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ABSTRACT

We show that for all ¢ > 0, for sufficiently large prime power
q € N, for all § > 0, it is NP-hard to distinguish whether a 2-Prover-
1-Round projection game with alphabet size g has value at least
1 — &, or value at most 1/g'~¢. This establishes a nearly optimal
alphabet-to-soundness tradeoff for 2-query PCPs with alphabet
size q, improving upon a result of [Chan 2016]. Our result has the
following implications:

(1) Near optimal hardness for Quadratic Programming: it is NP-
hard to approximate the value of a given Boolean Quadratic
Program within factor (log n)!~°(!) under quasi-polynomial
time reductions. This result improves a result of [Khot-Safra
2013] and nearly matches the performance of the best known
approximation algorithm [Megrestki 2001, Nemirovski-Roos-
Terlaky 1999 Charikar-Wirth 2004] that achieves a factor of
O(logn).

(2) Bounded degree 2-CSP’s: under randomized reductions, for
sufficiently large d > 0, it is NP-hard to approximate the
value of 2-CSPs in which each variable appears in at most
d constraints within factor (1 —o(1)) % improving upon a
recent result of [Lee-Manurangsi 2023].

(3) Improved hardness results for connectivity problems: using
results of [Laekhanukit 2014] and [Manurangsi 2019], we de-
duce improved hardness results for the Rooted k-Connectivity
Problem, the Vertex-Connectivity Survivable Network De-
sign Problem and the Vertex-Connectivity k-Route Cut Prob-
lem.
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1 INTRODUCTION

The PCP theorem is a fundamental result in theoretical computer
science with many equivalent formulations [2, 3, 18]. One of the
formulations asserts that there exists ¢ > 0 such that given a sat-
isfiable 3-SAT formula ¢, it is NP-hard to find an assignment that
satisfies at least (1—¢) fraction of the constraints. The PCP theorem
has a myriad of applications within theoretical computer science,
and of particular interest to this paper are applications of PCP to
hardness of approximation.

The vast majority of hardness of approximation result are proved
via reductions from the PCP theorem above. Oftentimes, to get a
strong hardness of approximation result, one must first amplify the
basic PCP theorem above into a result with stronger parameters [17,
21, 22, 26] (see [41] for a survey). To discuss these parameters, it is
often convenient to view the PCP through the problem of 2-Prover-
1-Round Games, which we define next.!

Definition 1.1. An instance ¥ of 2-Prover-1-Round Games consists
of a bipartite graph G = (L U R E), alphabets 31 and 3g and a
collection of constraints ® = {¢¢}ecE, which for each edge e € E
specifies a constraint map ¢e: X — XR.

(1) The alphabet size of ¥ is defined to be |21 | + |ZR|-

(2) The value of ¥ is defined to be the maximum fraction of edges
e € E that can be satisfied by any assignment. That is,

val(¥) = max  ME= (0 €EIfe(AL(w) = AR}

Ap: L—3y |E|
AR: R—)ZR

The combinatorial view of 2-Prover-1-Round Games has its ori-
gins in an equivalent, active view in terms of a game between a
verifier and two all powerful provers, which is sometimes more
intuitive. The verifier and the two provers have access to an in-
stance ¥ of 2-Prover-1-Round Games, and the provers may agree
beforehand on a strategy; after this period they are not allowed to
communicate. The verifier then picks a random edge, e = (u, ),
from the 2-Prover-1-Round game, sends u to the first prover, sends
v to the second prover, receives a label in response from each one
of them, and finally checks that the labels satisfy the constraint ¢.
If so, then the verifier accepts. It is easy to see that the value of the
2-Prover-1-Round game is equal to the acceptance probability of
the verifier under the best strategy of the provers.

In the language of 2-Prover-1-Round Games, the majority of
hardness of approximation results are proved by combining the
basic PCP theorem [2, 3, 18] with Raz’s parallel repetition theo-
rem [38], which together imply the following result:

IStrictly speaking, the notion below is referred to in the literature as projection 2-
Prover-1-Round games. We omit the more general definition as we do not discuss
non-projection games in this paper.
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Theorem 1.2. There exists y > 0 such that for sufficiently large R,
given a 2-Prover-1-Round game ¥V with alphabet size R, it is NP-hard
to distinguish between the following two cases:

(1) YES case: val(¥) = 1.
(2) NO case: val(¥) < %.

For many applications, one only requires that the soundness
error of the PCP is small. Namely, that val(¥) is arbitrarily small in
the “NO case”. For certain applications however, more is required:
not only must the soundness error be small - but it must also
be small in terms of the alphabet size. The tradeoff between the
soundness error of the PCP and the alphabet size of the PCP is the
main focus of this paper.

With respect to this tradeoft, it is clear that the best result one
may hope for in Theorem 1.2 is y = 1 — 0(1) since a random as-
signment to ¥ satisfies, in expectation, at least % fraction of the
constraints. In terms of results, combining the PCP theorem with
Raz’s parallel repetition theorem gives y > 0 that is an absolute,
but tiny constant. Towards a stronger tradeoff, Khot and Safra [27]
showed that Theorem 1.2 holds for y = 1/6 with imperfect com-
pleteness (i.e., val(¥) > 1 — 0(1) instead of val(¥) = 1 in the “YES
case”). The result of Khot and Safra was improved by Chan [8],
who showed (using a completely different set of techniques) that
Theorem 1.2 holds for y = 1/2 — 0(1), again with imperfect com-
pleteness.

In the remainder of this paper we will describe our main results
and give an overview of our PCP construction. Additional details,
including proofs, can be found in the full version of this paper [33].

1.1 Main Results

In this section we explain the main results of this paper.

1.1.1  Near Optimal Alphabet vs Soundness Tradeoff. The main re-
sult of this work improves upon all prior results, and shows that
one may take y = 1 — 0(1) in Theorem 1.2, again with imperfect
completeness. Formally, we show:

Theorem 1.3. For all e,§ > 0, for sufficiently large R, given a 2-
Prover-1-Round game ¥, it is NP-hard to distinguish between the
following two cases:

(1) YES case: val(¥) > 1

>1-6.
(2) NO case: val(¥) < =i

Rl-¢-

Theorem 1.3 gives a near optimal tradeoff between the alphabet
size of a PCP and the soundness of a PCP, improving upon the result
of Chan [8]. Moreover, Theorem 1.3 has several applications to
combinatorial optimization problems, which we discuss below. We
remark that most of these applications require additional features
from the instances produced in Theorem 1.3 which we omit from
its formulation for the sake of clarity. For instance, one application
requires a good tradeoff between the size of the instance and the size
of the alphabet, which our construction achieves (see the discussion
following Theorem 1.4). Other applications require the underlying
constraint graph to be bounded-degree bi-regular graph, which our
construction also achieves, after mild modifications detailed in [29].
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1.1.2  Application: NP-Hardness of Approximating Quadratic Pro-
grams. Theorem 1.3 has an application to the hardness of approxi-
mating the value of Boolean Quadratic Programming, as we explain
next.
An instance of Quadratic programming consists of a quadratic
form Q(x) = i a; jxixj where a;; = 0 for all i, and one wishes to
e

L=
maximize Q(x) over x € {—1,1}". This problem is known to have

an O(log n) approximation algorithm [9, 31, 35], and is known to be
quasi-NP-hard to approximate within factor (log n)!/ 6-0(1) 1, 27].
That is, unless NP has a quasi-polynomial time algorithm, no poly-
nomial time algorithm can approximate Quadratic Programming to
within factor (logn)'/6=(1)As a first application of Theorem 1.3,
we improve the hardness result of Khot and Safra:

Theorem 1.4. It is quasi-NP-hard to approximate Quadratic Pro-
gramming to within a factor of (log n)!=°(1).

Theorem 1.4 is proved via a connection between 2-Prover-1-
Round Games and Quadratic Programming due to Arora, Berger,
Hazan, Kindler, and Safra [1]. This connections requires a good
tradeoff between the alphabet size, the soundness error, and the
size of the PCP. Fortunately, the construction in Theorem 1.4 has
a sufficiently good tradeoff between all of these parameters: let-
ting N be the size of the instance, the alphabet size can be taken
to be (log N)l_°<1) and the soundness error can be taken to be
(log N)—1+o(1)_ 2

Relevance to the sliding scale conjecture: It is worth noting that
using our techniques, we do not know how to achieve soundness
error that is smaller than inversely poly-logarithmic in the instance
size. As such, our techniques have no bearing on the sliding scale
conjecture, which is concerned with getting soundness error that
is inversely polynomial in the instance size. This seems to be a
bottleneck of any PCP construction that is based on the cover-
ing property. In fact, assuming ETH, any quasi-polynomial PCP
construction achieving soundness error, say, 1/(log N)? would nec-
essarily need to have almost polynomial alphabet size (since the
reduction to Quadratic Solvability would give an algorithm that
runs roughly in time exponential in the alphabet size), which is
the opposite of what our techniques give. With this in mind, we
would like to mention a closely related, recent conjecture made
in [10], which is a sort of a mixture between d-to-1 games and the
sliding scale conjecture. This conjecture is motivated by improved
hardness results for densest k-subgraph style problems, and focuses
on the relation between the instance size and the soundness error
(allowing the alphabet to be quite large). It may be possible that the
ideas from the current paper can help make progress towards this
conjecture.

1.1.3  Application: NP-hardness of Approximating Bounded Degree
2-CSPs. Theorem 1.3 has an application to the hardness of approx-
imating the value of 2-CSPs with bounded degree, as we explain
next.

2We remark that the result of Chan [8] does not achieve a good enough trade-off be-
tween the alphabet size and the instance size due to the use of the long-code, and there-
fore it does not yield a strong inapproximability result for Quadratic Programming.
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An instance ¥ of 2-CSP, say ¥ = (X, C, X), consists of a set of
variables X, a set of constraints C and an alphabet X. Each con-
straint in C has the form P(x;,x;) = 1 where P: X X — {0,1} is
a predicate (which may be different in distinct constraints). The
degree of the instance ¥ is defined to be the maximum, over vari-
ables x € X, of the number of constraints that x appears in. The
goal is to find an assignment A: X — ¥ that satisfies as many of
the constraints as possible.

There is a simple % approximation algorithm for the 2-CSP
problem for instances with degree at most d. Lee and Manurangsi

proved a nearly matching (% - 0(1)) d hardness of approximation

result assuming the Unique-Games Conjecture [29]. Uncondition-
ally, they show the problem to be NP-hard to approximate within

factor (% - o(l)) d under randomized reductions.

Using the ideas of Lee and Manurangsi, our main result implies
a nearly matching NP-hardness result for bounded degree 2-CSPs:

Theorem 1.5. For alln > 0, for sufficiently large d, approximating
the value of 2-CSPs with degree at most d within factor (% - r]) d is
NP-hard under randomized reductions.

As in [29], Theorem 1.5 has a further application to finding
independent sets in claw free graphs. A k-claw Kj j is the (k + 1)
vertex graph with a center vertex which is connected to all other k-
vertices and has no other edges; a graph G is said to be k-claw free if
G does not contain an induced k-claw graph. There is a polynomial
time approximation algorithm for approximating the size of the
largest independent set in a given k-claw free graph G within factor
% [4, 40], and a quasi-polynomial time approximation algorithm
within factor (% + o(l)) k [11]. As in [29], using ideas from [14]
Theorem 1.5 implies that for all € > 0, for sufficiently large k, it is

NP-hard (under randomized reductions) to approximate the size
of the largest independent set in a given k-claw free graph within

factor (;11 + r]) k. This improves upon the result of [29] who showed

that the same result holds assuming the Unique-Games Conjecture.

1.1.4  Application: NP-hardness of Approximating Connectivity Prob-
lems. Using ideas of Laekhanukit [28] and the improvements by
Manurangsi [30], Theorem 1.3 implies improved hardness of ap-
proximation results for several graph connectivitiy problems. More
specifically, Theorem 1.3 combined with the results of [30] im-
plies improvements to each one of the results outlined in table 1
in [28] by a factor of 2 in the exponent - with the exception of
Rooted-k-Connectivity on directed graphs where a factor of 2 im-
provement is already implied by [30]. We briefly discuss the Rooted
k-Connectivity Problem, but defer the reader to [28] for a detailed
discussion of the remaining graph connectivity problems.

In the Rooted k-Connectivity problem there isa graph G = (V, E),
edge costs c: E — R, aroot vertex r € V and a set of terminals
T € V\ {r}. The goal is to find a sub-graph G’ of smallest cost that
for each t € T, has at least k vertex disjoint paths from r to t. The
problem admits |T| trivial approximation algorithm (by applying
minimum cost k-flow algorithm for each vertex in T), as well as an
O(k log k) approximation algorithm [36].

Using the ideas of [28], Theorem 1.3 implies the following im-
proved hardness of approximation results:
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Theorem 1.6. For all ¢ > 0, for sufficiently large k it is NP-hard
to approximate the Rooted-k-Connectivity problem on undirected
graphs to within a factor ofkl/ 5=¢, the Vertex-Connectivity Survivable
Network Design Problem with connectivity parameters at most k to
within a factor ofk1/3_f, and the Vertex-Connectivity k-Route Cut
Problem to within a factor ofkl/S_E.

We remark that in [7], a weaker form of hardness for the Vertex-
Connectivity Survivable Network problem is proved. More pre-
cisely, they show an QK3 log k) integrality gap for the set-pair
relaxation of the problem. Our hardness result of k!/3~¢ improves
upon it, showing that (unless P=NP) no relaxation can yield a better
than k'/3~¢ factor approximation algorithm.

2 PRELIMINARIES

In this section we will describe some preliminary definitions and
results. We first present the Grassmann graph and some Fourier
analytic tools that are used in our analysis. We then state some
hardness results regarding 3Linwhich will form the starting point
of our PCP construction.

2.1 The Grassmann Graph

Throughout this section, we fix parameters n, £ with 1 < £ < n,
and a prime power q. The Grassmann graph Grassg(n, ) is defined
as follows.

o The vertex set corresponds to the set of £-dimensional sub-
spaces L C Fg.

e The edge set corresponds to all pairs (L, L") of £-dimensional
subspaces L, L’ C FZ such that dim(LNL") =¢ - 1.

We also write Grassg(V, ) to denote the Grassmann graph on ¢-
dimensional subspaces V, where V is some large linear subspace.
Finally, we denote by Ly(Grassq(n, £)) the set of complex valued

F? F?
functions F: [ fq] — C, where [ [q] is the set of £-dimensional
q q

: n
subspaces in Fg.

Zoom ins and Zoom outs. A feature of the Grassmann graph
is that it contains many copies of lower dimensional Grassmann
graphs as induced subgraphs. These subgraphs are precisely the
zoom-ins and and zoom-outs referred to in the introduction, and
they play a large part in the analysis of our inner PCP and final
PCP. For subspaces Q C W C FZ, let

Zoom[Q, W] = {L € Grassq(n,f) | Q C L C W}.

We refer to Q as a zoom-in and W as a zoom-out. When W = ]Fg,
Zoom|[Q, W] is the zoom-in on Q, and when Q = {0}, Zoom[Q, W]
is the zoom-out on W.

2.1.1  Pseudo-randomness over the Grassmann graph. One notion
that will be important to us is (r, ¢)-pseudo-randomness, which
measures how much F can deviate from its expectation on a zoom-
in/zoom-out restrictions of “size r”. For all of our applications, F and
G will both be indicator functions of some sets of vertices, so it will
be helpful to think of this case for the remainder of the section. > Let

3We remark that the results we state have more general versions that apply to wider
classes of functions. We refrain from stating them in this generality for sake of
simplicity.
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u(F) = ELeGrassy (n,f) [F(L)] (for indicator functions, this is simply
the measure of the indicated set). For subspaces Q € W C FZ,
define

Ho,w (F) = E [F(L)|Q<cLcW]

LeGrassg(n,t)
Definition 2.1. We say that a Boolean function F: G(n,£) — {0,1}
is (r, €)-pseudo-random if for all Q C W C Fg satisfying dim(Q) +
codim(W) = r, we have

pow (F) <e.

We will often say that a set S C Grassg(n, ) is (r, £)-pseudo-
random if its indicator function is. Because the Grassmann graph is
not a small-set expanders, there are small sets in it that do not look
“random” with respect to some combinatorial counting measures
(such as edges between sets, expansion and so on). Intuitively, a
small set S which is highly pseudo-random will exhibit random-like
structure with respect to several combinatorial measures of interest,
and the two lemmas below are instantiations of it required in our
proof. The proof proceed by reducing them to similar statements
about the Bi-linear scheme, which can then be proved directed by
appealing to global hypercontractivity results of [15, 16].

For the analysis of the inner PCP, we require the following
lemma, which bounds the number of edges between a subset, £,
of Grassg(n, 2¢), and Grassg(n, 2(1 — 6)¢) when L is (r, £)-pseudo-
random.

Lemma2.2. LetF: Grassq(n,2¢) — {0,1} andG: Grassq(n, 2(1~-
6)t) — {0, 1} be Boolean functions such that

E[F(L)] = @, EG(R)] =5,
L R

and suppose that F is (r, ¢) pseudo-random. Then for all t > 4 that
are powers of 2,

(TF,G) < Orr (V) gt=1/t 2t/ (21=1) | o=rdt o5

2.2 Hardness of 3LIN

In this section we cite several hardness of approximation results
for the problem of solving linear equations over finite fields, which
are the starting point of our reduction. We begin by defining the
3Lin and the Gap3Lin problem.

Definition 2.3. For a prime power q, an instance of 3Lin is (X, Eq)
which consists of a set of variables X and a set of linear equations Eq
over Fy. Each equation in Eq depends on exactly three variables in X,
each variable appears in at most 10 equations, and any two distinct
equations in Eq share at most a single variable.

The goal in the 3Lin problem is to find an assignment A: X — Fy
satisfying as many of the equations in E as possible. The maximum
fraction of equations that can be satisfied is called the value of the
instance. We remark that usually in the literature, the condition that
two equations in E share at most a single variable is not included
in the definition of 3Lin, as well the the bound on the number of
occurences of each variable.

For 0 < s < ¢ < 1, the problem Gap3Lin[c,s] is the promise
problem wherein the input is an instance (X, E) of 3Lin promised to
either have value at least c or at most s, and the goal is to distinguish
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between these two cases. The problem Gap3Lin[c, s] with various
settings of ¢ and s will be the starting point for our reductions.

To prove Theorem 1.3, we shall use the classical result of Has-
tad [22]. This result says that for general 3Lin instances (i.e., without
the additional condition that two equations share at most a single
variable), the problem Gap3Lin[1 — ¢,1/q + €] is NP-hard for all
constant ¢ € N and ¢ > 0. This result implies the following theorem
by elementary reductions:

Theorem 2.1. There exists s < 1 such that for every constantn > 0
and prime q, Gap3Lin [1 — n,s] is NP-hard.

To prove Theorem 1.4 we will need a hardness result for 3Lin
with completeness close to 1, and we will use a hardness result
of Khot and Ponnuswami [26]. Once again, their result does not
immediately guarantee the fact that any two equations share at
most a single variable, however once again this property may be
achieved by an elementary reduction.

Theorem 2.2. There is a reduction from SAT with size n to an in-
stance of Gap3Lin[1—n, 1—¢] of size N over a field Fy of characteristic
2, where,

e Both N and the running time of the reduction are bounded by
20(10g2 n)

RS Z—Q(\/logN)'
1
e >0 (log3N)'

3 THE PCP CONSTRUCTION

Theorem 1.3 is proved by composing an inner PCP and an outer
PCP. Both of these components incorporate ideas from the proof
of the 2-to-1 Games Theorem. The outer PCP is constructed using
smooth parallel repetition [24, 27] while the inner PCP is based on
the Grassmann graph [12, 13, 24, 25].

The novelty in this current paper, in terms of techniques, is
twofold. First, we must consider a Grassmann test in a different
regime of parameters (as otherwise we would not be able to get a
good alphabet to soundness tradeoff) and in a regime of much lower
soundness error. These differences complicate matters considerably.
Second, our soundness analysis is more involved than that of the
2-to-1-Games Theorem. As is the case in [12, 13, 24, 25], we too use
global hyperconractivity, but we do so more extensively. We also re-
quire quantitatively stronger versions of global hypercontractivity
over the Grasssmann graph which are due to [16]. In addition, our
analysis incorporates ideas from the plane versus plane test and
direct product testing [23, 32, 39], from classical PCP theory [27], as
well as from error correcting codes [19]. All of these tools are nec-
essary to prove our main technical statement — Lemma 3.1 below
- which is a combinatorial statement that may be of independent
interest.

We now elaborate on each one of the components separately.

Y

Vv

3.1 The Inner PCP

Our Inner PCP is based on the subspace vs subspace low degree
test. Below, we first give a general overview of the objective in low-
degree testing. We then discuss the traditional notion of soundness
as well as a non-traditional notion of soundness for low-degree
tests. Finally, we explain the low-degree test used in this paper, the
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notion of soundness that we need from it, and the way that this
notion of soundness is used.

Low degree tests in PCPs. Low degree tests have been have a vital
component in PCPs since their inception, and much attention has
been devoted to improving their various parameters. The goal in
low-degree testing is to encode a low-degree function f: Fg — Fq
via a table (or a few tables) of values, in a way that allows for
local testing. Traditionally, one picks a parameter £ € N (which is
thought of as a constant and is most often just 2) and encodes the
function f by the table T of restrictions of f to £-dimensional affine
subspaces of ]FZ For the case £ = 2, the test associated with this
encoding is known as the Plane vs Plane test [39]. The Plane vs
Plane test proceeds by picking two planes P;, P, intersecting on a
line, and then checking that T[P;] and T[P;] agree on P; N Py. It
is easy to see that the test has perfect completeness, namely that
a valid table of restrictions T passes the test with probability 1. In
the other direction, the soundness error of the test — which is a
converse type statement — is much less clear (and is crucial towards
applications in PCP). In the context of the Plane vs Plane test, it is
know that if a table T, that assigns to each plane a degree d function,
passes the Plane vs Plane test with probability ¢ > ¢~¢ (wherec > 0
is a small absolute constant), then there is a degree d function f
such that T[P] = f|p on at least Q(¢) fraction of the planes.

Nailing down the value of the constant ¢ for which soundness
holds is an interesting open problem which is related to sound-
ness vs alphabet size vs instance size tradeoff in PCPs [5, 32, 34].
Currently, the best known analysis for the Plane vs Plane test [34]
shows that one may take ¢ = 1/8. Better analysis is known for
higher dimensional encoding [5, 32], and for the 3-dimensional
version of it a near optimal soundness result is known [32].

Low degree tests in this paper. In the context of the current paper,
we wish to encode linear functions f': F — Fg, and we do so by the
subspaces encoding. Specifically, we set integer parameters £; > £,
and encode the function f using the table Tj of the restrictions of f
to all #;-dimensional linear subspaces of FJZ, and the table T5 of the
restrictions of f to all £,-dimensional linear subspaces of FZ The
test we consider is the natural inclusion test:

(1) Sample a random ¢;-dimensional subspace L; C Fg and a
random #;-dimensional subspace Ly C L;.
(2) Read T1[L1], T»[L2] and accept if they agree on Ly.

As is often the case, the completeness of the test — namely the fact
that valid tables Tj, T» pass the test with probability 1 - is clear. The
question of most interest then is with regards to the soundness of
the test. Namely, what is the smallest ¢ such that any two tables Ty
and T, that assign linear functions to subspaces and pass the test
with probability ¢, must necessarily “come from” a legitimate linear
function f?

Traditional notion of soundness. As the alphabet vs soundness
tradeoft is key to the discussion herein, we begin by remarking
that the alphabet size of the above encoding is g% + ¢ = ©(q")
(since there are ¢’ distinct linear functions on a linear space of
dimension ¢ over Fg). Thus, ideally we would like to show that the
soundness error of the above test is q_(l_o(l))fl. Alas, this is false.
Indeed, it turns out that one may construct assignments that pass
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the test with probability at least Q(max(q~%, g2=4)) that do not
have significant correlation with any linear function f:

(1) Taking T3, T, randomly by assigning to each subspace a ran-
dom linear function, one can easily see that the test passes
with probability ©(g~%).

(2) Taking linear subspaces Wy, .. ., Wlo()qfl C IF,’]’ of co-dimension
1 randomly, and a random linear function f;: W; — Fg for
each i, one may choose T; and T; as follows. For each Li,
pick a random i such that Ly € W; (if such i exists) and
assign Tt [L1] = fil|r,. For each Ly, pick a random i such that
Ly € W (if such i exists) and assign T>[Lz] = fi|1,. Taking
Ly C Ly randomly, one sees that with constant probability
Ly has ©(¢"1=%) many possible i’s, L; has ©(1) many pos-
sible i’s and furthermore there is at least one i that is valid
for both of them. With probability Q(q%~%) this common
i is chosen for both L; and Ly, and in this case, the test on
(L1, Lp) passes. It follows that, in expectation, T1, T, pass the
test with probability Q(g%~4).

In light of the above, it makes sense that the best possible alphabet
vs soundness tradeoff we may achieve with the subspace encoding
is by taking £, = #;/2. Such a setting of the parameters would
give alphabet size R = g% and (possibly) soundness error ©(1/VR).
There are several issues with this setting however. First, this tradeoff
is not good enough for our purposes (which already rules out this
setting of parameters). Second, we do not know how to prove that
the soundness error of the test is ©(1/VR) (the best we can do is
quadratically off and is @(1/R1/4)). To address both of these issues,
we must venture beyond the traditional notion of soundness.

Non-traditional notion of soundness. The above test was first
considered in the context of the 2-to-1 Games Theorem, wherein
one takes ¢ = 2 and £ = £; — 1. In this setting, the test is not sound
in the traditional sense; instead, the test is shown to satisfy a non-
standard notion of soundness, which nevertheless is sufficient for
the purposes of constructing a PCP. More specifically, in [25] it is
proved that for all ¢ > 0 there is r € N such that for sufficiently large
¢ and for tables T, Tz as above, there are subspaces Q C W C FZ
with dim(Q) + codim(W) < r and a linear function f: W — Fq
such that

Pr
QCLicW

We refer to the set
{L CFgldim(l)=6,QCLCW}

[Ti[L1] = flr,] = €'(e) > 0.

as the zoom in of Q and zoom out of W. While this result is good
for the purposes of 2-to-1 Games, the dependency between ¢ and ¢
(and thus, between the soundness and the alphabet size) is still not
good enough for us.

Our low-degree test. It turns out that the proper setting of pa-
rameters for us is £ = (1 — §)¢; where § > 0 is a small constant.
With these parameters, we are able to show that for ¢ > q*(lf‘sl)f1
(where &’ = §’(8) > 0 is a vanishing function of §), if Ty, T; pass
the test with probability at least ¢, then there are subspaces Q € W
with dim(Q) + codim(W) < r = r(§) € N, and a linear function
f+ W — Fg such that

nglrgw[Tl [L1] = flL, ] > €' (e) = Q(e).
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This result is obtained from Lemma 2.2, which in turn relies on
[16].

Working in the very small soundness regime of ¢ > q~
entails with it many challenges, however. First, dealing with such
small soundness requires us to use a strengthening of the global
hypercontractivity result of [25] in the form of an optimal level
d inequality due to Evra, Kindler and Lifshitz [16]. Second, in the
context of [25], ¢’ could be any function of ¢ (and indeed it ends
up being a polynomial function of ¢). In the context of the current
paper, it is crucial that ¢’ = e*o(l) ag opposed to, say, &’ = ¢''1.
The reason is that, as we are dealing with very small ¢, the result
would be trivial for ¢’ = ¢!'! and not useful towards the analysis
of the PCP (as then ¢’ would be below the threshold =% which
represents the agreement a random linear function f has with Ty).

(1-8")8

3.2 Getting List Decoding Bounds

As is usually the case in PCP reductions, we require a list decoding
version for our low-degree test. Indeed, using a standard argument
we are able to show that in the setting that &, = (1 — §)#; and
e > q1=9) thereis r = r(8,8’) € N such that for at least g~©(4)
fraction of subspaces Q C Fy of dimension r, there exists a subspace
W with co-dimension at most r and Q € W C F7, as well as a linear
function f: W — Fy, such that

Pr [Ti[L1] = flr,] > €'(e) = Q(e).

QCLcwW

1

This list decoding version theorem alone is not enough. In our
PCP construction, we compose the inner PCP with an outer PCP
(that we describe below), and analyzing the composition requires de-
coding global linear functions (from a list decoding version theorem
as above) in a coordinated manner between two non communicat-
ing parties. Often times, the number of possible global functions
that may be decoded is constant, in which case randomly sampling
one among them often works. This is not the case for us, though:
if (Q,W) and (Q’,W’) are distinct zoom-in and zoom-out pairs
for which there are linear functions fo w and for - satisfying (1),
then the functions fp w and for,w could be completely different.
Thus, to achieve a coordinated decoding procedure, we must:

(1) Facilitate a way for the two parties to agree on a zoom-in
and zoom-out pair (Q, W) with noticeable probability.

(2) Show that for each (Q, W) there are at most poly(1/¢) func-
tions fo w for which

Pr [T[Li] = fowl,] > €.

QcL,cw

The second item is precisely the reason we need ¢’ to be e“"’(l);

any worse dependency, such as ¢’ = ¢!'! would lead to the second
item being false. We also remark that the number of functions being
poly(1/e) is important to us as well. There is some slack in this
bound, but a weak quantitative bound such as exp(exp(1/¢)) would
have been insufficient for some of our applications. Luckily, such
bounds can be deduced from [19] for the case of linear functions.*

We now move onto the first item, in which we must facilitate a
way for two non-communicating parties to agree on a zoom-in and
zoom-out pair (Q, W). It turns out that agreeing on the zoom-in Q

“In the case of higher degree functions (even quadratic functions) some bounds are
known [6, 20] but they would not have been good enough for us.
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can be delegated to the outer PCP, and we can construct a sound
outer PCP game in which the two parties are provided with a coordi-
nated zoom-in Q. This works because in our list decoding theorem,
the fraction of zoom-ins Q that work is significant. Coordinating
zoom-outs is more difficult, and this is where much of the novelty
in our analysis lies.

3.3 Coordinating Zoom-outs

For the sake of simplicity and to focus on the main ideas, we ignore
zoom-ins for now and assume that the list decoding statement
holds with no Q. Thus, the list decoding theorem asserts that there
exists a zoom-out W of constant co-dimension on which there is a
global linear function. However, there could be many such zoom-
outs W, say Wy, ..., Wy, and say all of them were of co-dimension
r = Oss(1). If the number m were sufficiently large - say at
least g PO (&) fraction of all co-dimension r subspaces — then we
would have been able to coordinate them in the same way as we
coordinate zoom-ins. If the number m were sufficiently small - say
m = gP° (&) then randomly guessing a zoom-out would work well
enough. The main issue is that the number m is intermediate, say
m= q‘/ﬁ.

This issue had already appeared in [12, 24]. Therein, this issue is
resolved by showing that if there are at least m > qulz zoom-outs
Wi, ..., Wi, of co-dimension r, and linear functions fi,.. ., fiy on
Wi, ..., Wy, respectively such that

e [TILL = fill] > €

for all i, then there exists a zoom out W of co-dimension strictly
less than r and a linear function f: W — Fg such that

(Pr [TIL] = flu) > Q).

Thus, if there are too many zoom-outs of a certain co-dimension,
then there is necessarily a zoom-out of smaller co-dimension that
also works. In that case, the parties could go up to that co-dimension.

This result is not good enough for us, due to the polynomial gap
between the agreement between and f;’s and F and the agreement
between f an T. Indeed, in our range of parameters, ¢'1? will be
below the trivial threshold g~% which is the agreement a random
linear function f has with T, and therefore the promise on the
function f above is meaningless.

We resolve this issue by showing a stronger, essentially optimal
version of the above assertion still holds. Formally, we prove:

Lemma 3.1. Forall 6 > 0,r € N there is C > 1 such that the
following holds for ¢/ > q(l_a)ﬁ. Suppose that F is a table that
assigns to each subspace L of dimension ¢, a linear function, and
suppose that there are at least m > q€4 subspaces Wi, ..., Wy, of
co-dimension r and linear functions f;: W; — Fq such that

LQP% [T[L] = file] > ¢

foralli=1,...,m. Then, there exists a zoom-out W of co-dimension
strictly smaller than r and a linear function f: W — Fq such that

[PrITIL] = fli] > Q().

We remark that our proof of Lemma 3.1 is very different from
the arguments in [12] and is significantly more involved. Our proof
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uses tools from [12, 24], tools from the analysis of the classical
Plane vs Plane and direct product testing [23, 32, 39], global hyper-
contractivity [16] as well as Fourier analysis over the Grassmann
graph.

3.4 The Outer PCP

Our outer PCP game is the outer PCP of [12, 24], which is a smooth
parallel repetition of the equation versus variables game of Has-
tad [22] (or of [26] for the application to Quadratic Programming).
As in there, we equip this game with the “advice” feature to facil-
itate zoom-in coordination (as discussed above). For the sake of
completeness we elaborate on the construction of the outer PCP
below.

We start with an instance of 3-Lin that has a large gap between
the soundness and completeness. Namely, we start with an instance
(X, E) of linear equations over Fy in which each equation has the
form ax;, + bx;, + cx;, = d. It is known [22] that for all n > 0, it is
NP-hard to distinguish between the following two cases:

(1) YES case: val(X,E) > 1—n.
(2) NO case: val(X, E) < L1

q

Given the instance (X, E), we construct a 2-Prover-1-Round game,
known as the smooth equation versus variable game with r-advice
as follows. The verifier has a smoothness parameter f > 0 and
picks a random equation e, say ax;, + bx;, + cxj, = d, from (X, E).
Then:

(1) With probability 1—f the verifier takes U = V = {x;,, xi,, xi, }
and vectors uy; = vq,...,Ur = Uy € ]Fg sampled uniformly
and independently.

(2) With probability B, the verifier sets U = {x;,, xi,, xi, }, chooses
a set consisting of a single variable V' C U uniformly at
random. The verifier picks v1,...,0, € ]Fg uniformly and
independently and appends to each v; the value 0 in the
coordinates of U \ V to get uy, ..., ur.

After that, the verifier sends U and uj, ..., u, to the first prover
and V and vy, ...,0, to the second prover. The verifier expects
to get from them Fy assignments to the variables in U and in V,
and accepts if and only if these assignments are consistent, and
furthermore the assignment to U satisfies the equation e.
Denoting the equation versus variable game by 7, it is easy to
see thatif val(X,E) > 1—n, then val(¥) > 1—-n, and if val(X, E) <
1.1/q, then val(¥) < 1 — Q(q~"f). The gap between 1 — n and
1-Q(g~" p) is too weak for us, and thus we apply parallel repetition.
In the parallel repetition of the smooth equation versus variable
game with advice, denoted by ¥®k  the verifier picks k equations
uniformly and independently ey, ..., ex, and picks U;, uy;, ..., ur;
and Vi, v14,...,0r; for each i = 1,...,k from e; independently.
Thus, the questions of the provers may be seenas U = Uy U...UU
and V =V} U... UV, and their advice is z_ij = (uj1,.- .,uj’k) € Fg
forj=1,...,rand g; = (01, ,0jk) € IF'}]/ forj =1,...,r
respectively. The verifier expects to get from the first prover a
vector in Fg which specifies an Fy assignment to U, and from the

second prover a vector in ]Fg specifying an Fg assignment to V. The
verifier accepts if and only if these assignments are consistent and
the assignment of the first prover satisfies all of ey, . . ., ex. It is clear
that if val(X, E) > 1—7, then val(¥®™) > 1—k#. Using the parallel
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repetition theorem of Rao [37] (albeit not in a completely trivial
way) we argue that if val(X, E) < %, then val(¥®k) < 2~ Q(Bg""k)

The game ¥®F is our outer PCP game.

Remark 3.2. We remark that in the case of the Quadratic Pro-
gramming application, we require a hardness result in which the
completeness is very close to 1 in the form of Theorem 2.2. The differ-
ences between the reduction in that case and the reduction presented
above are mostly minor, and amount to picking the parameters a bit
differently. There is one significant difference in the analysis; we re-
quire a much sharper form of the “covering property” used in [12, 24],
as elaborated on in Section 3.6

3.5 Composing the Outer PCP and the Inner
PCP Game

To compose the outer and inner PCPs, we take the outer PCP game,
only keep the questions U to the first prover, and consider an in-
duced 2-Prover-1-Round game on it. The alphabet is ]sz: given a
question U, the alphabet is the set of Fg assignment to the variables
of U. There is a constraint between U and U’ if there is a question
V to the second prover such that V C U N U’. Denoting the assign-
ments to U and U’ by sy and sy, the constraint between U and U’
is that sg; satisfies all of the equations that form U, s;; satisfies all
of the equations that form U’, and sy, sy agree on U N U”.

The composition amounts to replacing each question U with a
copy of our inner PCP. Namely, we identify between the question
U and the space FU, and then replace U by a copy of the f,

sub-spaces graph of FqU. The answer sy is naturally identified with
the linear function fi; (x) = (sy, x), which is then encoded by the
sub-spaces encoding via tables of assignments Ty 7 and Ty iy.

The constraints of the composed PCP must check two things: (1)
side conditions: the encoded vector sy satisfies the equations of U,
and (2) consistency: sy and sy agree on U N U’

The first set of constraints is addressed by the folding technique,
which we omit from this discussion. The second set of constraints
is addressed by the #; vs £, subspace test, except that we have to
modify it so that it works across blocks U and U’. This completes
the description of the composition step of the outer PCP and the
inner PCP, and thereby the description of our reduction.

Let us briefly describe the setting of parameters used to obtain
Theorem 1.3. After fixing the §, ¢ therein, we may take q = 2,
choose &’ sufficiently small according to § and ¢, set £ = (1—8")¢y,
and finally take #; sufficiently large. We must also choose k and
carefully to satisfy the covering property and completeness of the
composed PCP, but omit further details from the current discussion.
Altogether this yields alphabet size g% and soundness q_(l_f)’{’1 . We
remark that the same tradeoff can be obtained with larger settings
of g and this is indeed required for the application to hardness of
approximating quadratic programming in Theorem 1.4.

3.6 The Covering Property

We end by briefly discussing the covering property. The covering
property is an important feature of our outer PCP construction
which enables the composition step to go through. The covering
property first appeared in [27] and later more extensively in the
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context of the 2-to-1 Games [12, 24]. To discuss the covering prop-
erty, let k € N be thought of as large, let § € (0, 1) be thought of as
k=09 and consider sets Uy, ..., Uy consisting of distinct element,
each Uj has size 3 (in our context, U; will be the set of variables
in the ith equation the verifier chose). Let U = U; U ... U U, and
consider the following two distributions over tuples in IFEIJ:

(1) Sample x1,...,xp € FEZJ uniformly.

(2) For each i independently, take V; = U; with probability 1 — f
and otherwise take V; C U; randomly of size 1, then set
V=V1U...UVg. Sample x1,...,x¢ € F“I/ uniformly and lift
them to points in Fg by appending 0’s in U \ V. Output the
lifted points.

In [24] it is shown that the two distributions above are g fVk close
in statistical distance, which is good enough for the purposes of
Theorem 1.3. However, this is not good enough for Theorem 1.4.
> Carrying out a different analysis, we are able to show that the
two distributions are close with better parameters and in a stronger
sense: there exists a set E of ¢ tuples which has negligible measure
in both distributions, such that each tuple not in E is assigned the
same probability under the two distribution up to factor (1 + 0(1)).
We are able to prove this statement provided that k is only slightly
larger than ¢%.

The issue with the above two distributions is that they are actu-
ally far from each other if, say, k = ql'gf. To see that, one can notice
that the expected number of i’s such that each one of x1,...,x,
has the form (a,0,0) € IF?] on coordinates corresponding to U; is

very different. In the first distribution, this expectation is ©(g~ k)
which is less than 1, whereas in the second distribution it is at least
ﬂk > kO'OI.

To resolve this issue and to obtain nearly tight hardness in the
Quadratic Programming application, we have to modify the distri-
butions in the covering property so that (a) they will be close even
if k = g91¢ and (b) we can still use these distributions in the com-
position step in our analysis of the PCP construction. Indeed, this
is the route we take, and the two distributions we use are defined
as follows:

(1) Sample x1,...,xp € ]P‘f{ uniformly.

(2) For each i independently, take V; = U; with probability 1 — f
and otherwise take V; C U; randomly of size 1, then set
V=ViU...UV Sample x1,...,xp € F“I/ uniformly, and
let w; = 1y, € Fg be the vector that has 1 on coordinates
of U; and 0 everywhere else. Lift the points x, ..
Xp,..,Xp € Fg by appending 0’s in U \ V and take y; =
Xj+ f“l aj,jw; where a; j are independent random elements

i=

from Fy. Output yy, . ..

., xp to

»Ye-

We show that for a suitable choice of k and f, these distributions
are close even in the case that k = g%, © Indeed, as a sanity
check one could count the expected number of appearances of
blocks of the form (0, 4,0) € F?I and see they are very close (¢~ %%k

5The reason is that letting N be the size of the instance we produce, it holds that
k is roughly logarithmic log N and ¢ is the alphabet size. To have small statistical
distance, we must have k < g°¢, hence the soundness error could not go lower than
(log N)~1/6,

®More speifically, one takes a small ¢ > 0 and chooses f§ = k%¢/3~1 k = g(1+o)¢,
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versus (1 — f)g~ %k + kq~!). In this setting of parameters, k is
roughly equal to the alphabet size — which can be made to be
equal (log N )1=0() under quasi-polynomial time reductions - it is
sufficient to get the result of Theorem 1.4.

Remark 3.3. We remark that a tight covering property is crucial for
obtaining the tight hardness of approximation factor in Theorem 1.4.
In the reduction from 2-Prover-1-Round games to Quadratic Programs,
which is due to [1], the size of the resulting instance is exponential in
the alphabet size and the soundness error remains roughly the same.
In our case the alphabet size is roughly k hence the instance size is
dominated by N = 20 (K1), If our analysis required k = g©t, then
even showing an optimal soundness ofq’(l"’(l))[ for the 2-Prover-
1-Round game would only yield a factor of (log N)/C=0() hardness
for quadratic programming.
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