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Abstract

This paper presents a Non-Deterministic Kriging method to approximate the response of
probabilistic systems with mixed continuous and discrete input variables. The proposed method
approximates both epistemic (extrinsic) and aleatory (intrinsic) uncertainties in addition to the
mean response of a system. Kriging is a popular metamodeling method for approximating the
responses of computationally demanding systems along with prediction variances. However,
conventional Kriging fails to perform with non-deterministic datasets with replications. The
recently developed Non-Deterministic Kriging (NDK) method addresses those challenges in the
continuous input space. Currently, Kriging is often used for approximations in probabilistic
systems with mixed continuous and discrete input variables as well. Therefore, this study aims to
fill the gap in the NDK method for probabilistic systems with mixed continuous and discrete input
variables. Herein, the aleatory uncertainty is assessed using Locally Weighted Regression (LWR).
The proposed method employs a combination of continuous and discrete kernels to capture the
effects of mixed inputs. The effectiveness of the newly proposed NDK method was demonstrated

using a set of probabilistic analytical cases and engineering applications. The proposed method
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provides separable information about aleatory and epistemic uncertainties, which are beneficial in
design optimizations and sequential explorations of probabilistic systems, especially with large-

scale experiments and computer simulations with randomness.

Keywords: Non-Deterministic Kriging, Mixed variables, Continuous and Discrete variables,

Probabilistic Systems, Machine Learning

1. Introduction

Metamodels, also called surrogate models, have been widely used to replace
computationally expensive simulations (Asher et al., 2015; Mukhopadhyay et al., 2015) and
physical experiments (Kabir et al., 2017; Stuckner et al., 2021). These techniques are mostly used
when the underlying model has difficulties such as informatic complexity, computing efficiency,
and code coupling (Delage et al., 2022). Kriging (Krige, 1951; Matheron, 1962), Neural Networks
(Kohonen, 1982; Widrow and Hoff, 1960), Support Vector Machines (SVM) (Boser et al., 1992;
Vapnik, 1999), Radial Basis Function (RBF) (Broomhead and Lowe, 1988), Multivariate Adaptive
Regression Splines (MARS) (Friedman, 1991), and Polynomial Response Surface models (Wang
et al., 2001) are some of the commonly used metamodeling techniques. In addition to these types
of metamodels, sometimes different metamodels are combined, and hybrid modeling platforms are
formed to achieve effective solutions based on the requirements of the application (Yin et al., 2018;

Zhang et al., 2012).

Kriging is considered one of the most investigated surrogate models among these surrogate
modeling techniques due to its attractive interpolative and stochastic characteristics (Jiang et al.,
2018; Zhou et al., 2018). For instance, Kriging can provide the prediction uncertainty at each

unsampled point. This feature is especially useful in refining the surrogate model in sequential
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design strategies. Furthermore, Kriging requires a smaller training sample size due to strong
interpolation among sampled points (Khan, 2011; Welch et al., 1992). Kriging was initially
introduced for geostatistics (Krige, 1951; Matheron, 1962). However, it has been expanded to a
wider spectrum of engineering problems due to its interpolative and probabilistic characteristics
(Di Maio et al., 2022; Koziel and Pietrenko-Dabrowska, 2022; Su et al., 2019; Trochu et al., 2022;
X. Zhang et al., 2020). Although the performance of surrogate models varies due to different
conditions, Qian et al. (2020) show that compared to available surrogate models, Kriging models
have been able to perform with higher accuracy and robustness, especially when black box-type
functions show high non-linearity. For example, a comparison done by Kianifar and Campean
(2020) depicts that Kriging outperforms polynomials and radial basis functions with highly
nonlinear underlying functions regardless of the problem scale and size of training data samples.
Furthermore, Abbas et al. (2018) highlight that Kriging shows more robust performance in spatial
predictions compared to neural networks. In another work by Kahrizi et al., (2022) for
investigating the characteristics of porous concrete, Kriging showed the least errors in estimations
compared to the polynomial response surface method and radial basis function. Although Kriging
can outperform other metamodels, it is vital to be aware that Kriging does have several
disadvantages as well. For example, Kriging fails to perform accurately when the underlying
function shows non-stationary trends (Bae et al., 2019). Furthermore, Kriging models can be
computationally demanding with a larger number of input variables (Saves et al., 2021). Also,
compared to other available surrogate models, such as polynomial regression models, Kriging

models are not easy for users to interpret (Kianifar and Campean, 2020).

Several types of Kriging models, such as simple Kriging (Li et al., 2009), ordinary Kriging

(Kumar et al., 2023), stochastic Kriging (Ankenman et al., 2008), universal Kriging, and regression
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Kriging (Picheny et al., 2013) are currently used based on metamodeling requirements and
characteristics of Kriging models. Since geographical distance was the primary input variable in
the early stages, Kriging models were initially used only with continuous variables in geostatistics.
However, many systems in engineering problems consist of continuous and discrete design
variables. Therefore, due to the need to use Kriging over systems that consist of mixed input
variables, several studies extended the use of Kriging models to include discrete input variables as
well (Pelamatti et al., 2020; Saves et al., 2022). In these methods, different correlation kernels
were used to adapt the existing Kriging models to accommodate the presence of discrete input
variables. Hypersphere decomposition kernel (Pelamatti et al., 2019), Latent variable kernel (Tao
et al., 2021), Compound symmetry kernel (Roustant et al., 2020), and coregionalization matrix

kernel (Pelamatti et al., 2021) are a few of such discrete kernels.

As mentioned earlier, conventional Kriging provides the uncertainty in the prediction at
unsampled points, by fitting residuals from a global regression model (Loquin and Dubois, 2010).
This can be identified as the extrinsic or epistemic uncertainty that is imposed on the problem
when developing the Kriging model. It accounts for the modeling error of the Kriging model.
Epistemic uncertainty, which is likely due to the lack of knowledge or information about the
underlying physics of the problem, can be reduced by increasing the size of training samples and
updating the estimations (Choi et al., 2006). There are several adaptive sampling-based design
exploration methods that use the prediction variance or epistemic uncertainty given by Kriging.
The efficient global optimization method (Jones et al., 1998; Yi and Taflanidis, 2023), quantile-
based design and optimization (Nazeeh et al., 2023), sequential Kriging optimization (Hao et al.,
2010), value-based global optimization (Moore et al., 2014), and reliability analysis methods

(Hong et al., 2022; Kitahara et al., 2021) are a few of such methods that employ the prediction
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variance. However, prediction variance given by conventional Kriging with probabilistic and
replicated data can be misleading. Mostly, physical experiments have inherent randomness that
results in aleatory or intrinsic uncertainty within data. Furthermore, under simulation-based design
exploration methods, computational models are also developed as variable-fidelity models that
consist of computational inaccuracy or uncertainty (Bae et al., 2019). Aleatory uncertainty arises
mostly due to natural variability in the parameters of a physical system and cannot be reduced in
a similar way to epistemic uncertainty (Palar et al., 2019; Zhuang and Pan, 2012). Estimations
obtained through insufficient quantification of aleatory uncertainty can incline towards
overconfident predictions (Mortazavi et al., 2012). Therefore, the use of conventional Kriging over
non-deterministic (noisy) data samples from physical experiments, variable-fidelity models,
natural phenomena, or non-stationary underlying functions could mislead the predictions,

especially in design exploration methods.

Given the need for estimation of aleatory uncertainty within the prediction variance in
Kriging models, a Non-Deterministic Kriging (NDK) method was derived recently as a flexible
method that approximates both epistemic and aleatory uncertainties associated with the Kriging
model and the underlying probabilistic function, respectively (Clark, 2019). The proposed NDK
methodology is considered numerically more stable than other Kriging models as it captures
uncertainty bounds more efficiently. However, the NDK proposed by Clark only considered
continuous input variables. There is a lack of studies that cover the approximation of both
epistemic and aleatory uncertainties using the NDK method for systems with mixed input
variables, which is necessary as engineering systems can consist of both continuous and discrete
variables. Furthermore, in design optimization models, the use of discrete variables can replace a

number of continuous variables, thus reducing the computational time (Rosness, 1993). The
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introduction of such a discrete variable can increase the randomness of a system and its data.
Furthermore, especially with experimental designs, replications are obtained at the same design
point due to the inherent randomness in natural phenomena (Dunn, 2019). As revealed by the
review of existing work related to surrogate model-assisted optimization under uncertainty,
conventional Kriging models that are developed to work with mixed continuous and discrete input
variables fail to address the challenges arising due to non-deterministic and replicated data.
Although Stochastic Kriging for mixed input spaces (Lopez et al., 2022) aims at estimating the
randomness present in data, it requires a larger number of replications at a design point. This
process is not always possible with engineering system design explorations, especially with large-

scale physical experiments or computer simulations.

The present study was motivated by the application of Kriging on probabilistic systems in
mixed continuous and discrete input spaces, especially with systems that are expensive to evaluate.
For instance, there are time-consuming physical experiments that demand a large amount of
resources. In such instances, it is not effective to have a larger number of replications to account
for noise present within the system. Although there exists an NDK method for such probabilistic
systems, it cannot be employed in mixed input space. Therefore, this study aimed to fill the gap in
the need for an NDK method for probabilistic systems with mixed continuous and discrete input
variables. The proposed NDK can accommodate replicated data, especially with physical
experiments. Also, the proposed method does not require a large number of replications as in
existing Stochastic Kriging models. Since this NDK method quantifies both aleatory and epistemic
uncertainties, the prediction variance of the NDK model can be used for design optimization under
uncertainty for systems with non-deterministic data and non-stationary trends. Currently, the use

of conventional Kriging can yield erroneous results with such systems. Furthermore, the use of the
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proposed NDK model with mixed continuous and discrete inputs is beneficial in Kriging-
associated design explorations with time-consuming large-scale physical experiments and

computationally expensive computer simulations.

The next section of the paper provides a review of existing work of surrogate model-
assisted uncertainty quantification. Section 3 presents the proposed framework, including steps in
the NDK methodology for mixed input variables. Section 4 presents the application of the
proposed method to a set of numerical examples with continuous and discrete variables.
Additionally, this section discusses the goodness-of-fit of the estimated mean and uncertainties of
numerical cases using a set of goodness-of-fit measures. The next section presents the application
of the proposed method to two engineering systems. The last sections of the paper provide the

discussion and conclusion of the study.

2. Related work on Surrogate assisted Uncertainty Quantification (UQ)

Surrogate model-assisted optimization has been popular due to the computational burden
of optimization under uncertainty with traditional approaches. Accounting for uncertainties stands
paramount in any type of design optimization strategy that employs surrogate models, especially
with the modeling error induced by surrogate models. A significant number of past studies have
covered and developed uncertainty quantification in optimization strategies with surrogate models
in the continuous input space. However, comparatively, there are still only a few studies that focus
on the mixed continuous-discrete input variables to the best knowledge of the authors. Elaborating
on early work on surrogate-assisted mixed variable optimization under uncertainty, Sriver and
Chrissis (2004) used surrogate function approximations in a novel framework, which is a
combination of generalized pattern search and ranking and selection method, for systems with

inherent variation. Furthermore, a novel hierarchical hybrid fuzzy neural network was presented

7
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by Wang et al. (2007) to represent systems with mixed input variables. This method uses a set of
fuzzy sub-systems that aggregate discrete input variables into intermediate variables and plugs
them into neural networks for approximations along with continuous input variables. However,
surrogate models utilized in these methods do not provide insights into the uncertainty in

predictions similar to modeling uncertainty presented by Kriging models.

Recent literature shows a growing interest in mixed variables constrained optimization
approaches coupled with modified versions of Kriging. Huang et al., (2023) used Latent-variable
Gaussian process (aka Kriging) (LVGP) modeling with Bayesian optimization for optimal search.
This method matches discrete inputs into a Latent space and uses the Latent distances for Kriging.
An et al., (2022) also used Kriging similarly for multi-objective optimization, under noise.
However, their Kriging model was built only considering model uncertainty while measurement
noise was added to the objective later as an assumption. In another work, An et al., (2021) used
Kriging for reliability-based design optimization, where continuous and discrete variables were
initially decoupled using the total probability theorem. After that Kriging was used only with
continuous space, ultimately resulting in a category-wise approach based on discrete levels. In
contrast, Pelamatti et al., (2021) also worked on using Kriging for optimization in the mixed
continuous-discrete design space combinedly. This work employs several discrete kernels such as
hypersphere decomposition kernel, compound symmetry kernel, and coregionalization matrix
kernel within the Kriging model to combine with continuous kernels. Furthermore, their work is
extended to consider the heteroscedasticity of Gaussian process variance in the discrete input
variables. However, their method does not consider the randomness present within the data set.
There can be erroneous estimations in both the mean response and prediction of the model when

this method is used with probabilistic systems.
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In the most recent work, Moustapha et al. (2022) used Kriging in a multi-objective robust
optimization approach for problems with mixed variables. This method employed quantiles of the
objective functions that are determined through a Kriging model, to allow both optimality and
robustness. In a similar work for a multi-objective optimization process, An et al., (2022b) used
Kriging to predict the objective function values in a Monte Carlo Simulation. Furthermore, there
are studies that focused on potential issues with Kriging-assisted optimization as well. For
example, since a larger number of mixed continuous and discrete variables might be employed in
engineering optimization processes or practical applications, the number of hyperparameters in the
Kriging model also increases substantially. To address this issue in Kriging models, Saves et al.,
(2021) proposed a hyperparameter reduction process based on the partial least squares method.
This method employed an adaptive procedure for selecting the number of hyperparameters in a

Kriging model.

However, the performance of the conventional Kriging approach in these studies can be
affected due to specific conditions associated with underlying response function and available data
of probabilistic systems. For instance, Kriging approximations will fail to fit the underlying
response accurately when available data is non-deterministic or replicated. Furthermore, the
covariance structure of the Kriging model will be inaccurate when the underlying black-box
function has non-stationary trends. This can result in an overly dampened or amplified prediction
variance. Therefore, with a limited size of non-deterministic data or replicated data, conventional
Kriging becomes misleading in design explorations. In the continuous space, there are a few
methods for these challenges. As a solution for randomness in data, in Regression Kriging,
hyperparameter optimization is performed with an added noise parameter, thus approximating

sample data within constant noise bounds similar to regression analysis (Hengl et al., 2004;
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Picheny et al., 2013). To the best of the authors’ knowledge, this has not been extended to the
mixed continuous and discrete input space. Furthermore, Stochastic Kriging (SK) was proposed
using two uncertainty sources, epistemic and aleatory, to work with non-deterministic and
replicated data (Ankenman et al., 2008). In SK, aleatory uncertainty is estimated at each design
point using a separate ordinary Kriging model that employs replications. Lopez et al., (2022)
extended SK to work with mixed continuous and discrete input variables in an adaptive stochastic
efficient global optimization approach. However, even SK performs with the assumption that there
are enough replications at each design point. Therefore, with insufficient data, aleatory uncertainty

prediction becomes inconsistent and unreliable.

As a remedy for these challenges, Clark, (2019) proposed a Non-Deterministic Kriging
method that works in the continuous input space. Compared to conventional Kriging, this method
relaxes the interpolation requirement in the presence of randomness in data. It uses the aleatory
variance as a regularization factor in computations, thus increasing the accuracy in the prediction
of both mean and modeling uncertainties. Most importantly, the NDK model provides both
epistemic and aleatory uncertainties for use in applications such as design explorations based on
the requirements. However, this proposed method only works in the continuous input space and
cannot be used with discrete input variables. This paper improves the existing NDK method further

to work in the mixed continuous and discrete input space.

3. Non-Deterministic Kriging (NDK) with mixed input variables

This section of the paper presents the proposed NDK methodology for mixed continuous
and discrete input variables. In general, continuous variables like structural dimensions, fluid
velocity, and force are mapped to the space of real numbers within a defined interval. On the other

hand, discrete variables are identified as design characteristics such as material type, which have

10
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a finite number of choices (Musiol, 1997). Furthermore, discrete variables are categorized as
ordinal and nominal variables as well. An ordinal variable consists of multiple categories that can
be ordered while a nominal variable consists of multiple categories which cannot be orderly
arranged. For example, hurricane category which is based on wind speed can be considered an
ordinal variable while material type is a nominal variable. However, in this study, no such
difference is considered between these two types.

The proposed NDK model aims at estimating the mean response in a probabilistic system,
with mixed continuous and discrete input variables, while estimating both epistemic and aleatory
uncertainty. Fig. 1 presents the flow chart for the proposed NDK method. Starting from the
identification of input variables, three major processes in the method are (1) correlation matrix
calculation, (2) locally weighted regression process for aleatory uncertainty estimation, and (3)
epistemic variance estimation. Individual outputs from these processes are later used for the final
outputs of the NDK model, which includes the estimated mean response and prediction variance
including both epistemic and aleatory uncertainties. The detailed steps of the model are presented
in the following subsections. For clarity in symbols, bold fonts were used for vectors and matrices.

Consider f (x, z) is a probabilistic black-box function that is defined between an input v (x,
7) € V C Rutq and an output, y € YCR, where n and g represent the number of continuous and
discrete variables respectively, V is the matrix of input data locations, and Y is the vector of
responses at input data locations. According to the proposed method, developing an NDK model
for this function starts with determining the input variables and their characteristics. Consider that
x is defined as a vector containing continuous inputs (x = {xq, Xy, X3,.. Xy .....X,-}) while z is a

vector that consists of discrete inputs (z = {23, 23, 23, .., Z, .... - Zg } ). Each discrete variable z; has

11
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bk number of possible values, also known as levels, resulting in a total of H],:;’ b, combinations
of categorical inputs.

In general, a Kriging model works like weighted regression that processes a training data
set or a design of experiments (D), of Ny samples {v;,y;}, where 1 = 1, 2, ..., N;. For a given
training data point, the deterministic Kriging model is represented as follows;

y) =m@) + Z,(v) --------mm-- Eq (1)

where m(v) represents the global trend. Z,(v) is a zero mean stochastic process defined as

Cov(Zy(vy), Zy ('Uj)) =0*R(v;, Vj; 0) - Eq (2)
where o2 is the process variance, R(v;, v;; 0) is the correlation among data points, and 6 are

hyperparameters that need to be calibrated. The stochastic nature of Z, refers to the extrinsic
(epistemic) uncertainty since it is imposed on the problem to assist in developing the model. This
stochastic process accounts for the modeling error in the Kriging model. The conventional Kriging
method is more suitable for data without noise since the estimation only represents the modeling
uncertainty and does not consider the natural randomness present in the response variable of the
data set. This highlights the need for a Kriging model which accounts for both epistemic

uncertainty (due to modeling error) and aleatory uncertainty (due to natural randomness of data).

As a solution for this need, the Non-Deterministic Kriging (NDK) method includes both
epistemic and aleatory uncertainties within its predictions by adding aleatory uncertainty as a
separate stochastic process into the deterministic Kriging model given in Eq (1). Accordingly,
taking the above-described deterministic Kriging derivation as a basis, the NDK model is

represented as follows:

Vna (@) = m(®) + Z5 (@) + Zy(V) —rrreeeeeee Eq (3)
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where m(v) represents the global trend and Z;(v) and Z,(v) are the stochastic processes of
epistemic and aleatory uncertainties respectively (Clark, 2019). The mean estimation (y,4) can be

formulated using a linear predictor as;

where ¢ = c(v) € Ry_. With the use of unbiasedness condition ¢'F — f = 0, where fand F are
the assumed basis function vector at the unsampled point and regression design matrix at training

data points respectively, the prediction variance (o,2;) at an unsampled point (v) is obtained as:

024(0) = E [(yna@) = Y@))| = EI(¢"(Zs + 22) = (25 + 24))"] —nmr Eq (5)

where Z; and Z 4 are true epistemic and aleatory uncertainty vectors from training data points and
Zp and z4 are true epistemic and aleatory uncertainties at the unsampled point. In general, epistemic
and aleatory uncertainties are different and independent since their sources are different according
to the definitions. Therefore, it is assumed that the aleatory uncertainty and model uncertainty are
not correlated, thus there is no correlation between z; and z4. Based on this assumption, the above

equation for prediction variance of the NDK model can be expanded as;
0l,(v) =E[cTZyZEc) + E[cTZ,Z  c] + E[zgzE]
+E[ZAZ:£] - 2E[CTZAZA] - ZE[CTZEZE] """"""" Eq (6)

Using variance (02, 03), correlation (Rg), and covariance (V) terms this can be further

simplified as;

02, = 02(1+ c"Rgc — 2¢Trg) + (c"Vyc — 2¢Tv, + GF) - m- Eq (7)
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where 62 and ¢ are epistemic and aleatory variances, R, is the correlation matrix among training
data samples, 1 represents the correlation vector between the unsampled point and the already

sampled training data points. V4 and v, are the aleatory covariance matrix and vector respectively.

By minimizing the prediction variance of the estimate, the mean estimation (y,4) is solved as,

Yna@) = fT()Bna + VaaVni ¥ — FBra) Eq (8)
where B4 = [FTV,AF]"*FTV, }F,V,y = 62Rg +V,,and v,y = 02Ty + V,.

In practice, aleatory uncertainty is considered independent across the design space. It is
assumed that there is no correlation between that affect each other’s aleatory uncertainty. Due to
this independence and the definition of covariance matrix within the zero-mean stochastic process
of Kriging according to Eq. 2, v4 can be neglected and V4 becomes a diagonal matrix. Even if the
aleatory uncertainty is correlated among design points the Locally Weighted Regression process
presented in Section 3.2 captures that effect approximately. The derivation of V4 is discussed in
the next section of the paper. The prediction variance of the NDK model, representing a total

measurement of epistemic and aleatory uncertainty, can be formulated as,

Tag(¥) = 0 + aF (V) + u®) [FT Vg ' F17'U®) = Vg (W) Vg™ Vg (V) =--om-o—- Eq (9)
where u(v) = FTV,; v, (v) — f(v).

3.1 Determining the correlation matrix R

After identifying the characteristics of the input variables, the correlation matrix Ry should
be determined. R is a square matrix with the size Ng X N and contains correlation values between

each sample of the training data set. It can be calculated as;
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REi‘j = k(vilvj) """""""" Eq (10)

wherei,j=1,2, ..., Ny and k(-) is a user-defined kernel function, which is symmetric and positive
semi-definite over the input space (Lanckriet et al., 2004; Mohammadi, 2016). In this proposed
method for NDK, the correlation function was adapted to capture the influence of discrete variables
in addition to continuous variables. Two kernel operators were used in this study to meet the
requirements for defining discrete kernels and combining them with continuous kernels. These
selected operators ensure that the resulting correlation functions are also symmetric and positive
semi-definite over the respective input spaces. The following kernel operations were used in this

proposed NDK methodology.

1. Product - Consider two continuous or discrete input subspaces, F; and F,. If k; and k, are
two kernels defined over input subspaces F; and F,, and ‘B’ is a real number, k = k; X k,
and k' = Pk, become valid kernels over the input spaces F; X F, and F; respectively
(John Shawe-Taylor and Nello Cristianini, 2004).

2. Mapping — If k is a kernel in the space F;, F;' is a set and g(.) is a mapping function from
F," to Fi, k'(x,x") = k(g(x),g(x")) becomes a valid kernel over F," (Steinwart and

Christmann, 2008).

Consider an input v (X, z), which includes both continuous and discrete variables. In combining
discrete and continuous kernels for the input v (x, z), Li and Racine (2003) proposed to use the
product of kernels. Furthermore, the Schur product theorem proves that the Hadamard product
between two positive semi-definite matrices results in a positive semi-definite matrix. Therefore,
to define a valid kernel function for the NDK model by kernel combination, the product operation

of kernels was used in this study. The other kernel operation, mapping was used later for defining
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a discrete kernel. Accordingly, two different kernels were introduced for continuous and discrete

variables separately and combined as follows.
k(vi'vj) = kx(xi;xj) X k,(zi,2; ) -~ Eq (11)

Here k, and k, are kernels for continuous and discrete variables. As shown in Fig. 1, the ‘Selection

of Correlation Kernels’ stands as an important task within the proposed methodology.
3.1.1 Continuous kernels
For continuous variables, the kernel function can be formulated as:

kx(xinj) = ?zlk(gl'dl) """""""" Eq (12)

where 7 is the number of continuous variables, d; = |x;; — x| is the difference between the it
and j™ data points in the I dimension, and 8, is a hyperparameter that determines the rate at which
correlation decreases with the difference between two points in the [ dimension (Clark, 2019).

Table 1 presents a set of commonly used correlation functions for continuous variables.

3.1.2 Discrete kernel functions

In a similar format, the kernel functions for discrete variables were derived in this study as

follows:
_ 114
kZ(Zi'Zj) - Hm=1k(9lrdm) """""""" Eq (13)

where d,,, represents the difference between i™" and j data points in the m™ dimension. In order
to represent the discrete difference between data points, the study employed several kernel types

as described below.

Weighted Gower distance kernel

16



354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

Hutter et al., (2011) proposed a new kernel function, that engages weighted Hamming
distances, to capture the influence of categorical variables in Gaussian process models. Lately,
Halstrup, (2016) further improved this concept by using Gower distance for both continuous and
discrete variables. The Gower distance between two data points can be represented as follows

(Gower, 1971);

i_,J
k=nl¥k =X} k= i
Yk=1 Axy Zk=‘116(z,lc,zl)

n+q n+q

dgow (Vi v)) = Eq (14)

where Axy, is the range in the k-th dimension and a(z,i{, z,i) is defined as follows;

a(z,ic,z,{) = {0 ifzi=2 Eq (15)
1 otherwise

Halstrup, (2016) proposed the use of Gower distance as the difference between two data
points, which corresponds to d; and d,,, in Egs. 12 and 13 respectively. Since Gower distance
calculates the difference between data points by considering both continuous and discrete input

variables together, Eqs. 12 and 13 were combined as;

k(v v;) = T2 k(61 dfow) Eq (16)

where 6, is the hyperparameter corresponding to the [ dimension and dé ow represents the Gower

distance in the I dimension between i and /" data points in the system. For example, the Gower
distance is used to define the mixed variable kernel function in the form of p™ exponential

correlation as;

1= !
k(v v;) = exp{— 2,210, [dhow (i, v))]P } --mmmmmemeeee Eq (17)
where p! represents p™ exponential in the [ dimension.
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Latent variable kernel

Recently in metamodels, discrete variables were mapped into non-observed Latent
variables and considered continuous variables (Y. Zhang et al., 2020). It was proposed to map each
level of discrete variables into a vector of continuous variables in an [-dimensional hyperspace.
For instance, for the m™ level of a categorical input, there exists in particular a Latent variable, t =
[t1,....,tn] € T c Ry x---xRn where T represents the Latent space and /4 is the number of dimensions
in the Latent space (Cuesta Ramirez et al., 2022). In the present study, the proposed Latent variable

kernel maps each level of discrete variables into a 2-dimensional space as follows;
(p(z); F,— R?

p(z) = (ﬂm,lf 19m,2)

where 9,, 1 and 9,,, are hyperparameters that represent the coordinates in the Latent variable
space corresponding to discrete variable level m. The fact that discrete levels are already
represented by hyperparameters eliminates the need for using separate hyperparameters for the
distance between discrete inputs. According to the kernel operation of mapping, the Latent variable

kernel function can be formulated as;

k(z;,2;) = k' (9(2;), 9(2;)) ------r-mmo- Eq (18)

In this proposed methodology, the distance between coordinates in the Latent space was
used as the measure of the difference between discrete inputs. For instance, the Gaussian kernel

function for the g-th discrete variable can be presented as;

ky(2:2)) = exp(=0,||@(z) — 9(2;)||") ~----nrmemmme Eq (19)
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where 6, is the hyperparameter in the g™ dimension. However, 64 can be removed since Latent
variables already depend on hyperparameter values. According to suggestions made by Zhang et
al. (2020), one of the Latent variable coordinates was set to the origin of the 2-dimensional plane
(0,0). Another coordinate was set on one of the axes (0, 9,,;) to reduce the number of

hyperparameters used in the kernel function.
3.2 Aleatory uncertainty estimation through Locally Weighted Regression (LWR)

In this proposed NDK for mixed input variables, aleatory uncertainty quantification stands
as the third major process as shown in Fig. 1. Accordingly, this process depends on three main
activities namely, the selection of kernels for the weight matrix in LWR, determining the
smoothening parameter, and covariance matrix calculation. In this process, it was assumed that
aleatory uncertainty in the data set varies with the location of data in the design space. Therefore,
to determine the aleatory uncertainty, locally weighted regression is used (Sam and Ker, 2006).

The general regression model for locally weighted regression is given as;

yi(w) = M) + (V) - Eq (20)

where [ denotes the samples located within the /™ local neighborhood, 77, is the local estimator,
and e;(v) is uncorrelated random errors or deviations from measurements with zero mean and
finite variance. The standard Nadaraya—Watson estimator was used to determine the local

estimator as;

N 1
25 Yawi(wvy)

m;(v) =
{(v) 21 W)

Eq (21)

where Y is a vector of the mean responses at the data points, and W' is a diagonal matrix of weights

or degrees of membership to the local neighborhood (Aljuhani and Turk, 2014). The data points
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were weighted via kernel functions within the size of the neighborhood (kl). Gaussian, quadratic,
and sigmoid functions are a few such kernel functions used for the calculation of weights. In this
study, kernel functions were combined as described in Section 3.1 to capture the influence of
discrete variables on LWR. The weight matrix is formulated as a diagonal matrix as shown in Eq.

22. Eq. 23 presents the combined kernel function for individual weights.

0
--------------- Eq (22
l O O ... 0 J q( )
0 - 0 WIle Ns
Wil,i(vb V) = wy(xy, x;) X W,(2, 2; ) -------------- Eq (23)

The selection of kernels for the weight matrix in LWR is the next activity of the proposed
methodology. In this study, different kernel combinations were used to represent Eq 23. Table 2

presents a set of kernel combinations used for the weight calculations.

The size of the neighborhood (kl), also called the smoothening parameter was determined
through log-likelihood maximization presented in Section 3.3. After that, the aleatory uncertainty

at v; was estimated as a locally weighted mean squared error using Eq,24,

Ns 2..,1
X1 ef Wii(wpvy)

N
21 s Wi%i(vl!vi)

0'12 (‘Ul) = Eq (24)

where e; = Y; — m;(x) and L = 1, 2, 3, ...., N,. This LWR variance estimation is performed at
each sample point and the estimated variance is used to form the diagonal matrix V4 as shown in

Eq 25.
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0 gZ(v,) 0 )
V,= 2(w2) O v Eq (25
0 - 0 o%(vys)

Accordingly, using the locally weighted regression, the aleatory uncertainty estimation in the

design space can be formulated as;

N
21 Wii(wwy) XV 4
N
IO Wiivwy)

oi(v) = Eq (26)

3.3 Epistemic Uncertainty Estimation

Epistemic uncertainty quantification comes after the initial formulation of the correlation
and aleatory covariance matrices in the proposed framework as shown in Fig. 1. The optimum
values for hyperparameters (), neighborhood size of LWR process (kl), and epistemic
uncertainty term (o) of the model are calculated through the log-likelihood maximization using

Eq. 27 (Rasmussen and Williams, 2006):
maxg sz L = — % (Ns In(21) + In(|V,q(0, 02, kD)) + YgV‘l(B, of, kl)Yg) ------mm-mmme Eq (27)

Here Yg =Y — FB,q, and B4 is also a function of 6 and oZ. It was possible in conventional
deterministic Kriging to reduce the optimization problem into multiple one-dimensional problems
for individual 6;,i = 1,2, ....., Ny, 4. However, in NDK due to the non-proportional scale of o2 in
the likelihood function, the maximization needs to be performed across all model parameters
simultaneously. The optimum values obtained for hyperparameters, epistemic uncertainty
parameter, and neighborhood size are then used for calculating correlation matrix R and

parameters related to aleatory covariance.
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As the final step, the values obtained from sections 3.1, 3.2, and 3.3 can be used in Eqs 8
and 9 to obtain the estimated mean (y,4) and prediction variance (g,2;) respectively at any point
in the design space. The prediction variance obtained through Eq. 9 consists of information for
both aleatory and epistemic uncertainties of the model. In NDK it is expected that with enough
training data points, the epistemic uncertainty of the NDK model converges to zero. Subsequently,
all the uncertainty present in the NDK prediction variance (0,%;) converges to the aleatory

uncertainty in the response variable.

The inclusion of repeated training data points can make the correlation matrix singular.
This is considered one of the drawbacks of deterministic Kriging models. In physical experiments,
the test cases are repeated at the same experimental conditions to identify the effect of natural
randomness. The proposed NDK method accommodates such repeats and estimates the mean
response and uncertainties. For this purpose, the design of experiments (D) was modified to
eliminate the effect of repeats if there are any. Accordingly, the matrix of location vectors of input
data V, was rearranged to V,,,,4 by including only one entry for the repeated training data points.
Subsequently, the response vector, ¥ was also modified to ¥,,,4. For example, consider there are

repeats at the design point (v,) such that;
vo=vjand f(v;)) =Y;;v;€V, V€Y, and j=1,2,3,..,p

where p is the number of repeats at v,. Out of all v; data points, only v, was included in the
modified input variable vector V,,,4. The corresponding response, Y, at the design point v,, was
defined as;

Py
1Y)

Yo = ;Yo € Yonoa -~ Eq (28)
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Accordingly, the modified design of experiments (Dmod = {Vinod, Ymoa}) Was used to
calculate the correlation matrix, R. However, for the aleatory uncertainty quantification, the design
of experiments (D) was used without any modification within the locally weighted regression

process.

Elaborating on the limitation of the study, there are other discrete kernels that can be used
in NDK models with mixed input variables in addition to the discussed kernels in this study.
However, those kernels required a larger number of hyperparameters. The required number of
hyperparameters can increase exponentially with the number of discrete variables and levels. Such
increments result in higher computational time, thus increasing the cost of the model ultimately.
However, there can be instances where the use of these discrete kernels becomes useful. For
example, when there is a large discrete design space or the available training data is limited,
choosing kernels such as the coregionalization matrix kernel (Pelamatti et al., 2021) can generate
better predictions from the model. Even in the continuous design space, the requirement for a
higher number of hyperparameters is a continuously investigated issue in the domain of Kriging

models.

This study did not focus on the efficiency of the proposed NDK method for mixed input
variables with discrete kernels that employ a larger number of hyperparameters and methods of
reducing the impact of larger numbers of hyperparameters. Furthermore, the study did not
investigate the performance of the proposed NDK model with systems that are classified as high-
dimensional problems. Therefore, further research is needed to develop the proposed method with
such high-dimensional problems. Also, this study did not focus on how the performance of the
proposed model varies with the number of input variables in the system although test cases

consisted of different numbers of input variables and combinations of variables.
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4. Application of the proposed NDK method to analytical examples

This section presents the application of the proposed NDK methodology on several pre-
defined probabilistic functions. The aim was to assess how the NDK for mixed variables performs
on multi-dimensional data samples with a larger number of categorical combinations. For this
purpose, two analytical functions with 4 and 8 dimensions were considered. In evaluating the
performance, the estimated mean response at the unsampled points was compared with the actual
values of the functions using a set of goodness-of-fit measures. To demonstrate the proposed
method’s capability of capturing the aleatory uncertainty in the noisy response, the predicted
standard deviation given by the NDK model was compared with the actual standard deviation of
the response due to noise (aleatory uncertainty). Furthermore, the predicted mean + 3*standard

deviation bounds were also compared to demonstrate the performance of the NDK model.

Accordingly, the R? value (Chicco et al., 2021), Normalized Root Mean Squared Error
(NRMSE) (Patel and Ramachandran, 2015), and Normalized Maximum Absolute Error (NMAE)

(Xu et al., 2020), were determined for each example using Eqs 29, 30, and 31, respectively.

T i-yp?
R2=1-——=2  —_Eq(29)
Oy
Z?zl(yi’—yi)z
NRMSE =>*—*2~ Eq (30)

Ymax—Ymin

NMAE = \/m“x{(yi"yi)z'izl'"”} Eq (1)

2
Oy

where y;" and y; are the predicted response and actual response at the i-th testing data point. In

common practice, an R? value closer to 1 indicates high accuracy. Both NRMSE and NMAE values
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can range from 0 to +oo, while values closer to 0 in both metrics account for high accuracy in

predictions.

The evaluation of the goodness-of-fit measures for the NDK model was repeated with
randomly selected training and test data sets for each analytical case. These repetitions were done
to quantify and compensate for the effect of the random nature in the initial design of experiments.
In previous similar work, different numbers of repetitions were used for this purpose; 10 repetitions
(Pelamatti et al., 2019) and 20 repetitions (Pelamatti et al., 2021) to eliminate the possible
imprecision in the results of accuracy metrics. Following these previous work, 20 repetitions were
conducted in this study. At each iteration, the developed NDK model was used to obtain
predictions at randomly selected 2000 unsampled points from the input space. These random
training and test data sets were sampled by combining the continuous Latin Hypercube Sampling
(LHS) method (Mckay et al., 2000) and a sampling over a uniform discrete distribution in the
discrete input space (Pelamatti et al., 2021). When defining the training data sample, at each
training data point, 3 replications were considered to obtain three different response values at the
same data location as a result of random perturbation in the functions. A MATLAB script written
by the authors was used for building the NDK model for these two analytical examples. This script
was modified according to the kernel functions used for correlation matrix calculation and LWR

process in each example.

4.1 Modified Branin function

A modified version of the Branin function that consists of two continuous variables and
two discrete variables, each with two levels, was taken as the first analytical example. Due to the
two levels for each discrete variable, this four-dimensional function consists of four categorical

combinations. The modified version of the Branin function can be presented as follows;
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g(xq,x3) + h(xq,x,)€ z1=0andz, =0
_0.5g9(x1,x3) + 1+ 1.4h(xq,x)e 2z =0andz, =1
fOw X020, 72) = —0.6g(x1,x,) + 6.2+ 0.8h(xy,x,)e 2z, =1land z, =0 Eq (32)

—0.49(xq,x3) — 1.5+ 0.6h(xy,x5)e zy=1landz, =1

5 2 | 5 2 1
g(xq,x,) = (15x2 — F(lel -5) +;(15x1 —-5)— 6) + 10 (1 - E) cos(15x; —5) +

1
10) ~ 548104 L Eq (33)
h(x1,x5) = |x1 + x| =—=mmmmmmmmm- Eq (34)

where x; € [0,1],x, € [0,1], x3 € {0,1}, x, € {0,1}, and ¢ is a standard normal variable N (0,1).

Fig. 2 visualizes the actual mean of the modified Branin function.

In this 4-D mixed variable function, both discrete variables are binary categorical variables.
Therefore, out of the discrete kernels described in section 2, the weighted Gower distance kernel
was used to develop the correlation matrix in the NDK model for this 4-D function. Furthermore,
the Gaussian kernel coupled with the Racine and Li estimator was used for the locally weighted
regression step in covariance matrix calculations. Both of these kernels consist of the same
hyperparameter value for non-identical levels of a discrete variable and have the lowest number of
hyperparameters compared to other kernels. With nonbinary discrete variables, these two kernels
do not consider correlations between different discrete levels. This approach is similar to a
category-wise approach. The use of such approaches requires a larger number of training data
samples when the numbers of discrete variables and discrete levels increase. On the other hand, in
this 4-D example, each discrete input variable has only two discrete levels. Given that, even the
Latent variable kernel employs a similar category-wise approach based on how the Latent space is
defined in this proposed methodology using a cartesian plane. However, since the weighted Gower
distance kernel and Racine Li estimator are generally used with binary variables, these two kernels

were used for calculations with discrete input variables in this 4-D function.
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In this analytical example, 3 replications at each training data point were considered.
Starting from a training data sample size of 60, the training sample size was gradually increased
while evaluating the goodness-of-fit of estimations at 2000 unsampled data points. Out of the
goodness-of-fit measures used, Figs. 3(a) and 3(b) present how the mean and median of R? values
corresponding to the estimated mean and standard deviation of the function varied with the sample
size of training data points. A summary of mean values obtained for the other goodness-of-fit
measures is shown in Table 3.

The estimated mean showed a higher goodness-of-fit with a mean R? value exceeding 0.93
even with 60 training data samples. Thereafter R? values further increased gradually with
increasing training data sample size while gaining goodness-of-fit for the estimated mean.
However, the prediction of standard deviation in the developed NDK model required a higher
number of training data samples to show a higher goodness of fit. For instance, at the training data
sample size of 160, the mean R? value of the predicted standard deviation reached 0.8 for the first
time. After that mean R? value of predicted standard deviation showed no significant variation at
training sample sizes 180 and 200. Also, at a training sample size of 160, the mean R? value of the
estimated mean response of the function reached a value over 0.96 and remained almost unchanged
with increasing training data sample sizes. As shown in Table 3, a similar pattern can be observed
in goodness-of-fit measures for mean + 3*standard deviation bounds as well. Therefore, the results
indicate that a training sample size between 180-200 provides accurate predictions of both the

mean response and standard deviation for this 4-D probabilistic function.

4.2 Eight-Dimensional Powell Function

The next analytical case was set up with the Powell equation which consists of eight
dimensions. Accordingly, the selected modified version of the Powell equation is characterized by
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four continuous variables and four discrete variables, each with three different levels. Since this
function consists of 81 categorical combinations with 4 continuous variables, it was aimed to
evaluate the performance of the proposed NDK method, in systems with a larger number of
dimensions and categorical combinations. The used 8-D function in the third analytical case can

be presented as;

fxg, s xg) = g, ooy xg) + h(xq, oo, Xg) * € =mmmmmmmmmmmmmm Eq (35)

[(x4i-3 + 10x4i—2)2 + 5(X4i-1 — x4i)2
G(Xq, o, Xg) = X2, TS e - Eq (36)
! 8 b (Rgim2 — 2%45-1)* + 10(Xgi-3 — X47)*]

2 [0.8(x45-3 + 10x4;_5)% + 4.5(x45-1 — X4;)*

h(xq, oy Xg) = 2icq o T T e Eq (37)
! ° T 40.7 (417 — 2X45-1)* + 9(Xai-3 — X47)*]
where x4, x,,x3,x4 € —%,%], (x5, X6, %7,xg) € {m/60,/30,t/20}, and ¢ is a standard

normal variable N (0,1).

There are 3 discrete levels in each of the discrete levels resulting in 81 categorical
combinations. Employing the weighted Gower distance kernel and Racine and Li estimator for
this analytical function requires a larger number of training data points. Therefore, the Latent
variable kernel was used for discrete variables in this function since Latent variable kernels
consider correlations between non-identical discrete levels as well. The initial training data sample
consisted of 50 randomly selected samples from the above-introduced input space. Using the
developed NDK method, mean values were estimated at 2000 testing data points. Considering the
higher number of discrete variables and categorical combinations available in the test case, the size
of the training data sample was increased by 50 at each time and the goodness-of-fit measures

were calculated for predictions. Fig. 4 presents the variation of calculated mean R? values for the
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estimated mean and standard deviation with the training data sample size. Table 4 presents a
summary of other goodness-of-fit measures used for evaluating the performance of the NDK
model for 8-D function. The results obtained for the goodness-of-fit measures related to
predictions of the 8-D function also showed a similar pattern compared to the previous analytical
case. After a training data sample size of 200, no significant variation was observed in the

goodness-of-fit measures for both the estimated mean and standard deviation of the 8-D function.

In addition to that, the mean R? value for the predicted mean —3*standard deviation bound
showed considerably low values in this 8-D function although it improved when the size of training
data points was increased. Furthermore, this bound showed large values for the NMAE metric as
well. Although low R? values and large NMAE values indicated a low prediction accuracy,
NRMSE value showed considerably satisfactory values for the mean —3*standard deviation
bound. Delving into the obtained results showed that the variance of the mean —3*standard
deviation bound is low compared to the mean + 3* standard deviation bound. Therefore, based on
how R? is calculated, corresponding R? values for predicted mean —3*standard deviation bound
show lower values with a relatively smaller variance value, irrespective of the goodness-of-fit in

predictions. Due to the same reason, the NMAE metric also yields large mean values.

5. Testing the proposed NDK model with engineering applications

In order to evaluate the applicability of the proposed NDK for mixed input variables
methodology in actual engineering applications, it was applied to two engineering problems; 1) a
physical experiment for wave forces on an elevated coastal structure and 2) numerical modeling
for the performance of bridges under earthquake excitations. The following sub-sections present

the results of applying the proposed NDK method to the two engineering cases.
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5.1 A physical experiment for wave forces on an elevated coastal structure

As the first engineering application, the NDK model was applied to estimate wave forces
on an elevated coastal structure obtained using physical experiments conducted by Park et al.
(2017). During this experiment, data was collected by measuring the wave-induced forces on an
idealized coastal structure. Three different types of waves were used for the experiment with
varying significant wave heights (H) and peak periods (T). Furthermore, the experiment included
the air gap (a) between the idealized elevated structure and the initial water level as a variable.
However, this experiment used a fixed water height (h) for all the test cases. Fig. 5 presents the
experimental setup used for test cases. Accordingly, the experiment consisted of four variables
namely, wave type, wave height, peak period, and air gap between the structure and water level.
The type of waves was the discrete variable with wave types namely, regular, irregular, and

transient (tsunami type) waves. The other three variables were considered continuous variables.

Table 5 presents the combinations of test cases used for the experiments based on wave
heights and peak periods. For the test cases presented in Table 5, the air gap between the structure
and water level was selected from different values (ao, a1, ...., a9) given in Table 6. For some
combinations in Table 5, all the air gap values were used while some combinations were performed
only with a selected number of air gap values. With the given details above, 236 experimental
cases were conducted. For each test case vertical and horizontal forces on the idealized structure
were measured using load cells f, and fx respectively as shown in Fig. 5. Typically, forces induced
by these extreme events are modeled using the lognormal distribution (Melchers and Beck, 2018).
Therefore, the logarithms of maximum loads on the elevated structure are assumed to be following
a random Gaussian process. In this test case, the logarithm of maximum horizontal force was taken

as the dependent variable, which was predicted herein.
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During the application of the proposed NDK methodology in the above-explained
experiment, 150 data points were considered for training while 70 data points were taken for
testing. Since there are three discrete levels in the discrete input variable of this test case, the use
of a category-wise approach demands a higher number of training data samples. However, there
are only 150 data points to be used to train the NDK model. Furthermore, the Gower distance
kernel combined with the Racine and Li estimator neglects any possible correlations between non-
identical discrete levels (the wave types in this example). In such cases, the performance of the
model can be affected due to the scarcity of data. Therefore, in developing the NDK model for this
problem, the Latent variable kernel was used for the discrete variable during both correlation
matrix calculation and the LWR process since it considers the correlations between non-identical

discrete levels as well.

Following the approach used in previous numerical examples, 20 repetitions were
performed on randomly selected training and testing data points. The previously described
goodness-of-fit measures were used to evaluate the prediction accuracy. At each iteration,
randomly selected 150 data points were used for training and 70 data points were used for testing.
A mean R? value of 0.80 was obtained for the estimated horizontal forces at the testing data points.
Since this was an experimental case, actual standard deviations were not available to calculate the
goodness-of-fit measures for predicted standard deviation values. However, the values obtained
for the goodness-of-fit measures corresponding to predicted standard deviations in previous
numerical examples suggest that predictions for standard deviations in this experimental case
would have been reasonable. Furthermore, the mean values obtained for NRMSE and NMAE
metrics corresponding to the predicted logarithm of horizontal forces were 0.099 and 2.1908

respectively.
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5.2 Numerical modeling of bridge performance

As the second engineering application for the proposed NDK method, a numerical
simulation of bridge performance under earthquake conditions was selected. The data on the
responses and bridge parameters was obtained from Kameshwar et al. (2019). Non-linear time
history analysis for seismic response was conducted in OpenSees, a finite element software. The
bridge components such as columns and bent were modeled using fiber-based elements. The
bridge deck was modeled using a grillage; and the bearings, abutments, and foundations were
modeled using non-linear springs. The response of these bridge components was recorded. During
these simulations, a wide range of bridge material and geometric properties were varied, resulting
in 45 variables as shown in Table 7. A total of 1044 and 108 bridge simulations were conducted
to obtain training and testing datasets, respectively. Depending on the degrees of freedom in the
model, each of these simulations required 3 to 24 hours on a single CPU. Since these simulations
require a lot of computational time, the seismic response was used to demonstrate the usefulness

of the proposed NDK method.

Although the original data set consisted of 45 variables, the NDK model developed for this
problem considered 17 continuous variables and 3 discrete variables resulting in only 20 input
variables altogether. These 20 input variables are marked with a (*) in Table 7. The remaining set
of variables were considered uniform random variables in the problem. Out of the 20 input
variables for the NDK mode, values for continuous input variables were normalized in their ranges,
except for discrete variables and peak ground acceleration (PGA). In this example, the discrete
input variables have 8, 5, and 18 discrete levels respectively. In such conditions, using both kernels
with a category-wise approach and Latent variable kernels has disadvantages. These category-wise

approaches demand a larger number of training data while the use of Latent variable kernels
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increases the number of hyperparameters in the model, thus increasing the computational cost. In
this model, two separate NDK models were built using both types of kernels to compare their
effectiveness in this type of condition. Accordingly, one NDK model consisted of the weighted
Gower distance kernel in correlation matrix calculation and the Racine and Li estimator in the
LWR process for discrete input variables. The other NDK model consisted of Latent variable

kernels for discrete input variables in both correlation matrix calculation and LWR process.

This simulation consisted of 956 data points for the training purpose and 95 data points for
the testing purpose out of all the simulations. Some of the seismic simulations did not converge;
therefore, the number of usable data points in the test and training set is lower than in the original
testing and training data sets. No repetitions were done in this test case since the data set already
consisted of designated training and test data sets. In a similar way to the previous engineering
application, the dependent variable of this system, maximum relative drifts of the bridge columns,
were assumed to be in a lognormal distribution and their logarithm values follow a random
Gaussian process. Therefore, goodness-of-fit measures were calculated for the prediction of
logarithm values of the maximum relative drift in bridge columns at the 95 testing data points.
Since the training and test data points were already designated, the predictions using the NDK

model were not repeated like in previous test cases.

NDK models that included kernels with a category-wise approach and Latent variable
kernels indicated R? values of 0.77 and 0.68 respectively. The results did not show an improvement
in using Latent variable kernels over the weighted Gower distance kernel and Racine and Li
estimator. This feature was also observed in NRMSE values as well. The two models yielded
values of 0.11 and 0.13 for the NRMSE metric respectively. However, for the NMAE metric, both

NDK models yielded a value of 1.4. The results suggested that there was enough training data
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within this specific data set for the category-wise approach to satisfactorily capture the effect of
discrete input variables. The NDK model with Latent variable kernels produced a smaller R? value
and a larger NRMSE indicating less accurate predictions compared to the category-wise kernels.
The limited capacity of Latent variables to effectively represent relationships between a higher
number of discrete levels in a 2-D Latent space can be a possible reason for this difference. Also,
the higher computational cost due to the large number of hyperparameters indicated that the use
of Latent variable kernels in this test case is not cost-effective. However, it is also important to
note that this may vary if the NDK model is developed over a different set of data even from the
same numerical model. Similar to the first engineering applications, there are no actual values for
the system uncertainty at design points to determine the accuracy of predicted uncertainties.
However, the results from the analytical functions suggest that reasonable values would have been

estimated for the standard deviations as well.

The proposed NDK model showed satisfactory performances in predicting the seismic
response of the bridges. However, it is important to note that predictions from the NDK model do
not support detailed bridge designs under seismic loads. The use of such an NDK model is more
suitable for identifying uncertainties associated with bridges when carrying out risk assessments
and mitigation measures in a holistic manner. Since the NDK model provides separate estimates
of both epistemic and aleatory uncertainties as a function of input variables, the homoscedasticity
assumption, which is commonly used in seismic fragility models of bridges can be avoided.
Therefore, it leads to better fragility models, thus resulting in better risk assessments. To
demonstrate the usefulness of the proposed NDK model outcomes in practical applications, the

developed model was employed in a case study for the seismic risk assessment of a bridge.
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Accordingly, the annual probability of seismic failure was estimated for a bridge in Charleston,

South Carolina using the methodology presented by Kameshwar and Padgett (2014).

Data obtained from USGS (Petersen et al., 2008) for Charleston (32.8N 79.9W), were used
for the seismic hazard curve. The failure probability of the bridge at any given Peak Ground
Acceleration (PGA) value was predicted using the trained NDK model which consisted of the
Gower distance kernel and Racine and Li estimator. A maximum of 1.2g was taken for the PGA
in the region of interest (Fernandez and Rix, 2012). The characteristics of the bridge employed in
the case study are given in Table 9. The values of the set of variables marked with (*) were obtained
from (Kameshwar and Padgett, 2014). The other parameter values were assumed from the ranges
of corresponding input variables in the data set used for the NDK model. More details of the
employed method and the considered case study can be found in (Kameshwar and Padgett, 2014).
The complete damage state was considered for the relative drift capacity of the columns. The limit
state was defined with a mean value of 5.0 and 0.35 logarithmic standard deviation (Xie et al.,
2019; Yi et al., 2007). For a given PGA, the annual failure probability was estimated using the
Monte Carlo Simulation with 1.0E+06 samples. Finally, the annual failure probability of the
selected bridge was approximated as 3.86E-05 in the range of 0.28-1.2¢g for PGA. This value aligns
with the seismic risk of the particular bridge, 5.57E-05 which is based on column curvature

ductility (Kameshwar and Padgett 2014).

6. Discussion of results for analytical cases

In the previous two sections, the proposed NDK method for mixed variables was tested on
a set of analytical functions and engineering problems. Overall, the results from numerical

examples showed that mixed variable NDK provided accurate predictions for mean and standard
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deviation including both aleatory and epistemic uncertainties in probabilistic systems. All the
metrics calculated for predictions on each numerical case showed satisfactory values confirming
goodness-of-fit in both mean response and standard deviation. However, to achieve a satisfactory
level of the goodness-of-fit for the standard deviation of analytical cases, a larger number of
training data points were required in comparison to mean responses. Although goodness-of-fit
measures were not calculated for standard deviations in the two engineering applications,

predictions of mean responses matched the actual value at a satisfactory level.

In this proposed NDK method for mixed input variables, the selection of discrete kernel
functions in the correlation matrix and LWR plays a major role. Table 8 shows the discrete kernels
used for these two processes in each of the numerical examples and the engineering application.
The first numerical example consisted of the weighted Gower distance kernel for the correlation
matrix. Racine and Li estimator was chosen to use in LWR for aleatory uncertainty calculation.
Both of these kernels consist of the same hyperparameter value for non-identical levels of a
discrete variable, thus employing a category-wise approach. The number of training data points
required by a Kriging model with this type of kernel increases when the number of discrete
variables and discrete categories in the problem increases. The first numerical example is
characterized by binary categorical discrete variables and contains only four categorical
combinations. This is a special case where even Latent variable kernels also employ a category-
wise approach ultimately since both discrete variables are binary categorical variables. However,
the weighted Gower distance kernel and Racine and Li estimator are used with binary input
variables in general. Therefore, these two kernels were used in the first numerical example while

keeping the number of hyperparameters and computational cost as low as possible.
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However, the second numerical example and engineering application I consisted of discrete
variables that have more than 2 discrete levels (non-binary variables). The modified 8-D Powell
function in the second numerical example consisted of 3 discrete variables with 3 levels in each of
them. The first engineering application also had a discrete variable with 3 discrete levels. The
weighted Gower distance kernel and Racine and Li estimator demand a larger number of training
data points in these types of systems because these kernels do not consider correlations between
non-identical discrete levels. Therefore, the Latent variable kernel was used in the two NDK
models for numerical example II and engineering application I since this kernel considers
correlations between non-identical levels in a non-binary discrete variable. In these two examples,
the Latent variable kernel was used for both correlation matrix and aleatory uncertainty
calculations. However, the second engineering application led to a situation where a decision had
to be made between the accuracy of estimations and the computational cost of the NDK model
when choosing the types of kernels for the NDK model. Therefore, a comparison was made
between the accuracy of NDK models developed with both types of kernels. The results show that
the NDK model with the weighted Gower distance kernel and Racine and Li estimator has rendered
satisfactory accuracy in estimations given that 956 data points were available for training. The
NDK model with Latent variable kernels indicated the need for Latent variables in higher
dimensional spaces which ultimately increases its large demand for computational power due to
the large number of hyperparameters in the NDK model. Therefore, altogether the results from
both numerical examples and engineering applications suggest that the selection of the discrete
kernels depends on the size of the available training data sample, the number of discrete variables,

and their discrete levels.

6 Conclusion
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In this paper, a Non-Deterministic Kriging methodology was proposed for probabilistic
systems with mixed continuous and discrete variables. The proposed methodology has the
capability of predicting both epistemic and aleatory uncertainties along with the mean response.
Furthermore, this method considers the effect of aleatory uncertainty in the computations for mean
response estimation as well. Compared to Stochastic Kriging, which considers the effect of
aleatory uncertainty in predictions, the proposed method does not require a larger number of
replications at the same design point. During the construction of the correlation matrix, both
continuous and discrete kernels were combined to incorporate the influence of mixed variables.
Within this proposed model, aleatory uncertainty, which is an additional estimation compared to
conventional Kriging, is estimated using locally weighted regression. To capture the effect of
discrete variables on the local weights, continuous and discrete kernels were combined together.
Furthermore, the proposed methodology can process replications at the same training data point,

which is a common condition, especially with physical experiments due to inherent randomness.

This approach was tested on two probabilistic numerical examples and two engineering
examples using three goodness-of-fit measures to determine its effectiveness in the prediction of
both mean response and standard deviation. According to the results, the proposed NDK
methodology shows better goodness-of-fit in both mean response and standard deviation
predictions. Two engineering applications demonstrate the usefulness of the proposed method with
large-scale physical experiments and computer simulations which are common in engineering
fields. Furthermore, in the second engineering application, the trained NDK model was further
used for a risk assessment of a bridge to demonstrate one of the potential uses of the proposed
NDK method. However, it is important to note that the performance of the model depends on the

nature of the problem and the selection of discrete kernels as well. The selection of discrete kernels
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825  can be generally done based on the number of discrete variables and levels in the system and the
826  number of available training data points. The computational time and cost of the model depend on
827  the discrete kernel used since it largely contributes to the number of hyperparameters in the model.
828  This study did not focus on other discrete kernels and handling a larger number of hyperparameters
829  in the proposed NDK model. With adequate research, the proposed method can be assisted as a
830  supervised learning tool in machine learning methods for optimization problems under the

831  complexity of mixed input variables and natural stochasticity.
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dgow- Gower distance v — location vector of an input data point
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n — number of continuous input variables
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T - Latent space
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Table 1. Correlation functions for continuous variables

Name k(6,,d;) Parameter limits
Exponential exp(—0;1d;]) }
Gaussian exp(—6,df) )

Linear max(0,1 — 8,d?) -
Spherical 1—1.5g + 0.5¢} g, = min(1, 6,|d,])
Cubic 1—3ef + 2¢} g = min(1,6,|d,])
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1122

Table 2. Combinations of kernel functions for weight matrix

Comb. Continuous variable kernel Discrete variable kernel
Number
01 Gaussian kernel function (Gajewicz- Racine and Li estimator (Li and Racine,
Skretna et al., 2021) 2014)
wehoxl) = e Ty = |1 YA
02 Weighted Gower Distance Kernel
k=n+q
w(v,v/) = exp{— Z O (Ao (vh, v])1P")
k=1
03 Gaussian kernel function (Gajewicz- Latent variable kernel

Skretna et al., 2021) w,(zk, z0) = exp(—6,||p(z) - <,0(Z,-)||2)

Note: v%. represents the i-th variable in the k-th dimension
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1123 Table 3. Summary of mean values of the Goodness-of-fit (GOF) measures in 4D function

1124 Sample GOF measures for the GOF measures for the GOF measures for the GOF measures for the
Size estimated mean estimated standard deviation estimated mean — 3*standard estimated mean + 3*standard

deviation deviation

R?value NRMSE NMAE R?value NRMSE NMAE R?value NRMSE NMAE  R?value NRMSE NMAE

60 0.93 0.083 1.40 0.62 0.151 2.25 0.81 0.115 1.90 0.83 0.097 1.35
80 0.94 0.071 1.24 0.61 0.155 2.33 0.81 0.116 1.83 0.81 0.103 1.40
100 0.94 0.068 1.40 0.72 0.131 2.14 0.80 0.117 1.97 0.84 0.093 1.32
120 0.95 0.065 1.22 0.73 0.127 2.08 0.81 0.117 1.92 0.84 0.094 1.30
140 0.95 0.059 1.19 0.77 0.117 1.87 0.82 0.114 1.83 0.85 0.092 1.27
160 0.96 0.059 1.16 0.81 0.107 1.71 0.84 0.107 1.75 0.86 0.087 1.19
180 0.96 0.060 1.29 0.80 0.110 1.87 0.81 0.115 1.99 0.85 0.092 1.26
200 0.95 0.059 1.20 0.80 0.110 1.93 0.82 0.113 1.87 0.86 0.088 1.18
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1126

Table 4. Summary of mean values of the goodness-of-fit measures in 8D function

Sample Goodness-of-fit measures for GOF measures for estimated GOF measures for the GOF measures for the
Size the estimated mean standard deviation estimated mean — 3*standard estimated mean + 3*standard
deviation deviation
R?value  NRMSE NMAE R?value NRMSE NMAE R?value NRMSE NMAE R?value NRMSE NMAE
50 0.82 0.095 1.69 0.70 0.2 1.72 0.31 0.201 3.06 0.82 0.123 1.55
100 0.93 0.056 1.04 0.75 0.177 1.97 0.46 0.177 3.07 0.87 0.102 1.50
150 0.95 0.050 0.98 0.69 0.203 2.09 0.34 0.196 3.12 0.83 0.118 1.58
200 0.95 0.048 0.98 0.75 0.183 1.91 0.45 0.180 3.02 0.87 0.104 1.42
250 0.95 0.050 1.06 0.76 0.177 1.82 0.47 0.176 2.84 0.88 0.102 1.38
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1127  Table 5. Experimental wave conditions

Exp. Regular waves (2 =2.15m)  Irregular waves (A =2.15m)  Transient waves (4 =2.0m)

H(m) T(s) H(m) T(s) A(m) T(s)
X1 0.1 4.10 0.10 3.72 0.51 36.4
X2 021 4.10 0.19 3.86 0.34 51.0
X3 0.29 4.10 0.29 4.10 0.28 87.2
X4 040 4.10 0.40 4.10 0.21 109
X5 0.50 4.10 0.50 3.86 0.18 117
X6  0.16 2.52 0.16 2.52 0.16 120
X7 023 2.98 0.21 2.98 0.14 154
X8  0.26 3.64 0.25 3.28 0.13 162
X9 035 4.68 0.34 4.68

X10 0.42 5.04 0.39 5.04

1128
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1129  Table 6. Air gag conditions for experimental cases

Air Gap cases a(m)
Regular and Irregular Waves Transient Waves
ao -0.40 -0.25
al -0.30 -0.15
a2 -0.20 -0.05
a3 -0.10 0.05
a4 -0.05 0.10
as 0.00 0.15
as 0.05 0.20
a7 0.10 0.25
as 0.20 0.30
a9 0.28 0.43
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Table 7. Details of input variables used in Engineering Application II

Variable Category Range Unit
*Log of Peak Ground Acceleration Continuous  [-3.22 0.67]

*Deck width Continuous  [150.03- 1096.50] Inches
*Concrete compressive strength Continuous  [3.00- 8.00] ksi
*Steel yield strength Continuous  [39.50 — 95.00] ksi
*Dowel strength Continuous  [10.40 — 15.60] kips
*Number of spans Discrete 2-9 -
*Span length Continuous  [276.08 — 1102.21] Inches
*Number of columns Discrete 2-6 -
*Column height Continuous  [130.00 — 354.33] Inches
*Column diameter Continuous  [23.65 — 59.10] Inches
*Concrete cover depth Continuous  [0.50 — 4.50] Inches
*Number of girders along the width of the Discrete 2-19 -

deck

*Girder spacing Continuous  [53.05 —210.25] Inches
*Column spacing Continuous  [150.03 — 300.00] Inches
*Slab weight per girder Continuous  [0.03- 0.28] Kips/inch
*Bearing pad area Continuous  [90.11 — 654.64] Sq. inches
*Bearing pad thickness Continuous  [0.20 — 1.20] Inches
*Decrease in rebar diameter Continuous  [0.00 —0.70] Inches
*Stiffness factor to account for oxidation of Continuous  [0.90 — 2.00] -

elastomeric bearings
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*Decrease in bearing dowel diameter
Coefficient of friction for bearing pad
Stiffness of bearing pad

Dowel gap

Abutment passive stiffness

Abutment active stiffness

Foundation vertical stiffness
Foundation transverse stiffness

Mass participation ratio

Damping ratio

PGA — geometric mean of the two ground

motion components

Gap 1 (used for bearing model)

Gap 2 (used for bearing model)

Gap 3 (used for bearing model)

Gap 4 (used for bearing model)
Longitudinal steel reinforcement ratio
Transverse steel reinforcement ratio
Deck slab c/s area

Girder steel area

Girder concrete strength

Ix of deck slab

Continuous

Continuous

Continuous

Continuous

Continuous

Continuous

Continuous

Continuous

Continuous

Continuous

Continuous

Continuous

Continuous

Continuous

Continuous

Continuous

Continuous

Continuous

Continuous

Continuous

Continuous

[0.00 —0.70] Inches
[0.50 - 2.5] -

[0.04 - 0.80] ksi

[0.00 —2.00] Inches
[1.46-4.39] kip/in/in
[20.00 — 60.00] kip/in/pile
[500.41 — 1500.00] kip/in
[20.00 — 60.00] kip/in/pile
[0.90 - 1.10] -

[0.02 —0.08] -

[0.03 —1.90] g

[1.41 —1.57] Inches
[1.41—1.57] Inches
[0.78 — 1.22] Inches
[0.78 — 1.22] Inches
[0.01 - 0.04] -

[0.00 — 0.02] -

[362.31 —3412.81] inches?
[754.04 — 4282.90] inches?
[7.00 — 11.00] ksi

[1458.26 — 96455.30] Inches*
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1132

Iz of deck slab

Ix of girder

Iz of girder

Earthquake direction

Weight of one AASHTO prestressed

girder

Continuous

Continuous

Continuous

Continuous

Continuous

[95243.05-
11934069.40]
[94262.079-
1392317.95]
[86750.26-
1392317.95]
[0.14 — 360.00]

[0.02-0.1]

Inches*

Inches?

Inches?

degree

kip/in
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Table 8. Summary of discrete kernels used in examples

Example No. of Categorical Discrete Kernels Total number of
combinations (No. Correlation LWR Hyperparameters
of discrete Matrix in Discrete kernels
variables)

4-D function  4(2) Weighted Gower Racine and Li 4

Distance Estimator

8-D function 81 (4) Latent  variable Latent variable 12

kernel kernel

Engineering 3(1) Latent  variable Latent variable 3

Application I kernel kernel

Engineering 760 (3) Weighted Gower Racine and Li 6

Application II Distance Estimator
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Table 9. Input values for the predictor variables

Variable Input value  Unit
*Deck width 600 Inches
*Concrete compressive strength 4.35 ksi

*Steel yield strength 66.7 ksi
Dowel strength 11 kips
*Number of spans 4 -

*Span length 393.7 Inches
*Number of columns 3 -
*Column height 157.48 Inches
*Column diameter 35.83 Inches
Concrete cover depth 3 Inches
Number of girders along the width of the deck 6 -

Girder spacing 120 Inches
*Column spacing 300 Inches
Slab weight per girder 0.24 Kips/inch
Bearing pad area 372.58 Sq. inches
Bearing pad thickness 0.7 Inches
Decrease in rebar diameter 0.35 Inches
Stiffness factor to account for oxidation of elastomeric bearings 1.4 -
Decrease in bearing dowel diameter 0.35 Inches
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