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ABSTRACT

We show that for all Y > 0, for su�ciently large prime power

@ ∈ N, for all X > 0, it is NP-hard to distinguish whether a 2-Prover-

1-Round projection game with alphabet size @ has value at least

1 − X , or value at most 1/@1−Y . This establishes a nearly optimal

alphabet-to-soundness tradeo� for 2-query PCPs with alphabet

size @, improving upon a result of [Chan 2016]. Our result has the

following implications:

(1) Near optimal hardness for Quadratic Programming: it is NP-

hard to approximate the value of a given Boolean Quadratic

Programwithin factor (log=)1−> (1) under quasi-polynomial

time reductions. This result improves a result of [Khot-Safra

2013] and nearly matches the performance of the best known

approximation algorithm [Megrestki 2001, Nemirovski-Roos-

Terlaky 1999 Charikar-Wirth 2004] that achieves a factor of

$ (log=).
(2) Bounded degree 2-CSP’s: under randomized reductions, for

su�ciently large 3 > 0, it is NP-hard to approximate the

value of 2-CSPs in which each variable appears in at most

3 constraints within factor (1 − > (1)) 32 , improving upon a

recent result of [Lee-Manurangsi 2023].

(3) Improved hardness results for connectivity problems: using

results of [Laekhanukit 2014] and [Manurangsi 2019], we de-

duce improved hardness results for the Rooted:-Connectivity

Problem, the Vertex-Connectivity Survivable Network De-

sign Problem and the Vertex-Connectivity :-Route Cut Prob-

lem.
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1 INTRODUCTION

The PCP theorem is a fundamental result in theoretical computer

science with many equivalent formulations [2, 3, 18]. One of the

formulations asserts that there exists Y > 0 such that given a sat-

is�able 3-SAT formula q , it is NP-hard to �nd an assignment that

satis�es at least (1−Y) fraction of the constraints. The PCP theorem

has a myriad of applications within theoretical computer science,

and of particular interest to this paper are applications of PCP to

hardness of approximation.

The vast majority of hardness of approximation result are proved

via reductions from the PCP theorem above. Oftentimes, to get a

strong hardness of approximation result, one must �rst amplify the

basic PCP theorem above into a result with stronger parameters [17,

21, 22, 26] (see [41] for a survey). To discuss these parameters, it is

often convenient to view the PCP through the problem of 2-Prover-

1-Round Games, which we de�ne next.1

De�nition 1.1. An instance Ψ of 2-Prover-1-Round Games consists

of a bipartite graph � = (! ∪ ', �), alphabets Σ! and Σ' and a

collection of constraints Φ = {q4 }4∈� , which for each edge 4 ∈ �

speci�es a constraint map q4 : Σ! → Σ' .

(1) The alphabet size of Ψ is de�ned to be |Σ! | + |Σ' |.
(2) The value of Ψ is de�ned to be the maximum fraction of edges

4 ∈ � that can be satis�ed by any assignment. That is,

val(Ψ) = max
�! : !→Σ!
�' : '→Σ'

|{4 = (D, E) ∈ � | q4 (�! (D)) = �' (E)}|
|� | .

The combinatorial view of 2-Prover-1-Round Games has its ori-

gins in an equivalent, active view in terms of a game between a

veri�er and two all powerful provers, which is sometimes more

intuitive. The veri�er and the two provers have access to an in-

stance Ψ of 2-Prover-1-Round Games, and the provers may agree

beforehand on a strategy; after this period they are not allowed to

communicate. The veri�er then picks a random edge, 4 = (D, E),
from the 2-Prover-1-Round game, sends D to the �rst prover, sends

E to the second prover, receives a label in response from each one

of them, and �nally checks that the labels satisfy the constraint q4 .

If so, then the veri�er accepts. It is easy to see that the value of the

2-Prover-1-Round game is equal to the acceptance probability of

the veri�er under the best strategy of the provers.

In the language of 2-Prover-1-Round Games, the majority of

hardness of approximation results are proved by combining the

basic PCP theorem [2, 3, 18] with Raz’s parallel repetition theo-

rem [38], which together imply the following result:

1Strictly speaking, the notion below is referred to in the literature as projection 2-
Prover-1-Round games. We omit the more general de�nition as we do not discuss
non-projection games in this paper.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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Theorem 1.2. There exists W > 0 such that for su�ciently large ',

given a 2-Prover-1-Round game Ψ with alphabet size ', it is NP-hard

to distinguish between the following two cases:

(1) YES case: val(Ψ) = 1.

(2) NO case: val(Ψ) ⩽ 1
'W .

For many applications, one only requires that the soundness

error of the PCP is small. Namely, that val(Ψ) is arbitrarily small in

the “NO case”. For certain applications however, more is required:

not only must the soundness error be small – but it must also

be small in terms of the alphabet size. The tradeo� between the

soundness error of the PCP and the alphabet size of the PCP is the

main focus of this paper.

With respect to this tradeo�, it is clear that the best result one

may hope for in Theorem 1.2 is W = 1 − > (1) since a random as-

signment to Ψ satis�es, in expectation, at least 1
' fraction of the

constraints. In terms of results, combining the PCP theorem with

Raz’s parallel repetition theorem gives W > 0 that is an absolute,

but tiny constant. Towards a stronger tradeo�, Khot and Safra [27]

showed that Theorem 1.2 holds for W = 1/6 with imperfect com-

pleteness (i.e., val(Ψ) ⩾ 1 − > (1) instead of val(Ψ) = 1 in the “YES

case”). The result of Khot and Safra was improved by Chan [8],

who showed (using a completely di�erent set of techniques) that

Theorem 1.2 holds for W = 1/2 − > (1), again with imperfect com-

pleteness.

In the remainder of this paper we will describe our main results

and give an overview of our PCP construction. Additional details,

including proofs, can be found in the full version of this paper [33].

1.1 Main Results

In this section we explain the main results of this paper.

1.1.1 Near Optimal Alphabet vs Soundness Tradeo�. The main re-

sult of this work improves upon all prior results, and shows that

one may take W = 1 − > (1) in Theorem 1.2, again with imperfect

completeness. Formally, we show:

Theorem 1.3. For all Y, X > 0, for su�ciently large ', given a 2-

Prover-1-Round game Ψ, it is NP-hard to distinguish between the

following two cases:

(1) YES case: val(Ψ) ⩾ 1 − X .
(2) NO case: val(Ψ) ⩽ 1

'1−Y .

Theorem 1.3 gives a near optimal tradeo� between the alphabet

size of a PCP and the soundness of a PCP, improving upon the result

of Chan [8]. Moreover, Theorem 1.3 has several applications to

combinatorial optimization problems, which we discuss below. We

remark that most of these applications require additional features

from the instances produced in Theorem 1.3 which we omit from

its formulation for the sake of clarity. For instance, one application

requires a good tradeo� between the size of the instance and the size

of the alphabet, which our construction achieves (see the discussion

following Theorem 1.4). Other applications require the underlying

constraint graph to be bounded-degree bi-regular graph, which our

construction also achieves, after mild modi�cations detailed in [29].

1.1.2 Application: NP-Hardness of Approximating �adratic Pro-

grams. Theorem 1.3 has an application to the hardness of approxi-

mating the value of Boolean Quadratic Programming, as we explain

next.

An instance of Quadratic programming consists of a quadratic

form& (G) =
=
∑

8, 9=1
08, 9G8G 9 where 08,8 = 0 for all 8 , and one wishes to

maximize & (G) over G ∈ {−1, 1}= . This problem is known to have

an$ (log=) approximation algorithm [9, 31, 35], and is known to be

quasi-NP-hard to approximate within factor (log=)1/6−> (1) [1, 27].
That is, unless NP has a quasi-polynomial time algorithm, no poly-

nomial time algorithm can approximate Quadratic Programming to

within factor (log=)1/6−> (1) . As a �rst application of Theorem 1.3,

we improve the hardness result of Khot and Safra:

Theorem 1.4. It is quasi-NP-hard to approximate Quadratic Pro-

gramming to within a factor of (log=)1−> (1) .

Theorem 1.4 is proved via a connection between 2-Prover-1-

Round Games and Quadratic Programming due to Arora, Berger,

Hazan, Kindler, and Safra [1]. This connections requires a good

tradeo� between the alphabet size, the soundness error, and the

size of the PCP. Fortunately, the construction in Theorem 1.4 has

a su�ciently good tradeo� between all of these parameters: let-

ting # be the size of the instance, the alphabet size can be taken

to be (log# )1−> (1) and the soundness error can be taken to be

(log# )−1+> (1) . 2

Relevance to the sliding scale conjecture: It is worth noting that

using our techniques, we do not know how to achieve soundness

error that is smaller than inversely poly-logarithmic in the instance

size. As such, our techniques have no bearing on the sliding scale

conjecture, which is concerned with getting soundness error that

is inversely polynomial in the instance size. This seems to be a

bottleneck of any PCP construction that is based on the cover-

ing property. In fact, assuming ETH, any quasi-polynomial PCP

construction achieving soundness error, say, 1/(log# )2 would nec-
essarily need to have almost polynomial alphabet size (since the

reduction to Quadratic Solvability would give an algorithm that

runs roughly in time exponential in the alphabet size), which is

the opposite of what our techniques give. With this in mind, we

would like to mention a closely related, recent conjecture made

in [10], which is a sort of a mixture between 3-to-1 games and the

sliding scale conjecture. This conjecture is motivated by improved

hardness results for densest :-subgraph style problems, and focuses

on the relation between the instance size and the soundness error

(allowing the alphabet to be quite large). It may be possible that the

ideas from the current paper can help make progress towards this

conjecture.

1.1.3 Application: NP-hardness of Approximating Bounded Degree

2-CSPs. Theorem 1.3 has an application to the hardness of approx-

imating the value of 2-CSPs with bounded degree, as we explain

next.

2We remark that the result of Chan [8] does not achieve a good enough trade-o� be-
tween the alphabet size and the instance size due to the use of the long-code, and there-
fore it does not yield a strong inapproximability result for Quadratic Programming.
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An instance Ψ of 2-CSP, say Ψ = (-,�, Σ), consists of a set of
variables - , a set of constraints � and an alphabet Σ. Each con-

straint in � has the form % (G8 , G 9 ) = 1 where % : Σ × Σ → {0, 1} is
a predicate (which may be di�erent in distinct constraints). The

degree of the instance Ψ is de�ned to be the maximum, over vari-

ables G ∈ - , of the number of constraints that G appears in. The

goal is to �nd an assignment � : - → Σ that satis�es as many of

the constraints as possible.

There is a simple 3+1
2 approximation algorithm for the 2-CSP

problem for instances with degree at most 3 . Lee and Manurangsi

proved a nearly matching
(

1
2 − > (1)

)

3 hardness of approximation

result assuming the Unique-Games Conjecture [29]. Uncondition-

ally, they show the problem to be NP-hard to approximate within

factor
(

1
3 − > (1)

)

3 under randomized reductions.

Using the ideas of Lee and Manurangsi, our main result implies

a nearly matching NP-hardness result for bounded degree 2-CSPs:

Theorem 1.5. For all [ > 0, for su�ciently large 3 , approximating

the value of 2-CSPs with degree at most 3 within factor
(

1
2 − [

)

3 is

NP-hard under randomized reductions.

As in [29], Theorem 1.5 has a further application to �nding

independent sets in claw free graphs. A :-claw  1,: is the (: + 1)
vertex graph with a center vertex which is connected to all other :-

vertices and has no other edges; a graph� is said to be :-claw free if

� does not contain an induced :-claw graph. There is a polynomial

time approximation algorithm for approximating the size of the

largest independent set in a given :-claw free graph� within factor
:
2 [4, 40], and a quasi-polynomial time approximation algorithm

within factor
(

1
3 + > (1)

)

: [11]. As in [29], using ideas from [14]

Theorem 1.5 implies that for all Y > 0, for su�ciently large : , it is

NP-hard (under randomized reductions) to approximate the size

of the largest independent set in a given :-claw free graph within

factor
(

1
4 + [

)

: . This improves upon the result of [29] who showed

that the same result holds assuming the Unique-Games Conjecture.

1.1.4 Application: NP-hardness of Approximating Connectivity Prob-

lems. Using ideas of Laekhanukit [28] and the improvements by

Manurangsi [30], Theorem 1.3 implies improved hardness of ap-

proximation results for several graph connectivitiy problems. More

speci�cally, Theorem 1.3 combined with the results of [30] im-

plies improvements to each one of the results outlined in table 1

in [28] by a factor of 2 in the exponent - with the exception of

Rooted-:-Connectivity on directed graphs where a factor of 2 im-

provement is already implied by [30]. We brie�y discuss the Rooted

:-Connectivity Problem, but defer the reader to [28] for a detailed

discussion of the remaining graph connectivity problems.

In the Rooted:-Connectivity problem there is a graph� = (+ , �),
edge costs 2 : � → R, a root vertex A ∈ + and a set of terminals

) ⊆ + \ {A }. The goal is to �nd a sub-graph� ′ of smallest cost that

for each C ∈ ) , has at least : vertex disjoint paths from A to C . The

problem admits |) | trivial approximation algorithm (by applying

minimum cost :-�ow algorithm for each vertex in ) ), as well as an

$ (: log:) approximation algorithm [36].

Using the ideas of [28], Theorem 1.3 implies the following im-

proved hardness of approximation results:

Theorem 1.6. For all Y > 0, for su�ciently large : it is NP-hard

to approximate the Rooted-:-Connectivity problem on undirected

graphs to within a factor of:1/5−Y , the Vertex-Connectivity Survivable
Network Design Problem with connectivity parameters at most : to

within a factor of :1/3−Y , and the Vertex-Connectivity :-Route Cut
Problem to within a factor of :1/3−Y .

We remark that in [7], a weaker form of hardness for the Vertex-

Connectivity Survivable Network problem is proved. More pre-

cisely, they show an Ω(:1/3/log:) integrality gap for the set-pair

relaxation of the problem. Our hardness result of :1/3−Y improves

upon it, showing that (unless P=NP) no relaxation can yield a better

than :1/3−Y factor approximation algorithm.

2 PRELIMINARIES

In this section we will describe some preliminary de�nitions and

results. We �rst present the Grassmann graph and some Fourier

analytic tools that are used in our analysis. We then state some

hardness results regarding 3Linwhich will form the starting point

of our PCP construction.

2.1 The Grassmann Graph

Throughout this section, we �x parameters =, ℓ with 1 ≪ ℓ ≪ =,

and a prime power @. The Grassmann graph Grass@ (=, ℓ) is de�ned
as follows.

• The vertex set corresponds to the set of ℓ-dimensional sub-

spaces ! ⊆ F=@ .
• The edge set corresponds to all pairs (!, !′) of ℓ-dimensional

subspaces !, !′ ⊆ F=@ such that dim(! ∩ !′) = ℓ − 1.

We also write Grass@ (+ , ℓ) to denote the Grassmann graph on ℓ-

dimensional subspaces + , where + is some large linear subspace.

Finally, we denote by !2 (Grass@ (=, ℓ)) the set of complex valued

functions � :

[

F
=
@

ℓ

]

@

→ C, where
[

F
=
@

ℓ

]

@

is the set of ℓ-dimensional

subspaces in F=@ .

Zoom ins and Zoom outs. A feature of the Grassmann graph

is that it contains many copies of lower dimensional Grassmann

graphs as induced subgraphs. These subgraphs are precisely the

zoom-ins and and zoom-outs referred to in the introduction, and

they play a large part in the analysis of our inner PCP and �nal

PCP. For subspaces & ⊆, ⊆ F=@ , let
Zoom[&,, ] = {! ∈ Grass@ (=, ℓ) | & ⊆ ! ⊆, }.

We refer to & as a zoom-in and, as a zoom-out. When, = F
=
@ ,

Zoom[&,, ] is the zoom-in on& , and when& = {0}, Zoom[&,, ]
is the zoom-out on, .

2.1.1 Pseudo-randomness over the Grassmann graph. One notion

that will be important to us is (A, Y)-pseudo-randomness, which

measures how much � can deviate from its expectation on a zoom-

in/zoom-out restrictions of “size A”. For all of our applications, � and

� will both be indicator functions of some sets of vertices, so it will

be helpful to think of this case for the remainder of the section. 3 Let

3We remark that the results we state have more general versions that apply to wider
classes of functions. We refrain from stating them in this generality for sake of
simplicity.
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` (� ) = E!∈Grass@ (=,ℓ ) [� (!)] (for indicator functions, this is simply

the measure of the indicated set). For subspaces & ⊆ , ⊆ F=@ ,
de�ne

`&,, (� ) = E
!∈Grass@ (=,ℓ )

[� (!) | & ⊆ ! ⊆, ] .

De�nition 2.1. We say that a Boolean function � : � (=, ℓ) → {0, 1}
is (A, Y)-pseudo-random if for all & ⊆, ⊆ F=@ satisfying dim(&) +
codim(, ) = A , we have

`&,, (� ) ⩽ Y.

We will often say that a set ( ⊆ Grass@ (=, ℓ) is (A, Y)-pseudo-
random if its indicator function is. Because the Grassmann graph is

not a small-set expanders, there are small sets in it that do not look

“random” with respect to some combinatorial counting measures

(such as edges between sets, expansion and so on). Intuitively, a

small set ( which is highly pseudo-random will exhibit random-like

structure with respect to several combinatorial measures of interest,

and the two lemmas below are instantiations of it required in our

proof. The proof proceed by reducing them to similar statements

about the Bi-linear scheme, which can then be proved directed by

appealing to global hypercontractivity results of [15, 16].

For the analysis of the inner PCP, we require the following

lemma, which bounds the number of edges between a subset, L,

of Grass@ (=, 2ℓ), and Grass@ (=, 2(1 − X)ℓ) when L is (A, Y)-pseudo-
random.

Lemma2.2. Let � : Grass@ (=, 2ℓ) → {0, 1} and� : Grass@ (=, 2(1−
X)ℓ) → {0, 1} be Boolean functions such that

E
!
[� (!)] = U, E

'
� (')] = V,

and suppose that � is (A, Y) pseudo-random. Then for all C ⩾ 4 that

are powers of 2,

⟨T �,�⟩ ⩽ @$C,A (1)V (C−1)/CY2C/(2C−1) + @−AXℓ
√

UV.

2.2 Hardness of 3LIN

In this section we cite several hardness of approximation results

for the problem of solving linear equations over �nite �elds, which

are the starting point of our reduction. We begin by de�ning the

3Lin and the Gap3Lin problem.

De�nition 2.3. For a prime power @, an instance of 3Lin is (-, Eq)
which consists of a set of variables - and a set of linear equations Eq

over F@ . Each equation in Eq depends on exactly three variables in - ,

each variable appears in at most 10 equations, and any two distinct

equations in Eq share at most a single variable.

The goal in the 3Lin problem is to �nd an assignment� : - → F@
satisfying as many of the equations in � as possible. The maximum

fraction of equations that can be satis�ed is called the value of the

instance. We remark that usually in the literature, the condition that

two equations in � share at most a single variable is not included

in the de�nition of 3Lin, as well the the bound on the number of

occurences of each variable.

For 0 < B < 2 ⩽ 1, the problem Gap3Lin[2, B] is the promise

problem wherein the input is an instance (-, �) of 3Lin promised to

either have value at least 2 or at most B , and the goal is to distinguish

between these two cases. The problem Gap3Lin[2, B] with various

settings of 2 and B will be the starting point for our reductions.

To prove Theorem 1.3, we shall use the classical result of Hås-

tad [22]. This result says that for general 3Lin instances (i.e., without

the additional condition that two equations share at most a single

variable), the problem Gap3Lin[1 − Y, 1/@ + Y] is NP-hard for all

constant @ ∈ N and Y > 0. This result implies the following theorem

by elementary reductions:

Theorem 2.1. There exists B < 1 such that for every constant [ > 0

and prime @, Gap3Lin [1 − [, B] is NP-hard.

To prove Theorem 1.4 we will need a hardness result for 3Lin

with completeness close to 1, and we will use a hardness result

of Khot and Ponnuswami [26]. Once again, their result does not

immediately guarantee the fact that any two equations share at

most a single variable, however once again this property may be

achieved by an elementary reduction.

Theorem 2.2. There is a reduction from SAT with size = to an in-

stance ofGap3Lin[1−[, 1−Y] of size# over a �eld F@ of characteristic

2, where,

• Both # and the running time of the reduction are bounded by

2$ (log2 =)

• [ ⩽ 2−Ω (
√
log# ) .

• Y ⩾ Ω

(

1
log3 #

)

.

3 THE PCP CONSTRUCTION

Theorem 1.3 is proved by composing an inner PCP and an outer

PCP. Both of these components incorporate ideas from the proof

of the 2-to-1 Games Theorem. The outer PCP is constructed using

smooth parallel repetition [24, 27] while the inner PCP is based on

the Grassmann graph [12, 13, 24, 25].

The novelty in this current paper, in terms of techniques, is

twofold. First, we must consider a Grassmann test in a di�erent

regime of parameters (as otherwise we would not be able to get a

good alphabet to soundness tradeo�) and in a regime of much lower

soundness error. These di�erences complicate matters considerably.

Second, our soundness analysis is more involved than that of the

2-to-1-Games Theorem. As is the case in [12, 13, 24, 25], we too use

global hyperconractivity, but we do so more extensively. We also re-

quire quantitatively stronger versions of global hypercontractivity

over the Grasssmann graph which are due to [16]. In addition, our

analysis incorporates ideas from the plane versus plane test and

direct product testing [23, 32, 39], from classical PCP theory [27], as

well as from error correcting codes [19]. All of these tools are nec-

essary to prove our main technical statement – Lemma 3.1 below

– which is a combinatorial statement that may be of independent

interest.

We now elaborate on each one of the components separately.

3.1 The Inner PCP

Our Inner PCP is based on the subspace vs subspace low degree

test. Below, we �rst give a general overview of the objective in low-

degree testing. We then discuss the traditional notion of soundness

as well as a non-traditional notion of soundness for low-degree

tests. Finally, we explain the low-degree test used in this paper, the

18
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notion of soundness that we need from it, and the way that this

notion of soundness is used.

Low degree tests in PCPs. Low degree tests have been have a vital

component in PCPs since their inception, and much attention has

been devoted to improving their various parameters. The goal in

low-degree testing is to encode a low-degree function 5 : F=@ → F@
via a table (or a few tables) of values, in a way that allows for

local testing. Traditionally, one picks a parameter ℓ ∈ N (which is

thought of as a constant and is most often just 2) and encodes the

function 5 by the table) of restrictions of 5 to ℓ-dimensional a�ne

subspaces of F=@ . For the case ℓ = 2, the test associated with this

encoding is known as the Plane vs Plane test [39]. The Plane vs

Plane test proceeds by picking two planes %1, %2 intersecting on a

line, and then checking that ) [%1] and ) [%2] agree on %1 ∩ %2. It
is easy to see that the test has perfect completeness, namely that

a valid table of restrictions ) passes the test with probability 1. In

the other direction, the soundness error of the test – which is a

converse type statement – is much less clear (and is crucial towards

applications in PCP). In the context of the Plane vs Plane test, it is

know that if a table) , that assigns to each plane a degree 3 function,

passes the Plane vs Plane test with probability Y ⩾ @−2 (where 2 > 0

is a small absolute constant), then there is a degree 3 function 5

such that ) [%] ≡ 5 |% on at least Ω(Y) fraction of the planes.

Nailing down the value of the constant 2 for which soundness

holds is an interesting open problem which is related to sound-

ness vs alphabet size vs instance size tradeo� in PCPs [5, 32, 34].

Currently, the best known analysis for the Plane vs Plane test [34]

shows that one may take 2 = 1/8. Better analysis is known for

higher dimensional encoding [5, 32], and for the 3-dimensional

version of it a near optimal soundness result is known [32].

Low degree tests in this paper. In the context of the current paper,

wewish to encode linear functions 5 : F=@ → F@ , andwe do so by the
subspaces encoding. Speci�cally, we set integer parameters ℓ1 ⩾ ℓ2,

and encode the function 5 using the table)1 of the restrictions of 5

to all ℓ1-dimensional linear subspaces of F=@ , and the table )2 of the

restrictions of 5 to all ℓ2-dimensional linear subspaces of F=@ . The

test we consider is the natural inclusion test:

(1) Sample a random ℓ1-dimensional subspace !1 ⊆ F=@ and a

random ℓ2-dimensional subspace !2 ⊆ !1.

(2) Read )1 [!1], )2 [!2] and accept if they agree on !2.

As is often the case, the completeness of the test – namely the fact

that valid tables)1,)2 pass the test with probability 1 – is clear. The

question of most interest then is with regards to the soundness of

the test. Namely, what is the smallest Y such that any two tables )1
and )2 that assign linear functions to subspaces and pass the test

with probability Y, must necessarily “come from” a legitimate linear

function 5 ?

Traditional notion of soundness. As the alphabet vs soundness

tradeo� is key to the discussion herein, we begin by remarking

that the alphabet size of the above encoding is @ℓ1 + @ℓ2 = Θ(@ℓ1 )
(since there are @ℓ distinct linear functions on a linear space of

dimension ℓ over F@ ). Thus, ideally we would like to show that the

soundness error of the above test is @−(1−> (1) )ℓ1 . Alas, this is false.
Indeed, it turns out that one may construct assignments that pass

the test with probability at least Ω(max(@−ℓ2 , @ℓ2−ℓ1 )) that do not
have signi�cant correlation with any linear function 5 :

(1) Taking )1,)2 randomly by assigning to each subspace a ran-

dom linear function, one can easily see that the test passes

with probability Θ(@−ℓ2 ).
(2) Taking linear subspaces,1, . . . ,,100@ℓ1 ⊆ F=@ of co-dimension

1 randomly, and a random linear function 58 :,8 → F@ for

each 8 , one may choose )1 and )2 as follows. For each !1,

pick a random 8 such that !1 ⊆ ,8 (if such 8 exists) and

assign )1 [!1] = 58 |!1 . For each !2, pick a random 8 such that

!2 ⊆,8 (if such 8 exists) and assign )2 [!2] = 58 |!2 . Taking
!2 ⊆ !1 randomly, one sees that with constant probability

!2 has Θ(@ℓ1−ℓ2 ) many possible 8’s, !1 has Θ(1) many pos-

sible 8’s and furthermore there is at least one 8 that is valid

for both of them. With probability Ω(@ℓ2−ℓ1 ) this common

8 is chosen for both !1 and !2, and in this case, the test on

(!1, !2) passes. It follows that, in expectation,)1,)2 pass the

test with probability Ω(@ℓ2−ℓ1 ).
In light of the above, it makes sense that the best possible alphabet

vs soundness tradeo� we may achieve with the subspace encoding

is by taking ℓ2 = ℓ1/2. Such a setting of the parameters would

give alphabet size ' = @ℓ1 and (possibly) soundness error Θ(1/
√
').

There are several issues with this setting however. First, this tradeo�

is not good enough for our purposes (which already rules out this

setting of parameters). Second, we do not know how to prove that

the soundness error of the test is Θ(1/
√
') (the best we can do is

quadratically o� and is Θ(1/'1/4)). To address both of these issues,

we must venture beyond the traditional notion of soundness.

Non-traditional notion of soundness. The above test was �rst

considered in the context of the 2-to-1 Games Theorem, wherein

one takes @ = 2 and ℓ2 = ℓ1 − 1. In this setting, the test is not sound

in the traditional sense; instead, the test is shown to satisfy a non-

standard notion of soundness, which nevertheless is su�cient for

the purposes of constructing a PCP. More speci�cally, in [25] it is

proved that for all Y > 0 there is A ∈ N such that for su�ciently large

ℓ and for tables )1,)2 as above, there are subspaces & ⊆, ⊆ F=@
with dim(&) + codim(, ) ⩽ A and a linear function 5 : , → F@

such that

Pr
&⊆!1⊆,

[)1 [!1] ≡ 5 |!1 ] ⩾ Y′ (Y) > 0.

We refer to the set

{! ⊆ F=@ | dim(!) = ℓ1, & ⊆ ! ⊆, }
as the zoom in of & and zoom out of, . While this result is good

for the purposes of 2-to-1 Games, the dependency between ℓ and Y

(and thus, between the soundness and the alphabet size) is still not

good enough for us.

Our low-degree test. It turns out that the proper setting of pa-

rameters for us is ℓ2 = (1 − X)ℓ1 where X > 0 is a small constant.

With these parameters, we are able to show that for Y ⩾ @−(1−X ′ )ℓ1
(where X ′ = X ′ (X) > 0 is a vanishing function of X), if )1, )2 pass

the test with probability at least Y, then there are subspaces & ⊆,
with dim(&) + codim(, ) ⩽ A = A (X) ∈ N, and a linear function

5 :, → F@ such that

Pr
&⊆!1⊆,

[)1 [!1] ≡ 5 |!1 ] ⩾ Y′ (Y) = Ω(Y).
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This result is obtained from Lemma 2.2, which in turn relies on

[16].

Working in the very small soundness regime of Y ⩾ @−(1−X ′ )ℓ1
entails with it many challenges, however. First, dealing with such

small soundness requires us to use a strengthening of the global

hypercontractivity result of [25] in the form of an optimal level

3 inequality due to Evra, Kindler and Lifshitz [16]. Second, in the

context of [25], Y′ could be any function of Y (and indeed it ends

up being a polynomial function of Y). In the context of the current

paper, it is crucial that Y′ = Y1+> (1) , as opposed to, say, Y′ = Y1.1.

The reason is that, as we are dealing with very small Y, the result

would be trivial for Y′ = Y1.1 and not useful towards the analysis

of the PCP (as then Y′ would be below the threshold @−ℓ1 which
represents the agreement a random linear function 5 has with )1).

3.2 Getting List Decoding Bounds

As is usually the case in PCP reductions, we require a list decoding

version for our low-degree test. Indeed, using a standard argument

we are able to show that in the setting that ℓ2 = (1 − X)ℓ1 and

Y ⩾ @ (1−X
′ )ℓ1 , there is A = A (X, X ′) ∈ N such that for at least @−Θ(ℓ1 )

fraction of subspaces& ⊆ F=@ of dimension A , there exists a subspace

, with co-dimension at most A and& ⊆, ⊆ F=@ , as well as a linear
function 5 :, → F@ , such that

Pr
&⊆!1⊆,

[)1 [!1] ≡ 5 |!1 ] ⩾ Y′ (Y) = Ω(Y). (1)

This list decoding version theorem alone is not enough. In our

PCP construction, we compose the inner PCP with an outer PCP

(that we describe below), and analyzing the composition requires de-

coding global linear functions (from a list decoding version theorem

as above) in a coordinated manner between two non communicat-

ing parties. Often times, the number of possible global functions

that may be decoded is constant, in which case randomly sampling

one among them often works. This is not the case for us, though:

if (&,, ) and (& ′,, ′) are distinct zoom-in and zoom-out pairs

for which there are linear functions 5&,, and 5& ′,, ′ satisfying (1),

then the functions 5&,, and 5& ′,, ′ could be completely di�erent.

Thus, to achieve a coordinated decoding procedure, we must:

(1) Facilitate a way for the two parties to agree on a zoom-in

and zoom-out pair (&,, ) with noticeable probability.

(2) Show that for each (&,, ) there are at most poly(1/Y) func-
tions 5&,, for which

Pr
&⊆!1⊆,

[)1 [!1] ≡ 5&,, |!1 ] ⩾ Y′ .

The second item is precisely the reason we need Y′ to be Y1+> (1) ;
any worse dependency, such as Y′ = Y1.1 would lead to the second

item being false. We also remark that the number of functions being

poly(1/Y) is important to us as well. There is some slack in this

bound, but a weak quantitative bound such as exp(exp(1/Y)) would
have been insu�cient for some of our applications. Luckily, such

bounds can be deduced from [19] for the case of linear functions.4

We now move onto the �rst item, in which we must facilitate a

way for two non-communicating parties to agree on a zoom-in and

zoom-out pair (&,, ). It turns out that agreeing on the zoom-in &

4In the case of higher degree functions (even quadratic functions) some bounds are
known [6, 20] but they would not have been good enough for us.

can be delegated to the outer PCP, and we can construct a sound

outer PCP game in which the two parties are provided with a coordi-

nated zoom-in & . This works because in our list decoding theorem,

the fraction of zoom-ins & that work is signi�cant. Coordinating

zoom-outs is more di�cult, and this is where much of the novelty

in our analysis lies.

3.3 Coordinating Zoom-outs

For the sake of simplicity and to focus on the main ideas, we ignore

zoom-ins for now and assume that the list decoding statement

holds with no & . Thus, the list decoding theorem asserts that there

exists a zoom-out, of constant co-dimension on which there is a

global linear function. However, there could be many such zoom-

outs, , say,1, . . . ,,< and say all of them were of co-dimension

A = $X,X ′ (1). If the number < were su�ciently large – say at

least @−poly(ℓ1 ) fraction of all co-dimension A subspaces – then we

would have been able to coordinate them in the same way as we

coordinate zoom-ins. If the number< were su�ciently small – say

< = @poly(ℓ1 ) , then randomly guessing a zoom-out would work well

enough. The main issue is that the number< is intermediate, say

< = @
√
= .

This issue had already appeared in [12, 24]. Therein, this issue is

resolved by showing that if there are at least< ⩾ @100ℓ
2
1 zoom-outs

,1, . . . ,,< of co-dimension A , and linear functions 51, . . . , 5< on

,1, . . . ,,< respectively such that

Pr
!⊆,8

[) [!] ≡ 58 |!] ⩾ Y′

for all 8 , then there exists a zoom out, of co-dimension strictly

less than A and a linear function 5 :, → F@ such that

Pr
!⊆,

[) [!] ≡ 5 |!] ⩾ Ω(Y′12) .

Thus, if there are too many zoom-outs of a certain co-dimension,

then there is necessarily a zoom-out of smaller co-dimension that

also works. In that case, the parties could go up to that co-dimension.

This result is not good enough for us, due to the polynomial gap

between the agreement between and 58 ’s and � and the agreement

between 5 an ) . Indeed, in our range of parameters, Y′12 will be
below the trivial threshold @−ℓ1 which is the agreement a random

linear function 5 has with ) , and therefore the promise on the

function 5 above is meaningless.

We resolve this issue by showing a stronger, essentially optimal

version of the above assertion still holds. Formally, we prove:

Lemma 3.1. For all X > 0, A ∈ N there is � > 1 such that the

following holds for Y′ ⩾ @ (1−X )ℓ1 . Suppose that � is a table that

assigns to each subspace ! of dimension ℓ1 a linear function, and

suppose that there are at least < ⩾ @�ℓ1 subspaces,1, . . . ,,< of

co-dimension A and linear functions 58 :,8 → F@ such that

Pr
!⊆,8

[) [!] ≡ 58 |!] ⩾ Y′

for all 8 = 1, . . . ,<. Then, there exists a zoom-out, of co-dimension

strictly smaller than A and a linear function 5 :, → F@ such that

Pr
!⊆,

[) [!] ≡ 5 |!] ⩾ Ω(Y′) .

We remark that our proof of Lemma 3.1 is very di�erent from

the arguments in [12] and is signi�cantly more involved. Our proof
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uses tools from [12, 24], tools from the analysis of the classical

Plane vs Plane and direct product testing [23, 32, 39], global hyper-

contractivity [16] as well as Fourier analysis over the Grassmann

graph.

3.4 The Outer PCP

Our outer PCP game is the outer PCP of [12, 24], which is a smooth

parallel repetition of the equation versus variables game of Has-

tad [22] (or of [26] for the application to Quadratic Programming).

As in there, we equip this game with the “advice” feature to facil-

itate zoom-in coordination (as discussed above). For the sake of

completeness we elaborate on the construction of the outer PCP

below.

We start with an instance of 3-Lin that has a large gap between

the soundness and completeness. Namely, we start with an instance

(-, �) of linear equations over F@ in which each equation has the

form 0G81 + 1G82 + 2G83 = 3 . It is known [22] that for all [ > 0, it is

NP-hard to distinguish between the following two cases:

(1) YES case: val(-, �) ⩾ 1 − [.
(2) NO case: val(-, �) ⩽ 1.1

@ .

Given the instance (-, �), we construct a 2-Prover-1-Round game,

known as the smooth equation versus variable game with A -advice

as follows. The veri�er has a smoothness parameter V > 0 and

picks a random equation 4 , say 0G81 + 1G82 + 2G83 = 3 , from (-, �).
Then:

(1) With probability 1−V the veri�er takes* = + = {G81 , G82 , G83 }
and vectors D1 = E1, . . . , DA = EA ∈ F*@ sampled uniformly

and independently.

(2) With probability V , the veri�er sets* = {G81 , G82 , G83 }, chooses
a set consisting of a single variable + ⊆ * uniformly at

random. The veri�er picks E1, . . . , EA ∈ F+@ uniformly and

independently and appends to each E8 the value 0 in the

coordinates of* \+ to get D1, . . . , DA .

After that, the veri�er sends * and D1, . . . , DA to the �rst prover

and + and E1, . . . , EA to the second prover. The veri�er expects

to get from them F@ assignments to the variables in * and in + ,

and accepts if and only if these assignments are consistent, and

furthermore the assignment to* satis�es the equation 4 .

Denoting the equation versus variable game by ¯, it is easy to

see that if val(-, �) ⩾ 1−[, then val(Ψ) ⩾ 1−[, and if val(-, �) ⩽
1.1/@, then val(Ψ) ⩽ 1 − Ω(@−A V). The gap between 1 − [ and

1−Ω(@−A V) is too weak for us, and thus we apply parallel repetition.
In the parallel repetition of the smooth equation versus variable

game with advice, denoted by Ψ
⊗: , the veri�er picks : equations

uniformly and independently 41, . . . , 4: , and picks *8 , D1,8 , . . . , DA,8
and +8 , E1,8 , . . . , EA,8 for each 8 = 1, . . . , : from 48 independently.

Thus, the questions of the provers may be seen as* = *1∪ . . .∪*:
and+ = +1 ∪ . . . ∪+: and their advice is ®D 9 = (D 9,1, . . . , D 9,: ) ∈ F*@
for 9 = 1, . . . , A and ®E 9 = (E 9,1, . . . , E 9,: ) ∈ F+@ for 9 = 1, . . . , A

respectively. The veri�er expects to get from the �rst prover a

vector in F*@ which speci�es an F@ assignment to * , and from the

second prover a vector in F+@ specifying an F@ assignment to+ . The

veri�er accepts if and only if these assignments are consistent and

the assignment of the �rst prover satis�es all of 41, . . . , 4: . It is clear

that if val(-, �) ⩾ 1−[, then val(Ψ⊗<) ⩾ 1−:[. Using the parallel

repetition theorem of Rao [37] (albeit not in a completely trivial

way) we argue that if val(-, �) ⩽ 1.1
@ , then val(Ψ⊗: ) ⩽ 2−Ω (V@−A: ) .

The game Ψ⊗: is our outer PCP game.

Remark 3.2. We remark that in the case of the Quadratic Pro-

gramming application, we require a hardness result in which the

completeness is very close to 1 in the form of Theorem 2.2. The di�er-

ences between the reduction in that case and the reduction presented

above are mostly minor, and amount to picking the parameters a bit

di�erently. There is one signi�cant di�erence in the analysis; we re-

quire a much sharper form of the “covering property” used in [12, 24],

as elaborated on in Section 3.6

3.5 Composing the Outer PCP and the Inner

PCP Game

To compose the outer and inner PCPs, we take the outer PCP game,

only keep the questions * to the �rst prover, and consider an in-

duced 2-Prover-1-Round game on it. The alphabet is F3:@ : given a

question* , the alphabet is the set of F@ assignment to the variables

of * . There is a constraint between* and * ′ if there is a question
+ to the second prover such that + ⊆ * ∩* ′. Denoting the assign-

ments to* and* ′ by B* and B* ′ , the constraint between* and* ′

is that B* satis�es all of the equations that form * , B* ′ satis�es all

of the equations that form* ′, and B* , B* ′ agree on* ∩* ′.
The composition amounts to replacing each question* with a

copy of our inner PCP. Namely, we identify between the question

* and the space F*@ , and then replace * by a copy of the ℓ2, ℓ1

sub-spaces graph of F*@ . The answer B* is naturally identi�ed with

the linear function 5* (G) = ⟨B* , G⟩, which is then encoded by the

sub-spaces encoding via tables of assignments )1,* and )2,* .

The constraints of the composed PCP must check two things: (1)

side conditions: the encoded vector B* satis�es the equations of* ,

and (2) consistency: B* and B* ′ agree on* ∩* ′.
The �rst set of constraints is addressed by the folding technique,

which we omit from this discussion. The second set of constraints

is addressed by the ℓ1 vs ℓ2 subspace test, except that we have to

modify it so that it works across blocks* and* ′. This completes

the description of the composition step of the outer PCP and the

inner PCP, and thereby the description of our reduction.

Let us brie�y describe the setting of parameters used to obtain

Theorem 1.3. After �xing the X, Y therein, we may take @ = 2,

choose X ′ su�ciently small according to X and Y, set ℓ2 = (1− X ′)ℓ1,
and �nally take ℓ1 su�ciently large. We must also choose : and V

carefully to satisfy the covering property and completeness of the

composed PCP, but omit further details from the current discussion.

Altogether this yields alphabet size@ℓ1 and soundness@−(1−Y )ℓ1 . We

remark that the same tradeo� can be obtained with larger settings

of @ and this is indeed required for the application to hardness of

approximating quadratic programming in Theorem 1.4.

3.6 The Covering Property

We end by brie�y discussing the covering property. The covering

property is an important feature of our outer PCP construction

which enables the composition step to go through. The covering

property �rst appeared in [27] and later more extensively in the
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context of the 2-to-1 Games [12, 24]. To discuss the covering prop-

erty, let : ∈ N be thought of as large, let V ∈ (0, 1) be thought of as
:−0.99 and consider sets*1, . . . ,*: consisting of distinct element,

each *8 has size 3 (in our context, *8 will be the set of variables

in the 8th equation the veri�er chose). Let* = *1 ∪ . . . ∪*: , and
consider the following two distributions over tuples in F*@ :

(1) Sample G1, . . . , Gℓ ∈ F*@ uniformly.

(2) For each 8 independently, take+8 = *8 with probability 1− V
and otherwise take +8 ⊆ *8 randomly of size 1, then set

+ = +1 ∪ . . . ∪+: . Sample G1, . . . , Gℓ ∈ F+@ uniformly and lift

them to points in F*@ by appending 0’s in* \+ . Output the
lifted points.

In [24] it is shown that the two distributions above are @3ℓV
√
: close

in statistical distance, which is good enough for the purposes of

Theorem 1.3. However, this is not good enough for Theorem 1.4.
5 Carrying out a di�erent analysis, we are able to show that the

two distributions are close with better parameters and in a stronger

sense: there exists a set � of ℓ tuples which has negligible measure

in both distributions, such that each tuple not in � is assigned the

same probability under the two distribution up to factor (1 + > (1)).
We are able to prove this statement provided that : is only slightly

larger than @2ℓ .

The issue with the above two distributions is that they are actu-

ally far from each other if, say, : = @1.9ℓ . To see that, one can notice

that the expected number of 8’s such that each one of G1, . . . , Gℓ
has the form (0, 0, 0) ∈ F3@ on coordinates corresponding to *8 is

very di�erent. In the �rst distribution, this expectation is Θ(@−2ℓ:)
which is less than 1, whereas in the second distribution it is at least

V: ⩾ :0.01.

To resolve this issue and to obtain nearly tight hardness in the

Quadratic Programming application, we have to modify the distri-

butions in the covering property so that (a) they will be close even

if : = @1.01ℓ , and (b) we can still use these distributions in the com-

position step in our analysis of the PCP construction. Indeed, this

is the route we take, and the two distributions we use are de�ned

as follows:

(1) Sample G1, . . . , Gℓ ∈ F*@ uniformly.

(2) For each 8 independently, take+8 = *8 with probability 1− V
and otherwise take +8 ⊆ *8 randomly of size 1, then set

+ = +1 ∪ . . . ∪ +: . Sample G1, . . . , Gℓ ∈ F+@ uniformly, and

let F8 = 1*8
∈ F*@ be the vector that has 1 on coordinates

of *8 and 0 everywhere else. Lift the points G1, . . . , Gℓ to

G ′1, . . . , G
′
ℓ ∈ F*@ by appending 0’s in * \ + and take ~ 9 =

G 9 +
:
∑

8=1
U8, 9F8 where U8, 9 are independent random elements

from F@ . Output ~1, . . . , ~ℓ .

We show that for a suitable choice of : and V , these distributions

are close even in the case that : = @1.01ℓ . 6 Indeed, as a sanity

check one could count the expected number of appearances of

blocks of the form (0, 0, 0) ∈ F3@ and see they are very close (@−2ℓ:

5The reason is that letting # be the size of the instance we produce, it holds that

: is roughly logarithmic log# and @ℓ is the alphabet size. To have small statistical

distance, we must have : ⩽ @6ℓ , hence the soundness error could not go lower than

(log# )−1/6 .
6More spei�cally, one takes a small 2 > 0 and chooses V = :22/3−1 , : = @ (1+2 )ℓ .

versus (1 − V)@−2ℓ: + V:@−ℓ ). In this setting of parameters, : is

roughly equal to the alphabet size – which can be made to be

equal (log# )1−> (1) under quasi-polynomial time reductions – it is

su�cient to get the result of Theorem 1.4.

Remark 3.3. We remark that a tight covering property is crucial for

obtaining the tight hardness of approximation factor in Theorem 1.4.

In the reduction from 2-Prover-1-Round games to Quadratic Programs,

which is due to [1], the size of the resulting instance is exponential in

the alphabet size and the soundness error remains roughly the same.

In our case the alphabet size is roughly : hence the instance size is

dominated by # = 2Θ(:1+> (1) ) . If our analysis required : = @�ℓ , then

even showing an optimal soundness of @−(1−> (1) )ℓ for the 2-Prover-
1-Round game would only yield a factor of (log# )1/�−> (1) hardness
for quadratic programming.
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