The second setting is typified in simplest form by many-body spaces, which
are vector spaces which have been radially compactified and subsequently blown up along
the boundaries of a family of linear subspaces [6, 21, 31]. Euclidean metrics on the original
vector spaces become quasi-asymptotically conic (QAC) metrics on the associated many-
body spaces, and this asymptotic geometry may be generalized to the manifold setting in the
form of QAC manifolds [12] and even more generally in the form of ‘quasi-fibered boundary’
(QFB, aka ®) manifolds [10], extending the scattering and fibered boundary structures of
[28] and [27] on manifolds with boundary, respectively, as well as the quasi-asymptotically
locally Euclidean (QALE) metrics introduced by Joyce [8, 17, 19]. Important examples of
QFB manifolds include the compactifications of the hyperKéhler moduli spaces of SU(2)
monopoles of arbitrary charge [13]. Roughly speaking, spaces arising in the first setting are
modeled (iteratively and in parameterized fashion) on the small ends of cones, while those
arising in the second setting are modeled on the large ends.

While a fair amount has been written about manifolds with fibered corners, this article
establishes some aspects of an associated category, in particular the existence of products and
fiber products in this category. The results presented here will have applications to the con-
struction of various pseudodifferential calculi associated with manifolds with fibered corners.
In particular, these results are used in an essential way in [24] and [23], the authors’ work on
elliptic pseudodifferential operator analysis and L?-cohomology of QFB manifolds. In fact,
it will be shown in a forthcoming work that a wide variety of the known pseudodifferential
calculi adapted to various geometric settings can be constructed within the category of mani-
folds with fibered corners introduced below, and that doing so simplifies and clarifies many of
their features. This suggests that the fibered corners category may be the appropriate setting
in which to answer a question posed by Richard Melrose, namely to axiomatize and subse-
quently classify all ‘generalized products,” meaning the sequences of spaces X1, X2, X3, ...
and maps between these spaces which satisfy certain properties enjoyed by the projection
maps and diagonal inclusions when X, X», and X3 are the respective single, double, and
triple spaces of a geometric pseudodifferential calculus.

In more detail, a fibered corners structure' on a compact (not necessarily connected)
manifold with corners X consists of a locally trivial fiber bundle structure ¢ : G — Bg
(hereafter simply called a fibration) on each boundary hypersurface G (again not necessarily
connected), the base B and typical fiber Fg of which are also manifolds with corners (and
in fact fibered corners), satisfying a comparability condition wherever two hypersurfaces
intersect (see Definition 4.1).

Among other things this determines a partial order on the set M (X) of boundary hyper-
surfaces, in which G < G’ whenever G N G’ # ( and G has a strictly coarser fibration
(meaning that G is associated with a smaller stratum when X is associated with a stratified

1 Variously known also as a ‘resolution structure,” ‘iterated boundary fibration structure,” or simply ‘iterated
structure’ [3, 5, 11]
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space). As a matter of notation, we write G ~ G’ when G and G’ are comparable, meaning
G=G,G<G,orG <G.

A key observation, seemingly overlooked in the literature, is that this structure and asso-
ciated partial order extends to the larger set M 0(X) = M (X) U {X} of principal faces,
meaning the boundary hypersurfaces along with the interior, provided the interior itself is
equipped with a fibration ¢x : X — By similarly comparable to the ¢G. The two most
common situations arise by taking one of the two trivial fibration structures on X:

e If By = X and ¢x = 1, making X € M/ o(X) maximal in the order, we say X is
interior maximal, denoted by X = X, which turns out to be natural in the setting of
stratified spaces and wedge metrics.

e If By = x1is a single point and ¢y is the constant map, making X € M o(X) minimal
in the order, we say X is interior minimal, denoted by X = Xpin, which turns out to be
natural in the setting of many-body spaces and QFB manifolds.

We treat the general case of an arbitrary fibration on X below, obtaining results for interior
maximal and interior minimal spaces by specialization. Note that every manifold with fibered
corners admits both wedge and QFB metrics.

Even with interior fibrations specified, the Cartesian product X x Y is not generally
a manifold with fibered corners in any natural way, since the product fibrations are not
generally comparable where they meet. Instead, the product in the fibered corners category
is the ordered product, defined for interior maximal manifolds with fibered corners by the
iterated blow-up

Xmax X Ymax = [X x ¥V; M1(X) x M1(Y)]

of all codimension 2 corners of the form G x H, where G € M{(X) and H € M(Y),
taken in any order consistent with the partial order on the product M (X) x M (Y); in other
words G’ x H' must be blown-up prior to G x H whenever G’ < G and H' < H, and any
order satisfying this condition leads the same space up to natural diffeomorphism.

On the other hand, for interior minimal manifolds with fibered corners, the ordered product
is defined by the opposite order blow-up

- <« <«
Xmin X Ymin = [X X ¥; M1(X) x M (Y)]

where /V 1(X) denotes the partially ordered set M (X) with order reversed; in other words
G’ x H' must be blown up prior to G x H whenever G’ > G and H' > H. In general,
these are not diffeomorphic, i.e., Xmax X Ymax 2 Xmin X Ymin, Whenever one of the factors
has a corner of codimension at least 2. Both products are in fact special cases of the general
ordered product

> < < <_> (_>
XXY =[XxY; M7 (X) x M[(Y), M{(X) x M{(Y)], (1.1
where ./\/l]2 (X) = {G € M (X) : G 2 X}. Our main results about the ordered product are
summarized as follows.
Theorem (Theorems 4.13, 4.8, 6.6, 6.6) For manifolds X and Y with fibered corners:

(a) The ordered product X X Y is naturally a manifold with fibered corners, with
principal faces L(G, H) € M o(X X Y) identified with those pairs (G, H) €
Mi0(X) x M1,0(Y) which are comparable to (X,Y) in the product order, with
L(G,H) < L(G',H) if (G, H) < (G, H'). In particular, L(G, H) and L(G', H')
are disjoint if (G, H) » (G', H').
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(b) For interior maximal spaces, the fibrations of Xmax X Ymax have the form

Fy — L(X,H) Fc — L(G,Y) FG ¥max Fy — L(G, H)
l¢x,n \L‘bc,y or l@bG.H (1.2)
X X By, B XY, Bg X By,

for H € M oY) and G € Mj,0(X) in the first and second cases, and (G, H) €
M (X) x M (Y) in the third case, and where % denotes the join product discussed
below (see also Definition 3.8).

(c) For interior minimal spaces, the fibrations of Xmin X Ymin have the form

XX Fy — L(X,H) FgXY — L(G,Y) FG % Fy — L(G, H)
\L¢x,1-1 l‘le,Y or l/‘PG,H (1.3)
By, Bg, BG *min By -

For the structure of the fibrations on a general ordered product (1.1) specializing to
(1.2) and (1.3), we refer to Theorem 4.13.

(d) X X Y satisfies the universal property of the product in a category of manifolds with
fibered corners and appropriate morphisms (see below), namely any morphisms f :
W — X and g : W — Y factor through a unique morphism W — X X Y forming a
commutative diagram

w
El
hd

X+— XXY —Y

f g

with the lifted projections tx : X XY — X and wy : X X Y — Y. In particular,
as a consequence of this universal property, the ordered product is associative and
commutative up to unique isomorphism.

(e) If gx and gy are wedge metrics (resp. QF B metrics) on Xmax and Ymax (resp. Xmin and
Ymin), then gx + gy lifts to a wedge metric (resp. QF B metric) on Xmax X Ymax (resp.
Xmin X Ymin)-

Some remarks:

e The fibered corners structure on X induces a fibered corners structure on each boundary
hypersurface G as well as its fiber Fg and base Bg, with respect to which Fg is interior
minimal and Bg is interior maximal. In particular, the base spaces in (1.2) are ordered
products of interior maximal manifolds, while the fibers in (1.3) are ordered products of
interior minimal manifolds.

e We do not assume that the spaces X, G, Fg or Bg are connected; in particular, it often
arises in practice that ¢ : G — Bg is a fibration with fiber Fg having disjoint compo-
nents.

e The join product % appearing in the fibers in (1.2), so named for the fact that its asso-
ciated stratified space is the topological join of the stratified spaces of its factors (see
Corollary 5.2), may be identified as the iterated blow-up

FG %max Fy = [Fg x Fg x I; M{(Fg) x Fg x {0},
Fg x M(Fg) x {1}, (1.4)
Mi1(Fg) x M1(Fy) xI], I=1[0,1],
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with blow-ups taken in any order consistent with the partial orders on M (Fg), M{(Fpg),
and M (Fg) x M(Fg). The join product appearing the bases in (1.3) is given by a
similar formula but with orders reversed:

BG %min By = [Bg x By x I: My(Bg) x By x {0},
Bg x Mi(By) x {1}, (15)
<« <«
Mi(Bg) x My (By) x 11,

In contrast to the ordered product, there is in fact a remarkably non-trivial diffeomor-
phism X ¥pax ¥ = X Fyin Y between the minimal and maximal join products which is
proved in §7, from which it follows that the associated stratified space to (1.5) is also
the topological join of the stratified spaces of the factors. A general version of the join
(see Definition 3.8) which appears in the boundary fibrations for a general ordered prod-
uct (1.1) is somewhat more complicated and depends on the place of X in the order on
Mi,0(Fg) and M o(Bg), viewed as ordered subsets of M o(X).

e The boundary fibrations (1.3) in the interior minimal case (and more generally whenever
X and Y are not both maximal) depend on equivalence classes of boundary defining
functions on X and Y, where two defining functions are equivalent if their ratio is basic
(i.e., constant on fibers) over each boundary hypersurface (see Definition 4.4). Such a
choice of equivalence classes of boundary defining functions is therefore part of the data
for X and Y as objects in the general category of manifolds with fibered corners (unless
all spaces are taken to be interior maximal). This equivalence relation also arises naturally
in the consideration of QFB metrics (see Sect. 6).

e The morphisms referenced in part (d) are taken to be those interior b-maps f : X — Y
which are

e simple, meaning all boundary exponents are O or 1,

e b-normal, in particular boundary hypersurfaces map either to boundary hypersur-
faces of the target or to the interior, but never to faces of higher codimension, so f
determines a map f; : My 0(X) — M;j 0(Y) between sets of principal faces,
ordered, meaning f; : M o(X) — Mi,0(Y) is a map of ordered sets,

fibered, meaning f restricts over each G € M ¢(X) to a map of fiber bundles

6 1 1= 10

lq}(; l¢ - for some fg
f

Bg —¢ B H
e consistent with the equivalence classes of boundary defining functions on X and Y
(see Definition 4.4 for a precise statement), except in the case that all spaces are
interior maximal.

In contrast to the usual category of manifolds with corners and b-maps, the fibered corners
category has all transverse fiber products:

Theorem (Theorems 3.12, 3.13 and Proposition 4.14) If f : X — Zand g : Y — Z are
fibered corners morphisms which are b-transverse, meaning that °d f,° T, X + bdg*bTyY =

2 As shown in [18], the suitably transverse fiber product of manifolds with corners exists as a manifold with
‘generalized corners,’ a larger category which has products and transverse fiber products, but not typically a
manifold with ordinary corners.
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bTZZ whenever f(x) = g(y) = z, then
XXzY={x,y)eXexYe: fx)=g(N}CXXY

is a manifold with fibered corners, embedded as a p-submanifold in the ordered product and
satisfying the universal property of the fiber product in the category of fibered corners. The
fibrations on X X z Y, consistent with the restriction of from those of X X Y, have the form

F6 Xy Fu
lqbc.y where K = f:(G) = gs(H) € M,0(2)

except for the case that G € M1(X) and H € M (Y) are proper boundary hypersurfaces
with f4(G) = gy(H) = Z € Mo(Z), in which case the fibrations have a more complicated
form

FG %max.z Fn — XXz YNL(G, H)
\L¢G,H l:fX=XmQXsY=YmaX7 or
Bg X, By
FgXp, Fu — XXz YNL(G, H)
l‘ﬁG,H if X = Xmin, ¥ = Ynin.

BG %min,z By

In the notation, Fg *max,z F'y denotes the closure of F§ x z Fg x I in(1.4) and BG *min,z Bu
denotes the closure of BZ, xz By x I in (1.5); the general case (X and Y not necessarily
minimal or maximal) is covered in Theorem 3.13. In particular, for any morphism f : X — Y,
the graph Gr(f) = X Xy Y is realizable as a fiber product; thus, f factors canonically within
the category as the inclusion of a p-submanifold X = Gr(f) < X X Y and a b-fibration
XXY—>7Y.

The ordered product realizes and generalizes known products from two different settings
mentioned previously. The first is the product of smoothly stratified spaces, which are topo-
logical spaces X = |_|s; decomposed into disjoint manifolds s; of varying dimension called
strata, with some conditions on how the strata fit together (see Sect. 5.1) amounting to an
iterative, parameterized conic degeneration of each stratum onto the next. There is a well-
known equivalence between a smoothly stratified space X on the one hand, and a manifold
with fibered corners X on the other, wherein X" is obtained by collapsing the fibers of the
boundary fibrations of X, while X is recovered from X by iteratively resolving the strata by
a kind of blow-up which resolves cones to cylinders [1, 3].

Theorem (Theorem 5.1) If X and Y are manifolds with fibered corners associated with
smoothly stratified spaces X = | |;s; and Y = | |; s}, then the interior maximal ordered
product X max X Yiax is the manifold with fibered corners associated with the product X x Y =
Ui, jsix s;. of stratified spaces.

The second is the product of many-body spaces, which are compactifications
MV)=[V;{0S:S €Sy}

of finite-dimensional real vector spaces V obtained by iteratively blowing up the radial
compactification V along the boundaries of a finite set Sy of linear subspaces. Such a space
is naturally an interior minimal manifold with fibered corners.
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Theorem (Theorem 5.3) There is a natural isomorphism M (V)min X M(W)pin = M(V X
W) = [V x W,; [8(5 x8):SeSy, §e SW]] between the interior minimal ordered
product of M(V) and M(W) and the many-body space of the product V. x W.

An overview of the paper is as follows. We first recall some notation and background on
manifolds with corners in Sect. 2, including some of the theory of generalized blow-up from
[22] (even though all blow-ups here are ordinary ones), which is used throughout to simplify
the proofs of our results. As it happens, a number of properties of the ordered product do
not actually depend on the fibration structures on the principal faces of the factors, but rather
only on the induced order among these principal faces. For this reason, and since it may
have more general applications, we first develop much of the theory in a larger category of
ordered corners in Sect. 3 in which manifolds are equipped only with a suitable orderings
of their principal faces and morphisms are consistent with these. The properties of products
in this ordered corners category are proved in Sect. 3.1, and the properties of fiber products
are proved in Sect. 3.3. In Sect. 3.2, we give a detailed analysis of the product structure of
boundary hypersurfaces of X X Y in preparation for the fibered corners category; a key role is
played by so-called compressed projection maps which in a certain sense extend the boundary
fibrations to fibrations involving a cone over the fiber or base, depending on context. We then
review fibered corners structures in Sect. 4 and obtain the results stated as parts (a)—(d) of the
main product theorem above as well as the fiber product theorem in Sect. 4.1. The connection
to stratified spaces and many-body spaces is discussed in Sects. 5.1 and 5.2, respectively. In
Sect. 6, we introduce the geometric structures encoded by the wedge and & tangent bundles,
proving the product result for @ structures in Sect. 6.1 and for wedge structures in Sect. 6.2.
In fact, we give two proofs each of the product results for wedge and QFB metrics, one based
on a direct analysis of the respective tangent bundles, and another alternate proof based on
examination of the form of the lifted product metrics. In Sect. 7, we prove the diffeomorphism
between the minimal and maximal join products, which apart from its conceptual relevance
in this paper gives an unusual example of a diffeomorphism of blow-ups of manifolds with
corners which is non-trivial on the interior. Finally, Appendix A contains a short exposition
of some technical results concerning tubular neighborhood structures with nice properties
and an Ehresmann lemma in the fibered corners category.

2 Background

We briefly recall some of the important notions from the theory of manifolds with corners
used below, though we assume the reader is already somewhat familiar; for more complete
references and/or more leisurely introductions, see [15, 16, 29, 30].

A manifold with corners is a Hausdorff space X locally diffeomorphic® to open sets in
R’i, where Ry = [0, oo). With a few notable exceptions, such as the cones and normal
models of hypersurfaces considered below, all manifolds with corners in this article are
assumed to be compact unless context makes it clear otherwise. Every point has a well
defined codimension, given by the number of vanishing R factors in any chart, and the
closure of a maximal (connected) set of points with a fixed codimension is a boundary face,
with the set of boundary faces of codimension k denoted by My (X); in particular M (X)
is the set of boundary hypersurfaces. We write M(X) = ;- M (X) for the set of all
boundary faces. The interior, X°, of X is the set of points with codimension 0, and the depth

3 e, locally homeomorphic with transition maps given by diffeomorphisms.
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of X is the maximum codimension occurring on X, or equivalently the maximum number
of boundary hypersurfaces that have a non-empty mutual intersection. We assume boundary
hypersurfaces (and therefore all boundary faces) are embedded; in particular each boundary
face is again a manifold with corners. A function pg : X — Ry is boundary defining for
G e M(X)if pal (0) = G and dpg # 0 on G; the ratio pg/p’G of two boundary defining
functions for G is a strictly positive smooth function.

Note that we do not require that a manifold with corners is connected, nor do we strictly
require that boundary faces are connected, despite how they have just been defined! Indeed,
it will be useful below to allow certain unions of disjoint boundary hypersurfaces to be con-
sidered as a single hypersurface, or what is called in [5] a collective boundary hypersurface.
This identification of collective boundary hypersurfaces (i.e., which components are to be
considered to belong to ‘the same’ hypersurface) constitutes additional data on the manifold
with corners, and in the event that such data has been specified, we abuse notation by using
M (X) to refer to the set of collective boundary hypersurfaces; in the absence of such a
specification M (X) consists by default of connected components only. By contrast, we
adopt the convention that X € M(X) is always considered as a single face even when X is
not connected; thus Mo (X) = {X} is always a singleton.

The b-vector fields Vy(X) C V(X) = C*°(X; T X) are by definition the Lie subalgebra of
smooth vector fields tangent to all boundary faces. These form a locally free sheaf of constant
rank, defining the b-tangent vector bundle

TX > X by W(X)=C®X;°TX),

spanned in local coordinates (xp, ..., Xk, y1,..., Y1) € ]R’jr x R! by x;9y; and Byj. Over
x; = 0, the b-tangent vector x;0y, = pg,dps, 1s actually independent of the choice of
boundary defining coordinate x;. The inclusion Vo(X) C V(X) induces a natural bundle
map PT X — T X which is an isomorphism over the interior; at p € X, the kernel defines
the b-normal space PN pE, where E is the unique boundary face whose interior contains p.
Taken together, these form a vector subbundle, YN E, of °T X over the interior of E which
extends by continuity to the whole of E. Infact’ NE — E is trivialized globally by the frame
{ 0G; 0 o6, } where pg, are any boundary defining functions for the hypersurfaces G, ..., Gk
whose intersection has E as a connected component.

An interior b-map (hereafter simply a b-map) f : X — Y is a smooth map such that, for
any sets {pg : G € M(X)} and {py : H € M (Y)} of boundary defining functions for X
and Y,

f*(pn) =ay 1_[ pg(H’G), forevery H € M (Y) 2.1
GeM(X)

where ag > 0 is smooth and strictly positive and the boundary exponents e(H, G) € Z+
are nonnegative integers. We will say that a b-map f is rigid with respect to fixed sets of
boundary defining functions on X and Y if each ay in (2.1) is identically 1; while this is not
a standard notion, it turns out to be useful below.

Returning to standard concepts, a b-map f is said to be simple if each e(H, G) € {0, 1}.
Under an interior b-map f, every boundary face E € M;(X) is mapped into a unique
smallest face F' € M;(Y) (determined by the condition that f(E°) C F°), an assignment
we denote by

fe t M(X) — M(Y). (2.2)
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In general, the differential of a b-map extends by continuity from the interior to a bundle
map

bdf, PTXx — PTY (2.3)
over f, and this b-differential restricts over E € M (X) to a bundle map
bdf, :°NE - PNF, where F = f.(E) € M(Y). (2.4)

Indeed, (2.4) is determined on the frame {pG d,; } by

PGOpe > Y e(H, G) pridyy, 2.5)
H

where e(H, G) € Z are the boundary exponents of f.

A map f is said to be a b-submersion (resp. b-immersion) if (2.3) is surjective (resp.
injective) on fibers, and is said to be b-normal provided each map (2.4) is surjective on fibers;
note that the latter condition holds if and only if it holds for all hypersurfaces E € M (X).In
particular a b-normal map cannot map a boundary hypersurface into any face of codimension
2 or more, so (2.2) restricts to a map

fr it Mi(X) = My o(Y) if fis b-normal

where M1 o(Y) = M1 (Y)UMp(Y) = M1 (Y)U{Y}isthe setof principal faces, notation and
terminology which is frequently employed below. An equivalent condition to b-normality
is that for each G € M (X), there is at most one H € M (Y) for which the boundary
exponent e(H, G) is nonzero.

A b-normal map can be rigidified in the sense that, for any set of boundary defining
functions on Y, there is a set of boundary defining functions on X with respect to which f is
rigid; indeed, starting with an arbitrary set {pG : G € M (X)}, this is achieved by replacing
oG by bgpg, where bg = HHGMI(Y)(G[;l)g(G’H) and g(e, ) forms a right inverse for
e(e, @) viewed as a |fn (/\/ll(X))| X |M1(X)| matrix. In particular, a b-normal map can be
put locally into the normal coordinate form:

fry e (350, 0) =&, Y) (2.6)

where (X,y) € Rli x R! are coordinates centered at f(p) € Y and (x,y) € Ri x R/
are coordinates centered at p € X, and where X = x¢ is shorthand for X; = ]_[l- xie G s
1<j<k.

Remark We will occasionally employ the exponential notation x¢ = (]_[f-(:1 x; @y,

]_[f-czl xf("’i)) where x = (x1,...,xx) and e = [e(J, i)] is an n X k matrix. In this convention,
(x¢)8 = x8¢, where ge is the usual matrix product of g and e.

A b-normal b-submersion is said to be a b-fibration, and such a map can always be written
in the local normal form

f : (X, y) = (xev prl/ y)’ (27)

where pry : (y1,..., ) = (¥1, ..., yr) denotes the projection onto the first I’ < I coordi-
nates. The restriction of a b-fibration to any boundary face E € M (X) is again a b-fibration
f + E — f:(FE)ontoits image in Y. A simple b-fibration with the property that each bound-
ary hypersurface H of Y has a unique hypersurface G < ftf1 (H) in X which maps to it is
in fact a fiber bundle of manifolds with corners; indeed in this case it follows from the local
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normal form (2.7) (in which e is a projection matrix up to permutation) that f is a surjective
submersion of compact manifolds with corners, and the standard argument for manifolds
then shows that it is a fiber bundle.

Asubset P C X is ap-submanifold if itis covered by coordinate charts (x, y) in which itis
locally defined by the vanishing of codim(P) of the coordinates. Examples include boundary
faces themselves.

The blow-up of a closed p-submanifold P C X is the space

[X;Pl=(X\P)US,.P

where the front face of the blow-up, S; P, consists of the inward pointing spherical normal
bundle of P, the fiber at p € P of which consists of normal vectors to P at p which have unit
length with respect to any norm and point inward, with smooth structure generated by polar
coordinates normal to P. This is equipped with a canonical b-map 8 : [X; P] — X (which
is not generally b-normal), given by the bundle projection Sy P — P at the front face and
the identity elsewhere. If § C X is another (connected) set, the /ift of S to [X; P] is defined
by /3’1 (S)if § C P, and the closure of S\ P in [X; P] otherwise, and provided S lifts to a
p-submanifold in [X; P] (abusively denoted by the same letter), the iterated blow-up

[X; P, S]:=[[X; PI; S]

is well defined. In particular, every boundary face lifts to a p-submanifold under a blow-up,
and the iterated blow-up of any number of boundary faces is always well defined.

Three additional topics from manifolds with corners will be used below. As these are
either new or relatively unknown, we devote a subsection to each for ease of reference.

2.1 Normal models

For G € M (X), we define v : NG — G to be the inward pointing normal (not b-
normal!) bundle to G, which will be referred to as the normal model of G in X. That is
to say, NG = T X|g/T G, which is a non-canonically trivial line bundle with well-defined
inward pointing subspace N4 G, taken to include the zero section, with an action by (0, co)
fixing the zero section Gy which we identify with G itself. It is convenient to extend this to
the case G = X € M (X) as well, in which case N4 X is the unique 0-dimensional bundle
NiX = Xo — X, identified with X itself, with trivial (0, co) action. If f : X — Y isa
b-normal b-map, then the differential descends to a well-defined (0, co)-equivariant map

df : NyG > NyH, H = f:(G) € My o(Y) (2.8)

where again N.Y =Y itself in case f4(G) = Y. In this latter case df = v*(f|g) factors
as the composition of the bundle projection v : NG — G with f|g : G — Y. This
consideration applies in particular to smooth functions, with f € C*®(X; R) regarded as a
b-map f : X — R with fz(G) = R € Mo(R), lifting to df = v*f : NtG — R. In
contrast, boundary defining functions on X, regarded as b-maps pg’ : X — [0, 00), lift to
N4+ G as dpg = v¥*(pg'|g) for G’ # G and dpg : N+G — Ny {0} = [0, co) (with non-
trivial (0, 00) action) for G itself. It follows from this observation that (2.8) is a b-normal
b-map of non-compact manifolds with corners serving as an infinitesimal model for f itself
near G C X, and we frequently use such models below.
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2.2 Generalized blow-up

We will make use of some of the theory of generalized blow-up developed in [22], and we
now recall the relevant details here, keeping the treatment as self-contained as possible. We
begin with the observation that within each b-normal space by pF, F € M(X), there is a
freely generated monoid (meaning a commutative semigroup with identity)

bMpF =74 (plapl, R pkapk),

which is well defined by the independence of the b-normal vectors p;d,, of the choices
pi = pg; of boundary defining functions, and which is likewise independent of p € F, so
we just denote this monoid by PM F from now on and denote the generator associated with
the boundary hypersurface G; = {p; = 0} simply by

8i = pidp.

Whenever F C E, the normal monoid *M E (which is generated by fewer of the same g;)
includes as a face of ® M F, which, up to reordering, is just the inclusion

bMEgZ-ﬂ-(gla"'vgl?O»"-’O) CZ+<g]»~~~9gl9gl+lv~'~7gk>;bMF' (29)

Since the coefficients of (2.4) are nonnegative integers, the b-differential of a b-map
f X — Y induces well-defined monoid homomorphisms*

bdf, :PMF — PMfy(F), foreach E € M(X), (2.10)

which are consistent with the inclusions (2.9). Note that if f is both simple and b-normal,
then in (2.10) each generator of ® M F maps to a generator of ® M f:(F), and conversely: The
condition that generators map to generators in (2.10) implies that f is simple and b-normal.

In the particular case that f = 8 : X = [X; Eq,..., E;] = X is the blow-down map of
an iterated blow -up of boundary faces {E;} C M(X ) of X, the images under (2.10) of the
monoids from X form a complete decomposition of each monoid "MF of the target, in the
sense that ® M F is a union of such image monoids °d f;, (bM F), FeM (X ), meeting along
boundary faces. Such decompositions constitute what is called a refinement in [20, 22].

For example, if E =G N---N Gy, withPME = Z4(g1,...,81),thenforany F C E,
the refinement of ® M F induced by the blow-up 8 : [X; E] — X consists of the / submonoids
of "M F in which precisely one of the generators {g, ..., g/} is replaced by g + - - - + g1;
this corresponds to the geometric process of ‘barycentric subdivision” of ®M E, considered
as a face of M F. Examples are illustrated in Fig. 1.

As summarized below, the monoids of the refinement actually characterize the iterated
blow-up [X; Eq, ..., E,] completely up to dlffeomorphlsm and an arbitrary refinement
determines what is called a generalized blow- -up,> meaning a manifold with corners X and
a suitable blow-down map 8 : X > X, thei images of the induced monoid homomorphisms
(2.10) of which constitute the given refinement. In particular, the boundary hypersurfaces of
X and their incidence relations (meaning their intersection properties) can be simply read
off from the monoids of the refinement: Hypersurfaces are in bijection with generators (i.e.,

4 Meaning maps intertwining addition which send 0 to 0.

5 While the refinements considered here arise from ordinary iterated boundary blow-up, the general theory in
[22] accounts for inhomogeneous blow-ups, as well as refinements which do not arise from any classical iterated
boundary blow-up, hence the term ‘generalized blow-up.” The paper [20] extends the notion of refinement
and generalized blow-up to the category [18] of manifolds with generalized corners.
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Fig. 1 A schematic depiction of a the monoid Z4 (g1, g2, g3) associated with a boundary face Ejp3 =
G1 N Gy N G3, b the refinement associated with the blow-up [X; E153], ¢ the refinement associated with

the blow-up [X; E»3], and d the refinement associated with their common resolution, the iterated blow-up
[X; E123, E23] = [X; E3, E123]

one-dimensional monoids) and intersect if the associated generators together generate a two-
dimensional monoid in the refinement. The main results we use below are the following,
which assert the characterization of an iterated boundary blow-up by its monoid refinement,
as well as a criterion for lifting b-maps under such a blow-up.

Theorem 2.1 ([22, Theorem 6.3], also [20, Theorem 3.7]) Let [Y; F}, ..., F,] be an iterated
blow-up of boundary faces F, ..., F, € M(Y) of a manifold with corners Y, with blow
downmap B :[Y; F, ..., F,] = Y, and let R denote the associated collection of monoid
refinements (given by bdﬁ*(bMF) C bMFfor Fe MAY; Fr, ..., F,])and F = ﬂj(ﬁ) €
M(Y)). Then,

(a) R determines a manifold with corners Y and along with an interior b-map B’ : Y - Y,
restricting to a diffeomorphism B’ : Y° = Y° of interiors, such that

(b) if f : X — Y is an interior b-map with the property that every monoid homomorphism
bdf, :"ME — ben(E), E € M(X), factors through a monoid in R, then f lifts to a
unique interior b-map f: X — Y such that f=p8o f

2l
X —Y

(c) In particular, the blow-down map B : [Y; F1, ..., F,] — Y factors through a unique
diffeomorphism E Y, Fy] = Y identifying Y with the iterated blow-up
itself, and if [Y; Fs(1), ..., Fo@m)] is an iterated blow-up of the same boundary faces
in a different order (i.e., for a permutation o of {1, ...,n}), then as long as the two
associated refinements of the monoids of Y agree, there is a canonical diffeomorphism
[Y; Fi,..., 1 = 1Y; Foqy, -« -, Fom)] extending the identity in the interior.
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Though we refer to [22] for the full proof of these results, we give a sketch here for the
convenience of the unfamiliar reader. First, the space Y may be constructed directly from the
monoid refinement of Y as follows. Locally, if (x, y) € ]Rl+ x R"=! are coordinates on Y
centered at an interior point of a face F € M;(Y), then for each monoid of dimension / in the
refinement of P M F, let v = [v (i, j)] € Mat(l x [, Z4) denote the matrix of the inclusion
map with respect to the generators (which is unimodular and in particular invertible) and
construct a coordinate patch (¢, y) € ]Rl+ x R~ for ¥ with local blow-down map

Bty (x,y) =" . (2.11)

. - . , . —
In particular + = x” ~ gives ‘blow-up coordinates’ on Y as rational combinations of the x.
For adjacent monoids in the refinement, associated with matrices v and v’, respectively, the
transition maps

. y) > (ty) =" ",y

are seen to be diffeomorphisms on open subsets where some of the variables (associated
with those generators which are not common to both monoids) are strictly positive, and glue
together naturally with respect to coordinate transitions on Y itself to determine Y and the
blow down map S : Y — Y whose boundary exponents are the v (i, j).

For the lifting result, suppose f is given locally by

i@ y) = @,y = (ax"",y)

where y = y(x’,y"), and ax’* = (a;(x',y’) ]_[j x”;(l’j), oo a(x,y) ]_[j x/?(l’])) with
a; > 0, so that the matrix u = [u (i, j)] € Mat(l x k, Z) of boundary exponents rep-
resents the associated monoid homomorphism bq fe: YME — PMF (with E € M (X)
given locally by {x’ = 0}). The condition that the latter factors through some monoid in the
refinement means that . = vjx for some v as above, and then,

Fied vy >ty = (@ ¥y 2.12)

gives the local coordinate expression for the unique lift f CX > Yiitis straightforward
to check that this is functorial and in particular behaves well with respect to changes of
coordinates.

2.3 Rational combinations of boundary defining functions

A rational combination of boundary defining functions {p;} on a space X associated with
boundary hypersurfaces G, ..., G, is defined to be a product of the form

a=]_[p;.’f, aj € Z. (2.13)
j

It will be of interest to know where in X such a combination determines a smooth function
locally, and more importantly, when o lifts globally to a smooth function under a blow-up
B : X — X.These properties may be determined by considering the logarithmic differential

do;

b
do =dlogo = aj
Z I

J

of o, which induces a Z-linear map

bdo :PMF > Z
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on the monoid of each boundary face F € M (X), determined on generators by bdo (gi) = a;.

Since F is covered by coordinate charts with boundary defining coordinates x; associated
with the generators g; € PMF in which o has the local coordinate expression o (x, y) =
b(x,y) ]_[i xlf“ where b > 0, it follows that o determines a smooth functiono : U D F° —
[0, oo) for some neighborhood U of F° if and only if each a; = bdo(gi) = 0, 0r equivalently
ifPdoe®MF) C 7. Likewise, o ! determines a smooth functiono ™! : U € F° — [0, 00)
if and only if °/do ("M F) C Z_. Moreover, o (resp. o ') vanishes on a hypersurface G inu
if and only if do (gj) > O (resp. bdo (gj) < 0), since this corresponds to o having a local
expression involving a term xjj witha; > 0 (resp. a; < 0). Note that in either case (in which

bdo has a constant sign on bMF), o can be regarded as a b-map o : U — [0, oo], with
[0, oo] considered as a one-dimensional compact manifold with two boundary hypersurfaces
{0} and {oo}.

Now if 8 : X = [X; F 1y - ., F,] = X is an iterated boundary blow-up, the behavior of
the pullback *o of o to X can be analyzed using the fact that °d(8*c)(m) = Pdo (B.m)
form e "MMF,F e M (X ), from which we obtain the following result.

Proposition 2.2 A rational combination o lifts to a smooth b-map B*o : X=I[X;F,...,
Fy] — [0, oo] if and only if Sdo takes a constant sign on each monoid in the refinement
associated with X, and in this case B*o (resp. B*o =) vanishes on G e M(X) provided
bdo (3) > 0 (resp. °do () < 0), where § is the generator in the refinement associated with
the hypersurface G € Mi(X).

Note that boundary defining functions on a blow-up Y of Y are given locally by rational
combinations of boundary defining functions from Y, as follows from writing ¢ = X7
in (2.11). Moreover, if a map f : X — Y is locally rigid and satisfies the hypotheses of
Theorem 2.1, then its lift f : X — Y is rigid with respect to the rational boundary defining
functions on Y as follows from (2.12).

It is evident from Proposition 2.2 that a set of the form {o = 1} C X (or more generally
{o = ¢} for ¢ € (0, 00)) lifts to an interior p-submanifold of a blow-up X whenever o lifts
to be smooth on X , and by iteration, a set of the form {o] = - - - = o, = 1} lifts to an interior
p-submanifold of X if each of the o; lifts to be smooth; equivalently each "do; has a constant
sign on each monoid associated with the blow-up X.

On the other hand, {o] = - -+ = 0, = 1} may lift to a p-submanifold of X even when none
of the individual rational combinations o; lift to be smooth, as in the following result (a
specialization of [22, Prop. 10.3]) that will be used below. Note that the property that °do
has a constant sign on a monoid M = Z (g1, ..., &) is equivalent to the property that
the intersection of M with the subspace ker do is a face (possibly {0}) of M, meaning a
submonoid generated by a (possibly empty) subset of {g1, ..., g;}. Indeed, this is the case
if and only if the remaining generators of M all lie entirely within one or the other of the
half-spaces determined by °do > 0 or °do < 0.

Proposition 2.3 ([22, Prop. 10.3]) Let o; be rational combinations of boundary defining
functions on X and ¢; € (0,00) for 1 <i <r. Then, the set{oy =c1,...,00 =¢;} C X
lifts to an interior p-submanifold of the iterated blow-up X= [X; F1, ..., Fy] provided that
each monoid M in the refinement associated with X intersects the subspace i ker bdo;
along a face of M.

Proof The key observation is that the equations {logo; = logc; : 1 <i < r} may be replaced
by equivalent Z-linear combinations. Thus for any given monoid M in the refinement asso-
ciated with X, the hypothesis that M meets ();_, ker do; along a face of M means that the
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log o; may be replaced by Z-linear combinations logs; = ) j bijlogo with the property
that bd&'i => j b; jbda ; has constant sign on M, and then, it follows from Proposition 2.2
that the set lifts to a p-submanifold in any local coordinates on X associated with M. O

As an example, in Fig. 1, neither of the rational combinations p;/p2 or p;/p3 lifts to
be smooth in any of the depicted blow-ups, yet the set {p1/02 = p1/p3 = 1} lifts to a p-
submanifold in the blow-ups depicted in (b) and (d), since ker bd(p; /p2) Nker bd(p, /p3) 18
the span of g1 + g2 + g3.

3 Ordered corners

Definition 3.1 The category of manifolds with ordered corners is as follows:

e An object is a manifold with corners X equipped with a partial order on the set
Mi,0(X) = M(X) U Mo(X) = M(X) U{X}

of principal faces, with the property that every pair of faces in M ¢(X) which meet are
comparable with respect to the order; equivalently, incomparable faces must be disjoint.
In particular every element of M ¢(X) is comparable to X € Mp(X). Recall that we
use the notation

G~G ifG=G,G<G,orG <G

to denote comparable elements.
e A morphismis a simple, b-normal, interior b-map f : X — Y which is ordered, meaning
that the induced map

St i My o(X) = My o(Y) 3.1

is order preserving.

Remark e Asnotedin Sect.?2, we allow for the possibility that M (X) consists of collective
boundary hypersurfaces, that is, unions of disjoint components which are identified as
a single element of M (X). This always applies to X € M(X) if X is disconnected,
recalling that by convention we always require Mo (X) = {X} to be a singleton.

e We do not require that a pair of faces be comparable if and only if they are non-disjoint;
it is sometimes convenient to consider orders in which possibly disjoint faces are deemed
comparable, such as a total order; nevertheless, for any admissible order on M o(X)
there is a minimal suborder with the property that elements are comparable if and only
if they are non-disjoint.

We will often be interested in the case that X € M (X) is either maximal or minimal, in
which case we say X is respectively interior maximal or interior minimal. Given an order
on M (X) satisfying the requirements of Definition 3.1, we denote by Xyax or Xmin the
manifold with ordered corners in which the interior is made maximal or minimal, respectively.
We introduce the notation

MTX)={GeMi(X):G <X}, M7X)={GeM(X):G > X},
with respect to which M o(X) decomposes as a disjoint union

M o(X) = M7 (X) U{X}UMT(X).
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Note that X € Mg (X) forms a base point for the ordered set M o(X), in thatitis comparable
to every other element and is preserved by the map f; : Mj o(X) — M o(Y) associated
with a morphism f : X — Y (as f is interior); thus, the association X — M o(X)
is a functor from the category of manifolds with ordered corners to the category of pointed
ordered sets. Note also that f; (M (X)) C M7 (Y)U{Y}and f3(M7 (X)) C M7 (Y)U{Y},
with notation as above.

3.1 Products

Products of manifolds with ordered corners can be motivated by considering the functor
X = M, o(X). The product of M o(X) and M ¢(Y) as ordered sets is the Cartesian
product M 0(X) x M o(Y) equipped with the product order, depicted schematically as
follows:

M (X) x MT(Y) = X x M7 (Y) = M (X) x M (Y)

+ A A
MFX)XY —— X xY ——— M7 (X)xY (3.2)
+ T +

MF(X) x ME(Y) = X x MF(Y) = M7 (X) x M{(Y)

Notation Convention 3.2 Here and below, we employ the following diagrammatic notation
conventions for products of ordered sets: An arrow of the form A x B — A x B’ between
products with a single factor in common (and B N B’ = ) means that (a, b) < (a, b’) for
eacha € A, b € B,and b’ € B’. On the other hand, an arrow of the form A x B — A’ x B
with no common factor on both sides (and AN A’ = BN B’ = () means that (a, ') < (a’, b)
foreverya € A,a’ € A’,b € B,and b’ € B’.

However, the product in the category of pointed ordered sets is the subset of pairs which are
comparable to the base point (X, Y) € Mo(X) x Mo(Y):

XX M7Y) = M7 (X) x M7 (Y)

0 +
MFX)XY —— X XY ——— M7 (X) xY (3.3)
+ T

M7 X)) x MF(Y) = X x M (Y)

Itis easy to see that the Cartesian product X x Y cannot be a product in the ordered corners
category in general; its set M 0(X x Y) of boundary hypersurfaces may be identified with
the subset of M o(X) x M 0(Y) depicted by

X x M7 (Y)
1\
MFX)XY — X xY — M7 (X)xY
T
X x M7(Y)

and hypersurfaces in M7 (X) x Y and X x M7 (¥) meet yet are incomparable in the product

order (and similarly for faces in M7 (X) x ¥ and X x M7 (Y)). There is therefore no natural
way to put an ordered corners structure on X x Y such that both projection maps X x ¥ — X
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and X x Y — Y are ordered. On the other hand, faces in M7 (X) x Y (resp. M7 (X) x ¥)
are comparable to those in X x M7 (Y) (resp. X x M7 (Y)), so in the case that one of X or
Y is interior minimal, while the other is interior maximal, X x Y is naturally a manifold with
ordered corners when equipped with the product order, and as we will see below, it satisfies
the universal property of the product in this case.

Remark 1t is also possible to equip X x Y with one of the two lexicographic orders rather
than the product order, which gives it an ordered structure with respect to which one of the
projections (but generally not the other) is ordered; we will not make use of this.

Definition 3.3 The ordered product X X Y is the iterated blow-up
XSY =[X x ¥ MF(X) x M7 (Y), M (X) x M3 (V)]

(3.4)
> [X x ¥ M7 (X) x M2 (Y), M{(X) x M (V)]

where the blow-up is performed in any order consistent with the partial order on the products,
<~
and where here M7 (e) denotes the ordered set M (e) with the opposite order.

Theorem 3.4 The space X X Y in (3.4) is a well-defined manifold with ordered corners,
with M1 0(X X Y) isomorphic to the ordered set {(G, H) € M,0(X) x M1,0(Y) : (G, H)
~ (X, Y)} as depicted in (3.3).

It is the product of X and Y in the category of manifolds with ordered corners. More
precisely, the projections of X x Y onto X and Y lift to morphisms (in fact ordered b-
fibrations) X XY — X and X XY — Y, and X X Y satisfies the universal property that
if W is a manifold with ordered corners and f : W — X and g : W — Y are morphisms,
then there exists a unique morphism W — X X Y making the following diagram commute:

w
El
'

X XXY —Y

f g

Corollary 3.5 If X = Xpin and Y = Ymax are interior minimal and maximal, respectively,
then the Cartesian product X x Y = X XY is already the product of X and Y in the category
of manifolds with ordered corners.

Proof of Theorem 3.4 While it is possible to prove these results by local coordinate compu-
tations, the sheer number of coordinate charts on X X Y makes this tedious. Instead, we
employ the generalized blow-up machinery discussed in Sect.2.2 to identify the monoid
refinement of X X Y as a generalized blow-up of X x Y, from which its ordered corners
structure and universal property are easily derived. We will see that the refinement consists of
monoids which are freely generated by sums of generators g + 4 forming maximally ordered
chains in M o(X) x M 0(Y), under the identification of hypersurfaces G € M;(X) and
H € M (Y) with their associated monoid generators g € YMG and h € "M H, and with X
and Y identified with 0.

Thus, consider an arbitrary corner in X x Y. By relabeling if necessary, we may assume
this has the form

Gpyn---NG NGIN---NG) X (H_pyN---NH_1NH N---N Hy)
for totally ordered chains G_,,y < --- <G_1 < X <Gy <---<Gurand H_,y < --- <

H_| <Y < H| <--- < H, of hypersurfaces of X and Y, respectively, which, since we
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work locally near the corner, we may assume constitute all of the hypersurfaces of X and Y.
The monoid associated with this corner of X x Y has the form

T (g-mrs - s 8=1.81s s &m) X Ly (s .. by By, o hy)
=Z+(g,m/,...,gfl,gl,...,gm,/’l,,,/,...,hfl,hl,...,hn) 3.5)

where we denote the generators associated with the hypersurfaces by lower case letters.
Identifying go := 0 € Z+ (g_m/, e gm> and ho :=0 € Z4 (h_n/, e h,,) with X and Y,
respectively, determines an identification between the ordered set M o(X) x My o(Y) and
the elements {g; +hj:—m <i<m,—n' <j<n} C Zy(g-m,...,8m how,.... hn)
and therefore determines a partial order on the latter set. In other words, we regard g; and £
as g +0 =g +hoand 0+ h; = go + hj, respectively and equip the sums (where we fix
the order of addition) with the product order induced by

-m <+ <g-1<0=go<g <--<gnm and (3.6)

h_y<--<h_1<0=hy<h; <---<hy, '

Assuming temporarily that X and ¥ are minimal in M o(X) and M o(Y),som’ =n’ =

0, consider the iterated blow-up [X x Y; /<\_/ll> (X) x ./\(711> (Y)]. The first blow-up of G,,, x H,
subdivides (3.5) into the pair of monoids

Z—&-(g]v---»gm+hn7h1»h2a~--ahn) and Z+<g17-~-7gmshl,h27-~-vgm+hn>~

In particular, the incomparable pair {g,,, h,} = {gm + 0,0+ h,} is replaced by either of
the comparable pairs {g,, + hyn, gm + 0} or {g, + Ay, O + Ay}, and in the resulting monoids,
the generator g,, + h, is comparable to all other generators g; = g; + 0, i < m and
hj = 0+ hj, j < n. Proceeding through the rest of the iterated blow-up of /\(711>(X ) X
ET(Y) (in any order consistent with the product order) has the effect of subsequently
subdividing each remaining monoid with incomparable generators into two new monoids by
replacing the highest indexed incomparable pair { gi, h j} with one of the comparable pairs
{gi +hj, g +0}or{g +hj, 0+h;}, at the end of which process (3.5) is replaced by the
collection of monoids generated by totally ordered chains among

{gi+hj:0<i<m0<j<n}.

Note that had we instead blown up in the opposite order M7 (X) x M7 (Y), we would
have started with the blow-up of G| x Hj, in which {g; + 0, 0 + &} is replaced by either
{g1 + h1,g1 +0}or{g + hi1, 0+ hi}; however, the sum g; + h; is then incomparable to
the remaining generators g; +0,i > 0 and 0 + &, j > 0 in the resulting monoids, an
incomparability which is not resolved by any subsequent blow-up. In particular, the iterated
blow-up [X x Y; M7 (X) x M7 (Y)] (or indeed the iterated blow-up in any other order
besides ./VT (X) x ./VT (Y)) fails to obtain an ordered corners structure consistent with (3.3).

Likewise, assume temporarily that X and Y are maximal in M o(X) and M o(Y), so
m = n = 0, and consider the iterated blow-up [X x Y, M7 (X) x M (Y)]. Now the first
blow-up of G_,,y x H_,s subdivides (3.5) into the pair of monoids

Z-‘r (gfm’ + h,n/, —m'+1s -+ 81, hfn/’ h,n/+], RN h—1>
and Z-‘r <g—nl/7 8—m'+1s++-5>8—1,8—m’ + h—n/, h—ﬂ/+15 ceey h—l>,

in which the incomparable pair { 8—m +0,04+h_, } is replaced by either of the comparable
pairs {g_ +h_p, g—w + 0} or {g—w +h_p, 0+ h_,}, with the result that the sum
8—m’ +h_, is comparable to all other generators g; = g;+0,i > —m’andh; = 0+h;, j >
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—n'. Proceeding through the rest of the iterated blow-up of M (X) x M (Y) has the
effect of iteratively subdividing each remaining monoid with incomparable generators g;
and £, —m’ <i < —1land —n’ < j < —1 into two new monoids, by replacing its lowest
indexed incomparable pair {g;, i ;} with one of the comparable pairs {g; + /1, gi + 0} or
{gi +hj,0+h;}. Atthe end of this process (3.5) is replaced by the collection of monoids
generated by maximal totally ordered chains among the generators

{si+hj:—m' <i<0,-n"<j=<0}. 3.7

Again, had we begun instead by blowing up G _ x H_1, then generator pairs{g_; + 0,0 4+ h_1}
would be replaced by either {g_; +h_1, g1 +0}or{g_1 +h_1,04+ h_1},leaving g1 +
h_1 incomparable to generators g; +0 = g; + ho,i < —land 0+ h;, j < —1.

In the general case, since the monoids generated by totally ordered chains decompose as
products of factors with generators indexed by i, j < 0 on the one hand and factors with
generators indexed by i, j > 0 on the other, it follows from Theorem 2.1 that an equivalent
blow-up is obtained by combining the above procedures in either order; in other words
[X X Y3 M5 (X) x MF(Y), M3 (X) x Mz ()] 2 [X x Y5 M3 (X) x M3 (Y), MF(X) x
M5 (Y)], as both are associated with the same refinement of monoids.

Since X X Y has boundary hypersurfaces associated with the one-dimensional monoids
Zy (g,- +h j> in the refinement, with hypersurfaces meeting if and only if their associated
monoids generate a two-dimensional monoid, it follows immediately that X X ¥ admits an
ordered corners structure with M o(X X Y) order isomorphic to the pointed product

{(G, H) € My o(X) x Mio(Y): (G, H)~ (X, Y)}.

To prove the universal property, suppose that an arbitrary corner in W has the local
form F_pyN---NF_1 N FyN---N F for a totally ordered chain F_y < --- < F_| <
Fo == W < F| < --- < F; of boundary hypersurfaces of W, with associated monoid

Zilfrs s for, fioo )

Given ordered morphisms f : W — X and g : W — Y, with respect to which this corner
of W maps into the corner G_,,; N---NG_1NG N---NGof Xand H_,yN---NH_1 N
HyN---N H, of Y, it follows that the monoid homomorphism

Zofroooos fots oo 1) > Ly (8ors - 8212 810 -+ &)
is determined on generators by a map of pointed ordered sets
{far<-<fa<for=0<fi<--<fi}
—){gim/<...<g71 <go:=0<g <"'<gm},

which is encoded by an assignment f; +— g4 for an increasing sequence a(—I') <
- < a(l) with «(0) = 0. Similarly, the homomorphism Zy (f_y, ..., f=1, fi.-.., fi) =

Z+ (h_,,/, ceosho1 by, hn> is determined by an assignment f; — hg;) for an increasing
sequence B(—1") < --- < B(l) with B(0) = 0. It follows that the product homomorphism
Zy (f,l/, o, f;) — Z4 (g,m/, e 8mah_py o, hn>

is determined by

fi V= gaty + hp

and hence its image is the submonoid generated by the totally ordered chain go(—yy+hg—y) <
- <0< -+ < go@ + hp@ within (3.7), which is precisely a monoid in the refinement
discussed above (or a face thereof). As a consequence of Theorem 2.1, themap W — X x Y
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factors uniquely through the blow-up X X Y, and moreover, the map W — X X Y is
simple and b-normal since generators are mapped to generators in the associated monoid
homomorphisms, completing the proof. O

Remark As is evident from the proof, the order of blow-ups of corners necessary to obtain
an order structure consistent with (3.2) follows the rule of thumb that elements further away
from the base point (X, Y) € Mp(X) x Mo(Y) are to be blown up prior to those which are
closer to it.

The boundary hypersurfaces of X X Y are the lifts and/or front faces of the corners
G x HCX xYfor(G,H) € M;,0(X) x Mjo(Y), and we denote these by

L(G,H) :=1iftof G x Hin M (X X7Y).

In the next section we determine the structure of these boundary hypersurfaces.

3.2 Boundary hypersurfaces

We show below (and it is straightforward to see) that a face of the form L(X, H) or L(G,Y)
of X X Y is essentially an ordered product X X H or G X Y, respectively, at least when X
and Y are both either maximal or minimal. On the other hand, when both G € M (X) and
H € M (Y) are proper hypersurfaces, L(G, H) is the (lifted) front face of the blow-up of
the codimension 2 corner G x H, and as such has dimension strictly larger than that of the
product of G and H. One description of L(G, H), as an iterated blow-up of G x H x I,
where I = [0, 1], is obtained by considering the restriction to G x H of the sequence of
steps in the iterated blow-up X X ¥ — X x Y; we record this below as Proposition 3.6. Far
more important than this description, however, is the description of the product structure of
L(G, H) obtained when G and H decompose into Cartesian products, as is the case locally
when the spaces have fibered corners, and we devote the remainder of the section to this latter
situation.

Proposition 3.6 Ler (G, H) € M(X) x M(Y) and decompose M1(G) into the following
sets

MG ={G'NG:G' <G, G' <X}, MG ={G'NG:G' <G, G' > X},
MG ={G'NG:G'>G, G' <X}, and M7 (G)={G'NG:G' >G, G > X},

with a similar decomposition for M1 (H). The boundary hypersurface L(G, H) of X X Y
has the following form.

o If (G, H) € M7(X) x M5 (Y), then

LG, H)=Z[GxHxI;
MTT(G) x MT=(H) x 1,
M7 T(G) x H x {0}, G x M{"~(H) x {1}, (3.8)
M7 T(G) x M""(H) x I,
M7 (G) x M7 (H) x 1]
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e If (G, H) € M7 (X) x M7 (Y), then
LG, H)=[GxHxI;
(_> > <_> >
MT7(G) x M7 (H) x 1,
M7= (G) x H x {0}, G x M7 (H) x {1}, (3.9)
> o>
M7(G) x M7 (H) x I,
MT(G) x MTT(H) x I
e Finally, if G =X € My(X) or H=Y € My(Y), then
L(X, H) = [X x H; M (X) x M7 =(H), M7 (X) x M7 (H)]

pa i " 3.10)
L(G,Y) Z[G x Y; M[""(G) x M{(Y), M7"7(G) x M7 (V)]

In particular, if X and Y are both interior maximal or both interior minimal, these reduce
to the ordered products X X H and G X Y, respectively.

Proof Suppose that (G, H) < (X, Y) and consider the effect of the blow-up XX Y — X xY
on the boundary face G x H. Only blow-ups of the form G’ x H’ for (G’, H') ~ (G, H)
need to be considered since the others are either disjoint or induce a blow-up of a boundary
hypersurface of G x H, having no effect.

First, the blow-ups of G’ x H’ for (G’, H') < (G, H) induce the blow-up [G x
H; M["=(G) x M{"~(H)]. Note that the blow-ups of G x H" and G’ x H for G’ < G
and H' < H induce blow-ups of hypersurfaces in G x H and have no effect. Next
comes the blow-up of (the lift of) G x H itself, introducing the product with an interval:
[Gx H; M <(G) x M7 =(H)] x I =[G x H x I; M]"~(G) x M"=(H) x I]. Next
come the blow-up of faces G x H and G’ x H for G < G’ < X and H < H' < Y which
induce the blow-ups M7 ~(G) x H x {0} and G x M ~(H) x {1}, respectively. Next
come the blow-ups of G’ x H' for G < G’ < X and H < H' < Y, which induce blow-ups
of M1>’<(G) X ./\/l1>’< (H) x I, and finally come the blow-ups (in reverse order) of G’ x H’
for G’ > X and H' > Y, which induce the blow-ups of MT’>(G) X ﬂf’>(H) x 1.

The case that (G, H) > (X, Y) is similar, proceeding in the order indicated on the second
line of (3.4). The case of (X, H) (or (G, Y)) is also similar, with the omission of the blow-up
of X x H itself (since it is already codimension 1), as well as the omission of the blow-ups
of the faces G x H' for G < X and H > H or G > X and H' < H since these are
incomparable as noted above. O

We say that a boundary hypersurface G is product-type if it is a product, and hence an
ordered product by Corollary 3.5, G = F X B = Fpjn X Bmax Of an interior minimal manifold
F = Fp, and an interior maximal manifold B = By,,x. As noted, this holds locally when X
is a manifold with fibered corners, where G is a fiber bundle G — B with fiber F' (hence our
choice of notation). Moreover, this is always true locally in general; indeed, a manifold with
ordered corners can always be decomposed locally as the product of an interior minimal and
an interior maximal manifold. For a product-type hypersurface, the ordered corners structures
on G, F and B are identified with the following subsets of M o(X):

Mi1o(G) ={G' e Mi(X): G’ ~G}, 36G=GNG <G
MioF) Z{G' e Mi(X):G' > G}, dgF=FxxNG <G (311
MioB) Z{G e Mi(X):G' <G}, dg¢B=(xxB)NG <G
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and we note that M (G) = F x M;(B), while M7 (G) = M (F) x B.

Fix a product-type hypersurface G = F x B € Mj(X) and consider the ordered corners
structure of the normal model NG = F x B x [0, c0) as a model for X near G. When
G < X, Mj,0(N4+G) has the order structure

M7X(F) x B x [0, 00) (3.12)

T ™
FxBx0—— Fx B x|[0,00)

\ 4
\fo(m x B x [0, 00)
1\

F x M{(B) x [0, 00)
while for G > X, M| 0(N4+G) has the order structure

M (F) x B x [0, 00) (3.13)

1\
/F x MX(B) % [0, 50)
« T

FxBx0<+— Fx B x][0,00)
~ T~
F x M;7%(B) x [0, 00)

where we decompose M (F) = /\/le(F) u MTX(F) or M{(B) = MfX (B)U MTX(B)
into subsets of elements which are above or below X in the order with respect to the identi-
fications (3.11).

Discarding the factor B in the first case or F in the second leads to the following ‘relative
cone’ construction, which plays an important role below.

Definition 3.7 Let G = F x B be a product-type hypersurface of a manifold with ordered
corners X. If G < X, the cone on F relative to X is the ordered corners manifold Cx (F) :=
F x [0, co) with the order on M o(Cx (F)) depicted by the following diagram:

M;X(F) x [0, 00) (3.14)
1\
Fx0—— Fx|0,00)

\ N
MFX(F) x 10, 00)

Thus, F x 0 is minimal, while F x [0, co) plays the role of X in the order. Likewise, if
G > X, the cone on B relative to X is the ordered corners manifold Cx(B) = B x [0, o0)
with the order on M o(Cx (B)) depicted by the following diagram:

M7X(B) x [0, 00) (3.15)
1\
B x0 <— B x|[0,00)
0
M;X(B) x [0, 00)
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We call Fyy := F x 0 or By := B x 0 the end of the cone. If X is either maximal or minimal,
then so is Cx (B) or Cx (F); in this case we use the alternate notation Cpyax (F) or Cpin(B),
respectively.

Definition 3.8 If G = F x Bg and H = Fy x By are product-type hypersurfaces of X and
Y, respectively, then the relative join of Fg and Fy for (G, H) < (X, Y), or Bg and By for
(G, H) > (X,7Y), is the boundary hypersurface of the product of relative cones associated
with the ends:

FG %x.y Fy := L(Fg x 0, Fg x 0) C Cx(Fg) % Cy(Fg),
BG *x.y By := L(Bg x 0, By x 0) C Cx(Bg) % Cy(Bp).
In view of Proposition 3.6 these spaces can be expressed as iterated blow-ups
Fg %x,y Fy = [Fg x Fy x I;
MY (F6) x Fu x {0}, Fo x M7 (F) x {1},
MY (Fo) x MY (Fu) x 1,
MX (Fo) x MY (Fy) x 1],
Bg %x,y By = [Bg x By x I;
M;X(Bg) x By x {0}, Bg x MY (By) x {1}
M;X(Bg) x MY By x 1,
M¥(Bg) x MY (Bp) x 1,

specializing to (1.4) and (1.5) in the case that X and Y are maximal or minimal, respectively.

Note that, in view of (3.12) and (3.14), or (3.13) and (3.15), the projection maps
prp : NyG=Fx Bx[0,00) > B forG <X, or

(3.16)
prr: NtG=FxBx[0,00) > F forG>X

are ordered morphisms. In contrast, neither of the other factor projection maps

N+G =Fx Bx[0,00) > Fx[0,00) =Cx(F) forG < X,or
NiG=Fx B x[0,00) > B x[0,00)=Cx(B) forG>X

are ordered morphisms, since in the first case, faces of the form F x M(B) x [0, c0),
which lie below those of the form M (F) x B x [0, co) relative to the order, are mapped
to F x [0, 00), which is situated above faces of the form M (F) x [0, c0) in the order on
Cx (F), with a similar order violation in the second case.

The remedies for this are the following ‘compressed projections,” defined relative to the
differentials, in the sense of §2.1, of a choice of boundary defining functions on X, lifted to
N4+ G. These compressed projections play an important role at various points throughout the
remainder of the paper.

Lemma3.9 Let G = F x B be a product-type hypersurface of X, and fix a set of boundary
defining functions {pg'} on X, with differentials dpg' = v*pg' for G' # G and t := dpg
NiG — [0, 00) (which we assume coincides with the projection to [0, 00) with respect
to the trivialization NyG = F X B x [0,00)) on N.G. Set p<g = t[[g.g V*ps and
p=G6 =t[lg~g Vv Pe on NLG.
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Then, the compressed projections

Prey () =P Xp<G : NyG — Cx(F), (f.b, 1) — (f.t 1_[ e (b, f)), forG <X, and
G'<G
Prcy(p) = Prp xp=G : NyG — Cx(B), (f.b.0)> (b.t [] oo ®. ). forG>X
G'>G
(3.17)

are morphisms of ordered corners.

Proof The maps are clearly simple and b-normal and satisfy the ordered condition since in
the first case all hypersurfaces of the form F x Mj(B) x [0, co) are mapped to the minimal
hypersurfaces F x 0 and in the second case all hypersurfaces of the form M (F) x B x [0, 00)
are mapped to the maximal hypersurface B x 0. O

We are now in a position to state the main result about product-type hypersurfaces, which
identifies the product-type structure of their lifts in X X Y.

Theorem 3.10 For product-type boundary hypersurfaces G = Fg X Bg € M(X) and
H = Fyg x By € M1(Y), the hypersurface L(G, H) € M (X X Y), which is canonically
diffeomorphic to L(Go, Hy) € M1(N+G X Ny H), has a product-type structure as follows.

e If(G,H) < (X,Y), then
L(G,H) = (Fg ;X,Y Fr)min X (BG X BH)max (3.18)

with the projections coinciding with the restriction to L(G, H) C N+ G X N+ H of the
lifts Pty (ro) X Pley(ry) @ N+G X Ny H — Cx(Fg) X Cy(Fn) and prg, X prp, :
NiG X NyH — Bg X By, respectively.

e If(G,H) > (X,Y), then

L(G, H) = (Fg X F)min X (BG *x,y BH)max- (3.19)

with the projections coinciding with the restriction to L(G, H) C NyG X NyH of
the lifts prp, X prg, : NyG X NyH — Fg X Fy and and prc, g,y X Pic, sy °
NiG X NyH — Cx(Bg) X Cy(Bp), respectively.

Proof To establish the canonical diffeomorphism L(G, H) = L(Gy, Hp), we note that the
normal differentials of the lifted projections X X ¥ — X and X X Y — Y determine
ordered morphisms N. L(G, H) — NG and N. L(G, H) — N4 H which by the universal
property for the ordered product factor through a unique morphism Ny L(G, H) - NG X
N4 H, and this restricts to a morphism L(G, H) = L(G, H)o — L(Go, Hp). This map is
clearly a diffeomorphism since G (resp. H ) has diffeomorphic neighborhoods in X and N; G
(resp. Y and N4 H). Thus, it suffices from now on to replace X and Y with Ny G and Ny H,
respectively.

We consider in detail the case (G, H) > (X, Y) as it has the most relevance in §4; the
case that (G, H) < (X, 7Y) is similar. From the universal property of the ordered product
applied to the ordered morphisms (3.16) and (3.17), we obtain morphisms

Pre, Xprp, : N+GX Ny H — Fg X Fy, and

As morphisms these are simple and b-normal, and they are also easily seen to be b-surjective
(for example, using [16, Lemmas 2.5 and 2.7] applied to the b-fibrations Ny G x Ny H —
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Fg X Fgand NyG x Ny H — Cx(Bg) x Cy(Bg), noting that all blow-ups of the domain
are either lifts of blow-ups of the target or are transversal). In particular, they are b-fibrations.
We claim that the restrictions

erG>~<erH :L(G,H) > Fg X Fg, and (320)
Py (Bg) X Prey ) © L(G, H) — Bg *x.y By C Cx(Bg) X Cy(Bn) '

of these b-fibrations to the boundary hypersurface L(G, H) are in fact transverse surjective
submersions of manifolds with corners, from which it follows that the product map

(Prpg, X PrE,) X (Pfcy gy X Drey(sy)) @ L(G, H)
— (Fg X Fg) x (Bg :X,y Bp) (3.21)

is a surjective submersion of compact manifolds with corners of the same dimension. This
latter map cannot be a non-trivial coverorelseitsdescentto Gx H — (Fg X Fyg) X (Bg X Bg)
would be a non-trivial cover as well; hence, it must be a diffeomorphism. Moreover, since
Fg X Fpy is interior minimal and Bg *xy By is interior maximal, the target in (3.21) is an
ordered product and the diffeomorphism is an isomorphism of ordered corners manifolds.

To show that (3.20) are surjective submersions we note first of all that they are simple b-
fibrations (being restrictions to a boundary hypersurface of simple b-fibrations), and proceed
to show that they have the property discussed in Sect. 2, that each boundary hypersurface of
the target is mapped onto by a unique boundary hypersurface of the source. The boundary
hypersurfaces of Fg X Fpy are indexed by (G’, H') for G’ > G and H' > H (except for
(G, H) itself, which corresponds to the interior) and consist of the lifts of 95/ Fg X oy Fp.
Each of these is mapped onto uniquely by the face of L(G, H) given by its intersection with
L(G’, H') in NG X Ny H, and all other boundary hypersurfaces of L(G, H) map to the
interior of Fg X Fp. Regarding the second map, boundary hypersurfaces of Bg *x,y Bu
can be grouped into four types:

First are those indexed by (G’, H') for G’ < X and H' < Y, which arise as the intersection
of Bg*x y By with thelift of (g Bg X [0, 00)) X (3 By X [0, 00)) in the ordered product of
cones, and each of these is mapped onto uniquely by the boundary hypersurface of L(G, H)
given by its intersection with L(G’, H').

Second are those indexed by (G’, H') for X < G’ < Gorand Y < H' < H (except
(X, Y) itself), which similarly arise as the intersection of Bg *x y By with theliftof (3¢’ Bg %
[0, 00)) x (3 By %[0, 00)), and again each of these is mapped onto uniquely by the boundary
hypersurface of L(G, H) given by its intersection with L(G’, H').

Third are those associated with (G, Y) or (X, H), given by the intersection of B *x y By
with the lift of (Bg x 0) x (By x [0, 00)) or (Bg X [0, 00)) x (By X 0), respectively. While
the latter boundary hypersurfaces of Cx(Bg) X Cy(Bpg) typically have many preimage
hypersurfaces in NG X Ny H, namely L(G’,Y) for each G’ > G or L(X, H') for each
H' > H, of these only L(G,Y) and L(X, H) are comparable to L(G, H) itself, so the
restriction L(G, H) — Bg *x,y By has unique preimages of these boundary hypersurfaces.

Last are the boundary hypersurfaces associated with (G, H') for Y < H' < H and
(G', H) for X < G’ < G, given by the intersection of Bg *x.y By with the lift of (Bg x
0) x (0B % [0, 00)) or (3g'Bg % [0, 00)) x (Bp x {0}), respectively, and each of these
is mapped onto uniquely by the boundary hypersurface of L(G, H) given by its intersection
with L(G, H') or L(G’, H), respectively. All other boundary hypersurfaces of L(G, H),
given by its intersection with L(G’, H') for G’ > G and H' > H, are mapped to the interior
of BG ;X,y B H-
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Thus, we have shown that (3.20) are surjective submersions and it remains to see that
they are transverse (i.e., the kernels of their pointwise differentials intersect trivially). As
this is a local property, we can consider local coordinates, and we can essentially ignore
any interior (meaning non-boundary defining) coordinates, since these are unaffected by
boundary blow-ups and are carried along as products locally; moreover, transversality is
clear for interior coordinates since they decompose into factors belonging to the interiors of
the factors F, or C4(B,), respectively. On the other hand, for a simple surjective submersion,
the behavior of the boundary defining coordinates is entirely combinatorial: The kernel of the
differential of L(G, H) — Fg X Fp is spanned by the coordinate vector fields of boundary
defining coordinates for hypersurfaces mapping to the interior of the target and likewise
for L(G, H) — Bg *x,y Br. As we have just shown above that these sets of boundary
hypersurfaces are complementary, transversality follows, completing the proof.

The proof of the analogous product-type structure of L(G, H) for (G, H) < (X,Y) is
essentially the same but with orders reversed, so we omit the details. O

3.3 Fiber products

We now show that the ordered corners category contains fiber products of appropriately
transverse maps. In general, recall that interior b-maps f : X — Z and g : ¥ — Z are said
to be b-transverse [18, 22] provided that whenever f(x) = g(y) = z,

Pd£.°T X +°dg. T Y = T, Z. (3.22)

Such maps are transverse in the ordinary sense over the interiors of X, Y, and Z, where the
b-tangent bundles coincide with the ordinary tangent bundles, and here, it is a standard result
that

XoxzY ={(x,y) e X°xY°: f(x) =g} C X°xY° (3.23)

is asmoothly embedded submanifold. On the other hand, the closure of this set in the Cartesian
product X x Y is typically singular, and even when it can be given a smooth manifold with
corners structure, it is almost never a p-submanifold apart from extremely trivial cases. The
main result below says that the closure of (3.23) in the ordered product X X Y is well behaved
and satisfies the universal property of the fiber product.

Remark In [22], the notion of a ‘binomial subvariety’ is defined, generalizing sets like the
closure of (3.23) in X x Y, and the authors determine a monoidal condition under which such
a subvariety lifts to be smooth under a generalized blow-up of the ambient manifold, with
applications to fiber products more specifically. In a related but slightly different direction,
Joyce in [18] develops the differential topology of ‘manifolds with generalized corners,” an
intrinsic structure that can be considered on a binomial subvariety without reference to the
ambient manifold, and which always contains b-transverse fiber products; in particular the
closure of (3.23) in X x Y can always be given a manifold with generalized corners structure
when f and g are b-transverse. Finally, in [20] the theory of generalized blow-up is extended
to manifolds with generalized corners, which could be used to characterize resolutions of
the singular fiber product. While these theories apply to the present context, they involve
quite a bit of machinery, so we opt for a self-contained treatment that can be understood
independently.

Lemma3.11 ([22, Prop. 113D If f : X — Z and g : Y — Z are b-transverse interior
b-maps, then the restrictions f|g : E — Gand g|r : F — G are also b-transverse for every
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pair of boundary faces E € M(X)and F € M(Y) suchthat f;(E) = g4(F) = G € M(Z).

Proof The short exact sequence PNE 5P X > T EforE € M (X) along with similar
sequences for Y and Z fit into a commutative diagram

0 - P°N.E 5P, X 5 PTLE =0

°d fid bd fid WPd(f1E)«
0—=°®N.G 5P, Z 5 °T.G - 0
Pdg, bdg, Md(g|F)s

0= °NyF = "T,Y — "Iy F — 0
in light of which it follows that °d( f|)+* Ty E + d(g|p)«°Ty F = °T,G. o

Theorem3.12 Iff : X — Zand g : Y — Z are ordered morphisms which are b-transverse,
then the lift of (3.23) to X X Y is a smooth interior p-submanifold

XXzY ={(x,y)eX°xY°: f(x)=g(y)}CXXY. (3.24)

Moreover, X X7 Y satisfies the universal property of the fiber product in the category of
ordered corners: Whenever there are morphisms W — X and W — Y commuting with the
morphisms to Z, then there exists a unique morphism W — XX 7Y fitting in the commutative

diagram
w NE Y
=t
l XXzY l (3.25)
X VA

Proof To show that (3.24) is a p-submanifold, we work locally in coordinates (x, y) €
R, xR™for X, (x', y") € R, x R™ for Y, and ", y") e RL x R™" for Z, taken in normal
+ + +
form (2.6) for the b-normal maps f and g so that
FEy) =(x"at,y)=&"y") and
g, y) = (D", bx', y)) = (", y")

|

\

F

By Lemma 3.11, the maps y — a(0, y) and y’ — b(0, y’) are transverse in the ordinary
sense, from which it follows that d(a; — b;), 1 < j < m”, are independent over (x, x") =
(0, 0) and hence in a suitably small neighborhood thereof. Thus, ¥ j=aj (x,y)—b; ', y",
1 < j < m”, can be taken as the first m” of m + m’ local coordinates (x, x’,y) € Rﬂr X
RZJ/F x R™+M on X x Y in which (3.23) takes the form

[G=15=01<i<t 1)<},

and it remains only to show that { (ﬁj‘?)i",- =1:1<i<!" } lifts to an interior p-submanifold.

According to Proposition 2.3, this is the case provided that each monoid M C
Zy (g1, & k1, ... hy), gi = xidy,, hj = x;.ax/, associated with the blow-up X X Y
S

”

meets the subspace ﬂfz 1 ker(v; — ;) along a face of M. However, this subspace is spanned
explicitly by all sums of the form g; + & such that f;(G;) = g4(H;) € M;(Z), and since
M is generated by a totally ordered chain {g,- +h; }, this intersection is precisely the face of
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M generated by those g; +h; with °d f (g;) = ®dg(h;). It follows that X X 7 Y is an interior
p-submanifold of X X Y.

To see that it satisfies the universal property, suppose that W admits morphisms to X and
Y forming a commutative diagram

W —Y

Lo

X — Z

Then, W factors uniquely through a morphism to X X Y, with W° mapping into the lift of
X° x zo Y°. By continuity, the image of W in X X Y lies in the p-submanifold X X z Y, giving
the diagram (3.25). O

Theorem 3.13 The boundary hypersurfaces of X X 7 Y are given by its intersection with the
boundary faces L(G, H) of X X Y such that f;(G) = gy(H) € M ,0(Z), and have the
following form:

o IfG € M((X)and H € M1(Y) are proper hypersurfaces with f3(G) = gz(H) = Z €
Mo(Z), then

(X %z Y)NL(G, H) = {G° xz H° x I} C L(G, H), (3.26)

meaning the lift of G x z H x I within L(G, H), considered as a blow-up of G x H x I
as in (3.8) or (3.9).
e [In all other cases,

(XXzY)NL(G,H)=G%x H (3.27)

is naturally identified with the fiber product of G and H over K = f;(G) = g:(H) €
Mi,0(2).

Remark Taking Z = x recovers X Xz ¥ = X X Y with the structure of its boundary faces.

Proof As an interior p-submanifold of X X Y, the boundary hypersurfaces of X Xz Y are
precisely its interior intersections with the hypersurfaces L(G, H) of X X Y, and we observe
that X Xz Y can only meet the interior of L(G, H) provided that f;(G) = gz(H) = K €
M1,0(Z). In particular My o(X Xz Y) = My,0(X) X a1, 4(z) M1,0(Y) as pointed ordered
sets.

In the first case, if G € M (X) and H € M (Y) are proper hypersurfaces mapping to the
interior of Z, then it follows that none of the rational boundary defining function equations
defining X Xz Y involve boundary defining functions of G or H. Considering the steps of
the blow-up X X Y as in the proof of Proposition 3.6 and the lift of {(x, y) : f(x) = g(»)}
at each step, it follows in particular that in the blow-up of G x H itself, the lift meets the
front face in the set {G° xz H° x [}, i.e., it is independent of the interval I since boundary
defining functions for G or H may be taken as coordinates along this interval. With this
observation, (3.26) follows along the lines of the proof of Proposition 3.6.

In the other cases, we show that L(G, H)g := XX zYNL(G, H) canbe identified with the
fiber product G X g H.If G = X, then K = Z by necessity, and since L(X, H) = X X H in
this case, it is straightforward to see that the liftof {(x, y) €e X x Y : f(x) = g(y)}to XX Y
meets L(X, H) in a set equivalent to the lift of {(x, y) € X x H : f(x) = g(y)}to X X H.
A similar consideration applies to the case that H = Y.
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Finally, if G, H, and K are all proper hypersurfaces, then our strategy is to show that
L(G, H)g satisfies the universal property of the fiber product G Xx H, namely that every
commutative diagram formed by the outermost square of

N A
P L(G,H)g l (3.28)

G—>K

determines a unique morphism F — L(G, H)k filling in the remainder of the diagram. It
suffices to replace X, Y, and Z by the normal models Ny G, Ny H and N, K, respectively. We
proceed by first showing that the outer square of (3.28) can be ‘thickened out’ to a diagram
of ordered corners morphisms of the form

FxRy 5 NoH

15 Je (3.29)

d
N.G Y Nk

uniquely up to an automorphism of F x R which restricts to the identity on F, whence the
restriction of the map F x Ry — Ny G Xy, g N1 H to F x {0} provides the required unique
morphism characterizing L(G, H) as the fiber product G X H.

Indeed, with respect to trivializations of the normal models, df : NyG — N4K has the
form

N.G=G xRy % K xRy =N, K
(p.1) = (f(p).10(p))

where 0 = [/ £ pe is a product of boundary defining functions on G for those

faces dg'G which map to K itself. Similarly, dg : Ny H — NK has the form (p/, t') —
(8(p". 1'a’(p") for a product o’ = l_[H’EgI;](K) ppron H.

Fixing boundary defining functions on F, it follows from commutativity of (3.28) that
¢*c = ag [1p.prsx pF and ¥*0’ = ap [ pr.pr x pp for the same set {ppr : F' > K}
of boundary defining functions on F, namely those associated with hypersurfaces mapped
to the interior of K by ¥ o g = ¢ o f in (3.28), but generally different positive functions
ag,ayg € C°°(F; (0, 00)). But then (3.29) commutes if we define

b:F xRy 3 (g0 (#(q), a5 (@)F) € G x Ry = N4G
and ¥ :F xRy 3 (g, 00 (V(q),ay' (@)t) e HxRy =Ny H

Moreover, these are the only possible extensions of ¢ and ¥ up to an (0, co)-equivariant
automorphism of F x Ry of the form (g, t) — (g, b(q)t) for b € C*°(F; (0, 00)), which
in particular restricts to the identity on F x {0}, so the restriction F x {0} — L(G, H)g of
the map FF x Ry — NG Xy, x Ny H induced by any such choice is unique, giving the
characterization of L(G, H) as the fiber product G X ¢ H. Note that the above strategy fails
if K = Z, since in this case the maps NyG =G xRy - Zand NyH=ZH xRy — Z
are respectively independent of ¢ € R, and while extensions é: F x Ry — N4G and
J : H x Ry — N H may be defined, they are certainly not unique. O
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As an application of the previous result, note thatif f : X — Y is any morphism, then the
fiber product of f with the identity 1 : ¥ — Y (which is b-transversal to every b-map) gives
an embedding of the graph Gr(f) = X Xy Y C X X Y of f as a p-submanifold of X X Y.
In particular this shows that every morphism can be factored as a p-submanifold inclusion
X < Gr(f) C X X Y and a b-submersion X X Y — Y.

Another application, which will be important in the forthcoming work [24], is the follow-
ing. Let py = l_[GeMl(X) pG and py = HHeMl (v) PH be total boundary defining functions
on interior minimal manifolds X and Y with ordered corners, respectively. These constitute
ordered corners morphisms pxy : X — [0, 00)min and py : Y — [0, 00)min, With target
given the interior minimal ordered corners structure, and these are b-transverse in a suffi-
ciently small neighborhood of the boundaries of X and Y where dpx # 0 and dpy # 0.

Corollary 3.14 In the situation above, the fiber product {px/py =1} C X X Y is a well-
defined p-submanifold sufficiently near the boundary of X X Y, meeting L(G, H) in a p-
submanifold of the form G X H = G X(o H for each pair (G, H) € M1(X) x M (Y).

4 Fibered corners

‘We now turn to the consideration of manifolds with fibered corners.

Definition 4.1 (c.f. [11]) A fibered corners structure (also known as a ‘resolution structure’
[5] or an ‘iterated boundary fibration structure’ [3]) on a manifold with corners X consists
of the structure of a fiber bundle® of manifolds with corners

¢G : G - Bg

for each (collective) boundary hypersurface G € M (X), with typical fiber’ denoted Fg,
satisfying the condition that whenever G N G’ # ¢ then dim(Bg) # dim(Bg’); moreover,
if dim(Bg) < dim(Bg), say, then ¢ constitutes a coarser fibration on G N G’ compared
to ¢¢ in the following sense:

e ¢ maps G NG’ surjectively onto B¢ (in other words, G NG’ is ‘horizontal” with respect
to ¢g), whereas G N G’ = ¢>(_;,] (0 Bg) for a boundary hypersurface dg Bg’ of Bg (in
other words, G N G’ is ‘vertical’ with respect to ¢g/), and

e J; B has a fiber bundle structure ¢’ : dg B — Bg such that the following diagram
commutes:

GnG 2 96Be

e
Bg.

This induces an ordering on M (X) in the sense of Definition 3.1 (to be extended to
M1,0(X) momentarily) defined by

G<G & GNG #0 and dim(Bg) < dim(Bg). 4.2)

6 In fact, by Corollary A.6 it is sufficient for ¢ to be a fibration, i.e., a proper surjective submersion; by an
Ehresmann lemma for manifolds with fibered corners (Proposition A.5), such a map is locally trivial.

T1f B is disconnected, different connected components may have different fibers.
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We require here in addition the structure of a fiber bundle ¢y : X — By on X itself,
with fiber Fx. Of course X NG = G # ) for every G € M (X), and in order to extend
the compatibility condition above, there are two possibilities. We require either:

e G = X N G is the restriction of ¢x over a proper boundary hypersurface dg Bx of By,

which fibers over Bg forming a commutative diagram

G % acBy

m ltbcx
B

in which case we set G < X, or else
e G is trivially the restriction of ¢ over the ‘honorary boundary hypersurface’ dx Bg =
B¢, which fibers over By forming a commutative diagram

G % dxBg = Bg
ox l¢x<;
Bx

in which case we set X < G.

This extends the order on M (X) to the set of principal faces M o(X), and in particular
every manifold with fibered corners is naturally a manifold with ordered corners in the sense
of Definition 3.1. In the second case above, we relax the strict dimension comparison on the
base manifolds to require merely that dim(Byx) < dim(Bg), to account for the possibility
that ¢xc = 1 has trivial fibers (which may occur). As a matter of notation, we denote the
fiber 0f¢Gg/ : aGBG/ — Bg by

EGcr = g ().

Remark

e For the definition we do not necessarily require that boundary hypersurfaces are con-
nected; as in [5] we allow G to be a ‘collective boundary hypersurface,” i.e., a union
of disjoint connected boundary hypersurfaces. One reason for this is that a fiber Fg,
a fibered corners manifold in its own right, may have distinct boundary hypersurfaces
which are the restrictions to the fiber of a single connected boundary hypersurface of the
total space, as in the example of a finite width Mdbius strip fibering over a circle.
Another reason comes from the connection to stratified spaces as discussed in Sect. 5.1,
in which the Bg and F are closely related to the strata and associated links, respec-
tively, of a stratified space. In the latter theory one often wants to consider stratifications
in which the links, and hence the F, may be disconnected; for example, a torus pinched
along a non-bounding circle has a singular stratum whose link consists of two disjoint
circles, and the associated manifold with fibered corners is a cylinder with both bound-
ary components considered as a single collective boundary hypersurface fibering over a
point.

Note that if B¢ is disconnected, then different components of the fibration G may have
non-diffeomorphic typical fibers; unfortunately our notational convention, in which we
denote the fiber systematically by F, does not support this scenario. Rather than com-
plicate the notation further, we leave it to the reader to make the necessary adjustments.
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e In the existing literature it is typical to only consider fibrations only on the proper bound-
ary hypersurfaces, and in the absence of an explicit fibration on X itself, there are two
canonical choices: namely ¢y can be either of the trivial fibrations: ¢y = 1: X — X,
making X interior maximal, or ¢x : X — *, making X interior minimal. We denote
these by Xmax and Xmin, respectively.

In Appendix A, we characterize interior fibrations ¢x : X — By as certain surjec-
tive submersions in the category of fibered corners manifolds: see Definition A.3 and
Corollary A.6.

As alocally trivial fiber bundle, the boundary hypersurfaces of G (given by G N G’) come
in two types, either the preimage with respect to ¢ of a boundary face dg B of the base
when G’ < G, or a subbundle of ¢¢ with fiber a (possibly disconnected) boundary face of
dc' FG when G’ > G. From this the next result immediately follows.

Proposition 4.2 For each G € M(X), Fg, Bg, and G itself all inherit fibered corners
structures as follows:

e Mjo(Bg) = {G/ e Mi(X):G' < G}, with fibrations ¢g'G : 0BG — Bg and the
identity fibration on Bg itself. In particular Bg is interior maximal.

° MI,O(FG) = {Gl e Mi(X): G > G}, with fibrations ¢g : dg'Fg — EG,G’
(obtained by restricting (4.1) over * € Bg), and the trivial fibration Fg — * on the
interior. In particular Fg is interior minimal.

e Mio(G) = {G' e M|(X): G' ~ G}, with fibrations ¢¢' : 0:G := GNG' — Bg
for G' < G and ¢¢g : 906G := GNG' — 3 Bg for G' > G.

In particular every G € M (X) is locally a product-type hypersurface in the sense of §3.2,
given locally by the ordered product G toc Fc X Bg = Fg X Bg.

Prior to defining morphisms of manifolds with fibered corners, we first consider some
natural conditions that may be imposed.

Definition 4.3 Let X and Y be manifolds with fibered corners. We say ab-map f : X — Y
is fibered if the restriction of f to each G € M ¢(X) is a map of fiber bundles: Thus,

G L% H = f6)

¢ . Low (4.3)

Bg _J6 . B H
for some map fg : B¢ — Bp, which, as a consequence of the fibered property of f for
each G’ < G, is itself fibered.

This condition is natural from the point of view of stratified spaces (see Sect. 5.1), since a
fibered map f : X — Y descends to a well-defined map f : X — Y of the associated
stratified spaces, obtained by collapsing the fibers of the respective boundary fibrations of X
and Y. As it turns out, this condition alone is not sufficient to determine a category of fibered
manifolds containing products; we need to impose some additional structure, in support of
which we introduce the following definitions.

Definition 4.4 Let X be a manifold with fibered corners.

(a) A smooth function u € C*°(X; R) is said to be basic at G € M (X) if its restriction to
G is pulled back from Bg: u|c = ¢ uc for some ug € C*°(Bg; R); equivalently, u is
constant on fibers of G. A function which is basic at every proper boundary hypersurface
G € M (X) will be simply called basic.
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(b) A boundary defining function p¢ for G is good if it is basic at G’ for every G’ > G; in
particular pg|g is the pullback of a boundary defining function for dg B on B . Note
that it is not possible for pg to be basic at G’ < G.

(c) Twoboundary defining functions pg and ,oé; forthe same G € M (X) are fc-equivalent if
the ratio pg / p; is basic (constant on fibers of each G’ € M (X)). This is an equivalence
relation. Note that for good boundary defining functions, pg/pg; is automatically basic
atevery G’ > G, so it is enough to require that the ratio be basic at each G’ < G.

(d) A simple, b-normal b-map f : X — Y is compatible with given fc-equivalence classes
of boundary defining functions on X and Y, respectively, provided that for some (and
hence any) representatives {pg : G € M1(X)} and {py : H € M(Y)},

f (o) =ay 1_[ o6 = apg € C®°(X; (0, 00)) is basic for every H € M;(Y).
Gefy ' (H)

Equivalently, as a consequence of the normal form for b-normal maps discussed in Sect.
2, amap f is compatible if and only if it is rigid with respect to some representative
boundary defining functions for the equivalence classes on X and Y.

Lemma 4.5 Anjfc-equivalence class of good boundary defining functions for G' € M;(X) on
X induces an fc-equivalence class of good boundary defining functions on each G € M1(X)
such that G N G' # @, and likewise on Bg if G' < G and Fg if G' > G.

Proof For G and Fg, the equivalence class is given by restriction of representative elements.
For Bg, it follows by definition that pg/| = ¢F; ,o’G, for a boundary defining function ,o’G,
for dg’ Bg on Bg; moreover, the ratio of two such fc-equivalent boundary defining functions
for G’ is pulled back from Bg» when restricted over any G” < G; hence, they descend to
fc-equivalent boundary defining functions for 9 Bg on Bg. O

It is a consequence of Proposition A.4 (see also [5, Prop. 3.7] or [11, Lem. 1.4]) that good
boundary defining functions always exist. What is more, having fixed fc-equivalence classes
of good boundary defining functions, local coordinates on X can always be chosen of the
form

(yfn’v Xen/s Y=n'4+1s X—=p/41s «++5 Y05 Y15 X1, Y2, X2, o ooy Xpp yn+1) (44)

where the x; are representative local boundary defining functions for the hypersurfaces G;
forming a maximalchainG_,y < --- < G_; < X < G| < --- < G, and y; are coordinates
in R%, such that the boundary fibration ¢; = ¢, for —n’ < i < n is given by the projection

B+ s Xy s X1 YO0 V10 X1, Y25 X2, o X Yt D] g 7> Ot Xt o, 30)
4.5)

including the case i = 0 which corresponds to ¢x. This is proved as Corollary A.7. In partic-
ular (y_/, X, ..., ¥;i) are coordinates for Bg,; and (y;+1, Xi+1, - .., yat1) are coordinates
for Fg,;. We say such coordinates are in standard form.

Remark When X is maximal, we may opt to enumerate hypersurfaces and coordinates with
positive instead of negative integers, so using coordinates (yi, X1, ..., Xn, Yu+1) in Which ¢;
is still given by

Gi s (VX1 Y 0, ig s ooy Yoo Xy Y1) = (D1, X1, -0, i)
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We are now in a position to define the category of manifolds with fibered corners in which
the ordered product will be shown to be the categorical product.

Definition 4.6 The category of manifolds with fibered corners is defined as follows.

e An object is a manifold with fibered corners X equipped with an fc-equivalence class of
good boundary defining functions for each G € M (X).

e A morphism is an ordered morphism f : X — Y in the sense of Definition 3.1 (i.e., a
simple, interior, b-normal b-map for which fy : My o(X) — M o(Y) is ordered) which
is fibered in the sense of Definition 4.3 and compatible with the fc-equivalence classes
of boundary defining functions in the sense of Definition 4.4.

The following result is a simple consequence of unwinding definitions.

Lemma 4.7 For a manifold with fibered corners X, the fibration ¢ : G — Bg for each
G € M o(X) is a morphism of fibered corners manifolds.

Remark Note that the condition that the boundary defining functions on X are good is equiv-
alent to the rigidity of each boundary fibration ¢ : G — Bg, G € M (X).

4.1 Products and fiber products

We now proceed to show that the ordered product X X Y, equipped with a suitable set of
fibrations and fc-equivalence classes of boundary defining functions, is also a product in the
category of manifolds with fibered corners.

The fibrations on L(G, H) for (G, H) < (X, Y) are straightforward. Indeed, the com-
posite maps L(G, H) - G — B¢ and L(G, H) — H — Bp are ordered morphisms, so
the universal property of Bg X By as a manifold with ordered corners implies that there is
a unique consistent map

¢6, 0 L(G,H) - B X By, (G,H)=<(X,Y).

and it then follows from a local application of Theorem 3.10 that this is in fact a fiber bundle
with typical fiber the join Fg *x y Fy (or simply Fg X Fpif G=XorH =7).
Moreover, by the universal property of products in the ordered corners category, it follows
that whenever W is a manifold with fibered corners with morphisms f : W — X and
g : W — Y thereby inducing an ordered morphism W — X X Y, the restriction of this
morphism to any E € M o(W) with E < W fits into a naturally commutative diagram

E—— L(G,H)
ld’E l¢’L(G,H) G = fn(E): H = gn(E),
B — Bg X By

with the map Bg — Bg X By induced by fr : B — Bg and gg : B — Bpy. In other
words, the map W — X X Y is canonically fibered over each E < W € M o(W).

Note that none of the above makes any reference to fc-equivalence classes of boundary
defining functions on X, Y, or W. In fact, it follows from this observation that, provided we
restrict consideration to interior maximal manifolds with fibered corners, we can define a
weaker category in which the objects are merely required to have fibered corners (without
specifying equivalence classes of boundary defining functions) and morphisms are merely
required to be ordered and fibered; what we have just shown is that X X Y is a product in this
category:
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Theorem 4.8 The ordered product is a categorical product in the category whose objects
are interior maximal manifolds with fibered corners and whose morphisms are ordered
morphisms in the sense of Definition 3.1 which are fibered in the sense of Definition 4.3.

However, when the manifolds are not interior maximal, the extra data (of equivalence
classes of boundary defining functions and compatible maps) is required to get a theory with
products, as we now show. Note that while there is always a canonical map L(G, H) —
Bg X By consistent with the composite projections L(G, H) — Bg and L(G, H) — By,
this is not a fiber bundle when (G, H) > (X, Y), as can be seen from Theorem 3.10. Instead,
we expect L(G, H) for (G, H) > (X, Y) to fiber over the join Bg *x,y Bp. To define these
fibrations we consider the normal models N+ G for G € M (X).

Definition 4.9 Let G € M (X). The fibered corners structure on the normal model NG
consists of fibrations given by the differentials of those from X:

déc : NyGlgng — N+dgBg, for G’ > G,
dog : N+Glgng — Bg for G’/ <G,

where the latter factors as the composite NG — G — dg'Bg — Bg. In particular, the
interior of N4+ G is equipped with the fibration d¢x : NyG — dxBg = Bg — Byx in case
G > X and NyG — N;0dgByx in case G < X. To keep the notation uncluttered, when
G’ = G we denote d¢g simply by ¢ : NG — Bg. The order structure associated with
these fibrations is consistent with (3.12) and (3.13).

Fc-equivalence classes of good boundary defining functions on X induce equivalence
classes of (0, oo)-equivariant defining functions on N4 G by taking their normal derivatives
as in §2.1; for notational convenience we shall simply refer to these by the same notation as
the boundary defining functions on X from which they are derived.

We also equip the relative cone Cx (Bg) of Definition 3.7 with a fibered corners structure.

Definition 4.10 Let G > X. The fibered corners structure on Cx(Bg) = Bg x [0, 00)
consists of fibrations

Bg x {0} - Bg, 0dg'Bg x[0,00) - Bg:, Cx(Bg)= Bg x[0,00) - Bx

given by the obvious maps coming from the boundary fibrations ¢ : dg' B¢ — B¢’ and
using ¢xg : dxBg = Bg — Bx on Bg itself (rather than the identity fibration) on the
interior Bg X [0, 00). The ordered structure induced by these fibrations is consistent with
Definition 3.7. Fc-equivalence classes of good boundary defining functions on Cx (Bg) are
given by pulling back dg' Bg defining functions from B¢ for the boundary faces dg' Bg X
[0, 00) and by the projection to [0, oo) for B x 0.

Though we will not use it immediately, this is an appropriate moment to record the fibered
corners structure of Cx (Fg) for G < X:

Definition 4.11 Let G < X. The fibered corners structure on Cx(Fg) = Fg x [0, 00)
consists of boundary fibrations

Cx(Fg) = Eg x x[0,00)  Fg x{0} = %,  d¢ Fg x [0,00) = Eg ¢ x [0, 00)
where we recall that Eg g = ¢EIG’(*)’ the fiber of ¢ : 9B — Bg, forms the base

of the boundary fibration on dg’ Fg, and here we use the fibration induced by ¢y instead
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of ¢ on the interior Fg x [0, 0o) itself. The ordered structure induced by these boundary
fibrations is consistent with the order structure in Definition 3.7.

Remark The fibered corners structure induced on Bg *¥x,y By as a boundary hypersurface
of Cx(Bg) X Cy(Bp) in the case that (G, H) > (X, Y) is the same as the one induced by
considering it as the base of the hypersurface L(G, H) of X X Y, and likewise, the fibered
corners structure on Fg *¥x y Fy as a boundary hypersurface of Cx (Fg) X Cy(Fpg) in the
case that (G, H) < (X,7Y) is the same as the one induced by considering it as a fiber of
L(G,H)inXXY.

The key observation leading to a well-defined theory of products in the fibered corners
category is the following result, in which the compressed projection defined in Sect. 3.2
amounts to a natural thickening of the boundary fibrations ¢ : G — Bg to morphisms
#6 : N+G — Cx(Bg).

Lemma4.12 Let G € M7 (X) and fix a choice of representative boundary defining functions
{pg'} on X, denoting their lifts to N+ G by the same notation.

(a) The compressed projection

¢G = PrcX(BG) N+G — Cx(Bg) v (¢G(U), ,OzG(U)) (4.6)

is a fibered corners morphism extending ¢ : G — Bg, and is independent of the choice
of representatives {pg'} up to an automorphism of Cx(Bg).

(b) The map (4.6) is functorial in the following sense: Given a morphism f @ X — Y
sending G > X to H > Y, there exists a morphism fg : Cx(Bg) — Cy(Bpg) extending
fc : B — By such that the following diagram commutes:

NeG —“ s N.H

sl on

Cx(Bg) L% Cy(By)

Proof The map (4.6) is clearly simple, b-normal, and compatible with the fc-equivalence
classes of boundary defining functions on N1 G and Cx(Bg). The fact that it is fibered
follows from the commutative diagrams

%o 3

N+Glong —= d'Bg x [0, 00) N.Glgng — Bg x {0} X (0)%=% B,  (0)
ld%’ l‘ﬁa’ ld%' l‘bc i{PG \Ll
Bo ———— Bg N.dGBo —299, B Be —— Bg

for G’ < G, G’ > G, and G' = G, respectively. Suppose now that { [, } is another choice
of fc-equivalent boundary defining functions on X, defining another such map (}"G 'N;:G —
Cx(Bg). Recall that for G' # G, the normal derivative do;, = v*pg;, on N.G is the
pullback of the restriction of p;, to G; hence, the ratio dog, /dpgr = v*(pg)/v*(pg) is
pulled back from Bg by fc—equivalence. Likewise, the (0, co) invariant ratio dp’G /dpg is
pulled back from BG, so it follows that ,0>G = ¢ apxc forsomea € C*°(Bg; (0, 00)), and
hence qSG =ao ¢G for the automorphism« : Cx(Bg) — Cx(Bg) definedby « : (b, 1) —
(b, a(b)t). In particular ¢G is well defined up to automorphism of the target.

For part (b), we may use representative boundary defining functions with respect to which
f is rigid, and then df pulls back p> g to a function of the form

Adf)Y p=H = P=Gy = 0P>G,
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where Gy = min {G’ : f;(G') = H} < Gando =[], <5/~ P’ is a product of bound-
ary defining functions for those G’ such that Gy < G’ < G. As a product of good boundary
defining functions for G’ < G, it follows that ¢ = ¢},0’ € ¢ C>(Bg) is basic. Then, the
map

fo: Cx(Bo) = Cy(Bp),  (b,1) = (f(b), o' (b))
has the required property in view of the following commutative diagram:

o & df (v)

on
b (pu(df ), p=u(df(v)))

(66 ), p2c®) S (fobe ). o' (¢c®))p=c 1))

[m}

Theorem 4.13 If X and Y are manifolds with fibered corners, then X X Y has a canonical
fibered corners structure with fibrations of the form

Feg X Fy — L(G,Y) Fx X Fg — L(X, H)
Lsar Lo @.7)
Bg X By By X By
Fg*xy Fu — L(G, H)
\L¢G,H Jor (G, H) < (X,Y) (4.8)
BG % By
Fg X Fy L(G, H)
\Ltﬁc,H for (G, H) > (X,Y) (4.9)
BG *x.y Bu

and fc-equivalence classes of good boundary defining functions given locally by rational
combinations of boundary defining functions from X and Y. The ordered product satisfies
the universal property of a product in the category of manifolds with fibered corners, meaning
thatif f : W — X and g : W — Y are fibered corners morphisms, then the associated
morphism W — X X Y of ordered corners is in fact a morphism of fibered corners.

Proof The fibrations on L(G, H) for (G, H) < (X,Y), and the fibered property of
W — X X Y with respect to these fibrations has been discussed above. The fibrations
for (G, H) > (X,Y) are defined as follows. First, we use the canonical diffeomorphism
L(G, H) = L(Gy, Hy) C N:G X N4 H as in the proof of Theorem 3.10 to replace X X Y
by N+ G X N4 H. Then, it follows from Lemma 4.12 and Theorem 3.4 that there is a natural
morphism (of ordered corners) NyG X NyH — Cx(Bg) X Cy(Bp) restricting to a fiber
bundle L(G, H) — Bg *x,y By with fiber Fg X Fp, and this defines ¢, g, with respect
to which the lifted projections X X ¥ — X and X X Y — Y are clearly fibered.
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If f:W —> Xandg: W — Y are fibered corners morphisms with the property that
f2(E) =G e Mi(X)and g:(E) = H € M (Y) for E € M (W) with E > W (and hence
G > X and H > Y), then it follows again from Lemma 4.12 and Theorem 3.4 that there is
a commutative diagram of ordered corners morphisms

NiE — N.GX N.H E — L(G, H)
1 1 restricting to | 4
Cw(Bg) = Cx(Bg) X Cy(Bp) Bg — Bg *x,y Bu

and so the map W — X X Y is fibered.

The equivalence classes of boundary defining functions on X X Y are defined locally
by rational combinations of boundary defining functions from X and Y. More precisely, if
{pc} and {pg } are representative boundary defining functions on X and Y, respectively, then
on a neighborhood in X X Y which meets a totally ordered set of boundary hypersurfaces
L(G;, Hj), the linear system

b _ L it (g hy) = (g, h),

dolgi +hj) = 0, otherwise

fixes the exponents of o = []; pgi I j prjj uniquely so that it constitutes a local boundary
defining function for L(G, H) on such a neighborhood in view of Proposition 2.2. Indeed,
the coefficients {ai, bj} are precisely those for the basis of bN*FF = ﬂi’j L(G;, Hj)
which is dual to the basis { g +h j} of PN F; since the latter is unimodular, it follows that
aj,bj € {—1,0, 1}. (Andinfacteitherall the ¢; are nonnegative, while the b ; are non-positive,
or vice versa.) As fc-equivalence is a local property, the equivalence class of boundary defining
functions on X X Y which are locally fc-equivalent to rational combinations as above is well
defined.

The fact that these rational boundary defining functions are good is equivalent to the rigidity
of L(G,H) — Bg *x,y By for (G, H) > (X,Y) (respectively L(G, H) — Bg X By
for (G, H) < (X, Y)). To see this, first note that N, G — Cx(Bg) (resp. NG — Bg) is
rigid by definition and the fact that boundary defining functions on X are good, and hence
NiG X NyH — Cx(Bg) x Cy(By) (resp. NtG X Nt H — Bg x Bp) is rigid with
respect to rational boundary defining functions on the domain. It then follows from the
local coordinate structure of the unique lift NG X NyH — Cx(Bg) X Cy(By) (resp.
N+G X Ny H — Bg X Bp) that this lift is rigid with respect to rational boundary defining
functions on the domain and codomain, and restricting this to L(G, H) gives the desired
result.

The projections X X ¥ — X and X X Y — Y are compatible with the fc-equivalence
classes on X X Y essentially by definition, and the fact that W — X X Y is compatible
follows from the general fact that the lift to a generalized blow-up as in Theorem 2.1.(b) of
a locally rigid map is rigid with respect to rational local boundary defining functions. O

We next address the fibered corners structure of the fiber products considered in Sect. 3.3.

Proposition 4.14 Suppose f : X — Z and g : Y — Z are morphisms of fibered corners
manifolds which are b-transverse. Then, XX z Y obtains a canonical fibered corners structure,
with fibrations on the principal faces L(G, H)z := L(G, H)N X Xz Y as follows:
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e For (G, H) < (X,Y) withG € Mi(X), H e M (Y) and f3(G) = gz(H) = Z, the
fibration has the form

Fe*xyz Fy — L(G,H)z
1
Bg Xp, By

where Fg *x y 7 Fy is the boundary hypersurface of Cx (Fg) X r, Cy(Fy) of the form
(3.26).

o For (G,H) > (X,Y)with G € M(X), H € M{(Y) and f:(G) = gz(H) = Z, the
fibration has the form

Fc Xfp, Fg — L(G,H)z
1
Bg *x,v,z Bu

where Bg *x v,z By is the boundary hypersurface of Cx (Bg) X g, Cy (Bn) of the form
(3.26).
e In all other cases, the fibration has the form

FXpy Fu — L(G,H)z7 =GXx H
1 where K = f3(G) = g:(H) € M (Z).

Bg Xy By

Moreover, X X7 Y satisfies the universal property of the fiber product in the category of
manifolds with fibered corners.

Proof Suppose first that G < X and H < Y with f3(G) = gs(H) = Z € Mo(Z), and
replace X and Y by N4 G and N4 H, respectively. From the commutative diagram

N.G — Z < NyH
+ 4 ¥
B — Bz <— By

it follows that Ny G Xz N+ H admits a natural map to Bg X p, By, and restricting over a
point in the latter shows that the fiber may be identified with Cx(Fg) Xr, Cy(Fp), as it
satisfies the relevant universal property. Restriction to the face L(G, H)z C N+G Xz Ny H
shows that this fibers over Bg X p, By with fiber Fg *x y,z Fu, using the characterization
of the associated principal face of Cx (Fg) X, Cy(Fp) from Theorem 3.13.

In a similar manner, if G > X and H > Y are such that f;(G) = gy(H) = Z, then the
commutative diagram

NG — Z <—— N H
+ 4 +
Cx(Bg) = Bz < Cy(Bg)

obtained from Lemma 4.12 shows that N G X 7 Ny H admits a natural map to Cx (Bg) X g,
Cy(Bp), restricting over a point of which shows that the fiber may be identified with Fg X ,
Fp.Therestrictionto L(G, H)z maps over the face B *x,y,z Bu C Cx(Bg)Xp,Cy(Bnu),
giving the result in this case.
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In all other cases, L(G, H)z = G Xk H, where K = f3(G) = gz(H) € M (2), fits
into the diagram

GXg H
+
6 ke Sy
<+ <+ <+
Bg — Bx <— By

and consequently maps naturally to Bg X g, Bp, and restriction over a point in the latter
shows that the fiber satisfies the universal property of F X g, Fp, proving the result in these
cases.

Note thatin all cases, the fibration just described coincides with the restrictionto L(G, H) z
of the fibration ¢, iy on L(G, H). This is clear in all cases, except perhaps the last case when
(G, H) > (X, 7Y), but in that case the diagram of relevant maps

NyG — NyK <— Ny H
NS NS NS
Cx(Bg) — Cz(Bg) < Cy(Bpg)

leads to the natural map Ny G Xy, xk Ny H — Cx(Bg) Xc,(By) Cy (Bn), and arguing as in
the proof of Theorem 3.13 shows that the relevant boundary face of Cx (Bg)X ¢, (x)Cy (BH)
satisfies the universal property of Bg X g, Bg, to which the restriction to L(G, H)z maps.

The fc-equivalence classes of boundary defining functions of X Xz Y are inherited by
restriction from the classes on X X Y, and the fact that these are good with respect to the
fibrations described amounts to rigidity of all maps just described with respect to the fc-
equivalence classes on N, G, N1 H, and so on. |

Returning to the application discussed in Corollary 3.14 in the fibered corners setting
yields the following.

Corollary 4.15 If X and Y are manifolds with fibered corners with representative total bound-

ary defining functions px = ]_[GeM](X) 06 : X = [0, 00)min and py = ]_[HeM](Y) OH -
Y — [0, 00)min, then the fiber product

X X(0,000mnm ¥ ={ox/py =1} CXXY

is a p-submanifold in a sufficiently small neighborhood of the boundary (where dpx # 0
and dpy # 0), and has fibrations of the form

Fe X Fg — L(G, H)N{px/py =1}
PG, H
BG % By

with fiber Fg X Fyg = (FG)min X (Fg)min and base BG X By = (BG)max X (BH)max-

5 Relation to other theories

In this section we discuss how products of fibered corners manifolds relate and/or generalize
products in other categories.
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5.1 Smoothly stratified spaces

We briefly recall the definition of smoothly stratified spaces, referring to [1, 25] for a more
complete account. A stratified space is a topological space X decomposed as a disjoint union
X = ||; si of locally closed subspaces s; called strata, each of which is itself a manifold
of some dimension, satisfying the frontier condition thats; N5; # (@ if and only if s; C 57,
which defines a partial order s5; < s;. In particular, there is a maximal principal stratum
so = X° which is dense, with the rest referred to as the singular strata. The closed strata s;
are again stratified spaces with strata {s jiSj < } A smoothly stratified space (aka ‘Thom-
Mather stratified space’) is a stratified space X' along with control data consisting of open
neighborhoods 7; D s; in X called fubes, equipped with retractions r; : 7; — s; and distance
functions p; : 7; — Ry such thats; = p;” ! (0) and satisfying the conditions that whenever
§i < Sj,

piorj=pj, Tiorj=rtj, and  (r;, 0;) : 7 Nsj — s5; x (0,00) 1is a submersion.

As a consequence of Thom’s isotopy lemma for smoothly stratified spaces (see [25, 3.9.2]),
the 7; are locally trivial bundles of cones over s;, the links of which are stratified spaces of
lower depth.

Associated with each interior maximal manifold with fibered corners X is a smoothly
stratified space X obtained by iteratively collapsing the fibers over each boundary hypersur-
face in reverse order (starting with the largest base and ending with the smallest). The strata
of X are the smooth manifolds s¢ = B, for G € M o(X), with principal smooth stratum
X°, and the control data are given by the passage to the quotient of tubular neighborhoods of
the boundary hypersurfaces, their associated retractions, and the images of (good) boundary
defining functions. The closure sg = Bg is the stratified space obtained by fiber collapse of
the fibered corners manifold Bg itself, and the partial order sG < sg on strata defined by
sG C s¢’ coincides with the order G < G’ induced by the fibered corners structure. The link
of the cone bundle 7 — s¢ is the stratified space F¢ obtained by collapsing the fibers of
the boundary hypersurfaces of Fg.

Conversely, as shown in [1, 3] (a result originating in [32]; see also [25, 3.9.4]), every
smoothly stratified space can be resolved to a manifold with fibered corners by iteratively
replacing the cone bundle 7 of each singular stratum with an associated cylinder bundle in
order from smallest stratum to largest, with the tubes 7 resolving to tubular neighborhoods of
the boundary hypersurfaces, and distance functions resolving to boundary defining functions.

Remark While this constitutes an equivalence of objects between smoothly stratified spaces
on the one hand, and (interior maximal) manifolds with fibered corners on the other hand,
correspondingly little has been written about morphisms. In [3], Albin et. al. show that the
resolution procedure above is functorial with respect to isomorphisms, meaning controlled
isomorphisms of stratified spaces on the one hand, and fibered diffeomorphisms of fibered
corners manifolds on the other, but in general, pinning down a suitable class of morphisms
on the stratified spaces side is difficult. In addition to the requisite condition that a map
f + X — Y be stratified, meaning that it sends strata to strata and restricts to a smooth
map of manifolds thereon (which corresponds to the fibered condition of Definition 4.3),
the typical conditions discussed in the literature are inadequate for our purposes. Indeed, the
weakest typical condition is that the map f is ‘weakly controlled,” meaning it maps tubes to
tubes and commutes with the retractions. This is on the one hand too strong, since it amounts
to extending the boundary fibrations to open neighborhoods of the boundary hypersurfaces
and demanding an extension of the fiber bundle maps (4.3) to such neighborhoods, and it
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does not seem that every fibered corners morphism satisfies such a condition. On the other
hand, it is also too weak, since it does not impose the kind of algebraic behavior with respect
to boundary defining functions that a general b-map satisfies. From our point of view, the
right class of morphisms are those maps of smoothly stratified spaces which are descended
from fibered corners morphisms as defined here, but it seems difficult to characterize these
directly using only the data of stratified spaces.

There is little discussion of products of stratified spaces in the literature, but the definition of
a smoothly stratified structure on the Cartesian product X’ x ) is obvious enough. It has strata
sg xsy for (G, H) € M,0(X)xM;j oY), withcontroldata (7g X Ty, rg Xru, pc+pm) (it
seems any homogeneous combination of pg and pg would also suffice, such as (pg + ,01’;)1/ P
for p > 1). This satisfies the universal property of the product for most reasonable notions
of morphism of stratified spaces.

If we knew that the projections X x Y — X and X x Y — ) lifted to fibered corners
morphisms upon resolution, as well as the map into X x ) induced by a good map W — X and
W — Y, then an easy application of the universal property of the product in both categories
would give a quick proof of the following result. However, since this is unavailable at present,
we settle for a coordinate based proof.

Theorem 5.1 Let X and Y be interior maximal manifolds with fibered corners, with associ-
ated smoothly stratified spaces X and Y. Then, the ordered product X X Y is equivalent to
the resolution of the product X x Y of stratified spaces.

Proof Let

1, X1, Y2, X2, -+, Yus X, Yt 1) (5.1)

denote standard form coordinates on a (maximal) fibered corners manifold X. Iteratively
collapsing the boundary fibers leads to singular coordinates

V15 FLs T1Y2. 72, 723+ ooy Py Tn Y1)y Fi = Fio1Xj = X1 -+ X;

on the associated stratified space X’; conversely, the resolution procedure is implemented in
coordinates by iteratively dividing the coordinates to the right of each r; by r; starting with
ri.

Likewise, if Y is another fibered corners manifold with standard form coordinates

/ / / ! / / !
s X1 Y25 X5 -+ s Yo Xys Yig1) (5.2)
with associated singular coordinates
/ / r ./ / r./ / / /
V1 T T1Y25 725 72 Y30 s T T Yy 1)
on ), then singular coordinates on X' x ) are given by
/ / !’/
(yla y]7r17r1y27r]7r]y27 ~~«»rn7rnyn+1)

assuming without loss of generality that m < n. We will focus attention on the totally ordered
chain of strata (1,1) < (1,2) < 2,3) <---<(m—1,m) < (m,0) < --- < (n, 0); others
are similar.

The resolution procedure consists of first replacing r1 and r{ by r1+r{ andsy = r1/(r1+r})
(ors; =1 —s1 =r{/(r1 +r})), dividing all coordinates to the right by r| + r{. Then, near
the lift of (say) s; = 0 and r, = 0, the next step is to replace s; and 5o = ry/(r; + r}) by
si + 57 and sz/(si +s57) = r2/(r{ + r7), divide all coordinates to the right by si + 52, and so
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on. However, as is frequently the case with blow-up computations, it is more convenient here
to use equivalent rational coordinates, in which (ry, ri) is replaced instead by (ry, ri /r1) and
all coordinates to the right are divided by r1; then (r{ /r1, r2/r1) is replaced by (r{/r1, r2/r{)
and all coordinates to the right are divided by r{/r1, and so on. The end of this process results
in standard form coordinates

’ ’ot
/ X !/ X1Xx XX / / X1 Xm+1
()’I,yl,xl,)’Z, ﬁa)’Zv ;Cizsy3sxixiﬁy3s~~~5ym+13 Xi;l;r 7)7m+1,~~~7xmyn+l)

m

for the resolution of X x ) which are identical to the rational coordinates near L(G1, Hy) N
L(G1, Hy) --- N L(G,, Y) for the ordered product X X Y based on (5.1) and (5.2). Other
coordinate charts based on other totally ordered chains of strata involve similar computations.

[m]

If X is a manifold with fibered corners, then the natural fibered corners structure on the
cone Cpax (X) according to Definition 4.11 consists of fibrations

X x0— x, G x [0, 0) = Bg x [0, 00), X x [0,00) > X x [0, 00).
It is clear that the stratified space associated with Cpax (X) is the cone
C(X) = (& x [0, 00))/(X x {0})

with link X. From the well-known fact that the product of cones is a cone over the join of
the links, we obtain the following.

Corollary 5.2 For fibered corners manifolds X and Y, the stratified space associated with
Cmax(X) X Cmax(Y) is the cone

C(X) x C(Y) = C(X*))

and in particular, the stratified space associated with the maximal join X ¥max Y is the
topological join

XxY = (X x Y x[0,1])/ ~,

where (x,y,0) ~ (x’,y,0) forall x,x’ € X andy € Y and (x,y,1) ~ (x,y', 1) for all
xXeX, y,y e

5.2 Many-body spaces

Many-body compactifications of vector spaces go back at least to [31], and have been dis-
cussed more recently in [6,21]. Using notation from [21], recall that given a finite-dimensional
vector space V and a linear system Sy, meaning a finite set of subspaces of V which is closed
under intersection and contains {0} and V, the many-body compactification M (V) of V is
the manifold with corners

MV)=[V;{3S:SeSy}l,

given by the blow-up in the radial compactification V of the boundaries of the subspaces in
Sy, taken in order of size. The boundary hypersurfaces of M (V) are indexed by the subspaces
in Sy, ordered by containment; in fact M o(M (V)) = Sy as ordered sets, with the interior
indexed by {0}. In addition, M (V) has a natural interior minimal fibered corners structure,
with fibrations consisting of products
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¢ : Hs = Bs x Fs — Bg, where Fs= M(V/S), Bs= [33; [a?: S'<Se SV”
(5.3)

for each S € Sy, where V /S is equipped with the linear system Sy ;s = {§'/(§'NS) : §' €
Sy},and Bs = Hg C M(S) is the maximal boundary face of the many-body compactification
of S itself, with respect to the system Sg = {S "eSy:S'cCS } The boundary hypersurfaces
of Bg decompose as

aslBS = Bs/ X BS/S’» S/ < S. (54)

The fc-equivalence class of boundary defining functions on M (V) is well defined by lifting
rational combinations of radial functions on V which define 35S for § € Sy.

As shown in [21], the many-body compactification is functorial with respect to admissible
linear maps, meaning f : V — W satisfies f~!(Sw) C Sy, with such f extending to b-
maps f : M(V) - M(W). If in addition f(Sy) = Sw — what is called in [21] an
admissible quotient — then fis a b-fibration and satisfies the conditions to be a morphism
in the category of interior minimal fibered corners. Indeed, the restriction of the lifted map
splits as a product with respect to (5.3) and (5.4).

It is clear that the stratified space associated with M (V) by collapsing the fibers of all
boundary fibrations (we do not collapse the fibers over the interior) is the radial compactifi-
cation V, with principal stratum V, and (closed) singular strata consisting of the boundaries
3 of the subspaces in Sy, the links of which are the normal quotients V /S with strata 35’/
for S’ > S.In this category, a natural alternative to the usual product of V and W as stratified
spaces (which does not resolve to a many-body compactification of a vector space) is the
space V x W with closed singular strata (S x T) for (S, T) € Sy x Sw, the resolution of
which is the many-body compactification M(V x W).

Note that, as spheres, the closed singular strata d(S x T') are homeomorphic to the topo-
logical joins 3S*dT of the singular strata of the factors, a property which generalizes to the
interior minimal fibered corners setting since Bg *min By has associated stratified space the
join BgxBp of the stratified spaces associated with Bg and By as a consequence of the
results of §7.

Theorem 5.3 Let M(V) and M (W) be many-body compactifications of (V,Sy) and
(W, Sw), respectively. Then, the ordered product M (V)X M (W) as interior minimal man-
ifolds with fibered corners is canonically isomorphic to the many-body compactification
MV x W)of (Vx W,Sy x Sw).

Proof The lifted projections M(V x W) — M(V) and M(V x W) — M (W) are interior
minimal morphisms, so by the universal property there is an associated map s : M(V x W) —
M(V) X M(W), with induced map Ay : M1o(M(V x W)) = M o(M(V)X M(W)) an
isomorphism of ordered sets identified with Syxw = Sy x Sw. Both M(V x W) and
M (V)X M(W) have interior identified with V x W, on which 4 restricts to the identity, so
it remains to show that /4 extends to an isomorphism over each boundary hypersurface. We
proceed by induction on the total depth of (V, W), meaning the sum |Sy| 4+ |Sw|, which is
equivalent to the depth of M(V x W) or M(V) X M(W) as fibered corners manifolds, with
depth zero coinciding with the trivial case V = W = {0}.
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The restriction to a hypersurface h : Hgxr C M(V x W) — L(Hg, Hr) C M(V) X
M (W) is a fibered map

h - N
Fsx1 X Bsx7 — (Fs X Fr) x (Bs * Br)

l l (5.5)

h ~
Bsxy ————— Bs% By

where * = %pin, With Bg % By replaced simply by Bs or By incase T = Qor S = 0,
respectively. Restricting over a point in the base and recalling that Fs = M(V/S), Fr =
MW/T), and Fsxr = M((V x W)/(S x T)) = M(V/S x W/T), it is clear that the
map on fibers is the universal map M(V /S x W/T) — M(V/S) X M(W/T), in particular
independent of the point in the base, and hence the top row of (5.5) splits as a product.
Since (S, T') # (0, 0) here (as we are considering a proper boundary hypersurface), the pair
(V/S, W/T) has strictly lower total depth, and so the first factor Fsx7 — Fs X Fr is an
isomorphism by the inductive hypothesis.

Next we recall that the lower map h g7 is induced by a thickened map Cpin (Bsx1) —
Chin(Bs) X Cmin(Br) afforded by Lemma 4.12; however in this many-body setting this
has a natural reinterpretation. Indeed, here we may generally identify the cone Cpin(Bs)
with the normal model Ny Bg for the maximal hypersurface B C M(S) in the many-
body compactification for S itself, and the thickened horizontal map on cones in part (b) of
Lemma 4.12 then coincides with the normal derivative of the induced map between the many-
body compactifications of the relevant subspaces. In particular the map Bsxr — Bs * Br
coincides with the restriction to the maximal boundary hypersurface of the map M (S xT) —
M (S) X M(T), and again by induction it follows that the latter is an isomorphism, except in
the case that (S, T) = (V, W) itself.

To take care of this final case, we verify by hand that the map M (V x W) — M(V)XM (W)
has full rank over the interior of the maximal boundary hypersurface Hyxw = By xw-
Representing points in V x W by ‘product radial’ coordinates

v w
(v, w) = (Rrv, Rsw),  where R=+/|v]*>+|w®, r= vl 5= % =v1-r2

where v and w are respective unit vectors for some norms on V and W, leads to coordi-
nates (x, r, v, ) near the boundary of the radial compactification V x W, with x = R~
Assuming now that r € (0, 1) and v and w are limited to open sets disjoint from any of the
proper subspaces in Sy or Sy, these remain valid coordinates for the interior of the maxi-
mal boundary face By w C M(V x W). Likewise, (x’, v), where x’ = |v|~! and (x”, w),
where x”” = |w|~! form coordinates for V and W lifting to M (V) and M (W), and the lifted
projections M(V x W) — M(V) and M(V x W) — M (W) are given respectively by

(-xara V,Cl))f—)(%,\)) and (x9r7vaw)'_)(ﬁ’w)'

It follows that coordinates near the maximal boundary hypersurface of M (V) X M (W) are

’

given by (x', %7, v, w), in which the lifted map M(V x W) — M (V) X M(W) takes the
form

(-x7r7vaa)) = (%s ﬁ7v5w)

which has full rank down to {x = 0} for r € (0, 1). O
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6 Geometric structures

In this section we consider certain classes of metrics on interior minimal and maximal mani-
folds with fibered corners. A convenient and equivalent way to discuss these classes of metrics
is in terms of their associated geometric structures, as encoded by associated rescaled tan-
gent bundles, on which a Riemannian metric of the given type on the interior extends to a
uniformly bounded inner product up to all boundary faces. Both structures to be considered
begin with the following.

Definition 6.1 The algebra of edge vector fields is defined as
Ve(X) = {V € W(X) : VIc(@E(C®(Bs))) = 0}

or those vector fields whose restriction to every G € M(X) is tangent to the fiber of ¢¢.
This definition has appeared in various forms in [2—4] and others sometimes under the name
‘iterated edge’ or ‘ie,” and extends the definition due to [26] in the depth 1 case. This is a
Lie subalgebra of V},(X) and forms a locally free sheaf of constant rank, defining the edge
tangent bundle by

°TX — X, where Ve(X) =C®(X;°TX). (6.1)
In local standard form coordinates, a frame for °7 X is furnished by the vector fields

0 0 0 0 0 0 0 62)
V—, V] —, Up—, V . —, Uk =Xk Xn, .
13)11 laxl zayz 2 0z k k "

ey

— — Up
sz " ayn " axn

9

where T is shorthand for various par‘ual derivatives 3 associated with the components

J
of yj € RK and we use a in place of 5-*—. Since these vector fields will be of interest in

both the interior maximal and mmlmal cases and since the interior fibration will not play
arole, we enumerate boundary hypersurfaces exclusively with positive integers in all cases
throughout this section.

The vector fields of particular interest in the setting of interior maximal manifolds are the
following.

Definition 6.2 A wedge vector field (called an ‘iterated incomplete edge’ vector field in [3,
4], with the name ‘wedge’ coming from [14] in the depth 1 case) is one of the form iv,
where V € V.(X) and px = [[c My (X) PG is a total boundary defining function. Such a
vector field is singular at the boundary faces of X, and the set Vy, (X) of wedge vector fields
does not form a Lie algebra. Instead the wedge tangent bundle may be defined as a rescaling
(see [30] for a general discussion of this procedure) of T X by the requirement

pxC®(X; VT X) = C®(X;°TX).

(See [2] for an alternate definition via the cotangent space ¥ T*X.) Note that Vi (X) and
WT X are independent of the choice of px. A local frame for VT X is given in standard form
coordinates by

B B b 0 Rl B Bl 1
—_— —, W] —, W=, ..., Wy ——, Wy_]—, Wy —, wp = ——.
dyr 0xp 18y2 18x2 " lay,, " 18xn "9z k X1+ Xk

6.3)
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As for °T X, both T X and ¥ T X bundles are canonically isomorphic to the usual tangent
bundle over the interior of X, and a wedge metric on X is then by definition the Riemannian
metric on X° induced by uniformly bounded inner product on ¥ 7 X which is smooth on the
interior and conormal up to the boundary (i.e., all b-derivatives are also uniformly bounded;
this is in accord with the usual geometric analysis definition). Wedge metrics are incomplete
on X (hence the term ‘incomplete iterated edge metric’ of [3, 4]), and contain the iterated
conic metrics studied by Cheeger in [9] as special cases. While a general wedge metric
is defined by an arbitrary inner product on Y7 X, a model wedge metric in standard form
coordinates which shows off the iterated conic aspect of the geometry (and an example of
what is called a ‘rigid wedge metric’ in [3]) is one of the form

gx = dyf +dxf +xf(dys +dxd + -+ x2 (dy? +dx2 +x2dz%) )
= gp, +dp? + pikr,

where dyi2 is shorthand for an inner product in the variables y; € R, g B, denotes a Rieman-
nian metric on B and «, denotes a family of wedge metrics on Fj.

In contrast, the following structure is of interest particularly in the setting of interior
minimal manifolds.

Definition 6.3 The algebra of quasi fibered boundary (QFB), or simply ® vector fields is the
set

Vo(X) = {V € Ve(X) : Vpx € pxCP(X)],

consisting of those edge vector fields which annihilate a total boundary defining function px
to second order [10]. While V. (X) and Vy (X) only depend on the fibered corners structure,
Vg (X) also depends on the choice of total boundary defining function px up to equivalence,
where two total boundary defining functions px and p), are equivalent if their ratio is basic
[10]. In particular, Vo (X) is well defined by a choice of fc-equivalence classes of boundary
defining functions on X.

As with edge vector fields above, V¢ (X) is a Lie subalgebra of V,(X) and forms a
locally free sheaf of constant rank, defining the ® rangent bundle (which is again canonically
isomorphic to 7 X in the interior) by

®TX > X, where Vo(X)=C®(X;®TX). (6.4)

In local standard form coordinates a local frame for ®7 X is given by

a ad a 0 ad
vj—, XV —, vp—, v [ xXp— —x1— |,
18y1 ! laxl 23y2 2 zaxz ‘ax1

SO TN TN ©3)
B nayna n naxn nflaxni1 ’82,

Vg = X - Xp.

Note that the basis element vy x| % canbereplaced by vy xy % for any k by taking appropriate
linear combinations.

A @ metric on X is by definition a (complete) Riemannian metric on X° induced by a
uniformly bounded inner product on ®7 X. Note that such a metric need not be smooth up
to the boundary. When the fibers of the maximal hypersurfaces are trivial, a ® metric is
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known as a ‘quasi-asymptotically conical’ (QAC) metric [10, 12]. A particularly nice model
@ metric in local standard form coordinates is one of the form
R ) 20 2(d4s2 2 2
713 + o (dy? +dxf + x7(dys +dx3 + -+ + x2_ (dyZ + x2dz%) -+ +))
dv? —1 da} dy?
= UL{ + 00 TF Xy o+ d

where again dyi2 is shorthand for an inner product in the variables y; € R* . Note that such a

. .. dv? . . . .
metric can support additional terms of the form vuj , and in particular restricts to a ® metric

i

on any interior fiber of a boundary hypersurface.

6.1 Products of ® structures

We first consider the product of @ structures on interior minimal manifolds X and Y with
fibered corners, proving an isomorphism between ®*7X @ ®TY and ®7T (X X Y). In fact we
give two proofs, one based on direct analysis of ®-tangent bundles using Proposition 6.5,
which decomposes ®T X with respect to the bundle structure of the compressed projection
?JH : NtH — Cx(Bp) of Lemma 4.12. The second proof is based on an analysis of ®
metrics taken to be in a convenient local form.

The @ structure on X X Y is well defined by the fc-equivalence class of boundary defining
functions given by local rational combinations of representative boundary defining functions
on X and Y, as discussed in Sect. 4.1. However, the following characterization of total
boundary defining functions on X X Y is conceptually satisfying.

Proposition 6.4 Let px and py be representative total boundary defining functions on X and
Y. Then, the reciprocal p-sum

1/p — PX Py
(px + pp)1/P

is a representative total boundary defining functionon X X Y forany 1 < p € R.

ox.v.p = (ox" + py")~

Proof Consider a neighborhood in X X Y of maximal depth, meeting a maximal totally
ordered chain of boundary hypersurfaces, which without loss of generality (exchanging the
role of X and Y if necessary) contains hypersurfaces of the form L (G, Y') but none of the form
L(X, H).Denote by pg and ,o}j, representative boundary defining functions for G € M (X)
and H € M (Y), respectively, and denote by g = pGd,; and h = pj, 8% the generators of
the associated monoids.

We claim that in such a neighborhood, px = [[gea,(x) PG 1s a representative total

boundary defining function on X X Y, while px/py = [1g 0c [1y 0’ ;l is basic. Indeed,
both are rational combinations, and dpx pairs to 1 with every generator g +/ or g +0 of the
associated monoid characterizing this neighborhood of X X Y, so it is locally a total boundary
defining function. Likewise, °d(px/py) pairs to 1 with every generator of the form g 4 0 and
to 0 with every generator of the form g + A, so it is locally the product of boundary defining
functions for faces of the form L(G, Y). On any such face pyx /py vanishes identically, while
at any face of the form L(G’, H) with Y < H, the boundary defining functions for L(G, Y)
are all basic since L(G, Y) < L(G’, H), thus px/py is basic.
The result now follows from the observation that

PX_ _ (p% +p)'? _ ((Lx)p n 1)1/p
PX.Y.p PY oy
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is a smooth function of px /py, hence basic, so px and px,y,, are locally equivalent for any
p. m}

Proposition 6.5 Ler G € M (X) where X is an interior minimal manifold with fibered
corners, with normal model N4 G. Then, the differential of the compressed projection ¢g :
N+G — Cx(Bg) = Cnin(Bg) of Lemma 4.12 extends by continuity from the interior to a
short exact sequence
0— ®TF; - *TNL.G — ®TCpin(Bg) — 0 (6.6)
of vector bundles over G x 0.
Firoof We verify this in standard form local coordinates assuming G = Gy, in which case
¢y takes the form
V15 X015 Y20 X2 e ey Yo Xkr o v s Vs Xy 2) F> (V15 X1y v ooy Vi 1) 1= Xp - -+ X
By direct computation, the basis (6.5) transforms as follows:
X1+ XpX10x, > X1+ Xg—12X10x,,
XjoXpOy, > Xjo e Xp120y,, 1<k
Xi Xn(XiOx; — Xj—10x;_y) F> X+ Xg—1(x; 0y — Xi—10x,,), <Kk,
Xpe - Xn (X Oy, — Xk—10x, ;) H> 1(10r — Xg—10x,_,),
Xk+1 - 'xn(xk+laxk+| - xkaxk) — 0,
Xjooxpdy, >0, j>k+1,

Xjooxp(Xj0y; — Xj—10x;, ) >0, j > k+2,

d; — 0.
The first four lines of the above constitute a basis for ®7T Cpin(By), with coordinates
(1, X1, -+, Xk—1, Yk, t), while the rest, spanning the kernel, constitute a basis for T F,
with coordinates (Vi1 ---» Yn> Xn, 2)- O

Theorem 6.6 If X and Y are interior minimal fibered corners, then the lifted projection maps
wx : XXY = Xandny : X X Y — Y induce an isomorphism

(X% Y)=ATX @ ny®TY.

In particular, if gx and gy are ®-metrics on X and Y, then wy gx © my gy is a O-metric on
XXY.

Proof The isomorphism is unique if it exists, since it extends the canonical isomorphism
T(X° x Y°) = n5TX° @ nyTY® over the interior. To show existence, we proceed by
induction on depth of X X Y, starting with the isomorphism 7(X x Y) = TX & TY in depth
0.

In general, a point of maximal depth in X X Y lies in an intersection of boundary hyper-
surfaces which must include a minimal hypersurface, without loss of generality of the form
L(G,Y), where G is a minimal boundary hypersurface of X; in particular Bg has depth 0.
The projection X X Y — X induces via Lemma 4.12 a diagram

N4L(G,Y) — N+G
1 1
C(Bg) — C(Bg)
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where C = Cpjn, Which we can arrange to be the identity along the bottom row since
we may take 7y 0>G = P>L(G,y), and the restriction to the fibers over the cone end of
which is the projection Fg X Y — Fg. By induction the projections induce an isomorphism
PT(FgXY) = ®TF; ® ®TY (since Fg X Y has strictly lower depth), and in light of
Proposition 6.5 we obtain a diagram of short exact sequences

0 — ®T(FgXY) —— ®TN,.L(G,Y) — ®TC(Bg) — 0

I |

0 — *TF;®®TY — ®TN,G®®TY — ®TC(Bg) — 0

in which the left and right maps are isomorphisms, inducing an isomorphism in the middle,
leading to the desired isomorphism upon identifying the normal models Ny L(G, Y) and
N4 G with neighborhoods in X X Y and X, respectively. O

Alternate proof of Theorem 6.6 For the second proof, we use the characterization of ®TX as
the unique vector bundle (up to isomorphism) which extends 7 X ° and to which any ® metric
gx on X° extends to be non-degenerate and non-singular. We take advantage of the freedom
to choose gx to be in a particularly convenient form.

When X or Y is of depth 0, the result is trivial, and proceeding by induction on the depth
of X X Y, we may assume that X and Y are of positive depth. Letting G and H be minimal
boundary hypersurfaces of X and Y, it suffices by induction to prove the result near the lift
of G x H. Working locally, we may assume ¢ and ¢y are trivial, and choose the defining
® metrics gx and gy to have the simple form

dp)z( 8Bc : ;
8x = —4 + —5 + kg, intheregion px < psg,
Px Px (6.7)
dp? |
Py | 8By : i
8y = —3 + =5 +«ku, intheregion py < p-H,
Py Py

where gp; and gp, are smooth metrics on Bg and By, while kg and xp are ® metrics
associated with Fg and Fy with total boundary defining functions p~.¢ = [[5/. g o’ and

p>g. Since pg = pp—XG is a boundary defining function for G, the condition px < p-g

is equivalent to pg < 1. With uy = pgl and uy = p;I, this suggests using the polar

coordinates r = ‘/ui + u%,, ¢ = arctan Z—’Y( = arctan Z—)Y(, leading to the total boundary

—1/2

defining function p := px .y 2 = rl = (/o);2 + ,0;2) on X X Y, with respect to which

the Cartesian product g of gx and gy takes the form

g= dr? + 72 (d@2 + sin? 0gp; + cos? QgBH) + kG + kg

dp? 1
= 7/)4 +2 (d6? + sin? Ogp,; + cos* Ogp,, ) + kG + kn (6.8)

in the region p < (p;é + ;0;%1)71/2

onUyG,u) = (BG*Bn) x (FgX Fp)x[0, 1),. By induction, the Cartesian product kg +k g
is a ® metric associated with the manifold with fibered corners Fg X Fp with total boundary
defining function (p;é + p;H)_1/2, while d§? + sin? 0gB; + cos? 0gBp, is manifestly a
wedge metric on Bg * By = Bg X By x [0, w/2]g. It follows that (6.8) is locally a ® metric
on X X Y near L(G, H) with respect to the total boundary defining function p, and hence
by induction, is a ® metric globally on X X Y. O

@ Springer



Annals of Global Analysis and Geometry (2023) 64:9 Page510f61 9

6.2 Products of wedge structures

We now turn to the product statement for wedge structures on interior maximal manifolds,
in the form of Theorem 6.8. An initial attempt along the lines of the previous section would
begin by observing that the map ¢ : NG — Bg induces a short exact sequence

0— p_VTC(Fg) = “TNLG — “TBg — 0

which, while true, turns out not to be immediately useful since it is not obvious that the lifted
projections off of X X ¥ implement the correct rescalings necessary to identify the rescaled
bundles p_; 1y * T (C(FG) % C(Fp)) with p_¥T C(Fg) and p_ T C(Fp).

Instead, we implement a dual approach involving a somewhat unnatural map from N G to
C(Fg),assuming G = Fg X Bg is a product. Since G is a product locally, and since we need
not be concerned with uniqueness—the desired isomorphism Y 7T(X X Y) EVYTX e VTY
being the unique extension of T(X° x Y°) = n3TX° x nyTY*® as long as it exists—this
unnaturality is tolerable.

Proposition 6.7 Let G = Fg x Bg be a product-type hypersurface of an interior maximal
manifold X with fibered corners. Then, the compressed projection

N+G - Cmax(FG)a vV (7TFG (U), [)EG(U)), P<G = 1_[ PG’
G'<G

induces a short exact sequence
0— “TBg - "TNy(Fg x Bg) > “"TCnax(Fg) = 0

over the 0-section G C N4+G.

Proof We compute in standard form local coordinates supposing G = Gy, in which the map
is given by
V1 X015 e vy Voo Xk ViAo« oy Yno Xns 2) 0> (6, Ykl Xk s« oo Yno Xns Z) 8 = X1+ Xk

The basis (6.3) is transformed as follows:

L0 X0, <k —1,

X1

1 .
_ <
Xx ayj 0, J = k,
X Oy > 0,

jzk+1,

——— 0y, > ———— 0y
XX o1 Ox; EXf 1+ X1 0

L3y, > 0y, jk+1,

Xpexjo Vi EXfp1 X1

1 1
XX 0 > [Xpep 12X Be.

The right-hand sides of the first two lines, constituting the kernel of the map over Gy =
{xx = 0}, form a basis for VT By, while the right-hand side of the remaining lines form a
basis for YT Cax (Fg). O

Theorem 6.8 For X and Y interior maximal manifolds with fibered corners, the lifted pro-
Jjections induce an isomorphism

YT(XXY)Zai"TX @riVTY, (6.9)
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In particular, if gx and gy are wedge metrics on X and Y, respectively, then w gx ® mwy gy
is a wedge metricon X X Y.

Proof Such an isomorphism is unique if it exists, being the continuation of the standard
isomorphism 7 (X° x Y°) = T X° @ TY° over the interior, which also constitutes the result
when X and Y both have depth 0. Proceeding then by induction on the depth of X X Y,
it suffices to consider a point in X X Y of maximal depth, lying in a maximal boundary
hypersurface, which without loss of generality we may assume has the form L(G, Y) where
G € M;(X) is a maximal boundary hypersurface of X.

Restricting attention to a sufficiently small neighborhood, we may assume G = Fg x
Bg and L(G,Y) = (Fg) x (Bg X Y) are products, and consider via Proposition 6.7 the
compressed projection diagram

N,L(G,Y) — N,G
v v
C(Fg) — C(Fg)

where C = Cpax, and which we can assume is the identity along the bottom row since we
may take <7 (G,y) = Ty p<G by maximality. Over the cone end the diagram is fibered, given
by the projection Bg X Y — Bg on fibers. Since Bg X Y has lower depth, Proposition 6.7
and induction give a diagram

0 — "T(BgXY) —— “TNLL(G,Y) — Y"TC(Fg) — 0

l= H

00— "TBg®“TY — "TN,GOYTY — Y"TC(Fg) — O

of short exact sequences, in which the left- and right-hand vertical maps are isomorphisms,
assembling to the desired isomorphism in the middle upon identifying N1 G and Ny L(G, Y)
with suitable neighborhoods in X and X X Y. O

Alternate proof of Theorem 6.8 For the second proof, we use the characterization of Y T X as
the unique vector bundle (up to isomorphism) which extends 7 X° and to which any wedge
metric gx on X° extends to be non-degenerate and non-singular.

The result is trivial when X or Y is of depth 0, and we then proceed by induction on the
depthof XX Y.Let G and H be minimal hypersurfaces of X and Y respectively; by induction
it suffices to prove the result near the lift of G x H. In particular, B¢ and By are closed
manifolds of depth 0, and, by localizing as necessary, we may assume that ¢ and ¢y are
trivial, so G = Bg x Fg and H = By X Fy.

In order to prove the isomorphism (6.9) we may freely choose the defining wedge metrics
gx and gy. Hence on neighborhoods Bg x Fg x [0, 1) and By x Fg x [0, 1) we may assume
that gy and gy have the form

gx =dpk + gp; + pik and gy =dpk +gp, + phKH (6.10)

where kg and «y are wedge metrics on Fg and Fy, respectively, and where gp, and
8By are smooth metrics on Bg and By, respectively. Using the polar coordinates r =

,/,0%; + plzq, 6 = arctan Z—f], the Cartesian product g = wygx + 7y gy takes the form

g= dr? + 8Bg + 8By + 2 (d@2 + sin? Okg + cos? OKH) .
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Clearly, this is a wedge metric on the neighborhood
L(G, H) x [0,1) = Bg x By x (Fg % Fg) x [0, 1)

provided we know that the geometric join d62 + sin? Ok + cos? Ok g lifts to a wedge metric
on Fg * Fy. However, by our inductive assumption on the depth, g is known to be a wedge
metric away from r = 0, which in particular forces this geometric join to be a wedge metric
on Fg *F H- O

7 Equivalence of minimal and maximal joins

As noted previously, the ordered products Xmax X Ymax and Xmin X Ymin are generally not
diffeomorphic. By contrast, in this section we prove a rather remarkable diffeomorphism
between the minimal and maximal joins X %max Y and X %min Y. Note that since X %max ¥
is interior minimal, while X %, Y is interior maximal, we do not expect (nor do we obtain)
a natural fibered corners isomorphism from one to the other; however it happens that the
diffeomorphism does intertwine all the boundary fibrations (just not the interior fibration);
in particular it follows that these two extremal versions of the join product have the same
underlying stratified space, namely the topological join of the two associated stratified spaces.

Theorem 7.1 Let X and Y be manifolds with fibered corners with total boundary defining
functions px = [[Gepm, x) PG and py = [ e, vy PH- Then, the b-map
X xRy) x (Y xRy — (X xRy) x (Y xRy),
(.0, (v.9) = ((x, spy (1)), (v, 1px(x))) (7.1)

lifts to a b-map (not a fibered corners morphism)
Cmax (X) X Cmax(Y) = Crmin(X) X Crin(Y)
the restriction of which to the principal boundary hypersurface is a diffeomorphism
X Fmax Y =X Fin ¥ (7.2)

In addition, (7.2) is fibered over boundary hypersurfaces, and constitutes a fibered corners
isomorphism X %max ¥ = (X Fmin ¥)min-

In particular, it follows from Corollary 5.2 that the stratified space associated with X ¥pmin Y
is also the topological join XY of the stratified spaces associated with X and Y.

Remark Note that the fibered corners structure on Cpin (X) or Cpax (X) does not make use of
the interior fibration on X itself. Viewing the joins as blow-ups of X x Y x [0, 1], the isomor-
phism (7.2) identifies boundary hypersurfaces in a manner which is somewhat surprising,
namely:

e the lift of X x Y x {0} is exchanged with the lift of X x ¥ x {1},

e theliftof G x H x [0, 1] for G € M (X) and H € M (Y) is sent to itself; however,
e the lift of G x Y x {0} is exchanged with the lift of G x Y x [0, 1], and

e the lift of X x H x {1} is exchanged with the lift of X x H x [0, 1].

Proof Enumerate the hypersurfacesof X and Y by Gy, ..., G, and Hy, ..., H,,respectively,
and suppose that they are ordered in the sense that G; < G implies i < j and similarly for
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H;. On Crax/min(X) (and its product with Cpax/min(Y)) denote by g; the monoid generator
associated with the boundary hypersurface G; x R and by & the generator associated with the
boundary hypersurface X x 0. Likewise, on Crax/min(Y) (and its product with Cpax/min (X))
denote by ; the monoid generator associated with the boundary hypersurface H; x R and by
n the generator associated with the boundary hypersurface ¥ x 0. On the unresolved product
Cax(X) X Cmax(Y), the map (7.1) is associated with monoid homomorphisms generated
by

E—>mn, n—>§& g g+n hj—E&+h;. (7.3)

We proceed to show that the map lifts to the ordered products. The ordered product of the
domain, Crax(X) X Cmax(Y) is characterized as a blow-up via Theorem 2.1 by monoids
generated by maximal ordered chains of sums a + b where

aci{é <g<--<gm<0},
be{n<hy <---<h, <0}.

Such a chain must begin with £ + 1, and may have terms of the form g; +n or & + & ; but not
both, and also of the form g; + 0 or 0 + /4 ; but not both. Though it is not really a generator, it
is useful to imagine 0 + O at the end of the chain. On the other hand, the ordered product of
the range, Cpin (X) X Cnin(Y) is characterized by monoids generated by maximal ordered
chains of sums a + b where

ae{f0<gr < - <gm<E&}
bel0<h <---<hy, <n}.

Such an ordered chain must end with £ + 1, and may have terms of the form g; +nor& +h;
but not both, and also of the form g; + 0 or 0 + /4 but not both. Again, though it is not a
generator, it is useful to imagine 0 4 0 at the beginning of the chain.

To each maximal ordered chain of the source Cpax (X)X Cmax (Y), we associate a maximal
ordered chain of the target Cpin (X) X Cmin(Y) by exchanging & with 0 and n with O in the
list of generators (in particular & 4 7 is exchanged with 0 + O at the start or end), and we
claim that the monoid homomorphism generated by (7.3) induces a homomorphism from the
monoid generated by this source chain into (but not onto) the monoid generated by the target
chain. Indeed, the generators map as

E+n—>&+n githjr—gi+h;
E+0—~> 047 0O+n—>£&+0
g +0—gi+n O+hj—&+hj

g+n—E@+0+E+n E+hi— O+h)+E+n)

It follows from Theorem 2.1 that (7.1) lifts to a b-map Cpax (X) X Crax(Y) = Cpin(X) X
Cmin(Y). Note that the monoid homomorphism is not an isomorphism (it is injective but not
surjective) owing to the last line; in particular the lifted map is not b-normal.

To understand what the map looks like when restricted to X ¥max ¥ C Cmax (X)X Cmax (Y),
recall that the b-normal monoids of a boundary hypersurface are the quotient of those from
the ambient space by the generator of the said hypersurface, which is this case is & + 5.
Thus, the monoids of X %« Y are generated by ordered chains as described above with the
omission of & + 1 at the start, while the monoids of X iy Y are generated by ordered chains
as for Cpyin (X) X Cpin(Y) with the omission of & + n at the end. Moreover, the induced map
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on the quotient monoids is generated as follows:

[gi +nl+>[(g +n)+&]1=1[g +0l
E+hjl>In+E+hp]l=10+h;]

[0+ 7] [§ + 01,

[£ + 0]~ [0+ 7] (7.4)

Thus, each monoid of X %max Y is mapped isomorphically to a related monoid of X ¥pin ¥
obtained by exchanging & with 0 and  with 0. In particular it follows that X xmax Y — X*minY
is simple, b-normal and ordered if the domain is made interior minimal (or the target maximal).

To see that it is also fibered (and to check that the diffeomorphism on the interior extends up
to the boundary faces, which does not follow automatically from the above), we resort to using
coordinates. Before recording the general result, it is illustrative to consider some explicit
examples setting n = m = 2 for simplicity. Beginning with standard form coordinates
(t, y1, %1, ¥2, X2, ¥3) on Cax (X) and (s, y{, X7, ¥5, X5, ¥3) on Crax (Y) taken so that the x;
and x/ agree with the boundary defining functions used to construct the map, standard form
coordinates on Cpax (X) X Cmax(Y) associated with the chain

E+n<é+hi<gith<gi+hr<g+h <g+0<(0+0)

(with notation as above) are given by

B ES Y/‘71)‘2 /o IX1X)
<S yl, ,7y17 7 7y273x/»y27 22 7y3»sx]xéay> (75)

(Recall that the exponents of the rational boundary defining functions of the blow-up
are the coefficients of the basis vectors which are dual to the basis defined by the chain
above.) In a similar manner, with coordinates (y1, X1, ¥2, X2, ¥3, X3, ¥4, T) on Cpjn(X) and
(1> X1» Y5> X5, Y3, X5, ¥y, 0) on Ciyin (¥), standard form coordinates on Ciyin (X) X Cpyin (Y)
associated with the chain

O+0) <0+ <git+thi<gi+h<got+h <gpp+n<é+n

are given by

, xxzrr X],Qf , xzrr
<y1, T Y o V2 o V2 s T30 ) (7.6)

The maximal join is given by s = 0 in (7.5) and the minimal join is given by o = 0 in (7.6),
and the map (7.1), determined in coordinates by setting 7 = sxixé and o0 = tx1xy, perfectly
identifies s = 0 in (7.5) with o = 0in (7.6), in particular identifying the boundary fibrations
which are given by projections since the coordinates are in standard form.

For another example, standard form coordinates on Cpyax (X) X Crax (Y) associated with
the chain

E+n<éE+h <&E+h<£E+0<g1+0<g+0<(0+0)
are given by
<S Y1 X1 Y20 X1 Vi gxrx/ s V1> X1, Y2, X2, y3> (7.7
whereas coordinates on Cpjn (X) X Chin (Y) associated with the chain

O+0) <04+h <0+hy<0+n<gi+n<g+n<&+n
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are given by

TX]1X2
o

(yi,xi,yé,xé,yé, 7y1,x1,y2,X2,Y3,0> (7.8)
and again {s = 0} in (7.7) is identified with {o = 0} in (7.8) by T = sx{x} and 0 = tx|x2.

In the general setting, standard form coordinates on Cpax (X) X Cmax (Y) associated with
a given maximal ordered ‘source chain’ have the form

(00, 81,01, 825 -+, Cmtns> Omans Emtn+1) (7.9)
where (09, ..., 0mn+n) are rational boundary defining coordinates made up from the
(s, x1,...,xy) and (z, xi, R x,’l) with exponents given by the coefficients of the basis

which is dual to the source chain (with {op = 0} defining principal boundary hypersurface
X *max Y), and ¢; stands for those interior coordinates (y; or yj. for some j) for the base of
the boundary fibration on {o; = 0} which belong to the fiber of the boundary fibration on
{o;_1 = 0}. Likewise, standard form coordinates on Cp;in(X) X Cmin(Y) associated with the
ordered chain given by exchanging £ <> 0 and n <> 0O in the source chain have a similar
form

/ / / /
({l’ 01,82,05, ..., Cmtn,s Omin> Cmtn+1, Um+n+1) (7.10)

where (01’ e, O’l;l n +1) are rational boundary defining coordinates made up from (x, ...,
Xm, o) and (x], ..., x}, T), with {Gr:1+n+l = 0} defining the principal hypersurface X %in Y,
and with the same ordered sequence of interior coordinates ¢;. The form of the boundary
defining coordinates is entirely algebraic, and since (7.4) is an isomorphism, it follows that
T =sX| - Xy and 0 = £x] - - - x;, lifts to an identification 6; = o/ for 1 <i < m + n. The
interior coordinates ¢; are identical between the source and target, and it follows that the
induced map from {oo = 0} in (7.9) to {o,, ., ; = 0} in (7.10) is a diffeomorphism which
intertwines the boundary fibrations. O

Acknowledgements CK was supported by NSF grant DMS-1811995, and FR was supported by NSERC and
a Canada Research chair. The authors are grateful to Richard Melrose and Pierre Albin for helpful discussions
during the preparation of this material.

Appendix A: Tube systems and fibrations

When working with manifolds with corners, it is often convenient to make use of tubular
neighborhoods of boundary hypersurfaces.

Definition A.1 Let X be a manifold with corners. A fube for G € M/ (X) is an open neigh-
borhood U of G with one of the following data, which are equivalent up to possibly replacing
Ug by a smaller neighborhood:

(a) AmapUsg — G x [0, co) which is a diffeomorphism onto its image and which restricts
to the identity 1 : G C Ug — G x {0}.

(b) A retraction rg : Us — G and a non-degenerate local boundary defining function
oG U — [0, 00).

(c) A vector field £ on Ug which is inward pointing at G.

The equivalence of (a) and (b) is given by equating the diffeomorphism with the product
ré X pg : Ug — G x [0, 00), and the equivalence of (a) and (c) follows from the flow-out
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of G by &g in one direction (shrinking U if necessary) and the pullback of 9; on [0, co) in
the other direction.

Definition A.2 Let X be a manifold with fibered corners. A tube system on X consists of a
tube (U, ) for each G € M (X) as well as tubes (U ¢, E6.¢) for dg Bgr C Bgr for
each G < G’ such that

(a) Ug NUg = B if G NG’ = ¥; otherwise [£G, Eg/] = 0 on Ug N UG,

(b) if G < G, then &g is tangent to the fibers of ¢ at G N U,

(©) if G < G, then ¢p¢'(Us N G') C Ug, ¢ and &glugng' is P -related to £g ¢/ on
Uc,c' C B, and

(d) {(Z/IG,Gr, ¢6.0): G < G’} forms a tube system on Bg.

Note that the retractions and boundary defining functions for a tube system on X corre-
spond to the tubes of the associated stratified space X as discussed in Sect. 5.1. The existence
of tube systems is proved in [5, Prop. 3.7] and [11, Lem. 1.4], on which the proof of Propo-
sition A.4 is based. In it we establish the existence of tube systems relative to a given interior
fibration ¢y : X — By, though since we will also characterize interior fibrations in the pro-
cess, proving an Ehresmann lemma for fibered corners, we make the following (temporary)
definition:

Definition A.3 Let X be a manifold with fibered corners. (The fibration ¢y need not be
defined.) An interior fibration is a surjective submersion f : X — Y onto an interior
maximal manifold with fibered corners Y = Yyax which is ordered and fibered, and which
has the property that whenever f:(G) = H € M;(Y), the bottom row of the commutative
diagram

G%H

¢Gl l‘ﬁH

Bg — By
Sfu

IR

is a diffeomorphism identifying B = By.

Proposition A4 Let X be a manifold with fibered corners with representative boundary
defining functions {pg} for the given fc-equivalence classes and f : X — Y an interior
fibration in the sense of Definition A.3. Then, there exists a tube system on X with the
following properties:

(a) &g is tangent to the fibers of f for every G € M1(X) such that f:(G) =Y € Mo(Y).

(b) &G (pg) = 1 at all boundary hypersurfaces of X for each G € M (X). In particular, the
boundary defining functions determined by the tubes Ug = G X [0, ) are fc-equivalent
to the {pg}.

Remark Observe that X — % and 1 : X — X are always interior fibrations according to
Definition A.3 and neither imposes any additional conditions on a tube system. Thus, the
result with either of these interior fibrations furnishes the existence of tube systems in general.

Proof The proof is by induction on the depth of X; if X has depth O then the statement
is vacuous. Thus, assume the result holds for all spaces of depth strictly less than that of
X; in particular each Bg is equipped with a tube system satisfying properties (a) and (b)
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with respect to representative boundary defining functions on B¢ and the interior fibration

Bg — Y incase f3(G) =Y or Bg S By in case f:(G) =H € M (Y).

We proceed to construct £ for each G € M (X) by another induction on M/ (X)
in reverse order. For G maximal, there are two cases to consider: If f;(G) = Y, then
NG C kerdf and we may choose £ near G to be transversal to G and tangent to the fibers
of f. The condition that £5(pg) = 1 at G is consistent with tangency to the fibers of f
since pg and f are transversal. Note that for each G’ < G, either f4(G') = Y, in which
case G’ — Y factors as the composition of ¢g' : G’ — Bg with fg' : Bg — Y, and
taking &g tangent to the fibers of ¢ on G’ is consistent with £ being tangent to the fibers
of f; otherwise f4(G') = H € M (Y) and in this case ¢g' : G’ — B factors as the
composition of f : G’ - H with ¢y : H — By = B¢, so taking &g tangent to the fibers
of f makes it automatically tangent to the fibers of ¢ at G’. Either case is consistent with
the condition that £ (o) = 1 over G’ since pg is transverse to ¢ for G’ < G as well
as to f as noted above. Note that the flow of &g just constructed preserves the distribution
ker df by integrability of the latter. If on the other hand f3;(G) = H € M;(Y), then we may
simply take &g to be transversal to G, tangent to the fibers of ¢ for each G’ < G, as well as
f-related to some vector normal field to H; this again ensures that the flow of &g preserves
ker f by the identity fi([£G, n]) = [ f«&c, f«n] = O for n tangent to the fibers of f. Again
the condition that £ (pg) = 1 at every G’ € M (X) can be imposed since pg is transverse
to ¢’ for G’ < G.

Proceeding now by induction, suppose that £/ has been chosen for all G’ > G to satisfy
the conditions of Definition A.2 as well as conditions (a) and (b). We first define &G |’ for
each G’ > G to be a lift by ¢ of the normal vector field &5 ¢ for 3G Bgr C Bg; such a
lift is automatically tangent to the fibers of f in case f;(G) = Y since f : G’ — Y factors
through ¢ in this case and &g g’ is already tangent to the fibers of Bg: — Y. Likewise,
since pg | is the pullback of a boundary defining function pg ¢’ for ¢ Bg: C Bgr and we
may assume that £ ¢’ (0G.c’) = 1, the condition that £ (o) = 1 is satisfied here. Note that
such lifts may be chosen consistently over G’ N G” by Definition A.2.(c) applied to £; ¢ and
£G.c. We then extend &g over the tubular neighborhoods U of each G’ > G by flowing out
along £¢; by Definition A.2.(a) these flow-outs are consistent on Ug N Ugr. Since the &g
preserve ker f, the extensions of £ remain tangent to the fibers of f if applicable. Finally,
away from the neighborhoods U’ for G’ > G we proceed as in the base case, taking &g to
be normal to G, tangent to the fibers of f if f:(G) = Y (and f-related to a normal vector
field for f4(G) € M;(Y) otherwise), tangent to the fibers of ¢ for G’ < G, and such that
£c(pg) = 1 over G’ < G; then we use a partition of unity to assemble &g globally to satisfy
Definition A.2.(a)—(c) and with respect to the vector fields already constructed, as well as
conditions (a) and (b). This completes the inner induction on G € M (X), at the end of
which X is equipped with a tube system having the required properties, completing the outer
induction. O

Proposition A.5 Let f : X — Y be an interior fibration of manifolds with fibered corners

in the sense of Definition A.3. Then, there exists a connection on f : X — Y with respect to

which the lift 1] of any vector field n € V(Y) satisfies the following properties with respect to

each G € f;'(Y) C My (X):

(a) M\ is pg-related to a lift G of n to Bg by a connection on fg : Bg — Y satisfying the
same properties, and

(b) 1(pG) = 0onasufficiently small neighborhood of G for some boundary defining function
pG (coming from a tube system) in the fc-equivalence class on X.
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Proof We fix a tube system on X satisfying the conditions of Proposition A.4 and use the
associated boundary defining functions. The proof is by induction on the depth of the fiber of
f : X — Y;if this fiber has depth 0 then the two conditions are vacuous and any connection
suffices. Thus, we may assume by induction that such a connection exists for every interior
fibration with fiber depth less than that of f; in particular we may assume each fg : B — Y
is equipped with a suitable connection for each G € f[l (Y), satisfying (b) with respect to
the boundary defining functions of the induced tube system on Bg.

Consider now a maximal boundary hypersurface G such that f;(G) = Y and consider
the tubular neighborhood U = G x [0, ¢). The fibration ¢g o pr; : G x [0,¢) — Bg
is transverse to pg = pr, : G x [0,¢) — [0, €), so we may construct a connection on
¢ o pr; whose horizontal distribution annihilates pg in a possibly smaller neighborhood of
G. Composing this connection with the connectionon f; : Bg — Y gives a connection with
the required properties near G, since the lift G of n € V(Y) to B¢ annihilates the boundary
defining function pg ¢ for g Bg foreach G’ < G € ff] (Y), and by properties of the tube
system pg' on U NUg is alift of pgr ¢ on Ug N I/{G.—

Having defined the connection on a neighborhood of G, we now consider the double, X G»
of X across G this consists of two copies of X glued along G with opposite orientations, and
f : X — Y extends to a smooth map f: X G — Y (provided the gluing is performed with
respect to a choice of normal direction along ker df|g) which is again an interior fibration
according to Definition A.3. The complement of i/ C X has a neighborhood which may be
identified with an open set in X, and since f : Xg — Y has strictly lower depth fibers, the
connection on Ug may be combined with a suitable connection on this neighborhood by the
inductive assumption. O

Corollary A.6 An interior fibration in the sense of Definition A.3 is a locally trivial fiber
bundle of manifolds with fibered corners. More precisely, for every p € Y there exists a
neighborhood © > p and diffeomorphism f~1(©O) = f~(p) x O such that for each
G e fﬁ_1 (Y) N M (X) the diagrams

o)nG = (fFipnG) xo

F7HO) = iy x 0 4l ) Jpox1
R R e N PR
‘ o f e
‘ o

commute and the diffeomorphism © x f='(p) = f~1(O) can be arranged to pull back
0G to be independent of © in a sufficiently small neighborhood of f~'(p) N G for some
representative boundary defining function pg.

In particular, if f : X — Y is an interior fibration, then X can be equipped with the
fibered corners structure in which ¢x = f.

Proof Fix a neighborhood O’ of an arbitrary point p € Y with coordinates (uy, ..., u,) €
R’jr x R"* and associated coordinate vector fields Aups e -y Ou,. Let 1, ..., 7, be lifts of
the d,, on f~1(O’) with respect to a connection afforded by Proposition A.5. (These need
not commute.) Then, the ordered flow

((tls co ), f]) g eXP(tl ’771) T exp(tn'ﬁn)q
induces a diffeomorphism O x f~!(p) = f~1(O®) where © C ' is a suitably small neigh-
borhood of p. By the properties of the vector fields 7; the local diffeomorphism respects the
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fibered corners structure on fibers in that it trivializes the boundary fibrations and represen-
tative boundary defining functions for G € fT;l (Y) as required. O

Corollary A.6 is used in [23, 24] to provide local trivializations for bundles of QFB
manifolds, a construction that is also useful to see that the results of [7] automatically hold
for QFB metrics.

Corollary A.7 Let X be a manifold with fibered corners with interior fibration ¢px : X — By.
Then standard form coordinates exist near any point of X.

Proof Fix a tube system on X as per Proposition A.4. The boundary defining functions
pG : U = G x [0,00) — [0, 00) associated with the tubes furnish local boundary
defining coordinates (x_,/, ..., x_1, X1, - . . , X,) satisfying the requisite conditions, and by
local triviality and the iterated condition of the boundary fibrations, interior coordinates
(Y—n’s -+ Y0, Y15 .-, Yn+1) can be chosen so that the boundary fibrations correspond to
projections. O
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