
1 

 

Non-Deterministic Kriging for Probabilistic Systems with Mixed Continuous and Discrete 1 

Input Variables 2 

Jayasekara Jayasekara1 and Sabarethinam Kameshwar Ph.D.2  3 

1Ph.D. student, Department of Civil and Environmental Engineering, Louisiana State University, 4 

Baton Rouge, LA 70803, Email: jjayas2@lsu.edu 5 

2Assistant Professor, Department of Civil and Environmental Engineering, Louisiana State 6 

University, Baton Rouge, LA 70803, Email: skameshwar1@lsu.edu (corresponding author) 7 

Abstract  8 

This paper presents a Non-Deterministic Kriging method to approximate the response of 9 

probabilistic systems with mixed continuous and discrete input variables. The proposed method 10 

approximates both epistemic (extrinsic) and aleatory (intrinsic) uncertainties in addition to the 11 

mean response of a system. Kriging is a popular metamodeling method for approximating the 12 

responses of computationally demanding systems along with prediction variances. However, 13 

conventional Kriging fails to perform with non-deterministic datasets with replications. The 14 

recently developed Non-Deterministic Kriging (NDK) method addresses those challenges in the 15 

continuous input space. Currently, Kriging is often used for approximations in probabilistic 16 

systems with mixed continuous and discrete input variables as well. Therefore, this study aims to 17 

fill the gap in the NDK method for probabilistic systems with mixed continuous and discrete input 18 

variables. Herein, the aleatory uncertainty is assessed using Locally Weighted Regression (LWR). 19 

The proposed method employs a combination of continuous and discrete kernels to capture the 20 

effects of mixed inputs. The effectiveness of the newly proposed NDK method was demonstrated 21 

using a set of probabilistic analytical cases and engineering applications. The proposed method 22 
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provides separable information about aleatory and epistemic uncertainties, which are beneficial in 23 

design optimizations and sequential explorations of probabilistic systems, especially with large-24 

scale experiments and computer simulations with randomness.  25 

Keywords: Non-Deterministic Kriging, Mixed variables, Continuous and Discrete variables, 26 

Probabilistic Systems, Machine Learning   27 

1. Introduction 28 

Metamodels, also called surrogate models, have been widely used to replace 29 

computationally expensive simulations (Asher et al., 2015; Mukhopadhyay et al., 2015) and 30 

physical experiments (Kabir et al., 2017; Stuckner et al., 2021). These techniques are mostly used 31 

when the underlying model has difficulties such as informatic complexity, computing efficiency, 32 

and code coupling (Delage et al., 2022). Kriging (Krige, 1951; Matheron, 1962), Neural Networks 33 

(Kohonen, 1982; Widrow and Hoff, 1960), Support Vector Machines (SVM) (Boser et al., 1992; 34 

Vapnik, 1999), Radial Basis Function (RBF) (Broomhead and Lowe, 1988), Multivariate Adaptive 35 

Regression Splines (MARS) (Friedman, 1991), and Polynomial Response Surface models (Wang 36 

et al., 2001) are some of the commonly used metamodeling techniques. In addition to these types 37 

of metamodels, sometimes different metamodels are combined, and hybrid modeling platforms are 38 

formed to achieve effective solutions based on the requirements of the application (Yin et al., 2018; 39 

Zhang et al., 2012).  40 

Kriging is considered one of the most investigated surrogate models among these surrogate 41 

modeling techniques due to its attractive interpolative and stochastic characteristics (Jiang et al., 42 

2018; Zhou et al., 2018). For instance, Kriging can provide the prediction uncertainty at each 43 

unsampled point. This feature is especially useful in refining the surrogate model in sequential 44 
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design strategies. Furthermore, Kriging requires a smaller training sample size due to strong 45 

interpolation among sampled points (Khan, 2011; Welch et al., 1992). Kriging was initially 46 

introduced for geostatistics (Krige, 1951; Matheron, 1962). However, it has been expanded to a 47 

wider spectrum of engineering problems due to its interpolative and probabilistic characteristics 48 

(Di Maio et al., 2022; Koziel and Pietrenko-Dabrowska, 2022; Su et al., 2019; Trochu et al., 2022; 49 

X. Zhang et al., 2020). Although the performance of surrogate models varies due to different 50 

conditions, Qian et al. (2020) show that compared to available surrogate models, Kriging models 51 

have been able to perform with higher accuracy and robustness, especially when black box-type 52 

functions show high non-linearity. For example, a comparison done by Kianifar and Campean 53 

(2020) depicts that Kriging outperforms polynomials and radial basis functions with highly 54 

nonlinear underlying functions regardless of the problem scale and size of training data samples. 55 

Furthermore, Abbas et al. (2018) highlight that Kriging shows more robust performance in spatial 56 

predictions compared to neural networks. In another work by Kahrizi et al., (2022) for 57 

investigating the characteristics of porous concrete, Kriging showed the least errors in estimations 58 

compared to the polynomial response surface method and radial basis function. Although Kriging 59 

can outperform other metamodels, it is vital to be aware that Kriging does have several 60 

disadvantages as well. For example, Kriging fails to perform accurately when the underlying 61 

function shows non-stationary trends (Bae et al., 2019). Furthermore, Kriging models can be 62 

computationally demanding with a larger number of input variables (Saves et al., 2021). Also, 63 

compared to other available surrogate models, such as polynomial regression models, Kriging 64 

models are not easy for users to interpret (Kianifar and Campean, 2020). 65 

Several types of Kriging models, such as simple Kriging (Li et al., 2009), ordinary Kriging 66 

(Kumar et al., 2023), stochastic Kriging (Ankenman et al., 2008), universal Kriging, and regression 67 
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Kriging (Picheny et al., 2013) are currently used based on metamodeling requirements and 68 

characteristics of Kriging models. Since geographical distance was the primary input variable in 69 

the early stages, Kriging models were initially used only with continuous variables in geostatistics. 70 

However, many systems in engineering problems consist of continuous and discrete design 71 

variables. Therefore, due to the need to use Kriging over systems that consist of mixed input 72 

variables, several studies extended the use of Kriging models to include discrete input variables as 73 

well (Pelamatti et al., 2020; Saves et al., 2022). In these methods, different correlation kernels 74 

were used to adapt the existing Kriging models to accommodate the presence of discrete input 75 

variables. Hypersphere decomposition kernel (Pelamatti et al., 2019), Latent variable kernel (Tao 76 

et al., 2021), Compound symmetry kernel (Roustant et al., 2020), and coregionalization matrix 77 

kernel (Pelamatti et al., 2021) are a few of such discrete kernels.  78 

As mentioned earlier, conventional Kriging provides the uncertainty in the prediction at 79 

unsampled points, by fitting residuals from a global regression model (Loquin and Dubois, 2010). 80 

This can be identified as the extrinsic or epistemic uncertainty that is imposed on the problem 81 

when developing the Kriging model. It accounts for the modeling error of the Kriging model. 82 

Epistemic uncertainty, which is likely due to the lack of knowledge or information about the 83 

underlying physics of the problem, can be reduced by increasing the size of training samples and 84 

updating the estimations (Choi et al., 2006). There are several adaptive sampling-based design 85 

exploration methods that use the prediction variance or epistemic uncertainty given by Kriging. 86 

The efficient global optimization method (Jones et al., 1998; Yi and Taflanidis, 2023), quantile-87 

based design and optimization (Nazeeh et al., 2023), sequential Kriging optimization (Hao et al., 88 

2010), value-based global optimization (Moore et al., 2014), and reliability analysis methods 89 

(Hong et al., 2022; Kitahara et al., 2021) are a few of such methods that employ the prediction 90 
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variance. However, prediction variance given by conventional Kriging with probabilistic and 91 

replicated data can be misleading. Mostly, physical experiments have inherent randomness that 92 

results in aleatory or intrinsic uncertainty within data. Furthermore, under simulation-based design 93 

exploration methods, computational models are also developed as variable-fidelity models that 94 

consist of computational inaccuracy or uncertainty (Bae et al., 2019). Aleatory uncertainty arises 95 

mostly due to natural variability in the parameters of a physical system and cannot be reduced in 96 

a similar way to epistemic uncertainty (Palar et al., 2019; Zhuang and Pan, 2012). Estimations 97 

obtained through insufficient quantification of aleatory uncertainty can incline towards 98 

overconfident predictions (Mortazavi et al., 2012). Therefore, the use of conventional Kriging over 99 

non-deterministic (noisy) data samples from physical experiments, variable-fidelity models, 100 

natural phenomena, or non-stationary underlying functions could mislead the predictions, 101 

especially in design exploration methods.  102 

 Given the need for estimation of aleatory uncertainty within the prediction variance in 103 

Kriging models, a Non-Deterministic Kriging (NDK) method was derived recently as a flexible 104 

method that approximates both epistemic and aleatory uncertainties associated with the Kriging 105 

model and the underlying probabilistic function, respectively (Clark, 2019). The proposed NDK 106 

methodology is considered numerically more stable than other Kriging models as it captures 107 

uncertainty bounds more efficiently. However, the NDK proposed by Clark only considered 108 

continuous input variables. There is a lack of studies that cover the approximation of both 109 

epistemic and aleatory uncertainties using the NDK method for systems with mixed input 110 

variables, which is necessary as engineering systems can consist of both continuous and discrete 111 

variables. Furthermore, in design optimization models, the use of discrete variables can replace a 112 

number of continuous variables, thus reducing the computational time (Rosness, 1993). The 113 
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introduction of such a discrete variable can increase the randomness of a system and its data. 114 

Furthermore, especially with experimental designs, replications are obtained at the same design 115 

point due to the inherent randomness in natural phenomena (Dunn, 2019). As revealed by the 116 

review of existing work related to surrogate model-assisted optimization under uncertainty, 117 

conventional Kriging models that are developed to work with mixed continuous and discrete input 118 

variables fail to address the challenges arising due to non-deterministic and replicated data. 119 

Although Stochastic Kriging for mixed input spaces (Lopez et al., 2022) aims at estimating the 120 

randomness present in data, it requires a larger number of replications at a design point. This 121 

process is not always possible with engineering system design explorations, especially with large-122 

scale physical experiments or computer simulations.    123 

The present study was motivated by the application of Kriging on probabilistic systems in 124 

mixed continuous and discrete input spaces, especially with systems that are expensive to evaluate. 125 

For instance, there are time-consuming physical experiments that demand a large amount of 126 

resources. In such instances, it is not effective to have a larger number of replications to account 127 

for noise present within the system. Although there exists an NDK method for such probabilistic 128 

systems, it cannot be employed in mixed input space. Therefore, this study aimed to fill the gap in 129 

the need for an NDK method for probabilistic systems with mixed continuous and discrete input 130 

variables. The proposed NDK can accommodate replicated data, especially with physical 131 

experiments. Also, the proposed method does not require a large number of replications as in 132 

existing Stochastic Kriging models. Since this NDK method quantifies both aleatory and epistemic 133 

uncertainties, the prediction variance of the NDK model can be used for design optimization under 134 

uncertainty for systems with non-deterministic data and non-stationary trends. Currently, the use 135 

of conventional Kriging can yield erroneous results with such systems. Furthermore, the use of the 136 
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proposed NDK model with mixed continuous and discrete inputs is beneficial in Kriging-137 

associated design explorations with time-consuming large-scale physical experiments and 138 

computationally expensive computer simulations.  139 

The next section of the paper provides a review of existing work of surrogate model-140 

assisted uncertainty quantification. Section 3 presents the proposed framework, including steps in 141 

the NDK methodology for mixed input variables. Section 4 presents the application of the 142 

proposed method to a set of numerical examples with continuous and discrete variables. 143 

Additionally, this section discusses the goodness-of-fit of the estimated mean and uncertainties of 144 

numerical cases using a set of goodness-of-fit measures. The next section presents the application 145 

of the proposed method to two engineering systems. The last sections of the paper provide the 146 

discussion and conclusion of the study.   147 

2. Related work on Surrogate assisted Uncertainty Quantification (UQ) 148 

Surrogate model-assisted optimization has been popular due to the computational burden 149 

of optimization under uncertainty with traditional approaches. Accounting for uncertainties stands 150 

paramount in any type of design optimization strategy that employs surrogate models, especially 151 

with the modeling error induced by surrogate models. A significant number of past studies have 152 

covered and developed uncertainty quantification in optimization strategies with surrogate models 153 

in the continuous input space. However, comparatively, there are still only a few studies that focus 154 

on the mixed continuous-discrete input variables to the best knowledge of the authors. Elaborating 155 

on early work on surrogate-assisted mixed variable optimization under uncertainty, Sriver and 156 

Chrissis (2004) used surrogate function approximations in a novel framework, which is a 157 

combination of generalized pattern search and ranking and selection method, for systems with 158 

inherent variation. Furthermore, a novel hierarchical hybrid fuzzy neural network was presented 159 
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by Wang et al. (2007) to represent systems with mixed input variables. This method uses a set of 160 

fuzzy sub-systems that aggregate discrete input variables into intermediate variables and plugs 161 

them into neural networks for approximations along with continuous input variables. However, 162 

surrogate models utilized in these methods do not provide insights into the uncertainty in 163 

predictions similar to modeling uncertainty presented by Kriging models.   164 

Recent literature shows a growing interest in mixed variables constrained optimization 165 

approaches coupled with modified versions of Kriging. Huang et al., (2023) used Latent-variable 166 

Gaussian process (aka Kriging) (LVGP) modeling with Bayesian optimization for optimal search. 167 

This method matches discrete inputs into a Latent space and uses the Latent distances for Kriging. 168 

An et al., (2022) also used Kriging similarly for multi-objective optimization, under noise. 169 

However, their Kriging model was built only considering model uncertainty while measurement 170 

noise was added to the objective later as an assumption. In another work, An et al., (2021) used 171 

Kriging for reliability-based design optimization, where continuous and discrete variables were 172 

initially decoupled using the total probability theorem. After that Kriging was used only with 173 

continuous space, ultimately resulting in a category-wise approach based on discrete levels. In 174 

contrast, Pelamatti et al., (2021) also worked on using Kriging for optimization in the mixed 175 

continuous-discrete design space combinedly. This work employs several discrete kernels such as 176 

hypersphere decomposition kernel, compound symmetry kernel, and coregionalization matrix 177 

kernel within the Kriging model to combine with continuous kernels. Furthermore, their work is 178 

extended to consider the heteroscedasticity of Gaussian process variance in the discrete input 179 

variables. However, their method does not consider the randomness present within the data set. 180 

There can be erroneous estimations in both the mean response and prediction of the model when 181 

this method is used with probabilistic systems.  182 
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In the most recent work, Moustapha et al. (2022) used Kriging in a multi-objective robust 183 

optimization approach for problems with mixed variables. This method employed quantiles of the 184 

objective functions that are determined through a Kriging model, to allow both optimality and 185 

robustness. In a similar work for a multi-objective optimization process, An et al., (2022b) used 186 

Kriging to predict the objective function values in a Monte Carlo Simulation. Furthermore, there 187 

are studies that focused on potential issues with Kriging-assisted optimization as well. For 188 

example, since a larger number of mixed continuous and discrete variables might be employed in 189 

engineering optimization processes or practical applications, the number of hyperparameters in the 190 

Kriging model also increases substantially. To address this issue in Kriging models, Saves et al., 191 

(2021) proposed a hyperparameter reduction process based on the partial least squares method. 192 

This method employed an adaptive procedure for selecting the number of hyperparameters in a 193 

Kriging model.  194 

 However, the performance of the conventional Kriging approach in these studies can be 195 

affected due to specific conditions associated with underlying response function and available data 196 

of probabilistic systems. For instance, Kriging approximations will fail to fit the underlying 197 

response accurately when available data is non-deterministic or replicated. Furthermore, the 198 

covariance structure of the Kriging model will be inaccurate when the underlying black-box 199 

function has non-stationary trends. This can result in an overly dampened or amplified prediction 200 

variance. Therefore, with a limited size of non-deterministic data or replicated data, conventional 201 

Kriging becomes misleading in design explorations. In the continuous space, there are a few 202 

methods for these challenges. As a solution for randomness in data, in Regression Kriging, 203 

hyperparameter optimization is performed with an added noise parameter, thus approximating 204 

sample data within constant noise bounds similar to regression analysis (Hengl et al., 2004; 205 
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Picheny et al., 2013). To the best of the authors’ knowledge, this has not been extended to the 206 

mixed continuous and discrete input space. Furthermore, Stochastic Kriging (SK) was proposed 207 

using two uncertainty sources, epistemic and aleatory, to work with non-deterministic and 208 

replicated data (Ankenman et al., 2008). In SK, aleatory uncertainty is estimated at each design 209 

point using a separate ordinary Kriging model that employs replications. Lopez et al., (2022) 210 

extended SK to work with mixed continuous and discrete input variables in an adaptive stochastic 211 

efficient global optimization approach. However, even SK performs with the assumption that there 212 

are enough replications at each design point. Therefore, with insufficient data, aleatory uncertainty 213 

prediction becomes inconsistent and unreliable.  214 

As a remedy for these challenges, Clark, (2019) proposed a Non-Deterministic Kriging 215 

method that works in the continuous input space. Compared to conventional Kriging, this method 216 

relaxes the interpolation requirement in the presence of randomness in data. It uses the aleatory 217 

variance as a regularization factor in computations, thus increasing the accuracy in the prediction 218 

of both mean and modeling uncertainties. Most importantly, the NDK model provides both 219 

epistemic and aleatory uncertainties for use in applications such as design explorations based on 220 

the requirements. However, this proposed method only works in the continuous input space and 221 

cannot be used with discrete input variables. This paper improves the existing NDK method further 222 

to work in the mixed continuous and discrete input space.  223 

3. Non-Deterministic Kriging (NDK) with mixed input variables  224 

This section of the paper presents the proposed NDK methodology for mixed continuous 225 

and discrete input variables. In general, continuous variables like structural dimensions, fluid 226 

velocity, and force are mapped to the space of real numbers within a defined interval. On the other 227 

hand, discrete variables are identified as design characteristics such as material type, which have 228 
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a finite number of choices (Musiol, 1997). Furthermore, discrete variables are categorized as 229 

ordinal and nominal variables as well. An ordinal variable consists of multiple categories that can 230 

be ordered while a nominal variable consists of multiple categories which cannot be orderly 231 

arranged. For example, hurricane category which is based on wind speed can be considered an 232 

ordinal variable while material type is a nominal variable. However, in this study, no such 233 

difference is considered between these two types.  234 

The proposed NDK model aims at estimating the mean response in a probabilistic system, 235 

with mixed continuous and discrete input variables, while estimating both epistemic and aleatory 236 

uncertainty. Fig. 1 presents the flow chart for the proposed NDK method. Starting from the 237 

identification of input variables, three major processes in the method are (1) correlation matrix 238 

calculation, (2) locally weighted regression process for aleatory uncertainty estimation, and (3) 239 

epistemic variance estimation. Individual outputs from these processes are later used for the final 240 

outputs of the NDK model, which includes the estimated mean response and prediction variance 241 

including both epistemic and aleatory uncertainties. The detailed steps of the model are presented 242 

in the following subsections. For clarity in symbols, bold fonts were used for vectors and matrices.   243 

Consider 𝑓(𝒙, 𝒛) is a probabilistic black-box function that is defined between an input v (x, 244 

z) ∈ 𝕍 ⊂ ℝn+q and an output, y ∈ Y⊂ℝ, where n and q represent the number of continuous and 245 

discrete variables respectively, 𝕍 is the matrix of input data locations, and Y is the vector of 246 

responses at input data locations. According to the proposed method, developing an NDK model 247 

for this function starts with determining the input variables and their characteristics. Consider that 248 

x is defined as a vector containing continuous inputs (x = {𝑥1, 𝑥2, 𝑥3, . . 𝑥𝑘 … . . 𝑥𝑟}) while z is a 249 

vector that consists of discrete inputs (z = {𝑧1, 𝑧2, 𝑧3, . . , 𝑧𝑘, … . . 𝑧𝑞}). Each discrete variable 𝑧𝑘 has 250 
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bk number of possible values, also known as levels, resulting in a total of ∏ 𝑏𝑘
𝑘=𝑞
𝑘=1  combinations 251 

of categorical inputs. 252 

In general, a Kriging model works like weighted regression that processes a training data 253 

set or a design of experiments (D), of Ns samples {𝒗𝑖 , 𝑦𝑖}, where i = 1, 2, …, 𝑁𝑠. For a given 254 

training data point, the deterministic Kriging model is represented as follows; 255 

𝑦(𝒗) = 𝑚(𝒗) + 𝑍0(𝒗) ----------------- Eq (1) 256 

where 𝑚(𝒗) represents the global trend. 𝑍0(𝒗) is a zero mean stochastic process defined as  257 

𝐶𝑜𝑣(𝑍0(𝒗𝒊), 𝑍0(𝒗𝒋)) =𝜎2𝑅(𝒗𝒊, 𝒗𝒋; 𝜽) ----------------- Eq (2) 258 

where 𝜎2 is the process variance, 𝑅(𝒗𝒊, 𝒗𝒋; 𝜽) is the correlation among data points, and 𝜽 are 259 

hyperparameters that need to be calibrated. The stochastic nature of 𝑍0 refers to the extrinsic 260 

(epistemic) uncertainty since it is imposed on the problem to assist in developing the model. This 261 

stochastic process accounts for the modeling error in the Kriging model. The conventional Kriging 262 

method is more suitable for data without noise since the estimation only represents the modeling 263 

uncertainty and does not consider the natural randomness present in the response variable of the 264 

data set. This highlights the need for a Kriging model which accounts for both epistemic 265 

uncertainty (due to modeling error) and aleatory uncertainty (due to natural randomness of data).  266 

As a solution for this need, the Non-Deterministic Kriging (NDK) method includes both 267 

epistemic and aleatory uncertainties within its predictions by adding aleatory uncertainty as a 268 

separate stochastic process into the deterministic Kriging model given in Eq (1). Accordingly, 269 

taking the above-described deterministic Kriging derivation as a basis, the NDK model is 270 

represented as follows: 271 

𝑦𝑛𝑑(𝒗) = 𝑚(𝒗) + 𝑍𝐸(𝒗) + 𝑍𝐴(𝒗) -------------- Eq (3) 272 
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where 𝑚(𝒗) represents the global trend and 𝑍𝐸(𝒗) and 𝑍𝐴(𝒗) are the stochastic processes of 273 

epistemic and aleatory uncertainties respectively (Clark, 2019). The mean estimation (𝑦𝑛𝑑) can be 274 

formulated using a linear predictor as; 275 

𝑦𝑛𝑑(𝒗) = 𝒄𝑇𝒀 -----------Eq (4) 276 

where 𝒄 = 𝑐(𝒗) ∈ ℝ𝑁𝑠
. With the use of unbiasedness condition 𝒄𝑇𝑭 − 𝒇 = 0, where f and F are 277 

the assumed basis function vector at the unsampled point and regression design matrix at training 278 

data points respectively, the prediction variance (𝜎𝑛𝑑
2 ) at an unsampled point (𝒗) is obtained as:  279 

𝜎𝑛𝑑
2 (𝒗) = 𝐸 [(𝑦𝑛𝑑(𝒗) − 𝑌(𝒗))

2
] = 𝐸[(𝒄𝑇(𝒁𝐸 + 𝒁𝐴) − (𝑧𝐸 + 𝑧𝐴))

2
] ----------Eq (5) 280 

where 𝒁𝐸 and 𝒁𝐴 are true epistemic and aleatory uncertainty vectors from training data points and 281 

𝑧𝐸 and 𝑧𝐴 are true epistemic and aleatory uncertainties at the unsampled point. In general, epistemic 282 

and aleatory uncertainties are different and independent since their sources are different according 283 

to the definitions. Therefore, it is assumed that the aleatory uncertainty and model uncertainty are 284 

not correlated, thus there is no correlation between 𝑧𝐸 and 𝑧𝐴. Based on this assumption, the above 285 

equation for prediction variance of the NDK model can be expanded as;  286 

𝜎𝑛𝑑
2 (𝒗) = 𝐸[𝒄𝑇𝒁𝐸𝒁𝐸

𝑇𝒄] + 𝐸[𝒄𝑇𝒁𝐴𝒁𝐴
𝑇𝒄] + 𝐸[𝑧𝐸𝑧𝐸

𝑇] 287 

                                                                 +𝐸[𝑧𝐴𝑧𝐴
𝑇] − 2𝐸[𝒄𝑇𝒁𝐴𝑧𝐴] − 2𝐸[𝒄𝑇𝒁𝐸𝑧𝐸] -------------- Eq (6) 288 

Using variance (𝜎𝐸
2, 𝜎𝐴

2), correlation (𝑹𝐸), and covariance (𝑽𝐴) terms this can be further 289 

simplified as; 290 

𝜎𝑛𝑑
2 = 𝜎𝐸

2(1 + 𝒄𝑇𝑹𝐸𝒄 − 2𝒄𝑇𝒓𝐸) + (𝒄𝑇𝑽𝐴𝒄 − 2𝒄𝑇𝐯𝐴 + 𝜎𝐴
2) -----------Eq (7) 291 
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where 𝜎𝐸
2 and 𝜎𝐴

2 are epistemic and aleatory variances, 𝑹𝑬 is the correlation matrix among training 292 

data samples, 𝒓𝑬 represents the correlation vector between the unsampled point and the already 293 

sampled training data points. 𝑽𝑨 and 𝐯𝑨 are the aleatory covariance matrix and vector respectively.  294 

By minimizing the prediction variance of the estimate, the mean estimation (𝑦𝑛𝑑) is solved as, 295 

𝑦𝑛𝑑(𝒗) = 𝒇𝑇(𝑥)𝜷𝑛𝑑 + 𝐯𝑛𝑑
𝑇 𝑽𝑛𝑑

−1(𝒀 − 𝑭𝜷𝑛𝑑) ------------------------------ Eq (8)  296 

where 𝜷𝑛𝑑 = [𝑭𝑇𝑽𝑛𝑑
−1𝑭]−1𝑭𝑇𝑽𝑛𝑑

−1𝑭, 𝑽𝑛𝑑 = 𝜎𝐸
2𝑹𝐸 + 𝑽𝐴 , and 𝐯𝑛𝑑 = 𝜎𝐸

2𝒓𝐸 + 𝐯𝐴. 297 

In practice, aleatory uncertainty is considered independent across the design space. It is 298 

assumed that there is no correlation between that affect each other’s aleatory uncertainty. Due to 299 

this independence and the definition of covariance matrix within the zero-mean stochastic process 300 

of Kriging according to Eq. 2, 𝐯𝐴 can be neglected and 𝑽𝐴 becomes a diagonal matrix. Even if the 301 

aleatory uncertainty is correlated among design points the Locally Weighted Regression process 302 

presented in Section 3.2 captures that effect approximately. The derivation of 𝑽𝐴 is discussed in 303 

the next section of the paper. The prediction variance of the NDK model, representing a total 304 

measurement of epistemic and aleatory uncertainty, can be formulated as, 305 

𝜎𝑛𝑑
2 (𝒗) = 𝜎𝐸

2 + 𝜎𝐴
2(𝒗) + 𝒖(𝒗)𝑇[𝑭𝑇𝑽𝑛𝑑

−1𝑭]−1𝒖(𝒗) − 𝐯𝑛𝑑(𝒗)𝑇𝑽𝑛𝑑
−1𝐯𝑛𝑑(𝒗) ----------- Eq (9) 306 

where 𝒖(𝒗) = 𝑭𝑇𝑽𝑛𝑑
−1𝐯𝑛𝑑(𝒗) − 𝒇(𝒗). 307 

3.1 Determining the correlation matrix 𝑹𝐸 308 

After identifying the characteristics of the input variables, the correlation matrix 𝑹𝐸 should 309 

be determined. 𝑹𝐸 is a square matrix with the size 𝑁𝑠 × 𝑁𝑠 and contains correlation values between 310 

each sample of the training data set. It can be calculated as; 311 
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𝑹𝐸𝑖,𝑗
= 𝑘(𝒗𝑖 , 𝒗𝑗) --------------- Eq (10) 312 

where i, j = 1, 2, …, 𝑁𝑠 and 𝑘(∙) is a user-defined kernel function, which is symmetric and positive 313 

semi-definite over the input space (Lanckriet et al., 2004; Mohammadi, 2016). In this proposed 314 

method for NDK, the correlation function was adapted to capture the influence of discrete variables 315 

in addition to continuous variables. Two kernel operators were used in this study to meet the 316 

requirements for defining discrete kernels and combining them with continuous kernels. These 317 

selected operators ensure that the resulting correlation functions are also symmetric and positive 318 

semi-definite over the respective input spaces. The following kernel operations were used in this 319 

proposed NDK methodology.  320 

1. Product - Consider two continuous or discrete input subspaces, 𝐹1 and 𝐹2. If 𝑘1 and 𝑘2 are 321 

two kernels defined over input subspaces 𝐹1 and 𝐹2, and ′𝛽′ is a real number, 𝑘 =  𝑘1 × 𝑘2 322 

and 𝑘′ =  𝛽𝑘1 become valid kernels over the input spaces 𝐹1  ×  𝐹2 and 𝐹1 respectively 323 

(John Shawe-Taylor and Nello Cristianini, 2004). 324 

2. Mapping – If 𝑘 is a kernel in the space 𝐹1, 𝐹1′ is a set and 𝑔(. ) is a mapping function from 325 

𝐹1′ to 𝐹1, 𝑘′(𝑥, 𝑥′) = 𝑘(𝑔(𝑥), 𝑔(𝑥′)) becomes a valid kernel over 𝐹1′ (Steinwart and 326 

Christmann, 2008). 327 

Consider an input v (x, z), which includes both continuous and discrete variables. In combining 328 

discrete and continuous kernels for the input v (x, z), Li and Racine (2003) proposed to use the 329 

product of kernels. Furthermore, the Schur product theorem proves that the Hadamard product 330 

between two positive semi-definite matrices results in a positive semi-definite matrix. Therefore, 331 

to define a valid kernel function for the NDK model by kernel combination, the product operation 332 

of kernels was used in this study. The other kernel operation, mapping was used later for defining 333 
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a discrete kernel. Accordingly, two different kernels were introduced for continuous and discrete 334 

variables separately and combined as follows.  335 

𝑘(𝒗𝑖 , 𝒗𝑗  ) =  𝑘𝑥(𝒙𝑖 , 𝒙𝑗  ) × 𝑘𝑧(𝒛𝑖 , 𝒛𝑗  ) --------------- Eq (11) 336 

Here 𝑘𝑥 and 𝑘𝑧 are kernels for continuous and discrete variables. As shown in Fig. 1, the ‘Selection 337 

of Correlation Kernels’ stands as an important task within the proposed methodology.  338 

3.1.1 Continuous kernels  339 

For continuous variables, the kernel function can be formulated as: 340 

𝑘𝑥(𝒙𝑖 , 𝒙𝑗) =  ∏ 𝑘(𝜃𝑙 , 𝑑𝑙)
𝑛
𝑙=1  --------------- Eq (12) 341 

where n is the number of continuous variables, 𝑑𝑙 = |𝑥𝑖,𝑙 − 𝑥𝑗,𝑙| is the difference between the 𝑖th 342 

and 𝑗th data points in the 𝑙th dimension, and 𝜃𝑙 is a hyperparameter that determines the rate at which 343 

correlation decreases with the difference between two points in the 𝑙th dimension (Clark, 2019). 344 

Table 1 presents a set of commonly used correlation functions for continuous variables.  345 

3.1.2 Discrete kernel functions 346 

In a similar format, the kernel functions for discrete variables were derived in this study as 347 

follows: 348 

𝑘𝑧(𝒛𝑖 , 𝒛𝑗) =  ∏ 𝑘(𝜃𝑙 , 𝑑𝑚)
𝑞
𝑚=1 --------------- Eq (13) 349 

where 𝑑𝑚 represents the difference between 𝑖th and 𝑗th data points in the 𝑚th dimension. In order 350 

to represent the discrete difference between data points, the study employed several kernel types 351 

as described below.  352 

Weighted Gower distance kernel  353 
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 Hutter et al., (2011) proposed a new kernel function, that engages weighted Hamming 354 

distances, to capture the influence of categorical variables in Gaussian process models. Lately, 355 

Halstrup, (2016) further improved this concept by using Gower distance for both continuous and 356 

discrete variables. The Gower distance between two data points can be represented as follows 357 

(Gower, 1971); 358 

𝑑𝑔𝑜𝑤(𝒗𝑖 , 𝒗𝑗) =  
∑

|𝑥𝑘
𝑖 −𝑥

𝑘
𝑗
|

∆𝑥𝑘

𝑘=𝑛
𝑘=1

𝑛+𝑞
+

∑ 𝜕(𝑧𝑘
𝑖 ,𝑧𝑘

𝑗
)

𝑘=𝑞
𝑘=1

𝑛+𝑞
      --------------- Eq (14) 359 

where ∆𝑥𝑘 is the range in the k-th dimension and 𝜕(𝑧𝑘
𝑖 , 𝑧𝑘

𝑗
) is defined as follows; 360 

𝜕(𝑧𝑘
𝑖 , 𝑧𝑘

𝑗
) =  {0 𝑖𝑓 𝑧𝑘

𝑖 = 𝑧𝑘
𝑗
 

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
--------------- Eq (15) 361 

Halstrup, (2016) proposed the use of Gower distance as the difference between two data 362 

points, which corresponds to 𝑑𝑙 and 𝑑𝑚 in Eqs. 12 and 13 respectively. Since Gower distance 363 

calculates the difference between data points by considering  both continuous and discrete input 364 

variables together, Eqs. 12 and 13 were combined as; 365 

𝑘(𝒗𝑖 , 𝒗𝑗  ) = ∏ 𝑘(𝜃𝑙 , 𝑑𝑔𝑜𝑤
𝑙 )

𝑛+𝑞
𝑙=1  --------------------------- Eq (16) 366 

where 𝜃𝑙 is the hyperparameter corresponding to the 𝑙th dimension and 𝑑𝑔𝑜𝑤
𝑙  represents the Gower 367 

distance in the 𝑙th dimension between ith and jth data points in the system. For example, the Gower 368 

distance is used to define the mixed variable kernel function in the form of 𝑝th exponential 369 

correlation as;  370 

𝑘(𝒗𝑖 , 𝒗𝑗  ) = exp {−∑ 𝜃𝑙 
𝑙=𝑛+𝑞
𝑙=1 [𝑑𝑔𝑜𝑤

𝑙 (𝒗𝑖 , 𝒗𝑗)]
𝑝𝑙

} --------------- Eq (17) 371 

where 𝑝𝑙 represents 𝑝th exponential in the 𝑙th dimension.  372 
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Latent variable kernel 373 

Recently in metamodels, discrete variables were mapped into non-observed Latent 374 

variables and considered continuous variables (Y. Zhang et al., 2020). It was proposed to map each 375 

level of discrete variables into a vector of continuous variables in an 𝑙-dimensional hyperspace. 376 

For instance, for the mth level of a categorical input, there exists in particular a Latent variable, t = 377 

[t1,…,th] ∈ T ⊂ ℝ1 ×⋯×ℝh where T represents the Latent space and h is the number of dimensions 378 

in the Latent space (Cuesta Ramirez et al., 2022). In the present study, the proposed Latent variable 379 

kernel maps each level of discrete variables into a 2-dimensional space as follows; 380 

𝜑(𝑧); 𝑭𝑧 → ℝ2  381 

𝜑(𝑧) =  (𝜗𝑚,1, 𝜗𝑚,2) 382 

where 𝜗𝑚,1 and  𝜗𝑚,2 are hyperparameters that represent the coordinates in the Latent variable 383 

space corresponding to discrete variable level 𝑚. The fact that discrete levels are already 384 

represented by hyperparameters eliminates the need for using separate hyperparameters for the 385 

distance between discrete inputs. According to the kernel operation of mapping, the Latent variable 386 

kernel function can be formulated as; 387 

𝑘(𝒛𝑖 , 𝒛𝑗) = 𝑘′(𝜑(𝒛𝑖), 𝜑(𝒛𝑗)) --------------- Eq (18) 388 

In this proposed methodology, the distance between coordinates in the Latent space was 389 

used as the measure of the difference between discrete inputs. For instance, the Gaussian kernel 390 

function for the q-th discrete variable can be presented as; 391 

𝑘𝑧(𝒛𝑖 , 𝒛𝑗) = exp (−𝜃𝑞‖𝜑(𝒛𝑖) − 𝜑(𝒛𝑗)‖
2
) --------------- Eq (19) 392 
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where 𝜃𝑞 is the hyperparameter in the qth dimension. However, 𝜃𝑞 can be removed since Latent 393 

variables already depend on hyperparameter values. According to suggestions made by Zhang et 394 

al. (2020), one of the Latent variable coordinates was set to the origin of the 2-dimensional plane 395 

(0,0). Another coordinate was set on one of the axes (0, 𝜗𝑚,1) to reduce the number of 396 

hyperparameters used in the kernel function.  397 

3.2 Aleatory uncertainty estimation through Locally Weighted Regression (LWR) 398 

In this proposed NDK for mixed input variables, aleatory uncertainty quantification stands 399 

as the third major process as shown in Fig. 1. Accordingly, this process depends on three main 400 

activities namely, the selection of kernels for the weight matrix in LWR, determining the 401 

smoothening parameter, and covariance matrix calculation. In this process, it was assumed that 402 

aleatory uncertainty in the data set varies with the location of data in the design space. Therefore, 403 

to determine the aleatory uncertainty, locally weighted regression is used (Sam and Ker, 2006). 404 

The general regression model for locally weighted regression is given as;  405 

𝑦𝑙(𝒗) =  𝑚̃𝑙(𝒗) + 𝑒𝑙(𝒗) --------------- Eq (20) 406 

where 𝑙 denotes the samples located within the lth local neighborhood, 𝑚̃𝑙 is the local estimator, 407 

and 𝑒𝑙(𝑣) is uncorrelated random errors or deviations from measurements with zero mean and 408 

finite variance. The standard Nadaraya–Watson estimator was used to determine the local 409 

estimator as; 410 

𝑚̃𝑙(𝒗) =  
∑ 𝑌𝑖𝑊𝑖,𝑖

𝑙 (𝑣𝑙,𝑣𝑖)
𝑁𝑠
1

∑ 𝑊𝑖,𝑖
𝑙 (𝑣𝑙,𝑣𝑖)

𝑁𝑠
1

 ------------------------------Eq (21) 411 

where 𝒀 is a vector of the mean responses at the data points, and 𝑾𝑙 is a diagonal matrix of weights 412 

or degrees of membership to the local neighborhood (Aljuhani and Turk, 2014). The data points 413 
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were weighted via kernel functions within the size of the neighborhood (𝑘𝑙). Gaussian, quadratic, 414 

and sigmoid functions are a few such kernel functions used for the calculation of weights. In this 415 

study, kernel functions were combined as described in Section 3.1 to capture the influence of 416 

discrete variables on LWR. The weight matrix is formulated as a diagonal matrix as shown in Eq. 417 

22. Eq. 23 presents the combined kernel function for individual weights.  418 

𝑾𝑙 = 

[
 
 
 
 
𝑤1,1

𝑙 0 → 0

0 𝑤2,2
𝑙 0 ↓

0 0 ⋱ 0
0 → 0 𝑤𝑁𝑠,𝑁𝑠

𝑙 ]
 
 
 
 

--------------- Eq (22) 419 

𝑤𝑖,𝑖
𝑙 (𝒗𝑙 , 𝒗𝑖) = 𝑤𝑥(𝒙𝑙 , 𝒙𝑖) × 𝑤𝑧(𝒛𝑙 , 𝒛𝑖 ) --------------- Eq (23) 420 

The selection of kernels for the weight matrix in LWR is the next activity of the proposed 421 

methodology. In this study, different kernel combinations were used to represent Eq 23. Table 2 422 

presents a set of kernel combinations used for the weight calculations.  423 

The size of the neighborhood (𝑘𝑙), also called the smoothening parameter was determined 424 

through log-likelihood maximization presented in Section 3.3. After that, the aleatory uncertainty 425 

at 𝒗𝑙 was estimated as a locally weighted mean squared error using Eq,24,  426 

𝜎𝑙
2(𝒗𝑙) =  

∑ 𝑒𝑖
2𝑊𝑖,𝑖

𝑙 (𝒗𝑙,𝒗𝑖)
𝑁𝑠
1

∑ 𝑊𝑖,𝑖
𝑙 (𝒗𝑙,𝒗𝑖)

𝑁𝑠
1

 --------------- Eq (24) 427 

where 𝑒𝑖 = 𝑌𝑖 − 𝑚̃𝑖(𝑥) and 𝑙 = 1, 2, 3, …., 𝑁𝑠. This LWR variance estimation is performed at 428 

each sample point and the estimated variance is used to form the diagonal matrix 𝑽𝑨 as shown in 429 

Eq 25.  430 
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𝑽𝑨 = 

[
 
 
 
𝜎1

2(𝒗1) 0 → 0

0 𝜎2
2(𝒗2) 0 ↓

0 0 ⋱ 0
0 → 0 𝜎2 (𝒗𝑁𝑠)]

 
 
 

--------------- Eq (25) 431 

Accordingly, using the locally weighted regression, the aleatory uncertainty estimation in the 432 

design space can be formulated as; 433 

𝜎𝐴
2(𝒗) =

∑ 𝑊𝑖,𝑖(𝑣,𝒗𝑖) ×𝑉𝐴(𝑖,𝑖)
𝑁𝑠
1

∑ 𝑊𝑖,𝑖(𝑣,𝒗𝑖)
𝑁𝑠
1

  --------------- Eq (26) 434 

3.3 Epistemic Uncertainty Estimation  435 

Epistemic uncertainty quantification comes after the initial formulation of the correlation 436 

and aleatory covariance matrices in the proposed framework as shown in Fig. 1. The optimum 437 

values for hyperparameters (𝜃), neighborhood size of LWR process (𝑘𝑙), and epistemic 438 

uncertainty term (𝜎𝐸
2) of the model are calculated through the log-likelihood maximization using 439 

Eq. 27 (Rasmussen and Williams, 2006): 440 

𝑚𝑎𝑥𝜃,𝜎𝐸
2 𝐿 = −

1

2
(𝑁𝑠 𝑙𝑛( 2𝜋) + 𝑙𝑛( |𝑽𝒏𝒅(𝜽, 𝜎𝐸

2, 𝑘𝑙)|) + 𝒀𝛽
𝑇𝑽−1(𝜽, 𝜎𝐸

2, 𝑘𝑙)𝒀𝛽)  ------------- Eq (27) 441 

Here 𝒀𝛽 = 𝒀 − 𝑭𝜷𝒏𝒅, and 𝜷𝒏𝒅 is also a function of 𝜽 and 𝜎𝐸
2. It was possible in conventional 442 

deterministic Kriging to reduce the optimization problem into multiple one-dimensional problems 443 

for individual 𝜃𝑖 , 𝑖 = 1,2, … .. , 𝑁𝑛+𝑞. However, in NDK due to the non-proportional scale of 𝜎𝐸
2 in 444 

the likelihood function, the maximization needs to be performed across all model parameters 445 

simultaneously. The optimum values obtained for hyperparameters, epistemic uncertainty 446 

parameter, and neighborhood size are then used for calculating correlation matrix 𝑅 and 447 

parameters related to aleatory covariance.  448 
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As the final step, the values obtained from sections 3.1, 3.2, and 3.3 can be used in Eqs 8 449 

and 9 to obtain the estimated mean (𝑦𝑛𝑑) and prediction variance (𝜎𝑛𝑑
2 ) respectively at any point 450 

in the design space. The prediction variance obtained through Eq. 9 consists of information for 451 

both aleatory and epistemic uncertainties of the model. In NDK it is expected that with enough 452 

training data points, the epistemic uncertainty of the NDK model converges to zero. Subsequently, 453 

all the uncertainty present in the NDK prediction variance (𝜎𝑛𝑑
2 ) converges to the aleatory 454 

uncertainty in the response variable.  455 

The inclusion of repeated training data points can make the correlation matrix singular. 456 

This is considered one of the drawbacks of deterministic Kriging models. In physical experiments, 457 

the test cases are repeated at the same experimental conditions to identify the effect of natural 458 

randomness. The proposed NDK method accommodates such repeats and estimates the mean 459 

response and uncertainties. For this purpose, the design of experiments (D) was modified to 460 

eliminate the effect of repeats if there are any. Accordingly, the matrix of location vectors of input 461 

data 𝕍, was rearranged to 𝕍𝒎𝒐𝒅 by including only one entry for the repeated training data points. 462 

Subsequently, the response vector, 𝒀 was also modified to 𝒀𝒎𝒐𝒅. For example, consider there are 463 

repeats at the design point (𝒗0) such that; 464 

𝒗0 = 𝒗𝑗 and  𝑓(𝒗𝑗) = 𝑌𝑗 ; 𝒗𝑗 ∈ 𝑽,  𝑌𝑗 ∈ 𝒀,  and  𝑗 = 1, 2, 3, … , 𝑝 465 

where 𝑝 is the number of repeats at 𝒗0.  Out of all 𝒗𝑗 data points, only 𝒗0 was included in the 466 

modified input variable vector 𝕍𝒎𝒐𝒅. The corresponding response,  𝑌0 at the design point 𝒗0, was 467 

defined as; 468 

𝑌0  = 
∑ 𝑌𝑗

𝑝
𝑗=1

𝑝
 ; 𝑌0 ∈ 𝒀𝒎𝒐𝒅 ------ Eq (28) 469 
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Accordingly, the modified design of experiments (Dmod = {𝕍𝑚𝑜𝑑 , 𝒀𝒎𝒐𝒅}) was used to 470 

calculate the correlation matrix, 𝑹. However, for the aleatory uncertainty quantification, the design 471 

of experiments (D) was used without any modification within the locally weighted regression 472 

process.  473 

 Elaborating on the limitation of the study, there are other discrete kernels that can be used 474 

in NDK models with mixed input variables in addition to the discussed kernels in this study. 475 

However, those kernels required a larger number of hyperparameters. The required number of 476 

hyperparameters can increase exponentially with the number of discrete variables and levels. Such 477 

increments result in higher computational time, thus increasing the cost of the model ultimately. 478 

However, there can be instances where the use of these discrete kernels becomes useful. For 479 

example, when there is a large discrete design space or the available training data is limited, 480 

choosing kernels such as the coregionalization matrix kernel (Pelamatti et al., 2021) can generate 481 

better predictions from the model. Even in the continuous design space, the requirement for a 482 

higher number of hyperparameters is a continuously investigated issue in the domain of Kriging 483 

models.  484 

 This study did not focus on the efficiency of the proposed NDK method for mixed input 485 

variables with discrete kernels that employ a larger number of hyperparameters and methods of 486 

reducing the impact of larger numbers of hyperparameters. Furthermore, the study did not 487 

investigate the performance of the proposed NDK model with systems that are classified as high-488 

dimensional problems. Therefore, further research is needed to develop the proposed method with 489 

such high-dimensional problems. Also, this study did not focus on how the performance of the 490 

proposed model varies with the number of input variables in the system although test cases 491 

consisted of different numbers of input variables and combinations of variables.  492 
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4. Application of the proposed NDK method to analytical examples 493 

This section presents the application of the proposed NDK methodology on several pre-494 

defined probabilistic functions. The aim was to assess how the NDK for mixed variables performs 495 

on multi-dimensional data samples with a larger number of categorical combinations. For this 496 

purpose, two analytical functions with 4 and 8 dimensions were considered. In evaluating the 497 

performance, the estimated mean response at the unsampled points was compared with the actual 498 

values of the functions using a set of goodness-of-fit measures. To demonstrate the proposed 499 

method’s capability of capturing the aleatory uncertainty in the noisy response, the predicted 500 

standard deviation given by the NDK model was compared with the actual standard deviation of 501 

the response due to noise (aleatory uncertainty). Furthermore, the predicted mean ± 3*standard 502 

deviation bounds were also compared to demonstrate the performance of the NDK model.  503 

Accordingly, the R2 value (Chicco et al., 2021), Normalized Root Mean Squared Error 504 

(NRMSE) (Patel and Ramachandran, 2015), and Normalized Maximum Absolute Error (NMAE) 505 

(Xu et al., 2020), were determined for each example using Eqs 29, 30, and 31, respectively.  506 

𝑅2 = 1 −

∑ (𝑦𝑖′−𝑦𝑖)
2𝑛

𝑖=1
𝑛

𝜎𝑦
2  ------ Eq (29) 507 

𝑁𝑅𝑀𝑆𝐸 =
√

∑ (𝑦𝑖′−𝑦𝑖)
2𝑛

𝑖=1
𝑛

𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛
 ------ Eq (30) 508 

𝑁𝑀𝐴𝐸 = √
𝑚𝑎𝑥{(𝑦𝑖′−𝑦𝑖)

2,𝑖=1,..𝑛}

𝜎𝑦
2  ------ Eq (31) 509 

where 𝑦𝑖 ′ and 𝑦𝑖 are the predicted response and actual response at the i-th testing data point. In 510 

common practice, an R2 value closer to 1 indicates high accuracy. Both NRMSE and NMAE values 511 
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can range from 0 to +∞, while values closer to 0 in both metrics account for high accuracy in 512 

predictions.  513 

The evaluation of the goodness-of-fit measures for the NDK model was repeated with 514 

randomly selected training and test data sets for each analytical case. These repetitions were done 515 

to quantify and compensate for the effect of the random nature in the initial design of experiments. 516 

In previous similar work, different numbers of repetitions were used for this purpose; 10 repetitions 517 

(Pelamatti et al., 2019) and 20 repetitions  (Pelamatti et al., 2021) to eliminate the possible 518 

imprecision in the results of accuracy metrics. Following these previous work, 20 repetitions were 519 

conducted in this study. At each iteration, the developed NDK model was used to obtain 520 

predictions at randomly selected 2000 unsampled points from the input space. These random 521 

training and test data sets were sampled by combining the continuous Latin Hypercube Sampling 522 

(LHS) method (Mckay et al., 2000) and a sampling over a uniform discrete distribution in the 523 

discrete input space (Pelamatti et al., 2021). When defining the training data sample, at each 524 

training data point, 3 replications were considered to obtain three different response values at the 525 

same data location as a result of random perturbation in the functions. A MATLAB script written 526 

by the authors was used for building the NDK model for these two analytical examples. This script 527 

was modified according to the kernel functions used for correlation matrix calculation and LWR 528 

process in each example. 529 

4.1 Modified Branin function  530 

A modified version of the Branin function that consists of two continuous variables and 531 

two discrete variables, each with two levels, was taken as the first analytical example. Due to the 532 

two levels for each discrete variable, this four-dimensional function consists of four categorical 533 

combinations. The modified version of the Branin function can be presented as follows; 534 
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𝑓(𝑥1, 𝑥2, 𝑧1, 𝑧2) =  

𝑔(𝑥1, 𝑥2) + ℎ(𝑥1, 𝑥2)𝜀 𝑧1 = 0 𝑎𝑛𝑑 𝑧2 = 0

0.5𝑔(𝑥1, 𝑥2) + 1 + 1.4ℎ(𝑥1, 𝑥2)𝜀 𝑧1 = 0 𝑎𝑛𝑑 𝑧2 = 1

−0.6𝑔(𝑥1, 𝑥2) + 6.2 + 0.8ℎ(𝑥1, 𝑥2)𝜀 𝑧1 = 1 𝑎𝑛𝑑 𝑧2 = 0

−0.4𝑔(𝑥1, 𝑥2) − 1.5 + 0.6ℎ(𝑥1, 𝑥2)𝜀 𝑧1 = 1 𝑎𝑛𝑑 𝑧2 = 1

----------- Eq (32) 535 

𝑔(𝑥1, 𝑥2) = [((15𝑥2 −
5

4𝜋2
(15𝑥1 − 5)2 +

5

𝜋
(15𝑥1 − 5) − 6)

2
+ 10 (1 −

1

8𝜋
) cos(15𝑥1 − 5) +536 

10) − 54.8104]
1

51.9496
 -------------- Eq (33) 537 

ℎ(𝑥1, 𝑥2) = |𝑥1 + 𝑥2| -------------- Eq (34) 538 

where 𝑥1 ∈ [0,1], 𝑥2 ∈ [0,1],    𝑥3  ∈ {0,1}, 𝑥4 ∈ {0,1}, and 𝜀 is a standard normal variable N (0,1). 539 

Fig. 2 visualizes the actual mean of the modified Branin function.  540 

In this 4-D mixed variable function, both discrete variables are binary categorical variables. 541 

Therefore, out of the discrete kernels described in section 2, the weighted Gower distance kernel 542 

was used to develop the correlation matrix in the NDK model for this 4-D function. Furthermore, 543 

the Gaussian kernel coupled with the Racine and Li estimator was used for the locally weighted 544 

regression step in covariance matrix calculations. Both of these kernels consist of the same 545 

hyperparameter value for non-identical levels of a discrete variable and have the lowest number of 546 

hyperparameters compared to other kernels. With nonbinary discrete variables, these two kernels 547 

do not consider correlations between different discrete levels. This approach is similar to a 548 

category-wise approach. The use of such approaches requires a larger number of training data 549 

samples when the numbers of discrete variables and discrete levels increase. On the other hand, in 550 

this 4-D example, each discrete input variable has only two discrete levels. Given that, even the 551 

Latent variable kernel employs a similar category-wise approach based on how the Latent space is 552 

defined in this proposed methodology using a cartesian plane. However, since the weighted Gower 553 

distance kernel and Racine Li estimator are generally used with binary variables, these two kernels 554 

were used for calculations with discrete input variables in this 4-D function.  555 
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In this analytical example, 3 replications at each training data point were considered. 556 

Starting from a training data sample size of 60, the training sample size was gradually increased 557 

while evaluating the goodness-of-fit of estimations at 2000 unsampled data points. Out of the 558 

goodness-of-fit measures used, Figs. 3(a) and 3(b) present how the mean and median of R2 values 559 

corresponding to the estimated mean and standard deviation of the function varied with the sample 560 

size of training data points. A summary of mean values obtained for the other goodness-of-fit 561 

measures is shown in Table 3.  562 

The estimated mean showed a higher goodness-of-fit with a mean R2 value exceeding 0.93 563 

even with 60 training data samples. Thereafter R2 values further increased gradually with 564 

increasing training data sample size while gaining goodness-of-fit for the estimated mean. 565 

However, the prediction of standard deviation in the developed NDK model required a higher 566 

number of training data samples to show a higher goodness of fit. For instance, at the training data 567 

sample size of 160, the mean R2 value of the predicted standard deviation reached 0.8 for the first 568 

time. After that mean R2 value of predicted standard deviation showed no significant variation at 569 

training sample sizes 180 and 200. Also, at a training sample size of 160, the mean R2 value of the 570 

estimated mean response of the function reached a value over 0.96 and remained almost unchanged 571 

with increasing training data sample sizes. As shown in Table 3, a similar pattern can be observed 572 

in goodness-of-fit measures for mean ± 3*standard deviation bounds as well. Therefore, the results 573 

indicate that a training sample size between 180-200 provides accurate predictions of both the 574 

mean response and standard deviation for this 4-D probabilistic function.  575 

4.2 Eight-Dimensional Powell Function  576 

The next analytical case was set up with the Powell equation which consists of eight 577 

dimensions. Accordingly, the selected modified version of the Powell equation is characterized by 578 
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four continuous variables and four discrete variables, each with three different levels. Since this 579 

function consists of 81 categorical combinations with 4 continuous variables, it was aimed to 580 

evaluate the performance of the proposed NDK method, in systems with a larger number of 581 

dimensions and categorical combinations. The used 8-D function in the third analytical case can 582 

be presented as; 583 

𝑓(𝑥1, … , 𝑥8) = 𝑔(𝑥1, … , 𝑥8) + ℎ(𝑥1, … , 𝑥8) ∗ 𝜀 ----------------Eq (35) 584 

𝑔(𝑥1, … , 𝑥8) = ∑
[(𝑥4𝑖−3 + 10𝑥4𝑖−2)

2 + 5(𝑥4𝑖−1 − 𝑥4𝑖)
2

+(𝑥4𝑖−2 − 2𝑥4𝑖−1)
4 + 10(𝑥4𝑖−3 − 𝑥4𝑖)

4]
2
𝑖=1 ----------------Eq (36) 585 

ℎ(𝑥1, … , 𝑥8) = ∑
[0.8(𝑥4𝑖−3 + 10𝑥4𝑖−2)

2 + 4.5(𝑥4𝑖−1 − 𝑥4𝑖)
2

+0.7(𝑥4𝑖−2 − 2𝑥4𝑖−1)
4 + 9(𝑥4𝑖−3 − 𝑥4𝑖)

4]
2
𝑖=1 ----------------Eq (37) 586 

where 𝑥1, 𝑥2, 𝑥3, 𝑥4 ∈ [−
𝜋

20
,

𝜋

20
] ,  (𝑥5, 𝑥6, 𝑥7, 𝑥8) ∈ {𝜋/60, 𝜋/30, 𝜋/20}, and 𝜀 is a standard 587 

normal variable N (0,1).   588 

 There are 3 discrete levels in each of the discrete levels resulting in 81 categorical 589 

combinations. Employing the weighted Gower distance kernel and Racine and Li estimator for 590 

this analytical function requires a larger number of training data points. Therefore, the Latent 591 

variable kernel was used for discrete variables in this function since Latent variable kernels 592 

consider correlations between non-identical discrete levels as well. The initial training data sample 593 

consisted of 50 randomly selected samples from the above-introduced input space. Using the 594 

developed NDK method, mean values were estimated at 2000 testing data points. Considering the 595 

higher number of discrete variables and categorical combinations available in the test case, the size 596 

of the training data sample was increased by 50 at each time and the goodness-of-fit measures 597 

were calculated for predictions. Fig. 4 presents the variation of calculated mean R2 values for the 598 
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estimated mean and standard deviation with the training data sample size. Table 4 presents a 599 

summary of other goodness-of-fit measures used for evaluating the performance of the NDK 600 

model for 8-D function. The results obtained for the goodness-of-fit measures related to 601 

predictions of the 8-D function also showed a similar pattern compared to the previous analytical 602 

case. After a training data sample size of 200, no significant variation was observed in the 603 

goodness-of-fit measures for both the estimated mean and standard deviation of the 8-D function.  604 

In addition to that, the mean R2 value for the predicted mean −3*standard deviation bound 605 

showed considerably low values in this 8-D function although it improved when the size of training 606 

data points was increased. Furthermore, this bound showed large values for the NMAE metric as 607 

well. Although low R2 values and large NMAE values indicated a low prediction accuracy, 608 

NRMSE value showed considerably satisfactory values for the mean −3*standard deviation 609 

bound. Delving into the obtained results showed that the variance of the mean −3*standard 610 

deviation bound is low compared to the mean + 3* standard deviation bound. Therefore, based on 611 

how R2 is calculated, corresponding R2 values for predicted mean −3*standard deviation bound 612 

show lower values with a relatively smaller variance value, irrespective of the goodness-of-fit in 613 

predictions. Due to the same reason, the NMAE metric also yields large mean values. 614 

5. Testing the proposed NDK model with engineering applications 615 

 In order to evaluate the applicability of the proposed NDK for mixed input variables 616 

methodology in actual engineering applications, it was applied to two engineering problems; 1) a 617 

physical experiment for wave forces on an elevated coastal structure and 2) numerical modeling 618 

for the performance of bridges under earthquake excitations. The following sub-sections present 619 

the results of applying the proposed NDK method to the two engineering cases.  620 
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5.1 A physical experiment for wave forces on an elevated coastal structure  621 

 As the first engineering application, the NDK model was applied to estimate wave forces 622 

on an elevated coastal structure obtained using physical experiments conducted by Park et al. 623 

(2017). During this experiment, data was collected by measuring the wave-induced forces on an 624 

idealized coastal structure. Three different types of waves were used for the experiment with 625 

varying significant wave heights (H) and peak periods (T). Furthermore, the experiment included 626 

the air gap (a) between the idealized elevated structure and the initial water level as a variable. 627 

However, this experiment used a fixed water height (h) for all the test cases. Fig. 5 presents the 628 

experimental setup used for test cases. Accordingly, the experiment consisted of four variables 629 

namely, wave type, wave height, peak period, and air gap between the structure and water level. 630 

The type of waves was the discrete variable with wave types namely, regular, irregular, and 631 

transient (tsunami type) waves. The other three variables were considered continuous variables. 632 

 Table 5 presents the combinations of test cases used for the experiments based on wave 633 

heights and peak periods. For the test cases presented in Table 5, the air gap between the structure 634 

and water level was selected from different values (a0, a1, …., a9) given in Table 6. For some 635 

combinations in Table 5, all the air gap values were used while some combinations were performed 636 

only with a selected number of air gap values. With the given details above, 236 experimental 637 

cases were conducted. For each test case vertical and horizontal forces on the idealized structure 638 

were measured using load cells  fy and fx respectively as shown in Fig. 5. Typically, forces induced 639 

by these extreme events are modeled using the lognormal distribution (Melchers and Beck, 2018). 640 

Therefore, the logarithms of maximum loads on the elevated structure are assumed to be following 641 

a random Gaussian process. In this test case, the logarithm of maximum horizontal force was taken 642 

as the dependent variable, which was predicted herein.  643 
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 During the application of the proposed NDK methodology in the above-explained 644 

experiment, 150 data points were considered for training while 70 data points were taken for 645 

testing. Since there are three discrete levels in the discrete input variable of this test case, the use 646 

of a category-wise approach demands a higher number of training data samples. However, there 647 

are only 150 data points to be used to train the NDK model. Furthermore, the Gower distance 648 

kernel combined with the Racine and Li estimator neglects any possible correlations between non-649 

identical discrete levels (the wave types in this example). In such cases, the performance of the 650 

model can be affected due to the scarcity of data. Therefore, in developing the NDK model for this 651 

problem, the Latent variable kernel was used for the discrete variable during both correlation 652 

matrix calculation and the LWR process since it considers the correlations between non-identical 653 

discrete levels as well. 654 

Following the approach used in previous numerical examples, 20 repetitions were 655 

performed on randomly selected training and testing data points. The previously described 656 

goodness-of-fit measures were used to evaluate the prediction accuracy. At each iteration,  657 

randomly selected 150 data points were used for training and 70 data points were used for testing. 658 

A mean R2 value of 0.80 was obtained for the estimated horizontal forces at the testing data points. 659 

Since this was an experimental case, actual standard deviations were not available to calculate the 660 

goodness-of-fit measures for predicted standard deviation values. However, the values obtained 661 

for the goodness-of-fit measures corresponding to predicted standard deviations in previous 662 

numerical examples suggest that predictions for standard deviations in this experimental case 663 

would have been reasonable. Furthermore, the mean values obtained for NRMSE and NMAE 664 

metrics corresponding to the predicted logarithm of horizontal forces were 0.099 and 2.1908 665 

respectively.  666 
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5.2 Numerical modeling of bridge performance  667 

 As the second engineering application for the proposed NDK method, a numerical 668 

simulation of bridge performance under earthquake conditions was selected. The data on the 669 

responses and bridge parameters was obtained from Kameshwar et al. (2019). Non-linear time 670 

history analysis for seismic response was conducted in OpenSees, a finite element software. The 671 

bridge components such as columns and bent were modeled using fiber-based elements. The 672 

bridge deck was modeled using a grillage; and the bearings, abutments, and foundations were 673 

modeled using non-linear springs. The response of these bridge components was recorded. During 674 

these simulations, a wide range of bridge material and geometric properties were varied, resulting 675 

in 45 variables as shown in Table 7. A total of 1044 and 108 bridge simulations were conducted 676 

to obtain training and testing datasets, respectively. Depending on the degrees of freedom in the 677 

model, each of these simulations required 3 to 24 hours on a single CPU. Since these simulations 678 

require a lot of computational time, the seismic response was used to demonstrate the usefulness 679 

of the proposed NDK method. 680 

 Although the original data set consisted of 45 variables, the NDK model developed for this 681 

problem considered 17 continuous variables and 3 discrete variables resulting in only 20 input 682 

variables altogether. These 20 input variables are marked with a (*) in Table 7. The remaining set 683 

of variables were considered uniform random variables in the problem. Out of the 20 input 684 

variables for the NDK mode, values for continuous input variables were normalized in their ranges, 685 

except for discrete variables and peak ground acceleration (PGA). In this example, the discrete 686 

input variables have 8, 5, and 18 discrete levels respectively. In such conditions, using both kernels 687 

with a category-wise approach and Latent variable kernels has disadvantages. These category-wise 688 

approaches demand a larger number of training data while the use of Latent variable kernels 689 
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increases the number of hyperparameters in the model, thus increasing the computational cost. In 690 

this model, two separate NDK models were built using both types of kernels to compare their 691 

effectiveness in this type of condition. Accordingly, one NDK model consisted of the weighted 692 

Gower distance kernel in correlation matrix calculation and the Racine and Li estimator in the 693 

LWR process for discrete input variables. The other NDK model consisted of Latent variable 694 

kernels for discrete input variables in both correlation matrix calculation and LWR process.  695 

 This simulation consisted of 956 data points for the training purpose and 95 data points for 696 

the testing purpose out of all the simulations. Some of the seismic simulations did not converge; 697 

therefore, the number of usable data points in the test and training set is lower than in the original 698 

testing and training data sets. No repetitions were done in this test case since the data set already 699 

consisted of designated training and test data sets. In a similar way to the previous engineering 700 

application, the dependent variable of this system, maximum relative drifts of the bridge columns, 701 

were assumed to be in a lognormal distribution and their logarithm values follow a random 702 

Gaussian process. Therefore, goodness-of-fit measures were calculated for the prediction of 703 

logarithm values of the maximum relative drift in bridge columns at the 95 testing data points. 704 

Since the training and test data points were already designated, the predictions using the NDK 705 

model were not repeated like in previous test cases.  706 

 NDK models that included kernels with a category-wise approach and Latent variable 707 

kernels indicated R2 values of 0.77 and 0.68 respectively. The results did not show an improvement 708 

in using Latent variable kernels over the weighted Gower distance kernel and Racine and Li 709 

estimator. This feature was also observed in NRMSE values as well. The two models yielded 710 

values of 0.11 and 0.13 for the NRMSE metric respectively. However, for the NMAE metric, both 711 

NDK models yielded a value of 1.4. The results suggested that there was enough training data 712 
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within this specific data set for the category-wise approach to satisfactorily capture the effect of 713 

discrete input variables. The NDK model with Latent variable kernels produced a smaller R2 value 714 

and a larger NRMSE indicating less accurate predictions compared to the category-wise kernels. 715 

The limited capacity of Latent variables to effectively represent relationships between a higher 716 

number of discrete levels in a 2-D Latent space can be a possible reason for this difference. Also, 717 

the higher computational cost due to the large number of hyperparameters indicated that the use 718 

of Latent variable kernels in this test case is not cost-effective. However, it is also important to 719 

note that this may vary if the NDK model is developed over a different set of data even from the 720 

same numerical model. Similar to the first engineering applications, there are no actual values for 721 

the system uncertainty at design points to determine the accuracy of predicted uncertainties. 722 

However, the results from the analytical functions suggest that reasonable values would have been 723 

estimated for the standard deviations as well.  724 

The proposed NDK model showed satisfactory performances in predicting the seismic 725 

response of the bridges. However, it is important to note that predictions from the NDK model do 726 

not support detailed bridge designs under seismic loads. The use of such an NDK model is more 727 

suitable for identifying uncertainties associated with bridges when carrying out risk assessments 728 

and mitigation measures in a holistic manner. Since the NDK model provides separate estimates 729 

of both epistemic and aleatory uncertainties as a function of input variables, the homoscedasticity 730 

assumption, which is commonly used in seismic fragility models of bridges can be avoided. 731 

Therefore, it leads to better fragility models, thus resulting in better risk assessments. To 732 

demonstrate the usefulness of the proposed NDK model outcomes in practical applications, the 733 

developed model was employed in a case study for the seismic risk assessment of a bridge. 734 
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Accordingly, the annual probability of seismic failure was estimated for a bridge in  Charleston, 735 

South Carolina using the methodology presented by Kameshwar and Padgett (2014).  736 

Data obtained from USGS (Petersen et al., 2008) for Charleston (32.8N 79.9W), were used 737 

for the seismic hazard curve. The failure probability of the bridge at any given Peak Ground 738 

Acceleration (PGA) value was predicted using the trained NDK model which consisted of the 739 

Gower distance kernel and Racine and Li estimator. A maximum of 1.2g was taken for the PGA 740 

in the region of interest (Fernandez and Rix, 2012). The characteristics of the bridge employed in 741 

the case study are given in Table 9. The values of the set of variables marked with (*) were obtained 742 

from (Kameshwar and Padgett, 2014). The other parameter values were assumed from the ranges 743 

of corresponding input variables in the data set used for the NDK model. More details of the 744 

employed method and the considered case study can be found in (Kameshwar and Padgett, 2014). 745 

The complete damage state was considered for the relative drift capacity of the columns. The limit 746 

state was defined with a mean value of  5.0 and 0.35 logarithmic standard deviation (Xie et al., 747 

2019; Yi et al., 2007). For a given PGA, the annual failure probability was estimated using the 748 

Monte Carlo Simulation with 1.0E+06 samples. Finally, the annual failure probability of the 749 

selected bridge was approximated as 3.86E-05 in the range of 0.28-1.2g for PGA. This value aligns 750 

with the seismic risk of the particular bridge, 5.57E-05 which is based on column curvature 751 

ductility (Kameshwar and Padgett 2014).   752 

6. Discussion of results for analytical cases  753 

 In the previous two sections, the proposed NDK method for mixed variables was tested on 754 

a set of analytical functions and engineering problems. Overall, the results from numerical 755 

examples showed that mixed variable NDK provided accurate predictions for mean and standard 756 
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deviation including both aleatory and epistemic uncertainties in probabilistic systems. All the 757 

metrics calculated for predictions on each numerical case showed satisfactory values confirming 758 

goodness-of-fit in both mean response and standard deviation. However, to achieve a satisfactory 759 

level of the goodness-of-fit for the standard deviation of analytical cases, a larger number of 760 

training data points were required in comparison to mean responses. Although goodness-of-fit 761 

measures were not calculated for standard deviations in the two engineering applications, 762 

predictions of mean responses matched the actual value at a satisfactory level.  763 

 In this proposed NDK method for mixed input variables, the selection of discrete kernel 764 

functions in the correlation matrix and LWR plays a major role. Table 8 shows the discrete kernels 765 

used for these two processes in each of the numerical examples and the engineering application. 766 

The first numerical example consisted of the weighted Gower distance kernel for the correlation 767 

matrix. Racine and Li estimator was chosen to use in LWR for aleatory uncertainty calculation. 768 

Both of these kernels consist of the same hyperparameter value for non-identical levels of a 769 

discrete variable, thus employing a category-wise approach. The number of training data points 770 

required by a Kriging model with this type of kernel increases when the number of discrete 771 

variables and discrete categories in the problem increases. The first numerical example is 772 

characterized by binary categorical discrete variables and contains only four categorical 773 

combinations. This is a special case where even Latent variable kernels also employ a category-774 

wise approach ultimately since both discrete variables are binary categorical variables. However, 775 

the weighted Gower distance kernel and Racine and Li estimator are used with binary input 776 

variables in general. Therefore, these two kernels were used in the first numerical example while 777 

keeping the number of hyperparameters and computational cost as low as possible.   778 
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 However, the second numerical example and engineering application I consisted of discrete 779 

variables that have more than 2 discrete levels (non-binary variables). The modified 8-D Powell 780 

function in the second numerical example consisted of 3 discrete variables with 3 levels in each of 781 

them. The first engineering application also had a discrete variable with 3 discrete levels. The 782 

weighted Gower distance kernel and Racine and Li estimator demand a larger number of training 783 

data points in these types of systems because these kernels do not consider correlations between 784 

non-identical discrete levels. Therefore, the Latent variable kernel was used in the two NDK 785 

models for numerical example II and engineering application I since this kernel considers 786 

correlations between non-identical levels in a non-binary discrete variable. In these two examples, 787 

the Latent variable kernel was used for both correlation matrix and aleatory uncertainty 788 

calculations. However, the second engineering application led to a situation where a decision had 789 

to be made between the accuracy of estimations and the computational cost of the NDK model 790 

when choosing the types of kernels for the NDK model. Therefore, a comparison was made 791 

between the accuracy of NDK models developed with both types of kernels. The results show that 792 

the NDK model with the weighted Gower distance kernel and Racine and Li estimator has rendered 793 

satisfactory accuracy in estimations given that 956 data points were available for training. The 794 

NDK model with Latent variable kernels indicated the need for Latent variables in higher 795 

dimensional spaces which ultimately increases its large demand for computational power due to 796 

the large number of hyperparameters in the NDK model. Therefore, altogether the results from 797 

both numerical examples and engineering applications suggest that the selection of the discrete 798 

kernels depends on the size of the available training data sample, the number of discrete variables, 799 

and their discrete levels.  800 

6 Conclusion 801 
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 In this paper, a Non-Deterministic Kriging methodology was proposed for probabilistic 802 

systems with mixed continuous and discrete variables. The proposed methodology has the 803 

capability of predicting both epistemic and aleatory uncertainties along with the mean response. 804 

Furthermore, this method considers the effect of aleatory uncertainty in the computations for mean 805 

response estimation as well. Compared to Stochastic Kriging, which considers the effect of 806 

aleatory uncertainty in predictions, the proposed method does not require a larger number of 807 

replications at the same design point. During the construction of the correlation matrix, both 808 

continuous and discrete kernels were combined to incorporate the influence of mixed variables. 809 

Within this proposed model, aleatory uncertainty, which is an additional estimation compared to 810 

conventional Kriging, is estimated using locally weighted regression. To capture the effect of 811 

discrete variables on the local weights, continuous and discrete kernels were combined together. 812 

Furthermore, the proposed methodology can process replications at the same training data point, 813 

which is a common condition, especially with physical experiments due to inherent randomness.  814 

 This approach was tested on two probabilistic numerical examples and two engineering 815 

examples using three goodness-of-fit measures to determine its effectiveness in the prediction of 816 

both mean response and standard deviation. According to the results, the proposed NDK 817 

methodology shows better goodness-of-fit in both mean response and standard deviation 818 

predictions. Two engineering applications demonstrate the usefulness of the proposed method with 819 

large-scale physical experiments and computer simulations which are common in engineering 820 

fields. Furthermore, in the second engineering application, the trained NDK model was further 821 

used for a risk assessment of a bridge to demonstrate one of the potential uses of the proposed 822 

NDK method. However, it is important to note that the performance of the model depends on the 823 

nature of the problem and the selection of discrete kernels as well. The selection of discrete kernels 824 
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can be generally done based on the number of discrete variables and levels in the system and the 825 

number of available training data points. The computational time and cost of the model depend on 826 

the discrete kernel used since it largely contributes to the number of hyperparameters in the model. 827 

This study did not focus on other discrete kernels and handling a larger number of hyperparameters 828 

in the proposed NDK model. With adequate research, the proposed method can be assisted as a 829 

supervised learning tool in machine learning methods for optimization problems under the 830 

complexity of mixed input variables and natural stochasticity.   831 
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List of Symbols  840 

𝒄  - vector of linear predictor  

D - design of experiments  

Dmod – modified design of experiments without 

repeats  

𝑑𝑔𝑜𝑤- Gower distance  

 𝕍𝑚𝑜𝑑 - modified matrix of input data locations 

without repeats  

𝑽𝑨 - aleatory covariance matrix  

𝐯𝑨 - aleatory covariance vector. 

v – location vector of an input data point 
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𝑒𝑖- uncorrelated correlation error in locally 

weighted regression (LWR) 

f - basis function vector at the unsampled point  

F - regression design matrix at training data 

points 

kl - size of neighborhood in LWR 

𝑚̃𝑙- standard Nadaraya-Watson estimator in 

LWR 

𝑁𝑠 – number of training data points  

𝑁𝑟+𝑞 – number of all input variables  

𝑞 – number of discrete input variables 

R - correlation among data points  

𝑹𝑬 -  correlation matrix 

𝒓𝑬  -  correlation vector 

𝑛 –  number of continuous input variables  

t - Latent variable 

T - Latent space 

𝕍 - matrix of input data locations 

 

𝑾𝑙- diagonal matrix of the local polynomial 

regression weights 

x – vector of discrete input variables  

𝑦𝑛𝑑 – Non-Deterministic Kriging (NDK) 

prediction 

𝒀 – response vector in the design of experiments 

𝒀𝒎𝒐𝒅-modified response vector without repeats 

z – vector of discrete input variables  

𝑍0 - zero-mean stochastic process 

𝑍𝐸  - stochastic process of epistemic uncertainty 

𝑍𝐴 - stochastic process of aleatory uncertainty 

𝜷𝑛𝑑- regression coefficient vector  

𝜃𝑙- hyperparameter in the l th dimension  

𝜎𝑛𝑑
2 - prediction variance of NDK model 

𝜎𝐸
2 - epistemic variance 

𝜎𝐴
2  - aleatory variance 
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Table 1. Correlation functions for continuous variables 1119 

Name 𝑘(𝜃𝑙 , 𝑑𝑙) Parameter limits 

Exponential exp (−𝜃𝑙|𝑑𝑙|)  - 

Gaussian exp (−𝜃𝑙𝑑𝑙
2)  - 

Linear max (0, 1 − 𝜃𝑙𝑑𝑙
2) - 

Spherical 1 − 1.5𝜀𝑙 + 0.5𝜀𝑙
3 𝜀𝑙 = min (1, 𝜃𝑙|𝑑𝑙|) 

Cubic  1 − 3𝜀𝑙
2 + 2𝜀𝑙

3 𝜀𝑙 = min (1, 𝜃𝑙|𝑑𝑙|) 

 1120 
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Table 2. Combinations of kernel functions for weight matrix 1121 

Comb. 

Number 

Continuous variable kernel Discrete variable kernel 

01 Gaussian kernel function (Gajewicz-

Skretna et al., 2021) 

𝑤𝑥(𝑥𝑘
𝑖 , 𝑥𝑘

𝑗
) =  

1

𝑐√2𝜋
exp (−

(𝑥𝑘
𝑖 − 𝑥𝑘

𝑗
)2

2𝑘𝑙2
) 

Racine and Li estimator (Li and Racine, 

2014) 

𝑤𝑧(𝑧𝑘
𝑖 , 𝑧𝑘

𝑗
) =  {

1 𝑖𝑓 𝑧𝑘
𝑖 = 𝑧𝑘

𝑗
 

𝛾𝑘 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

02 Weighted Gower Distance Kernel  

𝑤(𝒗𝑖 , 𝒗𝑗) = exp {− ∑ 𝜃𝑘 

𝑘=𝑛+𝑞

𝑘=1

[𝑑𝑔𝑜𝑤
𝑘 (𝑣𝑘

𝑖 , 𝑣𝑘
𝑗
)]𝑝

𝑘
} 

03 Gaussian kernel function (Gajewicz-

Skretna et al., 2021) 

𝑤𝑥(𝑥𝑘
𝑖 , 𝑥𝑘

𝑗
) =  

1

𝑐√2𝜋
exp (−

(𝑥𝑘
𝑖 − 𝑥𝑘

𝑗
)2

2𝑘𝑙2
) 

Latent variable kernel 

𝑤𝑧(𝑧𝑘
𝑖 , 𝑧𝑘

𝑗
) =  exp (−𝜃𝑞‖𝜑(𝑧𝑖) − 𝜑(𝑧𝑗)‖

2
) 

Note: 𝑣𝑘
𝑖  represents the 𝑖-th variable in the 𝑘-th dimension 

 1122 
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Table 3. Summary of mean values of the Goodness-of-fit (GOF) measures in 4D function 1123 

1124 Sample 

Size 

GOF measures for the 

estimated mean 

GOF measures for the 

estimated standard deviation 

GOF measures for the 

estimated mean − 3*standard 

deviation 

GOF measures for the 

estimated mean + 3*standard 

deviation 

R2 value  NRMSE NMAE R2 value NRMSE NMAE R2 value  NRMSE NMAE R2 value  NRMSE NMAE 

60 0.93 0.083 1.40 0.62 0.151 2.25 0.81 0.115 1.90 0.83 0.097 1.35 

80 0.94 0.071 1.24 0.61 0.155 2.33 0.81 0.116 1.83 0.81 0.103 1.40 

100 0.94 0.068 1.40 0.72 0.131 2.14 0.80 0.117 1.97 0.84 0.093 1.32 

120 0.95 0.065 1.22 0.73 0.127 2.08 0.81 0.117 1.92 0.84 0.094 1.30 

140 0.95 0.059 1.19 0.77 0.117 1.87 0.82 0.114 1.83 0.85 0.092 1.27 

160 0.96 0.059 1.16 0.81 0.107 1.71 0.84 0.107 1.75 0.86 0.087 1.19 

180 0.96 0.060 1.29 0.80 0.110 1.87 0.81 0.115 1.99 0.85 0.092 1.26 

200 0.95 0.059 1.20 0.80 0.110 1.93 0.82 0.113 1.87 0.86 0.088 1.18 



50 

 

Table 4. Summary of mean values of the goodness-of-fit measures in 8D function 1125 

 1126 

Sample 

Size 

Goodness-of-fit measures for 

the estimated mean 

GOF measures for estimated 

standard deviation 

GOF measures for the 

estimated mean − 3*standard 

deviation 

GOF measures for the 

estimated mean + 3*standard 

deviation 

R2 value NRMSE NMAE R2 value NRMSE NMAE R2 value  NRMSE NMAE R2 value  NRMSE NMAE 

50 0.82 0.095 1.69 0.70 0.2 1.72 0.31 0.201 3.06 0.82 0.123 1.55 

100 0.93 0.056 1.04 0.75 0.177 1.97 0.46 0.177 3.07 0.87 0.102 1.50 

150 0.95 0.050 0.98 0.69 0.203 2.09 0.34 0.196 3.12 0.83 0.118 1.58 

200 0.95 0.048 0.98 0.75 0.183 1.91 0.45 0.180 3.02 0.87 0.104 1.42 

250 0.95 0.050 1.06 0.76 0.177 1.82 0.47 0.176 2.84 0.88 0.102 1.38 
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Table 5. Experimental wave conditions 1127 

Exp. Regular waves (h =2.15m) Irregular waves (h =2.15m) Transient waves (h =2.0m) 

H(m) T(s) H(m) T(s) A(m) T(s) 

X1 0.1 4.10 0.10 3.72 0.51 36.4 

X2 0.21 4.10 0.19 3.86 0.34 51.0 

X3 0.29 4.10 0.29 4.10 0.28 87.2 

X4 0.40 4.10 0.40 4.10 0.21 109 

X5 0.50 4.10 0.50 3.86 0.18 117 

X6 0.16 2.52 0.16 2.52 0.16 120 

X7 0.23 2.98 0.21 2.98 0.14 154 

X8 0.26 3.64 0.25 3.28 0.13 162 

X9 0.35 4.68 0.34 4.68   

X10 0.42 5.04 0.39 5.04   

1128 
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Table 6. Air gag conditions for experimental cases 1129 

Air Gap cases a(m) 

Regular and Irregular Waves Transient Waves 

a0 -0.40 -0.25 

a1 -0.30 -0.15 

a2 -0.20 -0.05 

a3 -0.10 0.05 

a4 -0.05 0.10 

a5 0.00 0.15 

a6 0.05 0.20 

a7 0.10 0.25 

a8 0.20 0.30 

a9 0.28 0.43 

1130 
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Table 7. Details of input variables used in Engineering Application II 1131 

Variable Category Range Unit 

*Log of Peak Ground Acceleration   Continuous [-3.22 0.67]  

*Deck width  Continuous [150.03- 1096.50] Inches 

*Concrete compressive strength  Continuous [3.00- 8.00] ksi 

*Steel yield strength Continuous [39.50 – 95.00] ksi 

*Dowel strength  Continuous [10.40 – 15.60] kips 

*Number of spans Discrete 2-9 - 

*Span length Continuous [276.08 – 1102.21] Inches 

*Number of columns Discrete 2-6 - 

*Column height Continuous [130.00 – 354.33] Inches 

*Column diameter  Continuous [23.65 – 59.10] Inches 

*Concrete cover depth  Continuous [0.50 – 4.50] Inches 

*Number of girders along the width of the 

deck 

Discrete 2-19 - 

*Girder spacing Continuous [53.05 – 210.25] Inches 

*Column spacing Continuous [150.03 – 300.00] Inches 

*Slab weight per girder Continuous [0.03- 0.28] Kips/inch 

*Bearing pad area  Continuous [90.11 – 654.64] Sq. inches 

*Bearing pad thickness  Continuous [0.20 – 1.20] Inches 

*Decrease in rebar diameter  Continuous [0.00 – 0.70] Inches 

*Stiffness factor to account for oxidation of 

elastomeric bearings 

Continuous [0.90 – 2.00] - 
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*Decrease in bearing dowel diameter Continuous [0.00 – 0.70] Inches 

Coefficient of friction for bearing pad Continuous [0.50 - 2.5] - 

Stiffness of bearing pad  Continuous [0.04 - 0.80] ksi 

Dowel gap  Continuous [0.00 – 2.00] Inches 

Abutment passive stiffness  Continuous [1.46- 4.39] kip/in/in 

Abutment active stiffness  Continuous [20.00 – 60.00] kip/in/pile 

Foundation vertical stiffness  Continuous [500.41 – 1500.00] kip/in 

Foundation transverse stiffness  Continuous [20.00 – 60.00] kip/in/pile 

Mass participation ratio Continuous [0.90 – 1.10] - 

Damping ratio Continuous [0.02 – 0.08] - 

PGA – geometric mean of the two ground 

motion components  

Continuous [0.03 – 1.90] g 

Gap 1 (used for bearing model) Continuous [1.41 – 1.57] Inches 

Gap 2 (used for bearing model) Continuous [1.41 – 1.57] Inches 

Gap 3 (used for bearing model) Continuous [0.78 – 1.22] Inches 

Gap 4 (used for bearing model) Continuous [0.78 – 1.22] Inches 

Longitudinal steel reinforcement ratio Continuous [0.01 - 0.04] - 

Transverse steel reinforcement ratio Continuous [0.00 – 0.02] - 

Deck slab c/s area  Continuous [362.31 – 3412.81] inches2 

Girder steel area  Continuous [754.04 – 4282.90] inches2 

Girder concrete strength Continuous [7.00 – 11.00] ksi 

Ix of deck slab Continuous [1458.26 – 96455.30] Inches4 
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Iz of deck slab Continuous [95243.05-  

11934069.40] 

Inches4 

Ix of girder Continuous [94262.079-  

1392317.95] 

Inches4 

Iz of girder Continuous [86750.26-  

1392317.95] 

Inches4 

Earthquake direction  Continuous [0.14 – 360.00] degree 

Weight of one AASHTO prestressed 

girder  

Continuous [0.02 – 0.1] kip/in 

1132 



56 

 

Table 8. Summary of discrete kernels used in examples 1133 

Example No. of Categorical 

combinations (No. 

of discrete 

variables) 

Discrete Kernels Total number of 

Hyperparameters 

in Discrete kernels 

Correlation 

Matrix 

LWR 

4-D function 4(2) Weighted Gower 

Distance 

Racine and Li 

Estimator  

4 

8-D function 81 (4) Latent variable 

kernel 

Latent variable 

kernel 

12 

Engineering 

Application I 

3 (1) Latent variable 

kernel 

Latent variable 

kernel 

3 

Engineering 

Application II 

760 (3) Weighted Gower 

Distance 

Racine and Li 

Estimator 

6 

 1134 
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Table 9. Input values for the predictor variables  1135 

Variable Input value Unit 

*Deck width  600 Inches 

*Concrete compressive strength  4.35 ksi 

*Steel yield strength 66.7 ksi 

Dowel strength  11 kips 

*Number of spans 4 - 

*Span length 393.7 Inches 

*Number of columns 3 - 

*Column height 157.48 Inches 

*Column diameter  35.83 Inches 

Concrete cover depth  3 Inches 

Number of girders along the width of the deck 6 - 

Girder spacing 120 Inches 

*Column spacing 300 Inches 

Slab weight per girder 0.24 Kips/inch 

Bearing pad area  372.58 Sq. inches 

Bearing pad thickness  0.7 Inches 

Decrease in rebar diameter  0.35 Inches 

Stiffness factor to account for oxidation of elastomeric bearings 1.4 - 

Decrease in bearing dowel diameter 0.35 Inches 
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 1136 

Fig. 1:   Flowchart for the proposed NDK method 1137 
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 1138 

Fig. 2:   Actual mean of the 4-D function 1139 

 1140 

Fig. 3:  (a) Variation of R2 values of the estimated mean in the 4D function (b) Variation of R2 1141 

values of the estimated standard deviation in the 4D function 1142 
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 1143 

Fig. 4:   Variation of mean R2 values for the estimated mean and predicted standard 1144 

deviation with the training data sample size in 8-D function 1145 

 1146 

Fig. 5:   Side view of the experimental setup 1147 
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