

1 **Non-Deterministic Kriging for Probabilistic Systems with Mixed Continuous and Discrete**
2 **Input Variables**

3 Jayasekara Jayasekara¹ and Sabarethnam Kameshwar Ph.D.²

4 ¹Ph.D. student, Department of Civil and Environmental Engineering, Louisiana State University,
5 Baton Rouge, LA 70803, Email: jjayas2@lsu.edu

6 ²Assistant Professor, Department of Civil and Environmental Engineering, Louisiana State
7 University, Baton Rouge, LA 70803, Email: skameshwar1@lsu.edu (corresponding author)

8 **Abstract**

9 This paper presents a Non-Deterministic Kriging method to approximate the response of
10 probabilistic systems with mixed continuous and discrete input variables. The proposed method
11 approximates both epistemic (extrinsic) and aleatory (intrinsic) uncertainties in addition to the
12 mean response of a system. Kriging is a popular metamodeling method for approximating the
13 responses of computationally demanding systems along with prediction variances. However,
14 conventional Kriging fails to perform with non-deterministic datasets with replications. The
15 recently developed Non-Deterministic Kriging (NDK) method addresses those challenges in the
16 continuous input space. Currently, Kriging is often used for approximations in probabilistic
17 systems with mixed continuous and discrete input variables as well. Therefore, this study aims to
18 fill the gap in the NDK method for probabilistic systems with mixed continuous and discrete input
19 variables. Herein, the aleatory uncertainty is assessed using Locally Weighted Regression (LWR).
20 The proposed method employs a combination of continuous and discrete kernels to capture the
21 effects of mixed inputs. The effectiveness of the newly proposed NDK method was demonstrated
22 using a set of probabilistic analytical cases and engineering applications. The proposed method

23 provides separable information about aleatory and epistemic uncertainties, which are beneficial in
24 design optimizations and sequential explorations of probabilistic systems, especially with large-
25 scale experiments and computer simulations with randomness.

26 **Keywords:** Non-Deterministic Kriging, Mixed variables, Continuous and Discrete variables,
27 Probabilistic Systems, Machine Learning

28 **1. Introduction**

29 Metamodels, also called surrogate models, have been widely used to replace
30 computationally expensive simulations (Asher et al., 2015; Mukhopadhyay et al., 2015) and
31 physical experiments (Kabir et al., 2017; Stuckner et al., 2021). These techniques are mostly used
32 when the underlying model has difficulties such as informatic complexity, computing efficiency,
33 and code coupling (Delage et al., 2022). Kriging (Krige, 1951; Matheron, 1962), Neural Networks
34 (Kohonen, 1982; Widrow and Hoff, 1960), Support Vector Machines (SVM) (Boser et al., 1992;
35 Vapnik, 1999), Radial Basis Function (RBF) (Broomhead and Lowe, 1988), Multivariate Adaptive
36 Regression Splines (MARS) (Friedman, 1991), and Polynomial Response Surface models (Wang
37 et al., 2001) are some of the commonly used metamodeling techniques. In addition to these types
38 of metamodels, sometimes different metamodels are combined, and hybrid modeling platforms are
39 formed to achieve effective solutions based on the requirements of the application (Yin et al., 2018;
40 Zhang et al., 2012).

41 Kriging is considered one of the most investigated surrogate models among these surrogate
42 modeling techniques due to its attractive interpolative and stochastic characteristics (Jiang et al.,
43 2018; Zhou et al., 2018). For instance, Kriging can provide the prediction uncertainty at each
44 unsampled point. This feature is especially useful in refining the surrogate model in sequential

45 design strategies. Furthermore, Kriging requires a smaller training sample size due to strong
46 interpolation among sampled points (Khan, 2011; Welch et al., 1992). Kriging was initially
47 introduced for geostatistics (Krige, 1951; Matheron, 1962). However, it has been expanded to a
48 wider spectrum of engineering problems due to its interpolative and probabilistic characteristics
49 (Di Maio et al., 2022; Koziel and Pietrenko-Dabrowska, 2022; Su et al., 2019; Trochu et al., 2022;
50 X. Zhang et al., 2020). Although the performance of surrogate models varies due to different
51 conditions, Qian et al. (2020) show that compared to available surrogate models, Kriging models
52 have been able to perform with higher accuracy and robustness, especially when black box-type
53 functions show high non-linearity. For example, a comparison done by Kianifar and Campean
54 (2020) depicts that Kriging outperforms polynomials and radial basis functions with highly
55 nonlinear underlying functions regardless of the problem scale and size of training data samples.
56 Furthermore, Abbas et al. (2018) highlight that Kriging shows more robust performance in spatial
57 predictions compared to neural networks. In another work by Kahrizi et al., (2022) for
58 investigating the characteristics of porous concrete, Kriging showed the least errors in estimations
59 compared to the polynomial response surface method and radial basis function. Although Kriging
60 can outperform other metamodels, it is vital to be aware that Kriging does have several
61 disadvantages as well. For example, Kriging fails to perform accurately when the underlying
62 function shows non-stationary trends (Bae et al., 2019). Furthermore, Kriging models can be
63 computationally demanding with a larger number of input variables (Saves et al., 2021). Also,
64 compared to other available surrogate models, such as polynomial regression models, Kriging
65 models are not easy for users to interpret (Kianifar and Campean, 2020).

66 Several types of Kriging models, such as simple Kriging (Li et al., 2009), ordinary Kriging
67 (Kumar et al., 2023), stochastic Kriging (Ankenman et al., 2008), universal Kriging, and regression

68 Kriging (Picheny et al., 2013) are currently used based on metamodeling requirements and
69 characteristics of Kriging models. Since geographical distance was the primary input variable in
70 the early stages, Kriging models were initially used only with continuous variables in geostatistics.
71 However, many systems in engineering problems consist of continuous and discrete design
72 variables. Therefore, due to the need to use Kriging over systems that consist of mixed input
73 variables, several studies extended the use of Kriging models to include discrete input variables as
74 well (Pelamatti et al., 2020; Saves et al., 2022). In these methods, different correlation kernels
75 were used to adapt the existing Kriging models to accommodate the presence of discrete input
76 variables. Hypersphere decomposition kernel (Pelamatti et al., 2019), Latent variable kernel (Tao
77 et al., 2021), Compound symmetry kernel (Roustant et al., 2020), and coregionalization matrix
78 kernel (Pelamatti et al., 2021) are a few of such discrete kernels.

79 As mentioned earlier, conventional Kriging provides the uncertainty in the prediction at
80 unsampled points, by fitting residuals from a global regression model (Loquin and Dubois, 2010).
81 This can be identified as the extrinsic or epistemic uncertainty that is imposed on the problem
82 when developing the Kriging model. It accounts for the modeling error of the Kriging model.
83 Epistemic uncertainty, which is likely due to the lack of knowledge or information about the
84 underlying physics of the problem, can be reduced by increasing the size of training samples and
85 updating the estimations (Choi et al., 2006). There are several adaptive sampling-based design
86 exploration methods that use the prediction variance or epistemic uncertainty given by Kriging.
87 The efficient global optimization method (Jones et al., 1998; Yi and Taflanidis, 2023), quantile-
88 based design and optimization (Nazeeh et al., 2023), sequential Kriging optimization (Hao et al.,
89 2010), value-based global optimization (Moore et al., 2014), and reliability analysis methods
90 (Hong et al., 2022; Kitahara et al., 2021) are a few of such methods that employ the prediction

91 variance. However, prediction variance given by conventional Kriging with probabilistic and
92 replicated data can be misleading. Mostly, physical experiments have inherent randomness that
93 results in aleatory or intrinsic uncertainty within data. Furthermore, under simulation-based design
94 exploration methods, computational models are also developed as variable-fidelity models that
95 consist of computational inaccuracy or uncertainty (Bae et al., 2019). Aleatory uncertainty arises
96 mostly due to natural variability in the parameters of a physical system and cannot be reduced in
97 a similar way to epistemic uncertainty (Palar et al., 2019; Zhuang and Pan, 2012). Estimations
98 obtained through insufficient quantification of aleatory uncertainty can incline towards
99 overconfident predictions (Mortazavi et al., 2012). Therefore, the use of conventional Kriging over
100 non-deterministic (noisy) data samples from physical experiments, variable-fidelity models,
101 natural phenomena, or non-stationary underlying functions could mislead the predictions,
102 especially in design exploration methods.

103 Given the need for estimation of aleatory uncertainty within the prediction variance in
104 Kriging models, a Non-Deterministic Kriging (NDK) method was derived recently as a flexible
105 method that approximates both epistemic and aleatory uncertainties associated with the Kriging
106 model and the underlying probabilistic function, respectively (Clark, 2019). The proposed NDK
107 methodology is considered numerically more stable than other Kriging models as it captures
108 uncertainty bounds more efficiently. However, the NDK proposed by Clark only considered
109 continuous input variables. There is a lack of studies that cover the approximation of both
110 epistemic and aleatory uncertainties using the NDK method for systems with mixed input
111 variables, which is necessary as engineering systems can consist of both continuous and discrete
112 variables. Furthermore, in design optimization models, the use of discrete variables can replace a
113 number of continuous variables, thus reducing the computational time (Rosness, 1993). The

114 introduction of such a discrete variable can increase the randomness of a system and its data.
115 Furthermore, especially with experimental designs, replications are obtained at the same design
116 point due to the inherent randomness in natural phenomena (Dunn, 2019). As revealed by the
117 review of existing work related to surrogate model-assisted optimization under uncertainty,
118 conventional Kriging models that are developed to work with mixed continuous and discrete input
119 variables fail to address the challenges arising due to non-deterministic and replicated data.
120 Although Stochastic Kriging for mixed input spaces (Lopez et al., 2022) aims at estimating the
121 randomness present in data, it requires a larger number of replications at a design point. This
122 process is not always possible with engineering system design explorations, especially with large-
123 scale physical experiments or computer simulations.

124 The present study was motivated by the application of Kriging on probabilistic systems in
125 mixed continuous and discrete input spaces, especially with systems that are expensive to evaluate.
126 For instance, there are time-consuming physical experiments that demand a large amount of
127 resources. In such instances, it is not effective to have a larger number of replications to account
128 for noise present within the system. Although there exists an NDK method for such probabilistic
129 systems, it cannot be employed in mixed input space. Therefore, this study aimed to fill the gap in
130 the need for an NDK method for probabilistic systems with mixed continuous and discrete input
131 variables. The proposed NDK can accommodate replicated data, especially with physical
132 experiments. Also, the proposed method does not require a large number of replications as in
133 existing Stochastic Kriging models. Since this NDK method quantifies both aleatory and epistemic
134 uncertainties, the prediction variance of the NDK model can be used for design optimization under
135 uncertainty for systems with non-deterministic data and non-stationary trends. Currently, the use
136 of conventional Kriging can yield erroneous results with such systems. Furthermore, the use of the

137 proposed NDK model with mixed continuous and discrete inputs is beneficial in Kriging-
138 associated design explorations with time-consuming large-scale physical experiments and
139 computationally expensive computer simulations.

140 The next section of the paper provides a review of existing work of surrogate model-
141 assisted uncertainty quantification. Section 3 presents the proposed framework, including steps in
142 the NDK methodology for mixed input variables. Section 4 presents the application of the
143 proposed method to a set of numerical examples with continuous and discrete variables.
144 Additionally, this section discusses the goodness-of-fit of the estimated mean and uncertainties of
145 numerical cases using a set of goodness-of-fit measures. The next section presents the application
146 of the proposed method to two engineering systems. The last sections of the paper provide the
147 discussion and conclusion of the study.

148 **2. Related work on Surrogate assisted Uncertainty Quantification (UQ)**

149 Surrogate model-assisted optimization has been popular due to the computational burden
150 of optimization under uncertainty with traditional approaches. Accounting for uncertainties stands
151 paramount in any type of design optimization strategy that employs surrogate models, especially
152 with the modeling error induced by surrogate models. A significant number of past studies have
153 covered and developed uncertainty quantification in optimization strategies with surrogate models
154 in the continuous input space. However, comparatively, there are still only a few studies that focus
155 on the mixed continuous-discrete input variables to the best knowledge of the authors. Elaborating
156 on early work on surrogate-assisted mixed variable optimization under uncertainty, Sriver and
157 Chrassis (2004) used surrogate function approximations in a novel framework, which is a
158 combination of generalized pattern search and ranking and selection method, for systems with
159 inherent variation. Furthermore, a novel hierarchical hybrid fuzzy neural network was presented

160 by Wang et al. (2007) to represent systems with mixed input variables. This method uses a set of
161 fuzzy sub-systems that aggregate discrete input variables into intermediate variables and plugs
162 them into neural networks for approximations along with continuous input variables. However,
163 surrogate models utilized in these methods do not provide insights into the uncertainty in
164 predictions similar to modeling uncertainty presented by Kriging models.

165 Recent literature shows a growing interest in mixed variables constrained optimization
166 approaches coupled with modified versions of Kriging. Huang et al., (2023) used Latent-variable
167 Gaussian process (aka Kriging) (LVGP) modeling with Bayesian optimization for optimal search.
168 This method matches discrete inputs into a Latent space and uses the Latent distances for Kriging.
169 An et al., (2022) also used Kriging similarly for multi-objective optimization, under noise.
170 However, their Kriging model was built only considering model uncertainty while measurement
171 noise was added to the objective later as an assumption. In another work, An et al., (2021) used
172 Kriging for reliability-based design optimization, where continuous and discrete variables were
173 initially decoupled using the total probability theorem. After that Kriging was used only with
174 continuous space, ultimately resulting in a category-wise approach based on discrete levels. In
175 contrast, Pelamatti et al., (2021) also worked on using Kriging for optimization in the mixed
176 continuous-discrete design space combinedly. This work employs several discrete kernels such as
177 hypersphere decomposition kernel, compound symmetry kernel, and coregionalization matrix
178 kernel within the Kriging model to combine with continuous kernels. Furthermore, their work is
179 extended to consider the heteroscedasticity of Gaussian process variance in the discrete input
180 variables. However, their method does not consider the randomness present within the data set.
181 There can be erroneous estimations in both the mean response and prediction of the model when
182 this method is used with probabilistic systems.

183 In the most recent work, Moustapha et al. (2022) used Kriging in a multi-objective robust
184 optimization approach for problems with mixed variables. This method employed quantiles of the
185 objective functions that are determined through a Kriging model, to allow both optimality and
186 robustness. In a similar work for a multi-objective optimization process, An et al., (2022b) used
187 Kriging to predict the objective function values in a Monte Carlo Simulation. Furthermore, there
188 are studies that focused on potential issues with Kriging-assisted optimization as well. For
189 example, since a larger number of mixed continuous and discrete variables might be employed in
190 engineering optimization processes or practical applications, the number of hyperparameters in the
191 Kriging model also increases substantially. To address this issue in Kriging models, Saves et al.,
192 (2021) proposed a hyperparameter reduction process based on the partial least squares method.
193 This method employed an adaptive procedure for selecting the number of hyperparameters in a
194 Kriging model.

195 However, the performance of the conventional Kriging approach in these studies can be
196 affected due to specific conditions associated with underlying response function and available data
197 of probabilistic systems. For instance, Kriging approximations will fail to fit the underlying
198 response accurately when available data is non-deterministic or replicated. Furthermore, the
199 covariance structure of the Kriging model will be inaccurate when the underlying black-box
200 function has non-stationary trends. This can result in an overly damped or amplified prediction
201 variance. Therefore, with a limited size of non-deterministic data or replicated data, conventional
202 Kriging becomes misleading in design explorations. In the continuous space, there are a few
203 methods for these challenges. As a solution for randomness in data, in Regression Kriging,
204 hyperparameter optimization is performed with an added noise parameter, thus approximating
205 sample data within constant noise bounds similar to regression analysis (Hengl et al., 2004;

206 Picheny et al., 2013). To the best of the authors' knowledge, this has not been extended to the
207 mixed continuous and discrete input space. Furthermore, Stochastic Kriging (SK) was proposed
208 using two uncertainty sources, epistemic and aleatory, to work with non-deterministic and
209 replicated data (Ankenman et al., 2008). In SK, aleatory uncertainty is estimated at each design
210 point using a separate ordinary Kriging model that employs replications. Lopez et al., (2022)
211 extended SK to work with mixed continuous and discrete input variables in an adaptive stochastic
212 efficient global optimization approach. However, even SK performs with the assumption that there
213 are enough replications at each design point. Therefore, with insufficient data, aleatory uncertainty
214 prediction becomes inconsistent and unreliable.

215 As a remedy for these challenges, Clark, (2019) proposed a Non-Deterministic Kriging
216 method that works in the continuous input space. Compared to conventional Kriging, this method
217 relaxes the interpolation requirement in the presence of randomness in data. It uses the aleatory
218 variance as a regularization factor in computations, thus increasing the accuracy in the prediction
219 of both mean and modeling uncertainties. Most importantly, the NDK model provides both
220 epistemic and aleatory uncertainties for use in applications such as design explorations based on
221 the requirements. However, this proposed method only works in the continuous input space and
222 cannot be used with discrete input variables. This paper improves the existing NDK method further
223 to work in the mixed continuous and discrete input space.

224 **3. Non-Deterministic Kriging (NDK) with mixed input variables**

225 This section of the paper presents the proposed NDK methodology for mixed continuous
226 and discrete input variables. In general, continuous variables like structural dimensions, fluid
227 velocity, and force are mapped to the space of real numbers within a defined interval. On the other
228 hand, discrete variables are identified as design characteristics such as material type, which have

229 a finite number of choices (Musiol, 1997). Furthermore, discrete variables are categorized as
230 ordinal and nominal variables as well. An ordinal variable consists of multiple categories that can
231 be ordered while a nominal variable consists of multiple categories which cannot be orderly
232 arranged. For example, hurricane category which is based on wind speed can be considered an
233 ordinal variable while material type is a nominal variable. However, in this study, no such
234 difference is considered between these two types.

235 The proposed NDK model aims at estimating the mean response in a probabilistic system,
236 with mixed continuous and discrete input variables, while estimating both epistemic and aleatory
237 uncertainty. Fig. 1 presents the flow chart for the proposed NDK method. Starting from the
238 identification of input variables, three major processes in the method are (1) correlation matrix
239 calculation, (2) locally weighted regression process for aleatory uncertainty estimation, and (3)
240 epistemic variance estimation. Individual outputs from these processes are later used for the final
241 outputs of the NDK model, which includes the estimated mean response and prediction variance
242 including both epistemic and aleatory uncertainties. The detailed steps of the model are presented
243 in the following subsections. For clarity in symbols, bold fonts were used for vectors and matrices.

244 Consider $f(\mathbf{x}, \mathbf{z})$ is a probabilistic black-box function that is defined between an input $\mathbf{v}(\mathbf{x},$
245 $\mathbf{z}) \in \mathbb{V} \subset \mathbb{R}^{n+q}$ and an output, $y \in \mathbf{Y} \subset \mathbb{R}$, where n and q represent the number of continuous and
246 discrete variables respectively, \mathbb{V} is the matrix of input data locations, and \mathbf{Y} is the vector of
247 responses at input data locations. According to the proposed method, developing an NDK model
248 for this function starts with determining the input variables and their characteristics. Consider that
249 \mathbf{x} is defined as a vector containing continuous inputs ($\mathbf{x} = \{x_1, x_2, x_3, \dots, x_k, \dots, x_r\}$) while \mathbf{z} is a
250 vector that consists of discrete inputs ($\mathbf{z} = \{z_1, z_2, z_3, \dots, z_k, \dots, z_q\}$). Each discrete variable z_k has

251 b_k number of possible values, also known as levels, resulting in a total of $\prod_{k=1}^{k=q} b_k$ combinations
252 of categorical inputs.

253 In general, a Kriging model works like weighted regression that processes a training data
254 set or a design of experiments (D), of N_s samples $\{\mathbf{v}_i, y_i\}$, where $i = 1, 2, \dots, N_s$. For a given
255 training data point, the deterministic Kriging model is represented as follows;

256 $y(\mathbf{v}) = m(\mathbf{v}) + Z_0(\mathbf{v})$ ----- Eq (1)

257 where $m(\mathbf{v})$ represents the global trend. $Z_0(\mathbf{v})$ is a zero mean stochastic process defined as

258 $Cov(Z_0(\mathbf{v}_i), Z_0(\mathbf{v}_j)) = \sigma^2 R(\mathbf{v}_i, \mathbf{v}_j; \boldsymbol{\theta})$ ----- Eq (2)

259 where σ^2 is the process variance, $R(\mathbf{v}_i, \mathbf{v}_j; \boldsymbol{\theta})$ is the correlation among data points, and $\boldsymbol{\theta}$ are
260 hyperparameters that need to be calibrated. The stochastic nature of Z_0 refers to the extrinsic
261 (epistemic) uncertainty since it is imposed on the problem to assist in developing the model. This
262 stochastic process accounts for the modeling error in the Kriging model. The conventional Kriging
263 method is more suitable for data without noise since the estimation only represents the modeling
264 uncertainty and does not consider the natural randomness present in the response variable of the
265 data set. This highlights the need for a Kriging model which accounts for both epistemic
266 uncertainty (due to modeling error) and aleatory uncertainty (due to natural randomness of data).

267 As a solution for this need, the Non-Deterministic Kriging (NDK) method includes both
268 epistemic and aleatory uncertainties within its predictions by adding aleatory uncertainty as a
269 separate stochastic process into the deterministic Kriging model given in Eq (1). Accordingly,
270 taking the above-described deterministic Kriging derivation as a basis, the NDK model is
271 represented as follows:

272 $y_{nd}(\mathbf{v}) = m(\mathbf{v}) + Z_E(\mathbf{v}) + Z_A(\mathbf{v})$ ----- Eq (3)

273 where $m(\mathbf{v})$ represents the global trend and $Z_E(\mathbf{v})$ and $Z_A(\mathbf{v})$ are the stochastic processes of
 274 epistemic and aleatory uncertainties respectively (Clark, 2019). The mean estimation (y_{nd}) can be
 275 formulated using a linear predictor as;

276 $y_{nd}(\mathbf{v}) = \mathbf{c}^T \mathbf{Y}$ -----Eq (4)

277 where $\mathbf{c} = c(\mathbf{v}) \in \mathbb{R}_{N_s}$. With the use of unbiasedness condition $\mathbf{c}^T \mathbf{F} - \mathbf{f} = 0$, where \mathbf{f} and \mathbf{F} are
 278 the assumed basis function vector at the unsampled point and regression design matrix at training
 279 data points respectively, the prediction variance (σ_{nd}^2) at an unsampled point (\mathbf{v}) is obtained as:

280 $\sigma_{nd}^2(\mathbf{v}) = E[(y_{nd}(\mathbf{v}) - Y(\mathbf{v}))^2] = E[(\mathbf{c}^T(\mathbf{Z}_E + \mathbf{Z}_A) - (z_E + z_A))^2]$ -----Eq (5)

281 where \mathbf{Z}_E and \mathbf{Z}_A are true epistemic and aleatory uncertainty vectors from training data points and
 282 z_E and z_A are true epistemic and aleatory uncertainties at the unsampled point. In general, epistemic
 283 and aleatory uncertainties are different and independent since their sources are different according
 284 to the definitions. Therefore, it is assumed that the aleatory uncertainty and model uncertainty are
 285 not correlated, thus there is no correlation between z_E and z_A . Based on this assumption, the above
 286 equation for prediction variance of the NDK model can be expanded as;

287
$$\sigma_{nd}^2(\mathbf{v}) = E[\mathbf{c}^T \mathbf{Z}_E \mathbf{Z}_E^T \mathbf{c}] + E[\mathbf{c}^T \mathbf{Z}_A \mathbf{Z}_A^T \mathbf{c}] + E[z_E z_E^T]$$

 288
$$+ E[z_A z_A^T] - 2E[\mathbf{c}^T \mathbf{Z}_A z_A] - 2E[\mathbf{c}^T \mathbf{Z}_E z_E]$$
 ----- Eq (6)

289 Using variance (σ_E^2, σ_A^2), correlation (\mathbf{R}_E), and covariance (\mathbf{V}_A) terms this can be further
 290 simplified as;

291
$$\sigma_{nd}^2 = \sigma_E^2(1 + \mathbf{c}^T \mathbf{R}_E \mathbf{c} - 2\mathbf{c}^T \mathbf{r}_E) + (\mathbf{c}^T \mathbf{V}_A \mathbf{c} - 2\mathbf{c}^T \mathbf{v}_A + \sigma_A^2)$$
 -----Eq (7)

292 where σ_E^2 and σ_A^2 are epistemic and aleatory variances, \mathbf{R}_E is the correlation matrix among training
 293 data samples, \mathbf{r}_E represents the correlation vector between the unsampled point and the already
 294 sampled training data points. \mathbf{V}_A and \mathbf{v}_A are the aleatory covariance matrix and vector respectively.

295 By minimizing the prediction variance of the estimate, the mean estimation (y_{nd}) is solved as,

296 $y_{nd}(\mathbf{v}) = \mathbf{f}^T(\mathbf{x})\boldsymbol{\beta}_{nd} + \mathbf{v}_{nd}^T \mathbf{V}_{nd}^{-1}(\mathbf{Y} - \mathbf{F}\boldsymbol{\beta}_{nd})$ ----- Eq (8)

297 where $\boldsymbol{\beta}_{nd} = [\mathbf{F}^T \mathbf{V}_{nd}^{-1} \mathbf{F}]^{-1} \mathbf{F}^T \mathbf{V}_{nd}^{-1} \mathbf{Y}$, $\mathbf{V}_{nd} = \sigma_E^2 \mathbf{R}_E + \mathbf{V}_A$, and $\mathbf{v}_{nd} = \sigma_E^2 \mathbf{r}_E + \mathbf{v}_A$.

298 In practice, aleatory uncertainty is considered independent across the design space. It is
 299 assumed that there is no correlation between that affect each other's aleatory uncertainty. Due to
 300 this independence and the definition of covariance matrix within the zero-mean stochastic process
 301 of Kriging according to Eq. 2, \mathbf{v}_A can be neglected and \mathbf{V}_A becomes a diagonal matrix. Even if the
 302 aleatory uncertainty is correlated among design points the Locally Weighted Regression process
 303 presented in Section 3.2 captures that effect approximately. The derivation of \mathbf{V}_A is discussed in
 304 the next section of the paper. The prediction variance of the NDK model, representing a total
 305 measurement of epistemic and aleatory uncertainty, can be formulated as,

306 $\sigma_{nd}^2(\mathbf{v}) = \sigma_E^2 + \sigma_A^2(\mathbf{v}) + \mathbf{u}(\mathbf{v})^T [\mathbf{F}^T \mathbf{V}_{nd}^{-1} \mathbf{F}]^{-1} \mathbf{u}(\mathbf{v}) - \mathbf{v}_{nd}(\mathbf{v})^T \mathbf{V}_{nd}^{-1} \mathbf{v}_{nd}(\mathbf{v})$ ----- Eq (9)

307 where $\mathbf{u}(\mathbf{v}) = \mathbf{F}^T \mathbf{V}_{nd}^{-1} \mathbf{v}_{nd}(\mathbf{v}) - \mathbf{f}(\mathbf{v})$.

308 **3.1 Determining the correlation matrix \mathbf{R}_E**

309 After identifying the characteristics of the input variables, the correlation matrix \mathbf{R}_E should
 310 be determined. \mathbf{R}_E is a square matrix with the size $N_s \times N_s$ and contains correlation values between
 311 each sample of the training data set. It can be calculated as;

312 $\mathbf{R}_{E_{i,j}} = k(\mathbf{v}_i, \mathbf{v}_j)$ ----- Eq (10)

313 where $i, j = 1, 2, \dots, N_s$ and $k(\cdot)$ is a user-defined kernel function, which is symmetric and positive
314 semi-definite over the input space (Lanckriet et al., 2004; Mohammadi, 2016). In this proposed
315 method for NDK, the correlation function was adapted to capture the influence of discrete variables
316 in addition to continuous variables. Two kernel operators were used in this study to meet the
317 requirements for defining discrete kernels and combining them with continuous kernels. These
318 selected operators ensure that the resulting correlation functions are also symmetric and positive
319 semi-definite over the respective input spaces. The following kernel operations were used in this
320 proposed NDK methodology.

321 1. Product - Consider two continuous or discrete input subspaces, F_1 and F_2 . If k_1 and k_2 are
322 two kernels defined over input subspaces F_1 and F_2 , and ' β ' is a real number, $k = k_1 \times k_2$
323 and $k' = \beta k_1$ become valid kernels over the input spaces $F_1 \times F_2$ and F_1 respectively
324 (John Shawe-Taylor and Nello Cristianini, 2004).

325 2. Mapping – If k is a kernel in the space F_1 , F_1' is a set and $g(\cdot)$ is a mapping function from
326 F_1' to F_1 , $k'(x, x') = k(g(x), g(x'))$ becomes a valid kernel over F_1' (Steinwart and
327 Christmann, 2008).

328 Consider an input $\mathbf{v}(\mathbf{x}, \mathbf{z})$, which includes both continuous and discrete variables. In combining
329 discrete and continuous kernels for the input $\mathbf{v}(\mathbf{x}, \mathbf{z})$, Li and Racine (2003) proposed to use the
330 product of kernels. Furthermore, the Schur product theorem proves that the Hadamard product
331 between two positive semi-definite matrices results in a positive semi-definite matrix. Therefore,
332 to define a valid kernel function for the NDK model by kernel combination, the product operation
333 of kernels was used in this study. The other kernel operation, mapping was used later for defining

334 a discrete kernel. Accordingly, two different kernels were introduced for continuous and discrete
335 variables separately and combined as follows.

336 $k(\mathbf{v}_i, \mathbf{v}_j) = k_x(\mathbf{x}_i, \mathbf{x}_j) \times k_z(\mathbf{z}_i, \mathbf{z}_j)$ ----- Eq (11)

337 Here k_x and k_z are kernels for continuous and discrete variables. As shown in Fig. 1, the ‘Selection
338 of Correlation Kernels’ stands as an important task within the proposed methodology.

339 **3.1.1 Continuous kernels**

340 For continuous variables, the kernel function can be formulated as:

341 $k_x(\mathbf{x}_i, \mathbf{x}_j) = \prod_{l=1}^n k(\theta_l, d_l)$ ----- Eq (12)

342 where n is the number of continuous variables, $d_l = |x_{i,l} - x_{j,l}|$ is the difference between the i^{th}
343 and j^{th} data points in the l^{th} dimension, and θ_l is a hyperparameter that determines the rate at which
344 correlation decreases with the difference between two points in the l^{th} dimension (Clark, 2019).
345 Table 1 presents a set of commonly used correlation functions for continuous variables.

346 **3.1.2 Discrete kernel functions**

347 In a similar format, the kernel functions for discrete variables were derived in this study as
348 follows:

349 $k_z(\mathbf{z}_i, \mathbf{z}_j) = \prod_{m=1}^q k(\theta_m, d_m)$ ----- Eq (13)

350 where d_m represents the difference between i^{th} and j^{th} data points in the m^{th} dimension. In order
351 to represent the discrete difference between data points, the study employed several kernel types
352 as described below.

353 **Weighted Gower distance kernel**

354 Hutter et al., (2011) proposed a new kernel function, that engages weighted Hamming
 355 distances, to capture the influence of categorical variables in Gaussian process models. Lately,
 356 Halstrup, (2016) further improved this concept by using Gower distance for both continuous and
 357 discrete variables. The Gower distance between two data points can be represented as follows
 358 (Gower, 1971);

$$359 \quad d_{gow}(\mathbf{v}_i, \mathbf{v}_j) = \frac{\sum_{k=1}^{n+q} \frac{|x_k^i - x_k^j|}{\Delta x_k}}{n+q} + \frac{\sum_{k=1}^{n+q} \partial(z_k^i, z_k^j)}{n+q} \quad \text{Eq (14)}$$

360 where Δx_k is the range in the k -th dimension and $\partial(z_k^i, z_k^j)$ is defined as follows;

$$361 \quad \partial(z_k^i, z_k^j) = \begin{cases} 0 & \text{if } z_k^i = z_k^j \\ 1 & \text{otherwise} \end{cases} \quad \text{Eq (15)}$$

362 Halstrup, (2016) proposed the use of Gower distance as the difference between two data
 363 points, which corresponds to d_l and d_m in Eqs. 12 and 13 respectively. Since Gower distance
 364 calculates the difference between data points by considering both continuous and discrete input
 365 variables together, Eqs. 12 and 13 were combined as;

$$366 \quad k(\mathbf{v}_i, \mathbf{v}_j) = \prod_{l=1}^{n+q} k(\theta_l, d_{gow}^l) \quad \text{Eq (16)}$$

367 where θ_l is the hyperparameter corresponding to the l^{th} dimension and d_{gow}^l represents the Gower
 368 distance in the l^{th} dimension between i^{th} and j^{th} data points in the system. For example, the Gower
 369 distance is used to define the mixed variable kernel function in the form of p^{th} exponential
 370 correlation as;

$$371 \quad k(\mathbf{v}_i, \mathbf{v}_j) = \exp\{-\sum_{l=1}^{n+q} \theta_l [d_{gow}^l(\mathbf{v}_i, \mathbf{v}_j)]^{p^l}\} \quad \text{Eq (17)}$$

372 where p^l represents p^{th} exponential in the l^{th} dimension.

373 ***Latent variable kernel***

374 Recently in metamodels, discrete variables were mapped into non-observed Latent
 375 variables and considered continuous variables (Y. Zhang et al., 2020). It was proposed to map each
 376 level of discrete variables into a vector of continuous variables in an l -dimensional hyperspace.
 377 For instance, for the m^{th} level of a categorical input, there exists in particular a Latent variable, $\mathbf{t} =$
 378 $[t_1, \dots, t_h] \in \mathbf{T} \subset \mathbb{R}_1 \times \dots \times \mathbb{R}_h$ where \mathbf{T} represents the Latent space and h is the number of dimensions
 379 in the Latent space (Cuesta Ramirez et al., 2022). In the present study, the proposed Latent variable
 380 kernel maps each level of discrete variables into a 2-dimensional space as follows;

381
$$\varphi(z); \mathbf{F}_z \rightarrow \mathbb{R}^2$$

382
$$\varphi(z) = (\vartheta_{m,1}, \vartheta_{m,2})$$

383 where $\vartheta_{m,1}$ and $\vartheta_{m,2}$ are hyperparameters that represent the coordinates in the Latent variable
 384 space corresponding to discrete variable level m . The fact that discrete levels are already
 385 represented by hyperparameters eliminates the need for using separate hyperparameters for the
 386 distance between discrete inputs. According to the kernel operation of mapping, the Latent variable
 387 kernel function can be formulated as;

388
$$k(\mathbf{z}_i, \mathbf{z}_j) = k'(\varphi(\mathbf{z}_i), \varphi(\mathbf{z}_j)) \text{ ----- Eq (18)}$$

389 In this proposed methodology, the distance between coordinates in the Latent space was
 390 used as the measure of the difference between discrete inputs. For instance, the Gaussian kernel
 391 function for the q -th discrete variable can be presented as;

392
$$k_z(\mathbf{z}_i, \mathbf{z}_j) = \exp(-\theta_q \|\varphi(\mathbf{z}_i) - \varphi(\mathbf{z}_j)\|^2) \text{ ----- Eq (19)}$$

393 where θ_q is the hyperparameter in the q^{th} dimension. However, θ_q can be removed since Latent
 394 variables already depend on hyperparameter values. According to suggestions made by Zhang et
 395 al. (2020), one of the Latent variable coordinates was set to the origin of the 2-dimensional plane
 396 (0,0). Another coordinate was set on one of the axes $(0, \vartheta_{m,1})$ to reduce the number of
 397 hyperparameters used in the kernel function.

398 **3.2 Aleatory uncertainty estimation through Locally Weighted Regression (LWR)**

399 In this proposed NDK for mixed input variables, aleatory uncertainty quantification stands
 400 as the third major process as shown in Fig. 1. Accordingly, this process depends on three main
 401 activities namely, the selection of kernels for the weight matrix in LWR, determining the
 402 smoothening parameter, and covariance matrix calculation. In this process, it was assumed that
 403 aleatory uncertainty in the data set varies with the location of data in the design space. Therefore,
 404 to determine the aleatory uncertainty, locally weighted regression is used (Sam and Ker, 2006).
 405 The general regression model for locally weighted regression is given as;

406 $y_l(\boldsymbol{v}) = \tilde{m}_l(\boldsymbol{v}) + e_l(\boldsymbol{v})$ ----- Eq (20)

407 where l denotes the samples located within the l^{th} local neighborhood, \tilde{m}_l is the local estimator,
 408 and $e_l(\boldsymbol{v})$ is uncorrelated random errors or deviations from measurements with zero mean and
 409 finite variance. The standard Nadaraya–Watson estimator was used to determine the local
 410 estimator as;

411
$$\tilde{m}_l(\boldsymbol{v}) = \frac{\sum_1^{N_s} Y_i W_{i,i}^l(\boldsymbol{v}_l, \boldsymbol{v}_i)}{\sum_1^{N_s} W_{i,i}^l(\boldsymbol{v}_l, \boldsymbol{v}_i)}$$
 ----- Eq (21)

412 where \mathbf{Y} is a vector of the mean responses at the data points, and \mathbf{W}^l is a diagonal matrix of weights
 413 or degrees of membership to the local neighborhood (Aljuhani and Turk, 2014). The data points

414 were weighted via kernel functions within the size of the neighborhood (kl). Gaussian, quadratic,
 415 and sigmoid functions are a few such kernel functions used for the calculation of weights. In this
 416 study, kernel functions were combined as described in Section 3.1 to capture the influence of
 417 discrete variables on LWR. The weight matrix is formulated as a diagonal matrix as shown in Eq.
 418 22. Eq. 23 presents the combined kernel function for individual weights.

$$419 \quad \mathbf{W}^l = \begin{bmatrix} w_{1,1}^l & 0 & \rightarrow & 0 \\ 0 & w_{2,2}^l & 0 & \downarrow \\ 0 & 0 & \ddots & 0 \\ 0 & \rightarrow & 0 & w_{N_S,N_S}^l \end{bmatrix} \quad \text{Eq (22)}$$

$$420 \quad w_{i,i}^l(\mathbf{v}_l, \mathbf{v}_i) = w_x(\mathbf{x}_l, \mathbf{x}_i) \times w_z(\mathbf{z}_l, \mathbf{z}_i) \quad \text{Eq (23)}$$

421 The selection of kernels for the weight matrix in LWR is the next activity of the proposed
 422 methodology. In this study, different kernel combinations were used to represent Eq 23. Table 2
 423 presents a set of kernel combinations used for the weight calculations.

424 The size of the neighborhood (kl), also called the smoothening parameter was determined
 425 through log-likelihood maximization presented in Section 3.3. After that, the aleatory uncertainty
 426 at \mathbf{v}_l was estimated as a locally weighted mean squared error using Eq.24,

$$427 \quad \sigma_l^2(\mathbf{v}_l) = \frac{\sum_1^{N_S} e_i^2 W_{i,i}^l(\mathbf{v}_l, \mathbf{v}_i)}{\sum_1^{N_S} W_{i,i}^l(\mathbf{v}_l, \mathbf{v}_i)} \quad \text{Eq (24)}$$

428 where $e_i = Y_i - \tilde{m}_i(x)$ and $l = 1, 2, 3, \dots, N_S$. This LWR variance estimation is performed at
 429 each sample point and the estimated variance is used to form the diagonal matrix \mathbf{V}_A as shown in
 430 Eq 25.

$$431 \quad \mathbf{V}_A = \begin{bmatrix} \sigma_1^2(\mathbf{v}_1) & 0 & \rightarrow & 0 \\ 0 & \sigma_2^2(\mathbf{v}_2) & 0 & \downarrow \\ 0 & 0 & \ddots & 0 \\ 0 & \rightarrow & 0 & \sigma^2(\mathbf{v}_{Ns}) \end{bmatrix} \quad \text{Eq (25)}$$

432 Accordingly, using the locally weighted regression, the aleatory uncertainty estimation in the
 433 design space can be formulated as;

$$434 \quad \sigma_A^2(\mathbf{v}) = \frac{\sum_1^{Ns} W_{i,i}(\mathbf{v}, \mathbf{v}_i) \times V_{A(i,i)}}{\sum_1^{Ns} W_{i,i}(\mathbf{v}, \mathbf{v}_i)} \quad \text{Eq (26)}$$

435 **3.3 Epistemic Uncertainty Estimation**

436 Epistemic uncertainty quantification comes after the initial formulation of the correlation
 437 and aleatory covariance matrices in the proposed framework as shown in Fig. 1. The optimum
 438 values for hyperparameters (θ), neighborhood size of LWR process (kl), and epistemic
 439 uncertainty term (σ_E^2) of the model are calculated through the log-likelihood maximization using
 440 Eq. 27 (Rasmussen and Williams, 2006):

$$441 \quad \max_{\theta, \sigma_E^2} L = -\frac{1}{2} (N_s \ln(2\pi) + \ln(|\mathbf{V}_{nd}(\theta, \sigma_E^2, kl)|) + \mathbf{Y}_\beta^T \mathbf{V}^{-1}(\theta, \sigma_E^2, kl) \mathbf{Y}_\beta) \quad \text{Eq (27)}$$

442 Here $\mathbf{Y}_\beta = \mathbf{Y} - \mathbf{F}\beta_{nd}$, and β_{nd} is also a function of θ and σ_E^2 . It was possible in conventional
 443 deterministic Kriging to reduce the optimization problem into multiple one-dimensional problems
 444 for individual $\theta_i, i = 1, 2, \dots, N_{n+q}$. However, in NDK due to the non-proportional scale of σ_E^2 in
 445 the likelihood function, the maximization needs to be performed across all model parameters
 446 simultaneously. The optimum values obtained for hyperparameters, epistemic uncertainty
 447 parameter, and neighborhood size are then used for calculating correlation matrix R and
 448 parameters related to aleatory covariance.

449 As the final step, the values obtained from sections 3.1, 3.2, and 3.3 can be used in Eqs 8
 450 and 9 to obtain the estimated mean (y_{nd}) and prediction variance (σ_{nd}^2) respectively at any point
 451 in the design space. The prediction variance obtained through Eq. 9 consists of information for
 452 both aleatory and epistemic uncertainties of the model. In NDK it is expected that with enough
 453 training data points, the epistemic uncertainty of the NDK model converges to zero. Subsequently,
 454 all the uncertainty present in the NDK prediction variance (σ_{nd}^2) converges to the aleatory
 455 uncertainty in the response variable.

456 The inclusion of repeated training data points can make the correlation matrix singular.
 457 This is considered one of the drawbacks of deterministic Kriging models. In physical experiments,
 458 the test cases are repeated at the same experimental conditions to identify the effect of natural
 459 randomness. The proposed NDK method accommodates such repeats and estimates the mean
 460 response and uncertainties. For this purpose, the design of experiments (\mathbf{D}) was modified to
 461 eliminate the effect of repeats if there are any. Accordingly, the matrix of location vectors of input
 462 data \mathbb{V} , was rearranged to \mathbb{V}_{mod} by including only one entry for the repeated training data points.
 463 Subsequently, the response vector, \mathbf{Y} was also modified to \mathbf{Y}_{mod} . For example, consider there are
 464 repeats at the design point (\mathbf{v}_0) such that;

465
$$\mathbf{v}_0 = \mathbf{v}_j \text{ and } f(\mathbf{v}_j) = Y_j ; \mathbf{v}_j \in \mathbb{V}, Y_j \in \mathbb{Y}, \text{ and } j = 1, 2, 3, \dots, p$$

466 where p is the number of repeats at \mathbf{v}_0 . Out of all \mathbf{v}_j data points, only \mathbf{v}_0 was included in the
 467 modified input variable vector \mathbb{V}_{mod} . The corresponding response, Y_0 at the design point \mathbf{v}_0 , was
 468 defined as;

469
$$Y_0 = \frac{\sum_{j=1}^p Y_j}{p} ; Y_0 \in \mathbb{Y}_{mod} \text{ ----- Eq (28)}$$

470 Accordingly, the modified design of experiments ($\mathbf{D}_{mod} = \{\mathbb{V}_{mod}, \mathbf{Y}_{mod}\}$) was used to
471 calculate the correlation matrix, \mathbf{R} . However, for the aleatory uncertainty quantification, the design
472 of experiments (\mathbf{D}) was used without any modification within the locally weighted regression
473 process.

474 Elaborating on the limitation of the study, there are other discrete kernels that can be used
475 in NDK models with mixed input variables in addition to the discussed kernels in this study.
476 However, those kernels required a larger number of hyperparameters. The required number of
477 hyperparameters can increase exponentially with the number of discrete variables and levels. Such
478 increments result in higher computational time, thus increasing the cost of the model ultimately.
479 However, there can be instances where the use of these discrete kernels becomes useful. For
480 example, when there is a large discrete design space or the available training data is limited,
481 choosing kernels such as the coregionalization matrix kernel (Pelamatti et al., 2021) can generate
482 better predictions from the model. Even in the continuous design space, the requirement for a
483 higher number of hyperparameters is a continuously investigated issue in the domain of Kriging
484 models.

485 This study did not focus on the efficiency of the proposed NDK method for mixed input
486 variables with discrete kernels that employ a larger number of hyperparameters and methods of
487 reducing the impact of larger numbers of hyperparameters. Furthermore, the study did not
488 investigate the performance of the proposed NDK model with systems that are classified as high-
489 dimensional problems. Therefore, further research is needed to develop the proposed method with
490 such high-dimensional problems. Also, this study did not focus on how the performance of the
491 proposed model varies with the number of input variables in the system although test cases
492 consisted of different numbers of input variables and combinations of variables.

493 **4. Application of the proposed NDK method to analytical examples**

494 This section presents the application of the proposed NDK methodology on several pre-
495 defined probabilistic functions. The aim was to assess how the NDK for mixed variables performs
496 on multi-dimensional data samples with a larger number of categorical combinations. For this
497 purpose, two analytical functions with 4 and 8 dimensions were considered. In evaluating the
498 performance, the estimated mean response at the unsampled points was compared with the actual
499 values of the functions using a set of goodness-of-fit measures. To demonstrate the proposed
500 method's capability of capturing the aleatory uncertainty in the noisy response, the predicted
501 standard deviation given by the NDK model was compared with the actual standard deviation of
502 the response due to noise (aleatory uncertainty). Furthermore, the predicted mean ± 3 *standard
503 deviation bounds were also compared to demonstrate the performance of the NDK model.

504 Accordingly, the R^2 value (Chicco et al., 2021), Normalized Root Mean Squared Error
505 (NRMSE) (Patel and Ramachandran, 2015), and Normalized Maximum Absolute Error (NMAE)
506 (Xu et al., 2020), were determined for each example using Eqs 29, 30, and 31, respectively.

507
$$R^2 = 1 - \frac{\sum_{i=1}^n (y_i' - y_i)^2}{\frac{n}{\sigma_y^2}} \quad \text{Eq (29)}$$

508
$$NRMSE = \sqrt{\frac{\sum_{i=1}^n (y_i' - y_i)^2}{y_{max} - y_{min}}} \quad \text{Eq (30)}$$

509
$$NMAE = \sqrt{\frac{\max\{(y_i' - y_i)^2, i=1, \dots, n\}}{\sigma_y^2}} \quad \text{Eq (31)}$$

510 where y_i' and y_i are the predicted response and actual response at the i -th testing data point. In
511 common practice, an R^2 value closer to 1 indicates high accuracy. Both NRMSE and NMAE values

512 can range from 0 to $+\infty$, while values closer to 0 in both metrics account for high accuracy in
513 predictions.

514 The evaluation of the goodness-of-fit measures for the NDK model was repeated with
515 randomly selected training and test data sets for each analytical case. These repetitions were done
516 to quantify and compensate for the effect of the random nature in the initial design of experiments.
517 In previous similar work, different numbers of repetitions were used for this purpose; 10 repetitions
518 (Pelamatti et al., 2019) and 20 repetitions (Pelamatti et al., 2021) to eliminate the possible
519 imprecision in the results of accuracy metrics. Following these previous work, 20 repetitions were
520 conducted in this study. At each iteration, the developed NDK model was used to obtain
521 predictions at randomly selected 2000 unsampled points from the input space. These random
522 training and test data sets were sampled by combining the continuous Latin Hypercube Sampling
523 (LHS) method (Mckay et al., 2000) and a sampling over a uniform discrete distribution in the
524 discrete input space (Pelamatti et al., 2021). When defining the training data sample, at each
525 training data point, 3 replications were considered to obtain three different response values at the
526 same data location as a result of random perturbation in the functions. A MATLAB script written
527 by the authors was used for building the NDK model for these two analytical examples. This script
528 was modified according to the kernel functions used for correlation matrix calculation and LWR
529 process in each example.

530 **4.1 Modified Branin function**

531 A modified version of the Branin function that consists of two continuous variables and
532 two discrete variables, each with two levels, was taken as the first analytical example. Due to the
533 two levels for each discrete variable, this four-dimensional function consists of four categorical
534 combinations. The modified version of the Branin function can be presented as follows;

535
$$f(x_1, x_2, z_1, z_2) = \begin{cases} g(x_1, x_2) + h(x_1, x_2)\varepsilon & z_1 = 0 \text{ and } z_2 = 0 \\ 0.5g(x_1, x_2) + 1 + 1.4h(x_1, x_2)\varepsilon & z_1 = 0 \text{ and } z_2 = 1 \\ -0.6g(x_1, x_2) + 6.2 + 0.8h(x_1, x_2)\varepsilon & z_1 = 1 \text{ and } z_2 = 0 \\ -0.4g(x_1, x_2) - 1.5 + 0.6h(x_1, x_2)\varepsilon & z_1 = 1 \text{ and } z_2 = 1 \end{cases} \quad \text{Eq (32)}$$

536
$$g(x_1, x_2) = \left[\left(\left(15x_2 - \frac{5}{4\pi^2} (15x_1 - 5)^2 + \frac{5}{\pi} (15x_1 - 5) - 6 \right)^2 + 10 \left(1 - \frac{1}{8\pi} \right) \cos(15x_1 - 5) + \right. \right. \right. \\ \left. \left. \left. 10 \right) - 54.8104 \right] \frac{1}{51.9496} \quad \text{Eq (33)}$$

538
$$h(x_1, x_2) = |x_1 + x_2| \quad \text{Eq (34)}$$

539 where $x_1 \in [0,1], x_2 \in [0,1], x_3 \in \{0,1\}, x_4 \in \{0,1\}$, and ε is a standard normal variable $N(0,1)$.

540 Fig. 2 visualizes the actual mean of the modified Branin function.

541 In this 4-D mixed variable function, both discrete variables are binary categorical variables.

542 Therefore, out of the discrete kernels described in section 2, the weighted Gower distance kernel

543 was used to develop the correlation matrix in the NDK model for this 4-D function. Furthermore,

544 the Gaussian kernel coupled with the Racine and Li estimator was used for the locally weighted

545 regression step in covariance matrix calculations. Both of these kernels consist of the same

546 hyperparameter value for non-identical levels of a discrete variable and have the lowest number of

547 hyperparameters compared to other kernels. With nonbinary discrete variables, these two kernels

548 do not consider correlations between different discrete levels. This approach is similar to a

549 category-wise approach. The use of such approaches requires a larger number of training data

550 samples when the numbers of discrete variables and discrete levels increase. On the other hand, in

551 this 4-D example, each discrete input variable has only two discrete levels. Given that, even the

552 Latent variable kernel employs a similar category-wise approach based on how the Latent space is

553 defined in this proposed methodology using a cartesian plane. However, since the weighted Gower

554 distance kernel and Racine Li estimator are generally used with binary variables, these two kernels

555 were used for calculations with discrete input variables in this 4-D function.

556 In this analytical example, 3 replications at each training data point were considered.
557 Starting from a training data sample size of 60, the training sample size was gradually increased
558 while evaluating the goodness-of-fit of estimations at 2000 unsampled data points. Out of the
559 goodness-of-fit measures used, Figs. 3(a) and 3(b) present how the mean and median of R^2 values
560 corresponding to the estimated mean and standard deviation of the function varied with the sample
561 size of training data points. A summary of mean values obtained for the other goodness-of-fit
562 measures is shown in Table 3.

563 The estimated mean showed a higher goodness-of-fit with a mean R^2 value exceeding 0.93
564 even with 60 training data samples. Thereafter R^2 values further increased gradually with
565 increasing training data sample size while gaining goodness-of-fit for the estimated mean.
566 However, the prediction of standard deviation in the developed NDK model required a higher
567 number of training data samples to show a higher goodness of fit. For instance, at the training data
568 sample size of 160, the mean R^2 value of the predicted standard deviation reached 0.8 for the first
569 time. After that mean R^2 value of predicted standard deviation showed no significant variation at
570 training sample sizes 180 and 200. Also, at a training sample size of 160, the mean R^2 value of the
571 estimated mean response of the function reached a value over 0.96 and remained almost unchanged
572 with increasing training data sample sizes. As shown in Table 3, a similar pattern can be observed
573 in goodness-of-fit measures for mean ± 3 *standard deviation bounds as well. Therefore, the results
574 indicate that a training sample size between 180-200 provides accurate predictions of both the
575 mean response and standard deviation for this 4-D probabilistic function.

576 **4.2 Eight-Dimensional Powell Function**

577 The next analytical case was set up with the Powell equation which consists of eight
578 dimensions. Accordingly, the selected modified version of the Powell equation is characterized by

579 four continuous variables and four discrete variables, each with three different levels. Since this
 580 function consists of 81 categorical combinations with 4 continuous variables, it was aimed to
 581 evaluate the performance of the proposed NDK method, in systems with a larger number of
 582 dimensions and categorical combinations. The used 8-D function in the third analytical case can
 583 be presented as;

584 $f(x_1, \dots, x_8) = g(x_1, \dots, x_8) + h(x_1, \dots, x_8) * \varepsilon$ -----Eq (35)

585 $g(x_1, \dots, x_8) = \sum_{i=1}^2 \frac{[(x_{4i-3} + 10x_{4i-2})^2 + 5(x_{4i-1} - x_{4i})^2]}{[(x_{4i-2} - 2x_{4i-1})^4 + 10(x_{4i-3} - x_{4i})^4]}$ -----Eq (36)

586 $h(x_1, \dots, x_8) = \sum_{i=1}^2 \frac{[0.8(x_{4i-3} + 10x_{4i-2})^2 + 4.5(x_{4i-1} - x_{4i})^2]}{[0.7(x_{4i-2} - 2x_{4i-1})^4 + 9(x_{4i-3} - x_{4i})^4]}$ -----Eq (37)

587 where $x_1, x_2, x_3, x_4 \in \left[-\frac{\pi}{20}, \frac{\pi}{20}\right]$, $(x_5, x_6, x_7, x_8) \in \{\pi/60, \pi/30, \pi/20\}$, and ε is a standard
 588 normal variable $N(0,1)$.

589 There are 3 discrete levels in each of the discrete levels resulting in 81 categorical
 590 combinations. Employing the weighted Gower distance kernel and Racine and Li estimator for
 591 this analytical function requires a larger number of training data points. Therefore, the Latent
 592 variable kernel was used for discrete variables in this function since Latent variable kernels
 593 consider correlations between non-identical discrete levels as well. The initial training data sample
 594 consisted of 50 randomly selected samples from the above-introduced input space. Using the
 595 developed NDK method, mean values were estimated at 2000 testing data points. Considering the
 596 higher number of discrete variables and categorical combinations available in the test case, the size
 597 of the training data sample was increased by 50 at each time and the goodness-of-fit measures
 598 were calculated for predictions. Fig. 4 presents the variation of calculated mean R^2 values for the

599 estimated mean and standard deviation with the training data sample size. Table 4 presents a
600 summary of other goodness-of-fit measures used for evaluating the performance of the NDK
601 model for 8-D function. The results obtained for the goodness-of-fit measures related to
602 predictions of the 8-D function also showed a similar pattern compared to the previous analytical
603 case. After a training data sample size of 200, no significant variation was observed in the
604 goodness-of-fit measures for both the estimated mean and standard deviation of the 8-D function.

605 In addition to that, the mean R^2 value for the predicted mean -3^* standard deviation bound
606 showed considerably low values in this 8-D function although it improved when the size of training
607 data points was increased. Furthermore, this bound showed large values for the NMAE metric as
608 well. Although low R^2 values and large NMAE values indicated a low prediction accuracy,
609 NRMSE value showed considerably satisfactory values for the mean -3^* standard deviation
610 bound. Delving into the obtained results showed that the variance of the mean -3^* standard
611 deviation bound is low compared to the mean $+ 3^*$ standard deviation bound. Therefore, based on
612 how R^2 is calculated, corresponding R^2 values for predicted mean -3^* standard deviation bound
613 show lower values with a relatively smaller variance value, irrespective of the goodness-of-fit in
614 predictions. Due to the same reason, the NMAE metric also yields large mean values.

615 **5. Testing the proposed NDK model with engineering applications**

616 In order to evaluate the applicability of the proposed NDK for mixed input variables
617 methodology in actual engineering applications, it was applied to two engineering problems; 1) a
618 physical experiment for wave forces on an elevated coastal structure and 2) numerical modeling
619 for the performance of bridges under earthquake excitations. The following sub-sections present
620 the results of applying the proposed NDK method to the two engineering cases.

621 **5.1 A physical experiment for wave forces on an elevated coastal structure**

622 As the first engineering application, the NDK model was applied to estimate wave forces
623 on an elevated coastal structure obtained using physical experiments conducted by Park et al.
624 (2017). During this experiment, data was collected by measuring the wave-induced forces on an
625 idealized coastal structure. Three different types of waves were used for the experiment with
626 varying significant wave heights (H) and peak periods (T). Furthermore, the experiment included
627 the air gap (a) between the idealized elevated structure and the initial water level as a variable.
628 However, this experiment used a fixed water height (h) for all the test cases. Fig. 5 presents the
629 experimental setup used for test cases. Accordingly, the experiment consisted of four variables
630 namely, wave type, wave height, peak period, and air gap between the structure and water level.
631 The type of waves was the discrete variable with wave types namely, regular, irregular, and
632 transient (tsunami type) waves. The other three variables were considered continuous variables.

633 Table 5 presents the combinations of test cases used for the experiments based on wave
634 heights and peak periods. For the test cases presented in Table 5, the air gap between the structure
635 and water level was selected from different values (a_0, a_1, \dots, a_9) given in Table 6. For some
636 combinations in Table 5, all the air gap values were used while some combinations were performed
637 only with a selected number of air gap values. With the given details above, 236 experimental
638 cases were conducted. For each test case vertical and horizontal forces on the idealized structure
639 were measured using load cells f_y and f_x respectively as shown in Fig. 5. Typically, forces induced
640 by these extreme events are modeled using the lognormal distribution (Melchers and Beck, 2018).
641 Therefore, the logarithms of maximum loads on the elevated structure are assumed to be following
642 a random Gaussian process. In this test case, the logarithm of maximum horizontal force was taken
643 as the dependent variable, which was predicted herein.

644 During the application of the proposed NDK methodology in the above-explained
645 experiment, 150 data points were considered for training while 70 data points were taken for
646 testing. Since there are three discrete levels in the discrete input variable of this test case, the use
647 of a category-wise approach demands a higher number of training data samples. However, there
648 are only 150 data points to be used to train the NDK model. Furthermore, the Gower distance
649 kernel combined with the Racine and Li estimator neglects any possible correlations between non-
650 identical discrete levels (the wave types in this example). In such cases, the performance of the
651 model can be affected due to the scarcity of data. Therefore, in developing the NDK model for this
652 problem, the Latent variable kernel was used for the discrete variable during both correlation
653 matrix calculation and the LWR process since it considers the correlations between non-identical
654 discrete levels as well.

655 Following the approach used in previous numerical examples, 20 repetitions were
656 performed on randomly selected training and testing data points. The previously described
657 goodness-of-fit measures were used to evaluate the prediction accuracy. At each iteration,
658 randomly selected 150 data points were used for training and 70 data points were used for testing.
659 A mean R^2 value of 0.80 was obtained for the estimated horizontal forces at the testing data points.
660 Since this was an experimental case, actual standard deviations were not available to calculate the
661 goodness-of-fit measures for predicted standard deviation values. However, the values obtained
662 for the goodness-of-fit measures corresponding to predicted standard deviations in previous
663 numerical examples suggest that predictions for standard deviations in this experimental case
664 would have been reasonable. Furthermore, the mean values obtained for NRMSE and NMAE
665 metrics corresponding to the predicted logarithm of horizontal forces were 0.099 and 2.1908
666 respectively.

667 **5.2 Numerical modeling of bridge performance**

668 As the second engineering application for the proposed NDK method, a numerical
669 simulation of bridge performance under earthquake conditions was selected. The data on the
670 responses and bridge parameters was obtained from Kameshwar et al. (2019). Non-linear time
671 history analysis for seismic response was conducted in OpenSees, a finite element software. The
672 bridge components such as columns and bent were modeled using fiber-based elements. The
673 bridge deck was modeled using a grillage; and the bearings, abutments, and foundations were
674 modeled using non-linear springs. The response of these bridge components was recorded. During
675 these simulations, a wide range of bridge material and geometric properties were varied, resulting
676 in 45 variables as shown in Table 7. A total of 1044 and 108 bridge simulations were conducted
677 to obtain training and testing datasets, respectively. Depending on the degrees of freedom in the
678 model, each of these simulations required 3 to 24 hours on a single CPU. Since these simulations
679 require a lot of computational time, the seismic response was used to demonstrate the usefulness
680 of the proposed NDK method.

681 Although the original data set consisted of 45 variables, the NDK model developed for this
682 problem considered 17 continuous variables and 3 discrete variables resulting in only 20 input
683 variables altogether. These 20 input variables are marked with a (*) in Table 7. The remaining set
684 of variables were considered uniform random variables in the problem. Out of the 20 input
685 variables for the NDK mode, values for continuous input variables were normalized in their ranges,
686 except for discrete variables and peak ground acceleration (PGA). In this example, the discrete
687 input variables have 8, 5, and 18 discrete levels respectively. In such conditions, using both kernels
688 with a category-wise approach and Latent variable kernels has disadvantages. These category-wise
689 approaches demand a larger number of training data while the use of Latent variable kernels

690 increases the number of hyperparameters in the model, thus increasing the computational cost. In
691 this model, two separate NDK models were built using both types of kernels to compare their
692 effectiveness in this type of condition. Accordingly, one NDK model consisted of the weighted
693 Gower distance kernel in correlation matrix calculation and the Racine and Li estimator in the
694 LWR process for discrete input variables. The other NDK model consisted of Latent variable
695 kernels for discrete input variables in both correlation matrix calculation and LWR process.

696 This simulation consisted of 956 data points for the training purpose and 95 data points for
697 the testing purpose out of all the simulations. Some of the seismic simulations did not converge;
698 therefore, the number of usable data points in the test and training set is lower than in the original
699 testing and training data sets. No repetitions were done in this test case since the data set already
700 consisted of designated training and test data sets. In a similar way to the previous engineering
701 application, the dependent variable of this system, maximum relative drifts of the bridge columns,
702 were assumed to be in a lognormal distribution and their logarithm values follow a random
703 Gaussian process. Therefore, goodness-of-fit measures were calculated for the prediction of
704 logarithm values of the maximum relative drift in bridge columns at the 95 testing data points.
705 Since the training and test data points were already designated, the predictions using the NDK
706 model were not repeated like in previous test cases.

707 NDK models that included kernels with a category-wise approach and Latent variable
708 kernels indicated R^2 values of 0.77 and 0.68 respectively. The results did not show an improvement
709 in using Latent variable kernels over the weighted Gower distance kernel and Racine and Li
710 estimator. This feature was also observed in NRMSE values as well. The two models yielded
711 values of 0.11 and 0.13 for the NRMSE metric respectively. However, for the NMAE metric, both
712 NDK models yielded a value of 1.4. The results suggested that there was enough training data

713 within this specific data set for the category-wise approach to satisfactorily capture the effect of
714 discrete input variables. The NDK model with Latent variable kernels produced a smaller R^2 value
715 and a larger NRMSE indicating less accurate predictions compared to the category-wise kernels.
716 The limited capacity of Latent variables to effectively represent relationships between a higher
717 number of discrete levels in a 2-D Latent space can be a possible reason for this difference. Also,
718 the higher computational cost due to the large number of hyperparameters indicated that the use
719 of Latent variable kernels in this test case is not cost-effective. However, it is also important to
720 note that this may vary if the NDK model is developed over a different set of data even from the
721 same numerical model. Similar to the first engineering applications, there are no actual values for
722 the system uncertainty at design points to determine the accuracy of predicted uncertainties.
723 However, the results from the analytical functions suggest that reasonable values would have been
724 estimated for the standard deviations as well.

725 The proposed NDK model showed satisfactory performances in predicting the seismic
726 response of the bridges. However, it is important to note that predictions from the NDK model do
727 not support detailed bridge designs under seismic loads. The use of such an NDK model is more
728 suitable for identifying uncertainties associated with bridges when carrying out risk assessments
729 and mitigation measures in a holistic manner. Since the NDK model provides separate estimates
730 of both epistemic and aleatory uncertainties as a function of input variables, the homoscedasticity
731 assumption, which is commonly used in seismic fragility models of bridges can be avoided.
732 Therefore, it leads to better fragility models, thus resulting in better risk assessments. To
733 demonstrate the usefulness of the proposed NDK model outcomes in practical applications, the
734 developed model was employed in a case study for the seismic risk assessment of a bridge.

735 Accordingly, the annual probability of seismic failure was estimated for a bridge in Charleston,
736 South Carolina using the methodology presented by Kameshwar and Padgett (2014).

737 Data obtained from USGS (Petersen et al., 2008) for Charleston (32.8N 79.9W), were used
738 for the seismic hazard curve. The failure probability of the bridge at any given Peak Ground
739 Acceleration (PGA) value was predicted using the trained NDK model which consisted of the
740 Gower distance kernel and Racine and Li estimator. A maximum of 1.2g was taken for the PGA
741 in the region of interest (Fernandez and Rix, 2012). The characteristics of the bridge employed in
742 the case study are given in Table 9. The values of the set of variables marked with (*) were obtained
743 from (Kameshwar and Padgett, 2014). The other parameter values were assumed from the ranges
744 of corresponding input variables in the data set used for the NDK model. More details of the
745 employed method and the considered case study can be found in (Kameshwar and Padgett, 2014).
746 The complete damage state was considered for the relative drift capacity of the columns. The limit
747 state was defined with a mean value of 5.0 and 0.35 logarithmic standard deviation (Xie et al.,
748 2019; Yi et al., 2007). For a given PGA, the annual failure probability was estimated using the
749 Monte Carlo Simulation with 1.0E+06 samples. Finally, the annual failure probability of the
750 selected bridge was approximated as 3.86E-05 in the range of 0.28-1.2g for PGA. This value aligns
751 with the seismic risk of the particular bridge, 5.57E-05 which is based on column curvature
752 ductility (Kameshwar and Padgett 2014).

753 **6. Discussion of results for analytical cases**

754 In the previous two sections, the proposed NDK method for mixed variables was tested on
755 a set of analytical functions and engineering problems. Overall, the results from numerical
756 examples showed that mixed variable NDK provided accurate predictions for mean and standard

757 deviation including both aleatory and epistemic uncertainties in probabilistic systems. All the
758 metrics calculated for predictions on each numerical case showed satisfactory values confirming
759 goodness-of-fit in both mean response and standard deviation. However, to achieve a satisfactory
760 level of the goodness-of-fit for the standard deviation of analytical cases, a larger number of
761 training data points were required in comparison to mean responses. Although goodness-of-fit
762 measures were not calculated for standard deviations in the two engineering applications,
763 predictions of mean responses matched the actual value at a satisfactory level.

764 In this proposed NDK method for mixed input variables, the selection of discrete kernel
765 functions in the correlation matrix and LWR plays a major role. Table 8 shows the discrete kernels
766 used for these two processes in each of the numerical examples and the engineering application.
767 The first numerical example consisted of the weighted Gower distance kernel for the correlation
768 matrix. Racine and Li estimator was chosen to use in LWR for aleatory uncertainty calculation.
769 Both of these kernels consist of the same hyperparameter value for non-identical levels of a
770 discrete variable, thus employing a category-wise approach. The number of training data points
771 required by a Kriging model with this type of kernel increases when the number of discrete
772 variables and discrete categories in the problem increases. The first numerical example is
773 characterized by binary categorical discrete variables and contains only four categorical
774 combinations. This is a special case where even Latent variable kernels also employ a category-
775 wise approach ultimately since both discrete variables are binary categorical variables. However,
776 the weighted Gower distance kernel and Racine and Li estimator are used with binary input
777 variables in general. Therefore, these two kernels were used in the first numerical example while
778 keeping the number of hyperparameters and computational cost as low as possible.

779 However, the second numerical example and engineering application I consisted of discrete
780 variables that have more than 2 discrete levels (non-binary variables). The modified 8-D Powell
781 function in the second numerical example consisted of 3 discrete variables with 3 levels in each of
782 them. The first engineering application also had a discrete variable with 3 discrete levels. The
783 weighted Gower distance kernel and Racine and Li estimator demand a larger number of training
784 data points in these types of systems because these kernels do not consider correlations between
785 non-identical discrete levels. Therefore, the Latent variable kernel was used in the two NDK
786 models for numerical example II and engineering application I since this kernel considers
787 correlations between non-identical levels in a non-binary discrete variable. In these two examples,
788 the Latent variable kernel was used for both correlation matrix and aleatory uncertainty
789 calculations. However, the second engineering application led to a situation where a decision had
790 to be made between the accuracy of estimations and the computational cost of the NDK model
791 when choosing the types of kernels for the NDK model. Therefore, a comparison was made
792 between the accuracy of NDK models developed with both types of kernels. The results show that
793 the NDK model with the weighted Gower distance kernel and Racine and Li estimator has rendered
794 satisfactory accuracy in estimations given that 956 data points were available for training. The
795 NDK model with Latent variable kernels indicated the need for Latent variables in higher
796 dimensional spaces which ultimately increases its large demand for computational power due to
797 the large number of hyperparameters in the NDK model. Therefore, altogether the results from
798 both numerical examples and engineering applications suggest that the selection of the discrete
799 kernels depends on the size of the available training data sample, the number of discrete variables,
800 and their discrete levels.

801 **6 Conclusion**

802 In this paper, a Non-Deterministic Kriging methodology was proposed for probabilistic
803 systems with mixed continuous and discrete variables. The proposed methodology has the
804 capability of predicting both epistemic and aleatory uncertainties along with the mean response.
805 Furthermore, this method considers the effect of aleatory uncertainty in the computations for mean
806 response estimation as well. Compared to Stochastic Kriging, which considers the effect of
807 aleatory uncertainty in predictions, the proposed method does not require a larger number of
808 replications at the same design point. During the construction of the correlation matrix, both
809 continuous and discrete kernels were combined to incorporate the influence of mixed variables.
810 Within this proposed model, aleatory uncertainty, which is an additional estimation compared to
811 conventional Kriging, is estimated using locally weighted regression. To capture the effect of
812 discrete variables on the local weights, continuous and discrete kernels were combined together.
813 Furthermore, the proposed methodology can process replications at the same training data point,
814 which is a common condition, especially with physical experiments due to inherent randomness.

815 This approach was tested on two probabilistic numerical examples and two engineering
816 examples using three goodness-of-fit measures to determine its effectiveness in the prediction of
817 both mean response and standard deviation. According to the results, the proposed NDK
818 methodology shows better goodness-of-fit in both mean response and standard deviation
819 predictions. Two engineering applications demonstrate the usefulness of the proposed method with
820 large-scale physical experiments and computer simulations which are common in engineering
821 fields. Furthermore, in the second engineering application, the trained NDK model was further
822 used for a risk assessment of a bridge to demonstrate one of the potential uses of the proposed
823 NDK method. However, it is important to note that the performance of the model depends on the
824 nature of the problem and the selection of discrete kernels as well. The selection of discrete kernels

825 can be generally done based on the number of discrete variables and levels in the system and the
826 number of available training data points. The computational time and cost of the model depend on
827 the discrete kernel used since it largely contributes to the number of hyperparameters in the model.
828 This study did not focus on other discrete kernels and handling a larger number of hyperparameters
829 in the proposed NDK model. With adequate research, the proposed method can be assisted as a
830 supervised learning tool in machine learning methods for optimization problems under the
831 complexity of mixed input variables and natural stochasticity.

832 **7. Data availability statement**

833 Some or all data, models, or codes that support the findings of this study are available from the
834 corresponding author upon reasonable request.

835 **8. Acknowledgment**

836 The authors would like to gratefully acknowledge the support of this research by the National
837 Science Foundation (NSF) under Award No. 2203116. Any opinions, findings, conclusions, or
838 recommendations expressed in this material are those of the authors and do not necessarily reflect
839 the views of the National Science Foundation.

840 **List of Symbols**

\mathbf{c} - vector of linear predictor

\mathbb{V}_{mod} - modified matrix of input data locations

\mathbf{D} - design of experiments

without repeats

\mathbf{D}_{mod} - modified design of experiments without
repeats

\mathbf{V}_A - aleatory covariance matrix

d_{gow} - Gower distance

\mathbf{v}_A - aleatory covariance vector.

\mathbf{v} - location vector of an input data point

e_i - uncorrelated correlation error in locally weighted regression (LWR)	\mathbf{W}^l - diagonal matrix of the local polynomial regression weights
\mathbf{f} - basis function vector at the unsampled point	\mathbf{x} - vector of discrete input variables
\mathbf{F} - regression design matrix at training data points	y_{nd} - Non-Deterministic Kriging (NDK) prediction
kl - size of neighborhood in LWR	\mathbf{Y} - response vector in the design of experiments
\tilde{m}_l - standard Nadaraya-Watson estimator in LWR	\mathbf{Y}_{mod} -modified response vector without repeats
N_s - number of training data points	\mathbf{z} - vector of discrete input variables
N_{r+q} - number of all input variables	Z_0 - zero-mean stochastic process
q - number of discrete input variables	Z_E - stochastic process of epistemic uncertainty
R - correlation among data points	Z_A - stochastic process of aleatory uncertainty
\mathbf{R}_E - correlation matrix	$\boldsymbol{\beta}_{nd}$ - regression coefficient vector
\mathbf{r}_E - correlation vector	θ_l - hyperparameter in the l th dimension
n - number of continuous input variables	σ_{nd}^2 - prediction variance of NDK model
\mathbf{t} - Latent variable	σ_E^2 - epistemic variance
\mathbf{T} - Latent space	σ_A^2 - aleatory variance
\mathbb{V} - matrix of input data locations	

841 **References**

842 Abbas, A.E.H.A., Khattab, M.R., Abdel Azeem, M.M., 2018. Natural radionuclides distribution
 843 and environmental impacts of ferruginous sand-siltstone (raw material) and their
 844 manufactured Ahmer oxide used as wall paints. Environmental Forensics 19, 217–224.
 845 <https://doi.org/10.1080/15275922.2018.1485791>

846 Aljuhani, K.H., Turk, L.I.A., 2014. Modification of the adaptive Nadaraya-Watson kernel
 847 regression estimator. SRE 9, 966–971. <https://doi.org/10.5897/SRE2014.6121>

848 An, H., Youn, B.D., Kim, H.S., 2022a. Optimal placement of non-redundant sensors for structural
849 health monitoring under model uncertainty and measurement noise. *Measurement* 204,
850 112102. <https://doi.org/10.1016/j.measurement.2022.112102>

851 An, H., Youn, B.D., Kim, H.S., 2022b. A methodology for sensor number and placement
852 optimization for vibration-based damage detection of composite structures under model
853 uncertainty. *Composite Structures* 279, 114863.
854 <https://doi.org/10.1016/j.compstruct.2021.114863>

855 An, H., Youn, B.D., Kim, H.S., 2021. Reliability-based Design Optimization of Laminated
856 Composite Structures under Delamination and Material Property Uncertainties.
857 *International Journal of Mechanical Sciences* 205, 106561.
858 <https://doi.org/10.1016/j.ijmecsci.2021.106561>

859 Ankenman, B., Nelson, B.L., Staum, J., 2008. Stochastic kriging for simulation metamodeling, in:
860 2008 Winter Simulation Conference. Presented at the 2008 Winter Simulation Conference,
861 pp. 362–370. <https://doi.org/10.1109/WSC.2008.4736089>

862 Asher, M.J., Croke, B.F.W., Jakeman, A.J., Peeters, L.J.M., 2015. A review of surrogate models
863 and their application to groundwater modeling. *Water Resources Research* 51, 5957–5973.
864 <https://doi.org/10.1002/2015WR016967>

865 Bae, H., Clark, D.L., Forster, E.E., 2019. Nondeterministic Kriging for Engineering Design
866 Exploration. *AIAA Journal* 57, 1659–1670. <https://doi.org/10.2514/1.J057364>

867 Boser, B.E., Guyon, I.M., Vapnik, V.N., 1992. A training algorithm for optimal margin classifiers,
868 in: *Proceedings of the Fifth Annual Workshop on Computational Learning Theory*. pp.
869 144–152.

870 Broomhead, D., Lowe, D., 1988. Multivariable Functional Interpolation and Adaptive Networks.
871 *Complex Systems* 2, 321–355.

872 Chicco, D., Warrens, M.J., Jurman, G., 2021. The coefficient of determination R-squared is more
873 informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis
874 evaluation. *PeerJ Comput Sci* 7, e623. <https://doi.org/10.7717/peerj-cs.623>

875 Choi, S.-K., Grandhi, R., Robert A. Canfield, 2006. Reliability-based Structural Design, 2007th
876 edition. ed. Springer, London.

877 Clark, D.L., 2019. Non-Deterministic Metamodeling for Multidisciplinary Design Optimization
878 of Aircraft Systems Under Uncertainty. Wright State University.

879 Cuesta Ramirez, J., Le Riche, R., Roustant, O., Perrin, G., Durantin, C., Glière, A., 2022. A
880 comparison of mixed-variables Bayesian optimization approaches. *Adv. Model. and
881 Simul. in Eng. Sci.* 9, 6. <https://doi.org/10.1186/s40323-022-00218-8>

882 Delage, T., Zannane, S., Neveux, T., 2022. Metamodeling of chemical engineering unit operations
883 using Kriging and prediction error estimation, in: Montastruc, L., Negny, S. (Eds.),
884 *Computer Aided Chemical Engineering*, 32 European Symposium on Computer Aided
885 Process Engineering. Elsevier, pp. 535–540. <https://doi.org/10.1016/B978-0-323-95879-0.50090-4>

887 Di Maio, F., Belotti, M., Volpe, M., Selva, J., Zio, E., 2022. Parallel density scanned adaptive
888 Kriging to improve local tsunami hazard assessment for coastal infrastructures. *Reliability
889 Engineering & System Safety* 222, 108441. <https://doi.org/10.1016/j.ress.2022.108441>

890 Dunn, P.F., 2019. *Measurement, Data Analysis, and Sensor Fundamentals for Engineering and
891 Science*. CRC Press.

892 Fernandez, J.A., Rix, G.J., 2012. Seismic Hazard Analysis and Probabilistic Ground Motions in
893 the Upper Mississippi Embayment 1–10. [https://doi.org/10.1061/40975\(318\)8](https://doi.org/10.1061/40975(318)8)

894 Friedman, J.H., 1991. Multivariate Adaptive Regression Splines. *The Annals of Statistics* 19, 1–
895 67. <https://doi.org/10.1214/aos/1176347963>

896 Gajewicz-Skretna, A., Kar, S., Piotrowska, M., Leszczynski, J., 2021. The kernel-weighted local
897 polynomial regression (KwLPR) approach: an efficient, novel tool for development of
898 QSAR/QSAAR toxicity extrapolation models. *Journal of Cheminformatics* 13, 9.
899 <https://doi.org/10.1186/s13321-021-00484-5>

900 Gower, J.C., 1971. A General Coefficient of Similarity and Some of Its Properties. *Biometrics* 27,
901 857–871. <https://doi.org/10.2307/2528823>

902 Halstrup, M., 2016. Black-box optimization of mixed discrete-continuous optimization problems.
903 Technische Universität Dortmund.

904 Hao, W., Shaoping, W., Tomovic, M.M., 2010. Modified Sequential Kriging Optimization for
905 Multidisciplinary Complex Product Simulation. *Chinese Journal of Aeronautics* 23, 616–
906 622. [https://doi.org/10.1016/S1000-9361\(09\)60262-4](https://doi.org/10.1016/S1000-9361(09)60262-4)

907 Hengl, T., Heuvelink, G.B.M., Stein, A., 2004. A generic framework for spatial prediction of soil
908 variables based on regression-kriging. *Geoderma* 120, 75–93.
909 <https://doi.org/10.1016/j.geoderma.2003.08.018>

910 Hong, L., Li, H., Fu, J., 2022. Novel Kriging-Based Variance Reduction Sampling Method for
911 Hybrid Reliability Analysis with Small Failure Probability. *ASCE-ASME Journal of Risk
912 and Uncertainty in Engineering Systems, Part A: Civil Engineering* 8, 04022017.
913 <https://doi.org/10.1061/AJRUAA.0001231>

914 Huang, T., Bisram, M., Li, Y., Xu, H., Zeng, D., Su, X., Cao, J., Chen, W., 2023. Mixed-Variable
915 Concurrent Material, Geometry, and Process Design in Integrated Computational Materials
916 Engineering, in: Rabczuk, T., Bathe, K.-J. (Eds.), *Machine Learning in Modeling and
917 Simulation: Methods and Applications, Computational Methods in Engineering & the
918 Sciences*. Springer International Publishing, Cham, pp. 395–426.
919 https://doi.org/10.1007/978-3-031-36644-4_11

920 Hutter, F., Hoos, H.H., Leyton-Brown, K., 2011. Sequential Model-Based Optimization for
921 General Algorithm Configuration, in: Coello, C.A.C. (Ed.), *Learning and Intelligent
922 Optimization, Lecture Notes in Computer Science*. Springer, Berlin, Heidelberg, pp. 507–
923 523. https://doi.org/10.1007/978-3-642-25566-3_40

924 Jiang, P., Zhang, Y., Zhou, Q., Shao, X., Hu, J., Shu, L., 2018. An adaptive sampling strategy for
925 Kriging metamodel based on Delaunay triangulation and TOPSIS. *Appl Intell* 48, 1644–
926 1656. <https://doi.org/10.1007/s10489-017-1031-z>

927 John Shawe-Taylor, Nello Cristianini, 2004. *Kernel Methods for Pattern Analysis*. Cambridge
928 University Press, Cambridge, UK.

929 Jones, D.R., Schonlau, M., Welch, W.J., 1998. Efficient Global Optimization of Expensive Black-
930 Box Functions. *Journal of Global Optimization* 13, 455–492.
931 <https://doi.org/10.1023/A:1008306431147>

932 Kabir, A.M., Langsfeld, J.D., Zhuang, C., Kaipa, K.N., Gupta, S.K., 2017. A systematic approach
933 for minimizing physical experiments to identify optimal trajectory parameters for robots,
934 in: *2017 IEEE International Conference on Robotics and Automation (ICRA)*. Presented
935 at the *2017 IEEE International Conference on Robotics and Automation (ICRA)*, pp. 351–
936 357. <https://doi.org/10.1109/ICRA.2017.7989045>

937 Kahrizi, E., Rajaei, T., Sedighi, M., 2022. Probabilistic and Experimental Investigation of the
938 Effect of Mineral Adsorbents on Porous Concrete Using Kriging, PRSM, and RBF

939 Methods. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A:
940 Civil Engineering 8, 04022047. <https://doi.org/10.1061/AJRUA6.0001258>

941 Kameshwar, S., Padgett, J.E., 2014. Multi-hazard risk assessment of highway bridges subjected to
942 earthquake and hurricane hazards. Engineering Structures, Performance Based
943 Engineering: Current Advances and Applications 78, 154–166.
944 <https://doi.org/10.1016/j.engstruct.2014.05.016>

945 Kameshwar, S., Vishnu, N., Padgett, J., 2019. Response and Fragility Modeling of Aging Bridges
946 Subjected to Earthquakes and Truck Loads. <https://doi.org/10.17603/ds2-5tzv-qz91>

947 Khan, M.A.Z., 2011. Transient engine model for calibration using two-stage regression approach
948 (thesis). Loughborough University.

949 Kianifar, M.R., Campean, F., 2020. Performance evaluation of metamodeling methods for
950 engineering problems: towards a practitioner guide. Struct Multidisc Optim 61, 159–186.
951 <https://doi.org/10.1007/s00158-019-02352-1>

952 Kitahara, M., Bi, S., Broggi, M., Beer, M., 2021. Bayesian Model Updating in Time Domain with
953 Metamodel-Based Reliability Method. ASCE-ASME Journal of Risk and Uncertainty in
954 Engineering Systems, Part A: Civil Engineering 7, 04021030.
955 <https://doi.org/10.1061/AJRUA6.0001149>

956 Kohonen, T., 1982. Self-organized formation of topologically correct feature maps. Biological
957 cybernetics 43, 59–69.

958 Koziel, S., Pietrenko-Dabrowska, A., 2022. Performance-Driven Yield Optimization of High-
959 Frequency Structures by Kriging Surrogates. Applied Sciences 12, 3697.
960 <https://doi.org/10.3390/app12073697>

961 Krige, D., 1951. A statistical approach to some basic mine valuation problems on the
962 Witwatersrand 2, 119–139.

963 Kumar, P., Rao, B., Burman, A., Kumar, S., Samui, P., 2023. Spatial variation of permeability and
964 consolidation behaviors of soil using ordinary kriging method. Groundwater for
965 Sustainable Development 20, 100856. <https://doi.org/10.1016/j.gsd.2022.100856>

966 Lanckriet, G., Cristianini, N., Cristianini, P., Ghaoui, L., Jordan, M., 2004. Learning the Kernel
967 Matrix with Semidefinite Programming. Journal of Machine Learning Research 5, 27–72.

968 Li, C., Lu, Z., Ma, T., Zhu, X., 2009. A simple kriging method incorporating multiscale
969 measurements in geochemical survey. Journal of Geochemical Exploration 101, 147–154.
970 <https://doi.org/10.1016/j.gexplo.2008.06.003>

971 Li, Q., Racine, J., 2014. Cross-Validated Local Linear Nonparametric Regression 14, 485–512.

972 Li, Q., Racine, J., 2003. Nonparametric estimation of distributions with categorical and continuous
973 data. Journal of Multivariate Analysis 86, 266–292. [https://doi.org/10.1016/S0047-259X\(02\)00025-8](https://doi.org/10.1016/S0047-259X(02)00025-8)

975 Lopez, R.H., Bismut, E., Straub, D., 2022. Stochastic efficient global optimization with high noise
976 variance and mixed design variables. J Braz. Soc. Mech. Sci. Eng. 45, 7.
977 <https://doi.org/10.1007/s40430-022-03920-1>

978 Loquin, K., Dubois, D., 2010. Kriging and Epistemic Uncertainty: A Critical Discussion, in:
979 Jeansoulin, R., Papini, O., Prade, H., Schockaert, S. (Eds.), Methods for Handling
980 Imperfect Spatial Information, Studies in Fuzziness and Soft Computing. Springer, Berlin,
981 Heidelberg, pp. 269–305. https://doi.org/10.1007/978-3-642-14755-5_11

982 Matheron, G., 1962. Traité de géostatistique appliquée. Editions Technip.

983 McKay, M.D., Beckman, R.J., Conover, W.J., 2000. A Comparison of Three Methods for Selecting
984 Values of Input Variables in the Analysis of Output From a Computer Code.
985 *Technometrics* 42, 55–61. <https://doi.org/10.1080/00401706.2000.10485979>

986 Melchers, R., Beck, A., 2018. *Structural Reliability Analysis and Prediction*, 1st ed. John Wiley &
987 Sons, Ltd. <https://doi.org/10.1002/9781119266105>

988 Mohammadi, H., 2016. Kriging-based black-box global optimization: analysis and new
989 algorithms (phdthesis). Université de Lyon.

990 Moore, R.A., Romero, D.A., Paredis, C.J.J., 2014. Value-Based Global Optimization. *Journal of*
991 *Mechanical Design* 136. <https://doi.org/10.1115/1.4026281>

992 Mortazavi, M., Kuczera, G., Cui, L., 2012. Multiobjective optimization of urban water resources:
993 Moving toward more practical solutions. *Water Resources Research* 48.
994 <https://doi.org/10.1029/2011WR010866>

995 Moustapha, M., Galimshina, A., Habert, G., Sudret, B., 2022. Multi-objective robust optimization
996 using adaptive surrogate models for problems with mixed continuous-categorical
997 parameters. *Struct Multidisc Optim* 65, 357. <https://doi.org/10.1007/s00158-022-03457-w>

998 Mukhopadhyay, T., Dey, T.K., Chowdhury, R., Chakrabarti, A., 2015. Structural Damage
999 Identification Using Response Surface-Based Multi-objective Optimization: A
1000 Comparative Study. *Arab J Sci Eng* 40, 1027–1044. <https://doi.org/10.1007/s13369-015-1591-3>

1001 Musiol, G., 1997. An Introduction to Categorical Data Analysis. *Computational Statistics & Data*
1002 *Analysis* 23, 565–563.

1003 Nazeeh, K.M., Dilip, D.M., Sivakumar Babu, G.L., 2023. Quantile-Based Design and
1004 Optimization of Shallow Foundation on Cohesionless Soil Using Adaptive Kriging
1005 Surrogates. *International Journal of Geomechanics* 23, 06023014.
1006 <https://doi.org/10.1061/IJGNAI.GMENG-8226>

1007 Palar, P.S., Liem, R.P., Zuhal, L.R., Shimoyama, K., 2019. On the use of surrogate models in
1008 engineering design optimization and exploration: the key issues, in: *Proceedings of the*
1009 *Genetic and Evolutionary Computation Conference Companion, GECCO '19*. Association
1010 for Computing Machinery, New York, NY, USA, pp. 1592–1602.
1011 <https://doi.org/10.1145/3319619.3326813>

1012 Park, H., Tomiczek, T., Cox, D.T., van de Lindt, J.W., Lomonaco, P., 2017. Experimental
1013 modeling of horizontal and vertical wave forces on an elevated coastal structure. *Coastal*
1014 *Engineering* 128, 58–74. <https://doi.org/10.1016/j.coastaleng.2017.08.001>

1015 Patel, S.S., Ramachandran, P., 2015. A Comparison of Machine Learning Techniques for
1016 Modeling River Flow Time Series: The Case of Upper Cauvery River Basin. *Water Resour*
1017 *Manage* 29, 589–602. <https://doi.org/10.1007/s11269-014-0705-0>

1018 Pelamatti, J., Brevault, L., Balesdent, M., Talbi, E.-G., Guerin, Y., 2021. Mixed Variable Gaussian
1019 Process-Based Surrogate Modeling Techniques: Application to Aerospace Design. *Journal*
1020 *of Aerospace Information Systems* 18, 813–837. <https://doi.org/10.2514/1.I010965>

1021 Pelamatti, J., Brevault, L., Balesdent, M., Talbi, E.-G., Guerin, Y., 2020. Overview and
1022 Comparison of Gaussian Process-Based Surrogate Models for Mixed Continuous and
1023 Discrete Variables: Application on Aerospace Design Problems, in: Bartz-Beielstein, T.,
1024 Filipič, B., Korošec, P., Talbi, E.-G. (Eds.), *High-Performance Simulation-Based*
1025 *Optimization, Studies in Computational Intelligence*. Springer International Publishing,
1026 Cham, pp. 189–224. https://doi.org/10.1007/978-3-030-18764-4_9

1028 Pelamatti, J., Brevault, L., Balesdent, M., Talbi, E.-G., Guerin, Y., 2019. Efficient global
1029 optimization of constrained mixed variable problems. *J Glob Optim* 73, 583–613.
1030 <https://doi.org/10.1007/s10898-018-0715-1>

1031 Petersen, M., Frankel, A., Harmsen, S., Mueller, C., Haller, K., Wheeler, R., Wesson, R., Zeng,
1032 Y., Boyd, O., Perkins, D., Luco, N., Field, E., Wills, C., Rukstales, K., 2008.
1033 Documentation for the 2008 Update of the United States National Seismic Hazard Maps.
1034 USGS Open-File Report 2008-1128.

1035 Picheny, V., Wagner, T., Ginsbourger, D., 2013. A benchmark of kriging-based infill criteria for
1036 noisy optimization. *Struct Multidisc Optim* 48, 607–626. <https://doi.org/10.1007/s00158-013-0919-4>

1038 Qian, J., Yi, J., Cheng, Y., Liu, J., Zhou, Q., 2020. A sequential constraints updating approach for
1039 Kriging surrogate model-assisted engineering optimization design problem. *Engineering
1040 with Computers* 36, 993–1009. <https://doi.org/10.1007/s00366-019-00745-w>

1041 Rasmussen, C.E., Williams, C.K.I., 2006. Gaussian processes for machine learning, Adaptive
1042 computation and machine learning. MIT Press, Cambridge, Mass.

1043 Rosness, R., 1993. Limits to Analysis and Verification, in: *Verification and Validation of Complex
1044 Systems: Human Factors Issues*.

1045 Roustant, O., Padonou, E., Deville, Y., Clément, A., Perrin, G., Giorla, J., Wynn, H., 2020. Group
1046 Kernels for Gaussian Process Metamodels with Categorical Inputs. *SIAM/ASA J.
1047 Uncertainty Quantification* 8, 775–806. <https://doi.org/10.1137/18M1209386>

1048 Sam, A.G., Ker, A.P., 2006. Nonparametric regression under alternative data environments.
1049 *Statistics & Probability Letters* 76, 1037–1046. <https://doi.org/10.1016/j.spl.2005.12.002>

1050 Saves, P., Bartoli, N., Diouane, Y., Lefebvre, T., Morlier, J., David, C., Van, E.N., Defoort, S.,
1051 2021. Bayesian optimization for mixed variables using an adaptive dimension reduction
1052 process: applications to aircraft design, in: *AIAA SCITECH 2022 Forum*. American
1053 Institute of Aeronautics and Astronautics. <https://doi.org/10.2514/6.2022-0082>

1054 Saves, P., Diouane, Y., Bartoli, N., Lefebvre, T., Morlier, J., 2022. A general square exponential
1055 kernel to handle mixed-categorical variables for Gaussian process, in: *AIAA AVIATION
1056 Forum*. Presented at the AIAA AVIATION 2022 Forum.

1057 Sriver, T., Chrissis, J., 2004. Framework for Mixed-Variable Optimization Under Uncertainty
1058 Using Surrogates and Statistical Selection, in: *10th AIAA/ISSMO Multidisciplinary
1059 Analysis and Optimization Conference*. American Institute of Aeronautics and
1060 Astronautics. <https://doi.org/10.2514/6.2004-4591>

1061 Steinwart, I., Christmann, A., 2008. *Support Vector Machines*, 1st ed. Springer Publishing
1062 Company, Incorporated.

1063 Stuckner, J., Piekenbrock, M., Arnold, S.M., Ricks, T.M., 2021. Optimal experimental design with
1064 fast neural network surrogate models. *Computational Materials Science* 200, 110747.
1065 <https://doi.org/10.1016/j.commatsci.2021.110747>

1066 Su, D.-X., Zhao, J., Wang, Y., Qu, M.-J., 2019. Kriging-based orthotropic closure for flow-induced
1067 fiber orientation and the part stiffness predictions with experimental investigation. *Polymer
1068 Composites* 40, 3844–3856. <https://doi.org/10.1002/pc.25243>

1069 Tao, S., Apley, D.W., Plumlee, M., Chen, W., 2021. Latent variable Gaussian process models: A
1070 rank-based analysis and an alternative approach. *International Journal for Numerical
1071 Methods in Engineering* 122, 4007–4026. <https://doi.org/10.1002/nme.6690>

1072 Trochu, F., Vernet, N., Sun, Y., Echaabi, J., Makradi, A., Belouettar, S., 2022. Hybrid twin models
1073 of fiber compaction for composite manufacturing based on dual kriging. *Int J Mater Form*
1074 15, 36. <https://doi.org/10.1007/s12289-022-01679-3>

1075 Vapnik, V., 1999. The nature of statistical learning theory. Springer science & business media.

1076 Wang, D., Zeng, X.-J., Keane, J.A., 2007. Hierarchical hybrid fuzzy-neural networks for
1077 approximation with mixed input variables. *Neurocomputing, Neural Network Applications*
1078 in Electrical Engineering

1079 Wang, G., Dong, Z., Aitchison, P., 2001. Adaptive Response Surface Method - a Global
1080 Optimization Scheme for Approximation-Based Design Problems. *Engineering*
1081 Optimization

1082 Welch, W.J., Buck, Robert.J., Sacks, J., Wynn, H.P., Mitchell, T.J., Morris, M.D., 1992.
1083 Screening, Predicting, and Computer Experiments. *Technometrics* 34, 15–25.
1084 <https://doi.org/10.2307/1269548>

1085 Widrow, B., Hoff, M.E., 1960. Adaptive switching circuits (No. TR-1553-1). Stanford Univ Ca
1086 Stanford Electronics Labs.

1087 Xie, Y., Zhang, J., DesRoches, R., Padgett, J.E., 2019. Seismic fragilities of single-column
1088 highway bridges with rocking column-foots. *Earthquake Engineering & Structural*
1089 *Dynamics* 48, 843–864. <https://doi.org/10.1002/eqe.3164>

1090 Xu, G., Kareem, A., Shen, L., 2020. Surrogate Modeling with Sequential Updating: Applications
1091 to Bridge Deck–Wave and Bridge Deck–Wind Interactions. *Journal of Computing in Civil*
1092 *Engineering* 34, 04020023. [https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000904](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000904)

1093 Yi, J.-H., Kim, S.-H., Kushiyama, S., 2007. PDF interpolation technique for seismic fragility
1094 analysis of bridges. *Engineering Structures* 29, 1312–1322.
1095 <https://doi.org/10.1016/j.engstruct.2006.08.019>

1096 Yi, S., Taflanidis, A.A., 2023. Computationally Efficient Adaptive Design of Experiments for
1097 Global Metamodelling through Integrated Error Approximation and Multicriteria Search
1098 Strategies. *Journal of Engineering Mechanics* 149, 04023050.
1099 <https://doi.org/10.1061/JENMDT.EMENG-7083>

1100 Yin, H., Fang, H., Wen, G., Gutowski, M., Xiao, Y., 2018. On the ensemble of metamodels with
1101 multiple regional optimized weight factors. *Structural and Multidisciplinary Optimization*
1102 58, 245–263.

1103 Zhang, J., Chowdhury, S., Messac, A., 2012. An adaptive hybrid surrogate model. *Structural and*
1104 *Multidisciplinary Optimization* 46, 223–238.

1105 Zhang, X., Wang, L., Sørensen, J.D., 2020. AKOIS: An adaptive Kriging oriented importance
1106 sampling method for structural system reliability analysis. *Structural Safety* 82, 101876.
1107 <https://doi.org/10.1016/j.strusafe.2019.101876>

1108 Zhang, Y., Tao, S., Chen, W., Apley, D.W., 2020. A Latent Variable Approach to Gaussian
1109 Process Modeling with Qualitative and Quantitative Factors. *Technometrics* 62, 291–302.
1110 <https://doi.org/10.1080/00401706.2019.1638834>

1111 Zhou, Q., Wang, Y., Choi, S.-K., Jiang, P., Shao, X., Hu, J., Shu, L., 2018. A robust optimization
1112 approach based on multi-fidelity metamodel. *Struct Multidisc Optim* 57, 775–797.
1113 <https://doi.org/10.1007/s00158-017-1783-4>

1114 Zhuang, X., Pan, R., 2012. Epistemic uncertainty in reliability-based design optimization, in: 2012
1115 Proceedings Annual Reliability and Maintainability Symposium. Presented at the 2012
1116 Proceedings Annual Reliability and Maintainability Symposium, pp. 1–6.
1117 <https://doi.org/10.1109/RAMS.2012.6175496>

1118

1119 **Table 1.** Correlation functions for continuous variables

Name	$k(\theta_l, d_l)$	Parameter limits
Exponential	$\exp(-\theta_l d_l)$	-
Gaussian	$\exp(-\theta_l d_l^2)$	-
Linear	$\max(0, 1 - \theta_l d_l^2)$	-
Spherical	$1 - 1.5\varepsilon_l + 0.5\varepsilon_l^3$	$\varepsilon_l = \min(1, \theta_l d_l)$
Cubic	$1 - 3\varepsilon_l^2 + 2\varepsilon_l^3$	$\varepsilon_l = \min(1, \theta_l d_l)$

1120

Table 2. Combinations of kernel functions for weight matrix

Comb.	Continuous variable kernel	Discrete variable kernel
Number		
01	Gaussian kernel function (Gajewicz-Skretna et al., 2021)	Racine and Li estimator (Li and Racine, 2014)
	$w_x(x_k^i, x_k^j) = \frac{1}{c\sqrt{2\pi}} \exp\left(-\frac{(x_k^i - x_k^j)^2}{2kl^2}\right)$	$w_z(z_k^i, z_k^j) = \begin{cases} 1 & \text{if } z_k^i = z_k^j \\ \gamma_k & \text{otherwise} \end{cases}$
02	Weighted Gower Distance Kernel	
		$w(\mathbf{v}^i, \mathbf{v}^j) = \exp\left\{-\sum_{k=1}^{k=n+q} \theta_k [d_{gow}^k(v_k^i, v_k^j)]^{p^k}\right\}$
03	Gaussian kernel function (Gajewicz-Skretna et al., 2021)	Latent variable kernel
		$w_z(z_k^i, z_k^j) = \exp(-\theta_q \ \varphi(z_i) - \varphi(z_j)\ ^2)$
	$w_x(x_k^i, x_k^j) = \frac{1}{c\sqrt{2\pi}} \exp\left(-\frac{(x_k^i - x_k^j)^2}{2kl^2}\right)$	

Note: v_k^i represents the i -th variable in the k -th dimension

1123 **Table 3.** Summary of mean values of the Goodness-of-fit (GOF) measures in 4D function

1124

Size	Sample GOF measures for the											
	estimated mean	estimated standard deviation	estimated mean – 3*standard deviation	estimated mean + 3*standard deviation								
	R ² value	NRMSE	NMAE	R ² value	NRMSE	NMAE	R ² value	NRMSE	NMAE	R ² value	NRMSE	NMAE
60	0.93	0.083	1.40	0.62	0.151	2.25	0.81	0.115	1.90	0.83	0.097	1.35
80	0.94	0.071	1.24	0.61	0.155	2.33	0.81	0.116	1.83	0.81	0.103	1.40
100	0.94	0.068	1.40	0.72	0.131	2.14	0.80	0.117	1.97	0.84	0.093	1.32
120	0.95	0.065	1.22	0.73	0.127	2.08	0.81	0.117	1.92	0.84	0.094	1.30
140	0.95	0.059	1.19	0.77	0.117	1.87	0.82	0.114	1.83	0.85	0.092	1.27
160	0.96	0.059	1.16	0.81	0.107	1.71	0.84	0.107	1.75	0.86	0.087	1.19
180	0.96	0.060	1.29	0.80	0.110	1.87	0.81	0.115	1.99	0.85	0.092	1.26
200	0.95	0.059	1.20	0.80	0.110	1.93	0.82	0.113	1.87	0.86	0.088	1.18

1125 **Table 4.** Summary of mean values of the goodness-of-fit measures in 8D function

Sample Size	Goodness-of-fit measures for the estimated mean			GOF measures for estimated standard deviation			GOF measures for the estimated mean – 3*standard deviation			GOF measures for the estimated mean + 3*standard deviation		
	R ² value	NRMSE	NMAE	R ² value	NRMSE	NMAE	R ² value	NRMSE	NMAE	R ² value	NRMSE	NMAE
50	0.82	0.095	1.69	0.70	0.2	1.72	0.31	0.201	3.06	0.82	0.123	1.55
100	0.93	0.056	1.04	0.75	0.177	1.97	0.46	0.177	3.07	0.87	0.102	1.50
150	0.95	0.050	0.98	0.69	0.203	2.09	0.34	0.196	3.12	0.83	0.118	1.58
200	0.95	0.048	0.98	0.75	0.183	1.91	0.45	0.180	3.02	0.87	0.104	1.42
250	0.95	0.050	1.06	0.76	0.177	1.82	0.47	0.176	2.84	0.88	0.102	1.38

1126

Table 5. Experimental wave conditions

Exp.	Regular waves ($h = 2.15\text{m}$)		Irregular waves ($h = 2.15\text{m}$)		Transient waves ($h = 2.0\text{m}$)	
	H(m)	T(s)	H(m)	T(s)	A(m)	T(s)
X1	0.1	4.10	0.10	3.72	0.51	36.4
X2	0.21	4.10	0.19	3.86	0.34	51.0
X3	0.29	4.10	0.29	4.10	0.28	87.2
X4	0.40	4.10	0.40	4.10	0.21	109
X5	0.50	4.10	0.50	3.86	0.18	117
X6	0.16	2.52	0.16	2.52	0.16	120
X7	0.23	2.98	0.21	2.98	0.14	154
X8	0.26	3.64	0.25	3.28	0.13	162
X9	0.35	4.68	0.34	4.68		
X10	0.42	5.04	0.39	5.04		

1129 **Table 6.** Air gag conditions for experimental cases

Air Gap cases	a (m)	
	Regular and Irregular Waves	Transient Waves
a ₀	-0.40	-0.25
a ₁	-0.30	-0.15
a ₂	-0.20	-0.05
a ₃	-0.10	0.05
a ₄	-0.05	0.10
a ₅	0.00	0.15
a ₆	0.05	0.20
a ₇	0.10	0.25
a ₈	0.20	0.30
a ₉	0.28	0.43

1130

1131 **Table 7.** Details of input variables used in Engineering Application II

Variable	Category	Range	Unit
*Log of Peak Ground Acceleration	Continuous	[-3.22 0.67]	
*Deck width	Continuous	[150.03- 1096.50]	Inches
*Concrete compressive strength	Continuous	[3.00- 8.00]	ksi
*Steel yield strength	Continuous	[39.50 – 95.00]	ksi
*Dowel strength	Continuous	[10.40 – 15.60]	kips
*Number of spans	Discrete	2-9	-
*Span length	Continuous	[276.08 – 1102.21]	Inches
*Number of columns	Discrete	2-6	-
*Column height	Continuous	[130.00 – 354.33]	Inches
*Column diameter	Continuous	[23.65 – 59.10]	Inches
*Concrete cover depth	Continuous	[0.50 – 4.50]	Inches
*Number of girders along the width of the deck	Discrete	2-19	-
*Girder spacing	Continuous	[53.05 – 210.25]	Inches
*Column spacing	Continuous	[150.03 – 300.00]	Inches
*Slab weight per girder	Continuous	[0.03- 0.28]	Kips/inch
*Bearing pad area	Continuous	[90.11 – 654.64]	Sq. inches
*Bearing pad thickness	Continuous	[0.20 – 1.20]	Inches
*Decrease in rebar diameter	Continuous	[0.00 – 0.70]	Inches
*Stiffness factor to account for oxidation of elastomeric bearings	Continuous	[0.90 – 2.00]	-

*Decrease in bearing dowel diameter	Continuous	[0.00 – 0.70]	Inches
Coefficient of friction for bearing pad	Continuous	[0.50 - 2.5]	-
Stiffness of bearing pad	Continuous	[0.04 - 0.80]	ksi
Dowel gap	Continuous	[0.00 – 2.00]	Inches
Abutment passive stiffness	Continuous	[1.46- 4.39]	kip/in/in
Abutment active stiffness	Continuous	[20.00 – 60.00]	kip/in/pile
Foundation vertical stiffness	Continuous	[500.41 – 1500.00]	kip/in
Foundation transverse stiffness	Continuous	[20.00 – 60.00]	kip/in/pile
Mass participation ratio	Continuous	[0.90 – 1.10]	-
Damping ratio	Continuous	[0.02 – 0.08]	-
PGA – geometric mean of the two ground motion components	Continuous	[0.03 – 1.90]	g
Gap 1 (used for bearing model)	Continuous	[1.41 – 1.57]	Inches
Gap 2 (used for bearing model)	Continuous	[1.41 – 1.57]	Inches
Gap 3 (used for bearing model)	Continuous	[0.78 – 1.22]	Inches
Gap 4 (used for bearing model)	Continuous	[0.78 – 1.22]	Inches
Longitudinal steel reinforcement ratio	Continuous	[0.01 - 0.04]	-
Transverse steel reinforcement ratio	Continuous	[0.00 – 0.02]	-
Deck slab c/s area	Continuous	[362.31 – 3412.81]	inches ²
Girder steel area	Continuous	[754.04 – 4282.90]	inches ²
Girder concrete strength	Continuous	[7.00 – 11.00]	ksi
I _x of deck slab	Continuous	[1458.26 – 96455.30]	Inches ⁴

I _z of deck slab	Continuous	[95243.05- 11934069.40]	Inches ⁴
I _x of girder	Continuous	[94262.079- 1392317.95]	Inches ⁴
I _z of girder	Continuous	[86750.26- 1392317.95]	Inches ⁴
Earthquake direction	Continuous	[0.14 – 360.00]	degree
Weight of one AASHTO prestressed girder	Continuous	[0.02 – 0.1]	kip/in

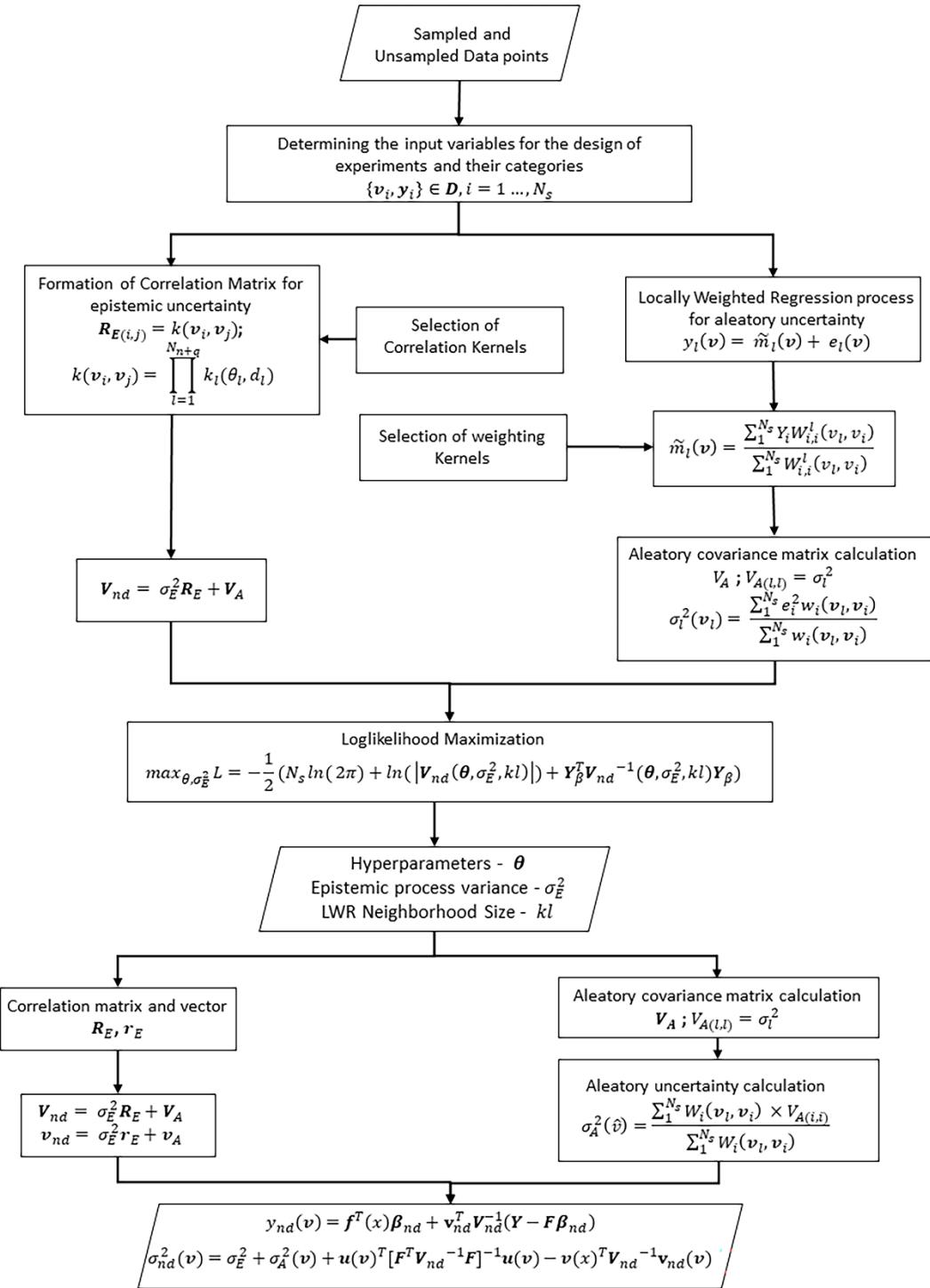
1133 **Table 8.** Summary of discrete kernels used in examples

Example	No. of Categorical combinations (No. of discrete variables)	Discrete Kernels			Total	number of Hyperparameters in Discrete kernels
		Correlation	LWR			
4-D function	4(2)	Weighted Distance	Gower	Racine and Li	4	
8-D function	81 (4)	Latent kernel	variable	Latent variable kernel	12	
Engineering	3 (1)	Latent kernel	variable	Latent variable kernel	3	
Application I						
Engineering	760 (3)	Weighted Distance	Gower	Racine and Li Estimator	6	
Application II						

1134

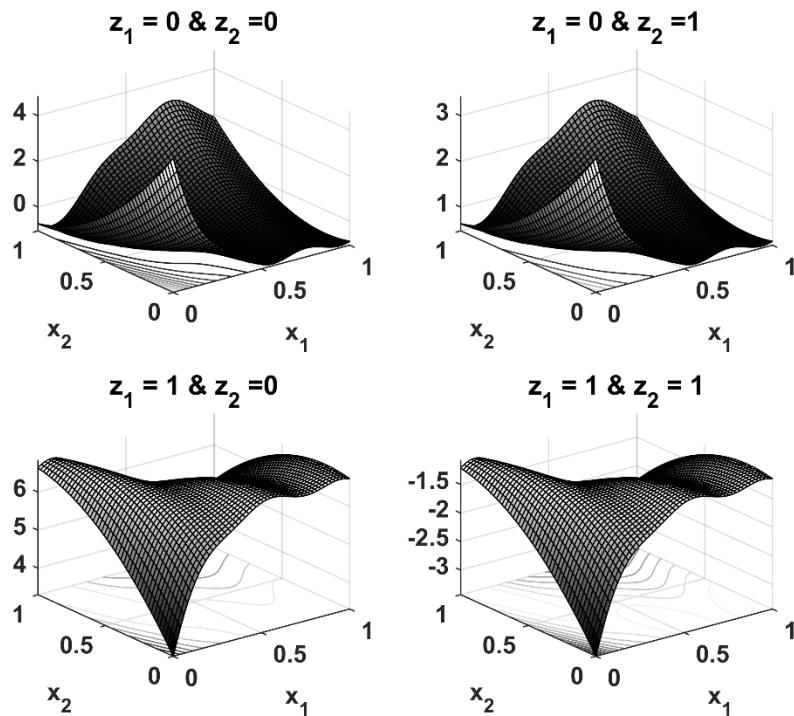
1135 **Table 9.** Input values for the predictor variables

Variable	Input value	Unit
*Deck width	600	Inches
*Concrete compressive strength	4.35	ksi
*Steel yield strength	66.7	ksi
Dowel strength	11	kips
*Number of spans	4	-
*Span length	393.7	Inches
*Number of columns	3	-
*Column height	157.48	Inches
*Column diameter	35.83	Inches
Concrete cover depth	3	Inches
Number of girders along the width of the deck	6	-
Girder spacing	120	Inches
*Column spacing	300	Inches
Slab weight per girder	0.24	Kips/inch
Bearing pad area	372.58	Sq. inches
Bearing pad thickness	0.7	Inches
Decrease in rebar diameter	0.35	Inches
Stiffness factor to account for oxidation of elastomeric bearings	1.4	-
Decrease in bearing dowel diameter	0.35	Inches



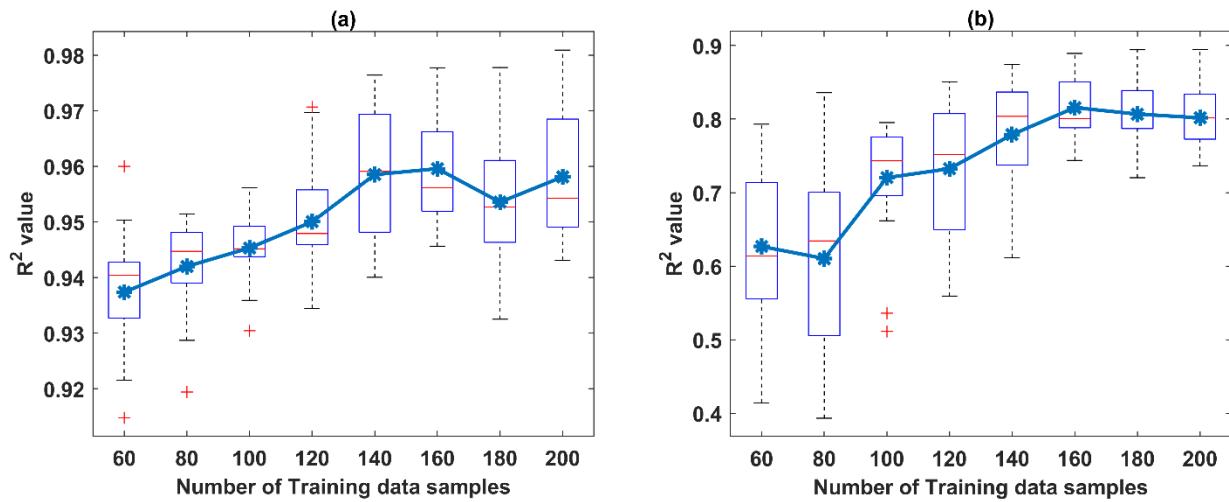
1136

1137 **Fig. 1:** Flowchart for the proposed NDK method



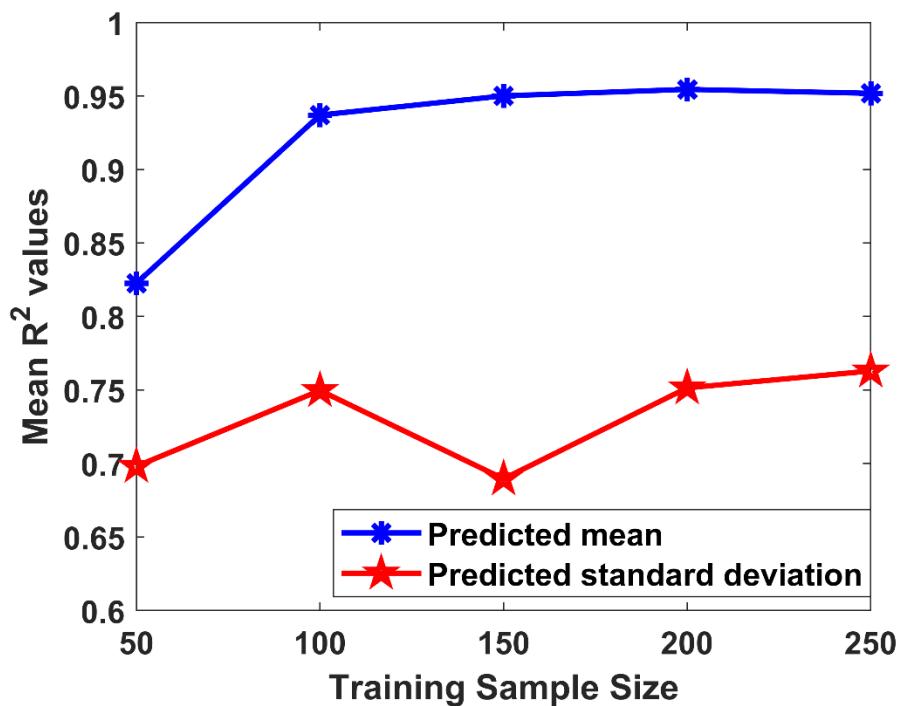
1138

1139 **Fig. 2:** Actual mean of the 4-D function



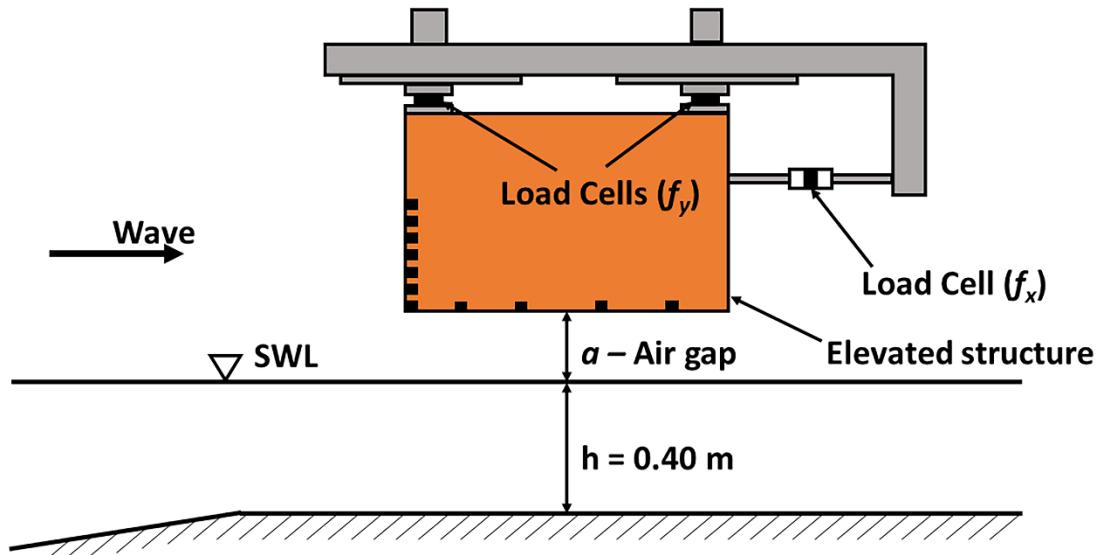
1140

1141 **Fig. 3: (a)** Variation of R^2 values of the estimated mean in the 4D function **(b)** Variation of R^2
1142 values of the estimated standard deviation in the 4D function



1143

1144 **Fig. 4:** Variation of mean R^2 values for the estimated mean and predicted standard
 1145 deviation with the training data sample size in 8-D function



1146

1147 **Fig. 5:** Side view of the experimental setup

