L)

Check for
updates

Tarazu: An Adaptive End-to-end I/O Load-balancing
Framework for Large-scale Parallel File Systems

ARNAB K. PAUL, BITS Pilani, KK Birla Goa Campus, Zuarinagar, India

SARAH NEUWIRTH, Johannes Gutenberg University Mainz, Mainz, Germany
BHARTI WADHWA, IBM Research, Yorktown Heights, USA

FEIYI WANG and SARP ORAL, Oak Ridge National Laboratory, Oak Ridge, USA
ALl R. BUTT, Virginia Tech, Blacksburg, USA

The imbalanced I/O load on large parallel file systems affects the parallel I/O performance of high-
performance computing (HPC) applications. One of the main reasons for I/O imbalances is the lack of a
global view of system-wide resource consumption. While approaches to address the problem already exist,
the diversity of HPC workloads combined with different file striping patterns prevents widespread adoption
of these approaches. In addition, load-balancing techniques should be transparent to client applications. To
address these issues, we propose Tarazu, an end-to-end control plane where clients transparently and adap-
tively write to a set of selected I/O servers to achieve balanced data placement. Our control plane leverages
real-time load statistics for global data placement on distributed storage servers, while our design model
employs trace-based optimization techniques to minimize latency for I/O load requests between clients and
servers and to handle multiple striping patterns in files. We evaluate our proposed system on an experimental
cluster for two common use cases: the synthetic I/O benchmark IOR and the scientific application I/O kernel
HACC-I/O. We also use a discrete-time simulator with real HPC application traces from emerging workloads
running on the Summit supercomputer to validate the effectiveness and scalability of Tarazu in large-scale
storage environments. The results show improvements in load balancing and read performance of up to 33%
and 43%, respectively, compared to the state-of-the-art.

CCS Concepts: « General and reference — Performance; - Computer systems organization — Grid
computing; Secondary storage organization;

A. K. Paul and S. Neuwirth contributed equally to this article.

This work has been sponsored in part by the National Science Foundation under grants CCF-1919113, CNS-1405697,
CNS-1615411, CNS-1565314/1838271 OAC-1835890, CSR-2312785, CSR-2106634/2312785, and CCF-1919113/1919075. This
research also used resources of the Oak Ridge Leadership Computing Facility, located in the National Center for Compu-
tational Sciences at the Oak Ridge National Laboratory, which is supported by the Office of Science of the DOE under
Contract DE-AC05-000R22725. We also acknowledge the support of EUPEX, which has received funding from the Euro-
pean High-Performance Computing Joint Undertaking (JU) under GA No 101033975. The JU receives support from the
European Union’s Horizon 2020 research and innovation programme, France, Germany, Italy, Greece, United Kingdom,
Czech Republic, and Croatia. This work is also sponsored by the grants in BITS Pilani - BBF/BITS(G)/FY2022-23/BCPS-123,
GOA/ACG/2022-2023/Oct/11, and BPGC/RIG/2021-22/06-2022/02.

Authors’ addresses: A. K. Paul, BITS Pilani, Birla Institute of Technology and Science, Pilani - Goa Campus, Zuarinagar,
Goa - 403726, India; e-mail: arnabp@goa.bits-pilani.ac.in; S. Neuwirth, Johannes Gutenberg University Mainz - Zentrum
fuer Datenverarbeitung, 55099 Mainz, Germany; e-mail: neuwirth@uni-mainz.de; B. Wadhwa, IBM Research - Yorktown
Heights, NY 10598, United States; e-mail: wadhwa@ibm.com; F. Wang and S. Oral, Oak Ridge National Laboratory - 1
Bethel Valley Rd, Oak Ridge, TN 37830, United States; e-mails: fwang2@ornl.gov, oralhs@ornl.gov; A. R. Butt, Virginia
Tech - Blacksburg, VA 24061, United States; e-mail: butta@vt.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 1553-3077/2024/04-ART11

https://doi.org/10.1145/3641885

ACM Trans. Storage, Vol. 20, No. 2, Article 11. Publication date: April 2024.

11:2 A. K. Paul et al.

Additional Key Words and Phrases: Parallel file system, progressive file layout, lustre, time series modeling

ACM Reference Format:

Arnab K. Paul, Sarah Neuwirth, Bharti Wadhwa, Feiyi Wang, Sarp Oral, and Ali R. Butt. 2024. Tarazu: An
Adaptive End-to-end I/O Load-balancing Framework for Large-scale Parallel File Systems. ACM Trans. Storage
20, 2, Article 11 (April 2024), 42 pages. https://doi.org/10.1145/3641885

1 INTRODUCTION

Unbalanced load distribution and poor resource allocation schemes have been identified as ma-
jor contributors to performance penalties in many HPC storage systems, including Lustre [10],
one of the most widely used parallel file systems for scientific computing. Several recent works
address the load-balancing issue. Server-side approaches [18, 67] aim to allocate resources for all
concurrently running applications simultaneously. This includes the standard approach used in
Lustre’s request ordering system, the Network Resource Scheduler (NRS) [74]. Other tech-
niques attempt to minimize resource contention on a per-application basis, i.e., client-side ap-
proaches [58, 91]. While client-side and server-side approaches work well in isolation for some
applications, the diversity of HPC I/O workloads unfortunately leads to situations where both
isolated approaches lose performance.

Another commonly seen but neglected aspect when managing large-scale parallel file systems
with a diverse workload and different file I/O sizes is the use of poor file striping patterns [51].
In general, file striping enables parallel file /O and ideally provides a high application I/O
throughput [36]. However, often a much lower stripe count is used than recommended for large
files, resulting in a poor resource allocation scheme. This ultimately can lead to an imbalanced uti-
lization of storage components, or worst case, can cause some of the storage targets to completely
fill up. These suboptimal file layouts are not necessarily the result of conscious choices by the
users, but simply the result of inherited file layouts that are configured as the system-wide default.
These observations coupled with the constantly increasing size of HPC systems result in an
intensified I/O subsystem complexity and a decreased system reliability (i.e., mean time to failure).
Therefore, sub-optimal placement of file stripes can indirectly lead to lower I/O bandwidth. Load
imbalance on the storage servers and targets also has a direct effect on I/O bandwidth utilization,
as a higher load on a storage server can lead to I/O and network congestion for all the I/O
requests forwarded to that server. There have been client-side approaches (for example, Reference
[19]) to tackle jitter-free I/O, but there has been no work that tackles the end-to-end problem
including clients and storage servers to achieve better I/O bandwidth utilization. As a result, since
there is no “one-file-layout-for-all,” and a load-balanced set of servers and targets can lessen I/O
congestion issues, a configurable and smart load-balancing framework is needed that can adapt
to different file layouts, facilitate scientific code development for users, and make efficient use of
extreme-scale parallel I/O and storage resources.

Previous works such as iez [87] and AIOT [103] combine the application-centric strengths of
client-side approaches with the system-centric strengths of server-side approaches. For example,
iez provides an application-agnostic global view of all resources to the Metadata Server (MDS).
This includes the current statistics of Object Storage Servers (OSSs) and the set of Object Stor-
age Targets (OSTs) where data resides. It coordinates the I/O requests from all concurrently run-
ning applications simultaneously to optimize the I/O placement strategy on a per-client basis. How-
ever, iez and AIOT have two major drawbacks. First, the algorithm for predicting application I/O
request patterns run in a centralized fashion, which limits the scalability of load-balancing frame-
works. Second, both frameworks are not able to efficiently adapt load balancing to the different file
layout requirements of different file sizes when running different HPC workloads simultaneously.

ACM Trans. Storage, Vol. 20, No. 2, Article 11. Publication date: April 2024.

Tarazu: An Adaptive End-to-End 1/O Load Balancing Framework 11:3

Our work focuses on three main areas. First, we introduce Tarazu, an end-to-end control plane,
which provides an intelligent and adaptive placement algorithm that is able to tune to varying file
layouts for different I/O request sizes of concurrently running applications, but also consider the
current load on the file system when placing the file data. By utilizing the Progressive File Layout
(PFL) [26, 51], arecent Lustre feature that offers significant new flexibility in optimizing file layouts
for various I/O patterns and sizes, Tarazu is able to adjust the file layout, depending on the I/O
size, by adapting the striping pattern as the file size increases. Tarazu combined with PFL enables
efficient utilization of the parallel storage resources for varying I/O sizes and workloads. Second,
we eliminate the major drawback of the centralized prediction algorithm that limits scalability by
moving the prediction model to the clients instead of the MDS and forwarding all predicted file
requests to the MDS for optimal file placement in a scalable manner. Third, we design, implement,
and validate a discrete-event simulator to enable scalability tests for large-scale parallel storage
systems and to verify the effectiveness of our proposed work.

In a nutshell, Tarazu collects real-time information from clients and servers about applications’
storage requirements, as well as the load on storage servers, and maps I/O requests to OSTs
and OSSs in a balanced manner to ensure efficient use of all storage system components. The
system considers per-client job requests in an adaptive per-client prediction model to synchronize
holistic job placement and resource allocation. Our data placement strategy supports two
widely used classes of file sharing modes, i.e., File-Per-Process (FPP) and Single-Shared-File
(SSF), for both PFL and non-PFL layouts. In addition, Tarazu supports popular I/O interfaces
such as POSIX I/O [88], MPI-IO [81], and HDF5 [25]. In summary, we make the following
contributions:

(1) We design and implement a prediction algorithm and placement library for the end-to-end
control plane Tarazu, which incorporates both server- and client-side functionality to opti-
mize the I/O placement and resource allocation. Tarazu is able to handle multiple file striping
patterns concurrently and in a scalable fashion.

(2) We evaluate the effectiveness of Tarazu on a cluster setup with two common use cases: the
synthetic I/O benchmark IOR [40] and the scientific application kernel HACC-I/O [28]. The
results show that Tarazu improves the load balance by up to 33% and read performance by
up to 43% compared to the default load balancing adopted in Lustre.

(3) We demonstrate the effectiveness and scalability of Tarazu on large-scale storage deploy-
ments by evaluating different Lustre setups with a discrete-time simulator based on the
Tarazu system design and use three real-world scientific HPC application traces collected
on the Summit supercomputer [41] to model our clients and a mixed system workload.

2 BACKGROUND

Recent work [5, 18, 66, 69, 71, 91] has shown that unbalanced I/O load in HPC systems can
lead to serious resource contention and degradation of overall I/O performance. The parallel I/O
system and the complex path of an application’s I/O request—consisting of myriad components
such as I/O libraries, network resources, and back-end memory—are inherently complex. Today’s
HPC implementations lack a centralized, system-wide I/O coordination and control mechanism
to address the overall problem of resource contention. As a result, existing parallel file and
storage systems can only optimize some parts of the I/O path, but not the entire end-to-end
path. In the following, we provide a brief overview of the Lustre file system and its file allocation
policies. Afterwards, we discuss the relation between parallel I/O and file requests. The section
concludes with a discussion about the progressive file layout and its benefits for emerging HPC
workloads.

ACM Trans. Storage, Vol. 20, No. 2, Article 11. Publication date: April 2024.

11:4 A. K. Paul et al.

Management Server (MGS) Metadata Server (MDS) Metadata

g Target (MGT) I g Target (MDT)
I Object Storage Servers (0SS) &
Lustre Clients Lustre Network (LNet) Object Storage Targets (OSTs)
(L LM =]
direct, parallel file access @

Fig. 1. Overview of the Lustre architecture.

2.1 Introduction to Lustre

We have implemented Tarazu atop Lustre, one of the most widely deployed parallel file systems
in the world’s top supercomputing systems [82]. For example, the world’s first exascale supercom-
puter Frontier relies on a center-wide Lustre file system named Orion to provide three storage
tiers: (1) a 480X NVMe flash drive metadata tier, (2) a 5,400x NVMe SSD performance tier with
11.5 PB of capacity, and (3) a 47,700X HDD capacity tier with 679 PB of capacity. Lustre is a file
system that scales to meet the requirements of applications running on a range of systems from
small-scale HPC environments up to the very largest supercomputers and has been created using
object-based storage building blocks to maximize scalability.

2.1.1 Lustre Architecture. Lustre is a scalable storage platform that is based on distributed
object-based storage. Figure 1 shows a high-level overview of the Lustre architecture and its key
building blocks. Lustre clients provide a POSIX-compliant interface between applications and the
storage servers. The application data is managed by two types of servers, Metadata Server (MDS)
and Object Storage Server (OSS). MDS manages all namespace operations and stores the names-
pace metadata on one or more storage targets called Metadata Targets (MDTs). The bulk storage
of contents of application data files is provided by OSSs. Each OSS typically manages between two
and eight Object Storage Targets (OSTs), although more are possible, and stores the data on one
or more OSTs. OSTs are stored on direct-attached storage. Each data file is typically striped across
multiple OSTs; the stripe count can be specified by the user. The distributed components are con-
nected via the high-speed data network protocol LNet [55], which supports different network tech-
nologies, such as Ethernet and InfiniBand [72]. LNet is designed to support full RDMA throughput
and zero copy communications when supported by the underlying network technology.

One of Lustre’s key performance features is file striping using RAID 0, which is the process of
dividing a body of data into blocks and spreading the data blocks across multiple storage devices
in a redundant array of independent disks group. Striping allows segments or chunks of data in a
file to be stored on different OSTs, as shown in Figure 2. The RAID 0 pattern stripes the data across
a certain number of objects. The number of objects in a single file is called the stripe count. Each
object contains chunks of data from the file, and chunks are written to the file in a circular round-
robin manner. When the chunk of data being written to a particular object exceeds the configured
stripe size, the next chunk of data in the file is stored on the next object. In Figure 2, the stripe size
for file C is larger than the stripe size for file A, so more data can be stored in a single stripe for
file C. File striping offers two main benefits:

(1) The ability to store large files by placing chunks of a file on multiple OSTs, i.e., a file’s size is

not limited to the space available on a single OST.

(2) An increase in bandwidth, because multiple processes can simultaneously access the same

file, i.e., a file’s I/O bandwidth is not limited to a single OST.

2.1.2 Managing Free Spaces. To provide optimized I/O performance, the MDT assigns file
stripes to OSTs based on location (which OSS) and size considerations (free space) to optimize

ACM Trans. Storage, Vol. 20, No. 2, Article 11. Publication date: April 2024.

Tarazu: An Adaptive End-to-End 1/O Load Balancing Framework 11:5

File A ” File B || File C || Object
0SsTO0 0ST1 0sT2
Chunk 0 Chunk 1 Chunk 2
Chunk 3 Chunk 4 Chunk 5

Chunk 6
Chunk 0
Chunk 0

Fig. 2. Example file striping on a Lustre file system.

0ssn 0SS n+1 0ss n+2

Window
(free-space
imbalance in %)

4
@ @ "
. -
. Maximum amount of Minimum amount of
free space on any OST free space on any OST

)

v

-
.

®ElE

-
.

elele®

(a) Round-Robin Allocator. (b) Target Window.

Fig. 3. Lustre provides two stripe allocation methods for managing free spaces: round-robin and weighted.
By default, the allocation method is determined by the amount of free-space imbalance on the OSTs.

file system performance. Less-used OSTs are preferentially selected for stripes, and stripes are
preferentially spread out between OSSs to better utilize network bandwidth. The default OST load-
balancing approach uses Lustre’s standard allocation (LSA) policy to distribute I/O load over
OSTs. Lustre comes with two stripe allocation methods: the round-robin and the weighted alloca-
tor. Depending on the free-space imbalance on the OSTs, Lustre transparently switches between
the faster round-robin allocator, which maximizes network balancing, and the weighted allocator,
which fills less-used OSTs faster by using a weighted random algorithm.

The round-robin allocator alternates stripes between OSTs on different OSSs, so the OST used
for stripe 0 of each file is evenly distributed among OSTs, regardless of the stripe count, as depicted
in Figure 3(a). Note that the list of OSTs for a file is not necessarily sequential with regards to the
OST index. In contrast, the weighted allocator uses a weighted random mechanism to select OSTs.
OSTs that are the least full have a higher probability of being allocated (in an attempt to bring the
storage system back into balance), but there is still some chance that full OSTs could be selected.
The target window, as shown in Figure 3(b), specifies the allowed free-space imbalance and defines
when to switch between the two strategies. Let us assume that max is the maximum amount of
free space on any OST in the file system, min is the minimum amount of free space on any OST,
and Window defines the quality of service threshold of allowed free-space balance:

Window
—_ %

(max — min) < max. (1)

If Equation (1) is true, then the OSTs are considered balanced and the round-robin allocator
is used. This means that all the OST usages are within a small window of each other (which by
default is set in between 17% and 20%). The weighted allocator is used when any two OSTs are
imbalanced.

2.2 Introduction to Parallel I/O and File Requests

In the context of HPC systems, parallel I/O [9, 73] describes the ability to perform multiple input
and output operations at the same time, for instance, simultaneous outputs to storage and display

ACM Trans. Storage, Vol. 20, No. 2, Article 11. Publication date: April 2024.

11:6 A. K. Paul et al.

292299

[rieo | [rier | [rie2 | [ries | [riea | wo [ilen]

(a) Single writer 1/0. (b) File-per-process 1/0.

PO :

12220 7 A=

File

File I

(c) Single shared file 1/0: independent. (d) Single shared file I/O: collective buffering.

Fig. 4. Overview of file-sharing strategies [55].

devices. Itis a fundamental feature of large-scale HPC environments. Parallel file systems distribute
the workload over multiple I/O paths and components to satisfy the I/O requirements in terms of
performance, capacity, and scalability. Scientific I/O is performed by large-scale applications from
different scientific domains. HPC applications frequently issue I/O operations to access (i.e., read
or write) TBs of data; some applications produce a few hundred TBs or even PBs of data. Typically,
domain scientists think about their data in terms of their science problems, e.g., molecules, atoms,
grid cells, and particles. Ultimately, physical disks store bytes of data, which makes such workloads
difficult to handle for the storage system. Most HPC storage systems employ a parallel file system
such as Lustre or GPFS to hide the complex nature of the underlying storage infrastructure, e.g.,
solid state drives (SSDs), spinning disks, and RAID arrays, and provide a single address space
for reading and writing to files. The I/O behavior of an application depends on multiple factors
such as type of I/O operation (i.e., read or write), file-sharing strategy (single-shared-file versus
file-per-process), I/O intensity, and current system load when the application is executed.

There are three common file-sharing strategies used by applications to interact with the parallel
file system, which are described in the following: In Single Writer I/O, also known as sequential
I/O, one process aggregates data from all other processes and then performs I/O operations to one
or more files. The ratio of writers to running processes is 1 to N, as depicted in Figure 4(a). This
pattern is very simple and can provide a good performance for very small I/O sizes but does not
scale for large-scale application runs, since it is limited by a single I/O process. In File-Per-Process
I/O, each process performs I/O operations on individual files, as shown in Figure 4(b). If an
application runs with N processes, then N or more files are created and accessed (N:M ratio with
N < M). Up to a certain point, this pattern can perform very well, but is limited by each individual
process that performs I/O. It is the simplest implementation of parallel I/O enabling the possibility
to take advantage of an underlying parallel file system. However, it can quickly accumulate many
files. Parallel file systems often perform well with this strategy up to several thousands of files, but
synchronizing metadata for a large collection of files introduces a potential bottleneck. Also, an in-
creasing number of simultaneous disk accesses creates contention on file system resources. Finally,
the Single-Shared-File pattern allows many processes to share a common file handle but write to
exclusive regions of a file. Figures 4(c) and 4(d) show the independent and collective buffering vari-
ants of this strategy. In the independent variant, all processes of an application write to the same
file, while in the collective buffering variant, the performance of shared file access is improved by
offloading some of the coordination work from the file system to the application. The data layout

ACM Trans. Storage, Vol. 20, No. 2, Article 11. Publication date: April 2024.

Tarazu: An Adaptive End-to-End 1/O Load Balancing Framework 11:7

Client Data stripe 0
0sc Object A Data stripe 3

L T
- @ ata stripe 6 J

° 9s¢ \ Data stripe 1

Y 0sCc Y Object B Data stripe 4

Data striEe 7

LMV Data stripe

@ TmDC | A Object C Datastripe5 |
(S | Datastripe8 |
[© @ Object Storage Servers

@ File open request

Return Layout EA,
MDs @ FID (Object A, Object B, Object C)

Read or write objects in parallel

Fig. 5. Lustre client requesting file data [55].

1 stripe 3 stripes 8 stripes 16 stripes

[0, 128MB) [128MB, 512MB) [512MB, 2GB) [2GB, EOF)

Fig. 6. An example PFL file layout with four non-overlapping extents.

within the file is very important to reduce concurrent accesses to the same region. Contesting pro-
cesses can introduce a significant overhead, since the file system uses a lock manager to serialize
the access and guarantee file consistency. The advantage of the single shared file I/O pattern lies
in the data management and portability, e.g., when using a high-level I/O library such as HDF5.

Ultimately, I/O operations are translated into file requests accessing the parallel shared file sys-
tem. Figure 5 uses Lustre as an example to show how an I/O operation is turned into a file request
by the Lustre client running on a compute node. First, the Lustre client sends a remote procedure
call (RPC) to the MDS via the logical metadata volume (LMV) and metadata client (MDC) to
request a file lock (1). This can either be a read lock with look-up intent or a write lock with create
intent. When the MDS has processed the request, it returns a file lock and all available metadata
and file layout attributes to the Lustre client (2). If the file does not exist yet (i.e., file create request
is performed), then the MDS will also allocate OST objects via the logical object volume (LOV)
and object storage client (OSC) for the file based on the requested striping layout and current al-
locator policy when the file is opened for the first time. With the help of the file layout information,
the client is able to access the file directly on the OSTs (3).

2.3 Progressive File Layout and Emerging Hybrid HPC Workloads

Striping enables users to obtain a high parallel I/O performance [36]. Files are divided into stripes,
which are stored across multiple OSTs. This mechanism enables parallel read and write accesses to
files and therefore parallel I/O. The Progressive File Layout (PFL) [51] is a recent Lustre feature
where a file can have different striping patterns for different regions of the file to balance the space
and bandwidth usage against the stripe count. Using PFL, a file can have several non-overlapping
extents, with each extent having different striping parameters. This can provide lower overhead for
small files that require only a single stripe, higher bandwidth for larger files, and wide distribution
of storage usage for a very large file.

An example PFL configuration with four sub-layouts is shown in Figure 6. The first extent has
a single stripe up to 128 MB, the second extent will have three stripes up to 512 MB, the third
extent will have eight stripes, and the last component goes to the end of file and will have up to 16
stripes. The PFL feature is implemented using composite file layouts. The number of sub-layouts
in each file and the number of stripes in each sub-layout can be specified either as a system-wide

ACM Trans. Storage, Vol. 20, No. 2, Article 11. Publication date: April 2024.

11:8 A. K. Paul et al.

default or by the user using the 1fs setstripe command. For the configuration of PFL, the Lustre
operations manual [61] recommends to keep a linear balance between the total number of stripes
and the expected file size. Also, the layout should stop growing when the total number of stripes
equals or exceeds the number of available OSTs.

HPC applications are evolving to include not only traditional scale-up modeling and simulation
bulk-synchronous workloads but also scale-out workloads [57] such as advanced data analytics
and machine learning [97, 100], deep learning [14], and data-intensive workflows [16, 17, 24]—
challenging the long- and widely held belief that HPC workloads are write-intensive, as shown by
arecent I/O behavior analysis [65]. In contrast to the traditional well-structured HPC I/O patterns
(for example, checkpoint/restart, multi-dimensional I/O access), emerging workflows will often
utilize non-sequential, metadata-intensive, and small-transaction reads and writes, and invoke file
read requests to the HPC parallel file systems [24]. PFL has been designed to cope with the chang-
ing landscape of I/O workloads so applications observe a reasonable performance for a variety of
file I/O patterns without the need to explicitly understand the underlying I/O model.

3 RELATED WORK

In this work, we seek to design an end-to-end I/O load-balancing control plane for large-scale
parallel file systems. Therefore, two research areas are of particular interest for this work: end-to-
end I/O monitoring and resource load balancing.

3.1 End-to-end I/O Monitoring

Existing work in end-to-end I/O monitoring has focused mainly on I/O tracing and profiling tools,
which can be divided into two main categories: application-oriented tools and back-end-oriented
tools. Recent research work also focuses on the end-to-end I/O path analysis, thus introducing
end-to-end I/O monitoring tools as a third category.

Application-oriented tools focus on collecting detailed information about particular application
runs to tune applications for increased scientific productivity or to gain insight into trends in large-
scale computing systems. These tools include, for example, Darshan [12], IPM [85], and RIOT [94],
all of which are designed to capture an accurate picture of application I/O behavior, including
key characteristics such as access patterns within files, in the context of the parallel I/O stack on
compute nodes with a minimal overhead. Patel et al. [64], for example, used Darshan to perform
an in-depth characterization of access, reuse, and sharing characteristics of I/O-intensive files. Wu
et al. introduced a scalable tracing and replay methodology for MPI and I/O event tracing called
ScalaTrace [53, 95, 96]. Another popular tool is Recorder [49], a multi-level I/O tracing tool that
captures HDF5, MPI-1/O, and POSIX I/O calls, which requires no modification or recompilation of
the application. It has been extended to also support tracing of most metadata POSIX calls [89].

Back-end-oriented tools focus on collecting I/O performance data on the system-level in the
form of summary statistics. Example tools include LIOProf [99], LustreDU [45, 62], and LMT [27].
Apollo [75] is a real-time storage resource monitoring tool, which relies on publisher-subscriber
semantics for low latency and low overhead. Its target is to provide a current view of the system
to aid middleware services in making more optimal decisions. Finally, Paul et al. [66] analyzed
application-agnostic file system statistics gathered on compute nodes as well as metadata and
object storage file system servers.

Finally, end-to-end I/O monitoring tools try to provide holistic insight from an application and
system perspective, including factors such as the network, I/O, resource allocation, and system
software stack. An initial attempt was to utilize static instrumentation to trace parallel I/O calls.
For example, SIOX [93] and IOPin [35] extended the application-level I/O instrumentation intro-
duced by Darshan to other system levels to characterize I/O workloads across the parallel I/O stack.

ACM Trans. Storage, Vol. 20, No. 2, Article 11. Publication date: April 2024.

Tarazu: An Adaptive End-to-End 1/O Load Balancing Framework 11:9

However, their overhead impedes their use in large-scale HPC production environments [78].
In recent years, end-to-end frameworks have become increasingly popular. TOKIO [39], for
example, relies on the combination of front-end tools (Darshan, Recorder) and back-end tools
(LMT). UMAMI [48] combines on-demand, modular synthesis of I/O characterization data into
a unified monitoring and metrics interface, which provides cross-layer I/O performance analysis
and visualization. GUIDE [86], however, is a framework used to collect, federate, and analyze
center-wide and multi-source log data from the Oak Ridge Leadership Computing Facility
(OLCEF). Finally, the MAWA-HPC (Modular and Automated Workload Analysis for HPC
Systems) [108, 109] project aims to develop a generic workflow and tooling suite that can be
transparently applied to applications and workloads from different science domains. Through its
modular design, the workflow is able to support various community tools, which increases its
compatibility with different applications. Similar to UMAMI, MAWA-HPC provides cross-layer
performance analysis and visualization. Beacon [101, 102] complements previous work by provid-
ing a real-time end-to-end I/O monitoring framework. It can be used to analyze performance and
resource utilization, but also for automatic anomaly detection and continuous per-application I/O
pattern profiling. Beacon is currently deployed on the TaihuLight system.

When designing an end-to-end I/O control plane, key aspects such as low latency, low overhead,
and an application-agnostic global view of resources play an important role in the overall system
design. Therefore, this work combines different approaches from the discussed related works to
provide transparent coordination of I/O requests and intelligent and adaptive placement of file
I/O. For example, Tarazu relies on the mechanisms of the lightweight tracing tool Recorder and
employs publisher-subscriber semantics to collect application-agnostic file system statistics.

3.2 Resource Load Balancing

Given typical non-uniform data allocation patterns across storage resources, the striping of appli-
cation data across multiple OSTs often leads to load imbalance. The main limitation is that LSA
only aims to balance the load on OSTs, without any consideration about other components, such
as MDS and OSSs. Previous work on HPC I/O behavior [55, 67, 87] has shown that LSA can take a
long time to balance a system, since it is unable to capture the complex behavior of modern HPC
applications. Consequently, the default policy falls short of providing the desired I/O balanced
storage system.

Load balancing and resource contention mitigation in large-scale parallel file system deploy-
ments are extensively studied research topics [4]. One approach is to address the problem from
the client-side on a per-application basis [56, 58, 91]. For example, the I/O calls can be intercepted
on the client-side during runtime and the OST assignments can be managed accordingly to mit-
igate resource contention [29, 44, 83, 107]. One example is TAPP-I/O [58], which transparently
intercepts metadata operations, supports both statically and dynamically linked applications, and
provides a heuristic-based placement strategy for FPP and SSF. However, the main limitation of
these approaches is that they do not consider the requirements of other applications running con-
currently on the system due to lack of a global system view and therefore only tune the I/O of
individual applications.

Another approach is to have a global view of storage servers and server-side statistics and con-
sider the load balance and job interference across all applications instead of a per-job basis. Here,
the load-balancing problem is handled from the server-side perspective [18, 67, 80, 105]. The main
limitations of such approaches are that they require the modification of application source code
and do not consider different file I/O (SSF or FPP) and striping layouts.

Recent work [2, 6-8] has introduced auto-tuning approaches for specific high-level I/O libraries
such as MPI-IO and HDFS5 to learn and predict the I/O behavior of HPC applications to improve

ACM Trans. Storage, Vol. 20, No. 2, Article 11. Publication date: April 2024.

11:10 A. K. Paul et al.

the parallel read and write performance. Another alternative is presented by the Optimal Over-
loaded IO Protection System (OOOPS) [32], which detects and throttles I/O-intensive workloads
to reduce excessive pressure on the metadata servers and service nodes. Ji et al. [33] introduced an
application-adaptive dynamic forwarding resource allocation (DFRA), which, based on moni-
toring data from the real-time I/O monitoring system Beacon [101], determines whether an appli-
cation should be granted more forwarding resources or given dedicated forwarding nodes. Hence,
DFRA attempts to mitigate the load imbalance at the forwarding layer and can be considered com-
plementary to this work. In 2022, Yang et al. [103] presented an end-to-end and adaptive I/O
optimization tool (AIOT), which is also based on the Beacon framework. AIOT tunes system
parameters across multiple layers of the storage system by using the automated identified applica-
tion I/O behaviors and the instant status of the workload of storage system. The main drawback
of AIOT is its centralized design for predicting and tuning I/O behavior.

The aforementioned approaches improve the parallel I/O performance for individual applica-
tions by effectively reducing the resource contention and improving the load balance but fail to
exploit the opportunity of an interference-aware, end-to-end I/O path optimization. They also
fail to achieve effective resource utilization (e.g., bandwidth) and performance improvements by
adapting the load balance to different I/O sizes. In contrast, Tarazu provides an end-to-end load-
balancing solution for concurrent applications for both PFL and non-PFL layouts, which globally
coordinates between clients and servers of parallel file systems in a scalable and decentralized
manner.

4 MOTIVATION: LOAD IMBALANCE IN DEFAULT LUSTRE SETUPS

In the following, we use two well-known HPC benchmarks to highlight the load imbalance in a
default Lustre deployment and to motivate the need for a framework such as Tarazu.

4.1 Use Cases and Benchmarks

The Hardware Accelerated Cosmology Code (HACC) [28] application uses N-body techniques
to simulate the formation of structure in collision-less fluids under the influence of gravity in
an expanding universe. HACC-I/O mimics the I/O patterns and evaluates the performance of the
HACC simulation code. It can be used with the MPI-I/O and POSIX I/O interfaces and differentiates
between FPP and SSF file-sharing modes.

The InterleavedOrRandom (IOR) [40] benchmark provides a flexible way to measure the
parallel file system’s I/O performance under different read/write sizes, concurrencies, file formats,
and file layout strategies. It measures the performance for different configurations including
I/O interfaces ranging from traditional POSIX I/O to advanced parallel I/O interfaces like
MPI-IO and differentiates parallel I/O strategies between file-per-process and single-shared-file
approaches.

4.2 Observed Load Imbalance

To highlight the load imbalance in a default Lustre setup, we use Lustre’s standard allocation
(LSA) strategy to distribute the I/O load on the OSTs. We deployed a testbed consisting of a 10-node
cluster, with 1 MDS, 7 OSSs, and 2 Clients. Each OSS manages 5 OSTs with a capacity of 10 GB each.
Hence, the cluster has 35 OSTs in total with a capacity of 350 GB. IOR was run with 16 processes
for two different configurations, resulting in 32 GB and 128 GB of data to be stored on the OSTs in
the FPP access mode. In addition, HACC-I/O was run for 8 and 16 processes with 50 million and
20 million particles generating 14.3 GB and 11.7 GB data, respectively. All experiments were run
for both the PFL and non-PFL setup. For the PFL setup, we used the same configuration as shown
in Figure 6, referred to as Configuration 1. For the non-PFL setup, the stripe count was set to eight.

ACM Trans. Storage, Vol. 20, No. 2, Article 11. Publication date: April 2024.

Tarazu: An Adaptive End-to-End 1/O Load Balancing Framework 11:11

IOR, HACC-IO: File Per Process IOR, HACC-IO: File Per Process, PFL: Configuration1
80 HACC-IO: 8 Processes, 50M Particles —+— 10R: 16 Processes, 32 GB 80 HACC-IO: 8 Processes, 50M Particles —+— I0R: 16 Processes, 32 GB
70}k HACC-IO: 16 Processes, 20M Particles —>¢— I0R: 16 Processes, 128 GB i 70}k HACC-IO: 16 Processes, 20M Particles —>¢— IOR: 16 Processes, 128 GB
< <
S 60t Se0t
c c
® ®

OST IDs OST IDs

(a) Non-PFL file layout (stripe count = 8). (b) PFL file layout (Configuration 1).

Fig. 7. OST utilization with the default OST allocation policy in Lustre (LSA) for IOR and HACC-1/O for
non-PFL and PFL file layouts.

Figure 7(a) shows the OST utilization for different runs of IOR and HACC-IO in the FPP mode
with the non-PFL file striping configuration. In a balanced load setting, these graphs would
be straight lines, but in the studied scenario, the load is observed to be imbalanced with some
OSTs getting a higher I/O load than others. A similar pattern can be seen in Figure 7(b) for
IOR and HACC-I/O in the FPP mode using the PFL configuration. These results show that a
default Lustre deployment, which relies on LSA to allocate OSTs for each job, can suffer from a
significant load imbalance at the server-level. The load imbalance persists at different scales and
different striping layouts (PFL and non-PFL) and thus can lead to imbalanced resource usage and
contention.

It should be noted that the OST utilization for non-PFL and PFL files looks similar. The reason
for this is how Lustre internally maps data blocks onto the stripe objects on the OSTs. By default,
when the free space across OSTs differs by less than 20%, round-robin is used to distribute the file
I/O across multiple OSTs. For example for HACC-I/O with FPP, 8 processes and 50 million particles,
the non-PFL layout writes 8 stripes per file with 219 MB per stripe, while PFL divides the files in
12 stripes per file with 4 128 MB stripes and 7 192 MB stripes (the last stripe of the third extent
remains unallocated, since one file is only 1.830.4 MB in size).

Regarding the observed load imbalance, the following points should be noted:

— The load imbalance on the OSTs occurs during the file creation phase. Each file creation
request contains two parameters—the number of stripes and the file size associated with the
file. Therefore, our load-balancing algorithm needs to optimally place the files during the
file creation phase.

— The jagged line plot of the OST utilization in Figures 7(a) and 7(b) indicates that the load
on the OSTs is not balanced during an application run. A balanced set of OSTs exhibits a
straight line for OST utilization. This load imbalance on the OSTs results in an imbalance
in the read and write requests coming to OSSs, which leads to I/O congestion and thus
lower overall I/O bandwidth for the application. Therefore, our load-balancing algorithm
should be able to balance load on both OSTs and OSSs to improve the overall application
bandwidth.

— The goal of a parallel file system with load balancing should be to keep the total load of the
storage targets within reasonable limits and to use all OSTs and OSSs in a similar manner
so not only a certain set of OSSs and OSTs fulfills the majority of the I/O requirements.
Therefore, the percentage of OST utilization should not be very close to 100%, because the
storage targets that reach 100% utilization will operate slower and cause I/O bottlenecks.

ACM Trans. Storage, Vol. 20, No. 2, Article 11. Publication date: April 2024.

11:12 A. K. Paul et al.

8 stripes 8 stripes 8 stripes 8 stripes
FPP/non-PFL

8GB 8GB 8GB 8GB

(a) Striping layout with FPP — 4 processes each creating a 8GB file with a non-PFL configuration.

PFL PFL PFL PFL
8GB 8GB 8GB 8GB

(b) Striping layout with FPP - 4 processes each creating 8GB with a PFL configuration.

8 stripes
SSF/non-PFL

32GB

(c) Striping layout with SSF - 1 process creating a 32GB file with a non-PFL configuration.

1 stripe 3 stripes 8 stripes 16 stripes
s [| | NN T[T TTTT]
[0, 128MB)[128MB, 512MB) [512MB, 2GB) [2GB, 32GB]

(d) Striping layout with SSF - 1 process creating a 32GB file with a PFL configuration.

Fig. 8. Comparison between FPP and SSF with non-PFL and PFL striping layouts.

4.3 Parallel File Access with Varying Striping Layouts

Before we discuss the Tarazu software architecture in detail, we explain how the layouts of the
non-PFL and PFL files differ for FPP and SSF. We focus on the example configurations shown in
Figure 8. The PFL layout used is Configuration 1, which has already been introduced in Section 2.3.

In the FPP mode example, four processes each write 8 GB files to the parallel file system. In
the non-PFL layout, each 8 GB file is split into a predefined number of equal-sized stripes (in this
example, the stripe count is 8), while in PFL layout, each 8 GB file is partitioned according to the
defined PFL layout for these files or directories (here Configuration 1). In SSF mode, a single process
creates a single file while all other processes perform I/O operations on the file. This file is divided
into a predetermined number of stripes according to a non-PFL or a PFL layout.

It is evident that the different stripes can be of different sizes, depending on the file-sharing
mode and striping layout. Also, for non-PFL files, individual stripes can be very large, which can
cause load imbalance. In addition, data segments are stored in a RAID 0 pattern during striping,
as already explained in Section 2.1. This can pose a significant problem especially when several
processes want to write to the same file. Lustre provides file locking on a server-basis, which can
lead to contention for concurrent file operations, especially when accessing segments of files in
the RAID 0 pattern (i.e., in a circular round-robin manner). The challenge is to select OSTs to
place different sized stripes for concurrent workloads with different striping layouts such that
all OSTs have load balancing and less resource contention, improving I/O for different workload
characteristics.

5 TARAZU SYSTEM DESIGN

In the following, we will introduce our design philosophy, provide an overview of the software
architecture, and discuss every software component individually. We have implemented Tarazu
for the widely used parallel file system Lustre. Please note that our design can be extended for

ACM Trans. Storage, Vol. 20, No. 2, Article 11. Publication date: April 2024.

Tarazu: An Adaptive End-to-End 1/O Load Balancing Framework 11:13

)
|
| Phase 2b:
: Server Statistics
: Collection
1
|
: Y
i 1/0Load | Phase 1: A P;;:;te::: File Phase 3: :hajei: :
H |mbalance 4+ Trace Collection > Cf:ate Request »| OST Allocation MZfa};atga
: : & Training Data neq Algorithm .
H i Prediction Information
1

If re-training is needed (e.g., configuration parameters changed, miss rate exceeded)

Fig. 9. Iterative end-to-end control flow in Tarazu for I/O load balancing.

use in other HPC parallel file and distributed storage systems that employ a similar hierarchical
structure.

5.1 Design Philosophy and Contributions
The design of Tarazu adopts the following philosophy and makes the following contributions:

— End-to-end Control Plane: One of the most important design features in Tarazu is the
implementation of an end-to-end control plane that considers the application behavior and
combines that information with the current load on the storage servers. Therefore, an in-
formed and adaptive decision can be made about file strip placement by having a holistic
view of the current application and server load.

— Application-agnostic Global View of Resources: Storage servers act indifferently to the
applications sending I/O requests, that is, servers do not have application-level information.
Therefore, the placement algorithm in Tarazu should consider a global view of all the re-
sources (server and client) before deciding the placement of the file stripes.

— Automatic Coordination of I/O Requests from Concurrent Workloads: All applications
perform I/O on the same shared file system. Therefore, in Tarazu, instead of a per-application
file placement algorithm, a holistic solution for all applications is needed, which requires the
coordination of I/O requests from all concurrent applications.

— Intelligent and Adaptive Placement Algorithm: The placement algorithm should be in-
telligent enough to make accurate predictions about future file requests by tracking the I/O
behavior of the application. Since this depends on the behavior of individual clients, Tarazu’s
prediction model should run on the clients, dynamically improve the prediction accuracy,
and forward the current and predicted I/O requests to the central placement algorithm.

— Transparent Placement of Application Files: Applications should have no knowledge of
how the entire placement algorithm works. Therefore, one of the most important design
decisions in Tarazu is the transparent approach to file stripe placement. This ensures that
the application code does not need to be modified or recompiled.

5.2 End-to-end Control Flow

Figure 9 shows the high-level control flow of Tarazu. To mitigate I/O load imbalance in the parallel
file system, Tarazu first collects file I/O traces during an application run and trains the prediction
model on the collected historical traces for an application (Phase 1).

This trained model is then used to predict file creation requests (Phase 2a). As discussed previ-
ously, file creation requests lead to load imbalance in OSTs. Therefore, before the actual application
run, our prediction model will predict the file size for all file creation requests in an application.

ACM Trans. Storage, Vol. 20, No. 2, Article 11. Publication date: April 2024.

11:14 A. K. Paul et al.

Lustre Client Object Storage Servers OSTs

(. N
DS @] Mot serer T WNES
a: Sl {Statistics '
. | = EE 1nss
&

e L. Configuration
Prediction
Model Manager
-

J

Allocation
Algorithm

Fig. 10. Overview of the Tarazu software architecture.

The number of file stripes is also collected from the configuration file. This set of predicted file
create requests (file size and the number of stripes) from the client is sent to the OST allocation
algorithm running on the MDS that has a global view of the system.

The MDS collects real-time statistics on OSS and OST resource usage (Phase 2b) asynchronously
and in parallel with Phase 2a. Based on the set of file creation requests sent by all clients and the
server statistics, the OST allocation algorithm running on the MDS maps each file to a set of OSTs
(Phase 3) such that there is OST and OSS-level load balance in the system. The file creation requests
and the corresponding set of load-balanced OSTs are given back to the respective clients.

When the actual file creation requests come from the application, the mapped, load-balanced
set of OSTs is allotted for the corresponding file creation request and the metadata information is
applied to the actual request (Phase 4). This helps reduce the latency of file creation requests and
achieve a scalable load-balanced design.

Phases 1 through 3, which involve retraining the model based on historical traces and making
a prediction, are only required if there are many actual file creation requests that are not included
in the predicted set of requests, resulting in a higher miss rate, or if the application striping pat-
tern and file-sharing strategy change. This separation of Phases 1-3 and Phase 4 helps design a
transparent load-balancing framework that does not require changing the application source code.
At the same time, it enables seamless load balancing by reducing the overall latency of file cre-
ation requests, resulting in better application I/O throughput. This control flow also results in the
prediction model not interfering with the actual application flow.

5.3 System Overview

Figure 10 shows an overview of the Tarazu software architecture. It shows an end-to-end control
plane for managing I/O. The design relies on components on both the client and server side.
When applications are initially run, miniRecorder o a custom tracing tool, is used on the
client side to collect characteristic information about the workload’s I/O accesses, such as the
number of bytes written, the file name, the number of stripes, and the MPI rank and communicator
for each file. Tarazu thus identifies the expected I/O behavior of an application, which normally
does not change between multiple runs of an application. The collected traces are passed to the
parser e, which then uses the information to drive the prediction model e We use ARIMA
time series modeling [11] for our predictions. The time series prediction output provides estimates
of the application’s future especially, file creation requests, which are passed to the configuration
manager e The configuration manager, in turn, is responsible for determining whether an appli-
cation’s layout uses PFL. If PFL is used, then PFL Config stores the required PFL configurations
used by the configuration manager. Tarazu provides a default configuration for PFL, which can
be customized by the user to be system-specific if needed. The output of the configuration
manager e (file creation requests and file configuration—number of stripes) is then stored in

ACM Trans. Storage, Vol. 20, No. 2, Article 11. Publication date: April 2024.

Tarazu: An Adaptive End-to-End 1/O Load Balancing Framework 11:15

an interaction database for later use. We refer to the database as an “interaction database,’
because it represents a point of interaction between our server-side and client-side software
components.

On the server side (i.e. on the OSS), we collect various statistics such as CPU and memory usage
information, the associated OST capacity (kbytestotal), and the number of bytes available on the
OSTs (kbytesavail). These statistics are collected from the OSSs via statistics publisher mod-
ules @, i.e., we rely on a publisher-subscriber model using the asynchronous messaging library
ZeroMQ [31]. These statistics are parsed by the statistics subscriber on the MDS, which gen-
erates a file e containing updated statistics for the MDS, OSS, and associated OSTs. This file is
then forwarded to the OST allocation algorithm e In addition, the OST allocation algorithm
receives as input the predicted set of file creation requests and the number of stripes for each file o
from the client-side interaction database from all the clients via ZeroMQ message queues. The out-
put is a list of OSTs to be assigned for each request, resulting in a balanced distribution among the
participating OSSs and OSTs. The allocated OSTs are stored in the interaction database @ along
with the predicted file creation requests. Finally, the placement library (Tarazu-PL), intercepts
the actual file creation requests Q from the applications, consults the interaction database @,
and maps the application requests to appropriate resources by creating the metadata on the MDS
for a given file @

Mapping the system design of Tarazu (see Figure 10) to that of the control flow (see Figure 9),
miniRecorder, and Parser form Phase 1. Prediction Model and Configuration Manager form Phase
2a. Phase 2b consists of Statistics Publisher and Statistics Subscriber. Phase 3 has the OST Alloca-
tion Algorithm. Phase 4 is formed by the Placement Library. The interaction database is filled with
the predicted set of file creation requests and the striping configuration in Phase 2a. The OST allo-
cation algorithm in Phase 3 uses the interaction database to map OSTs to file creation requests and
store those mappings in the database. The Placement library in Phase 4 refers to the interaction
database for the OST mapping list when the actual file creation request arrives. As the prediction
model runs during the application start time (to get the predicted set of file creation requests based
on historical runs of the application) and only in cases where re-training is required (when the
application’s file striping pattern or I/O sharing strategy changes), there is no interference of the
trace collector and the prediction model with the normal execution of the application. The inter-
action database resides on every client. Each row in the database corresponds to one file creation
request. Therefore, the size of the database is directly related to number of files an application
creates. The database will be filled up by the OST allocation algorithm at the start of the applica-
tion. Therefore, the database is queried by the Placement library only when an actual file creation
request arrives. This querying latency is lower than the network latency that the application
would normally need to face when a file creation request arrives, as there needs to be interaction
between client and the MDS. Therefore, our design reduces the I/O latency of an application dur-
ing the file creation request. Our design of Tarazu is hardware-agnostic, as the design components
do not utilize a lot of memory and compute resources. Therefore, Tarazu has a minimal impact
on the actual I/O activity of applications running in a cluster. Moreover, the cluster setup for our
experiments is done on commodity hardware. With real-world large-scale HPC clusters, Tarazu
will perform even better. Next, we explain each phase of the control flow with respect to the design
components.

5.4 Phase 1: Trace Collection and Training Data

We implement a simple, lightweight I/O tracing library, miniRecorder, based on the Recorder [49]
multi-level I/O tracing framework. The intercepted function calls are restricted to file creation and
write calls. Figure 11 displays the dynamic interception of I/O metadata operations at runtime.

ACM Trans. Storage, Vol. 20, No. 2, Article 11. Publication date: April 2024.

11:16 A. K. Paul et al.

Application: H5Fcreate (“testfile.h5”, N N
HSF ACC_TRUNC, H5P DEFAULT, plist id) 1. Obtain the address of H5Fcreate using d1sym ()

| | miniRecorder
* 2. Record file specific information via miniRecorder
/ 3.Callreal HS5Fcreate (filename, flags, create_id, new_access_id)

High-Level 1/0 Library: hid_t H5Fcreate(const char *filename, *
unsigned flags, hid_t create_id, hid_taccess_id)
HDFS5 Library (unmodified)

miniRecorder

| Application: MPT_File open (MPI_COMM_WORLD, |

“testfile”, MPI MODE CREATE, info, £d) 1. Obtain the address of MPI_File_open using disym()

2. Record file specific information via miniRecorder
3.Callreal _MPI_File open(comm, filename, amode, info, fh)

¥

MPI-10 Library (unmodified)

MPI-10 Library: intMPT_File open(MPI_Comm comm,
char *£ilename, int amode, MPI_Info info, MPI_File *£h)

miniRecorder
| 1. Obtain the address of open using disym()

* 2. Record file specific information via miniRecorder
| POSIX Library: int open(const char *pathname, |/ 3.Callreal open(filename, flags, mode)

int £lags, mode_t mode)

| Application: open (“testfile”, flags, 0664)

[C POSIX Library (unmodified)

Fig. 11. Dynamic interception of /O metadata operations at runtime.

The load imbalance on OSSs and OSTs is due to the write and create requests [49, 67], as this is
when the actual stripes for the files are allocated on the OSTs, as described in Section 2.1. Therefore,
the tracing tool only needs to be used to capture the I/O creation and write behavior of an applica-
tion or workflow. Afterwards, miniRecorder is only run whenever the ARIMA-inspired prediction
model performs poorly and the OST prediction algorithm needs to be re-trained (see Section 5.5.1).
In the next step, the data collected by miniRecorder is converted into a readable (comma-separated)
file in .csv format by a parser and then sent to the prediction model. This file serves as the starting
point and training data for the ARIMA-based prediction algorithm.

5.5 Phase 2a: Application File Create Request Prediction

For each application, our prediction model foretells the file size for all file create and write requests
performed by an application. We rely on predictions based on ARIMA time series modeling and a
configuration manager responsible for determining the striping layout of a file to achieve this.

5.5.1 ARIMA-Inspired Prediction Algorithm (AIPA). Recent work [67] suggests that I/O
patterns of HPC applications are predictable. This observation is also confirmed by multiple HPC
practitioners. Therefore, the miniRecorder module in Tarazu collects three important features of
HPC I/O at the client side—number of bytes written, MPI rank, and the stripe count. These param-
eters are used to train a machine learning model to predict client I/O requests—most importantly,
the file creation requests for future runs. The machine learning model is run on the client side to
avoid overloading the metadata server with predictive modeling.

Previous work [2, 6, 8] has presented auto-tuning approaches for MPI-IO and Lustre to
learn and predict the I/O parameters to improve read and write performance of HPC applica-
tions. Researchers have previously used AutoRegressive Integrated Moving Average (ARIMA)
model [11], Seasonal Integrated ARMA (SARIMA), and Fractionally Integrated ARMA
(ARFIMA) to estimate CPU, RAM, and network usage for HPC workloads [37]. Formal grammar
has also been used to predict I/O behaviors in HPC [20], which proves that HPC I/O is predictive.
However, formal grammar is ineffective for predicting data in a time-series manner, effectively
consuming low resources. Markov Chain Model [76] has also been used to exploit knowledge of
spatial and temporal I/O requests [60, 67]. Recently, a regression-based I/O performance predic-
tion scheme for HPC environments was also proposed [34]. Based on previous studies, the time

ACM Trans. Storage, Vol. 20, No. 2, Article 11. Publication date: April 2024.

Tarazu: An Adaptive End-to-End 1/O Load Balancing Framework 11:17

series nature of the traces provided by our tracking tool allows us two options for our predic-
tion model—ARIMA and Markov chain. We initially find the I/O request prediction accuracy and
resource consumption using both models. We observe that for IOR data, ARIMA has a 99.1% ac-
curacy with 1.2% CPU overhead and 0.01% memory usage, while Markov chain model yielded an
accuracy of 95.5% utilizing 4.5% CPU and 0.01% memory.

Prediction models should not interfere with the client-side I/O activities. Therefore, to ensure
prediction on the client side in an online setting, we use the ARIMA model that provides better
accuracy at lower resource consumption.

Two design aspects for the ARIMA-based prediction model are:

(1) The prediction model runs on the clients. A different design decision could have been run-
ning a global prediction model on the MDS, but that would limit scalability and also increase
the file creation latency. The client-side model is responsible for predicting future file cre-
ation requests of the client application based on the current request. Both the current and
the future set of requests are stored in the interaction database, which is fed to the OST allo-
cation algorithm. The list of OSTs to guarantee load balance for all requests is stored in the
interaction database. Once a new creation request arrives, greater than 99% accuracy of our
ARIMA model ensures that the request will be found in the interaction database and there
will be no overhead during the file creation process. The prediction for future requests is
performed only when there are 10% misses in the interaction database. The time taken to
predict is on the order of milliseconds. This ensures that there is minimal interference of the
model with the application’s runtime behavior.

(2) Re-training of the model is done only when the prediction needs to be done more than
three times, which means that cumulatively 30% misses occur in the interaction database.
This mostly happens in cases when, for a particular application, the scale of the run or the
configuration parameters are changed by the user. The model is retrained on the client side
based on the application’s current set of requests as well the historical traces. The resource
consumption for the re-training step is the same as reported above. The minimal CPU and
memory usage of our model ensures that the application’s normal runtime behavior is not
affected during model retraining.

Our prediction model is implemented using the statsmodels.tsa.arima_model package in
Python. Our results show a 98.3% accuracy in HACC-1/O data and 99.1% accuracy in IOR data.

5.5.2 Configuration Manager. The configuration manager determines if an application is
performing I/O in PFL or non-PFL layout. As input, it takes the predicted set of requests, contain-
ing the stripe count, and write bytes, with the corresponding file name and MPI rank from the
prediction model, and the file containing all file layouts for a client. If the file names or the
application directory in the predicted requests set match those in the PFL configuration file, then
the stripe size and stripe counts for the file are set based on the PFL configuration. A sample PFL
configuration file for the example Configuration 1, written in .ini format, is shown in Figure 12.
If there are no matches found for the file name or the directory in the PFL configuration, then the
non-PFL layout is used. The output of the configuration manager is the set of all predicted requests
combined with the corresponding stripe size and stripe count of the files. This entire set is sent to
the interaction database.

An important design concern to calculate the stripe size for both layouts is the 64k-alignment
constraint imposed by Lustre. This constraint states that the stripe size should be an even multiple
of 64k or 65,536 bytes (Alignment Parameter (AP)). For file sizes that are not AP-aligned, we use
Equations (2) and (3). The method ensures a 64k-aligned stripe size for all the stripes allocated on
the stripeCount number of OSTs by allocating a slightly bigger file than is requested by the client.

ACM Trans. Storage, Vol. 20, No. 2, Article 11. Publication date: April 2024.

11:18 A. K. Paul et al.

;config file for PFL Configuration Layout 1

;1fs setstripe -E 128M -c 1 -E 512M -c 3 -E 2G -c 8 -E -1 -c 16 /mnt/lustre/ior
[Client] #Type the number of buckets (here: 4)
Buckets = 4

[Bucket_1]

Extent = 128M #-E 128M -c 1

Stripe = 1 |

[Bucket_2]]

Extent = 512M #-E 512M -c 3

Stripe = 3 1

[Bucket_3]]

Extent = 2G #-E 2G -c 8

Stripe = 8 _

[Bucket_4]]

Extent = -1 #-E 8G -c 16

Stripe = 16 _

Fig. 12. Example PFL configuration file for Configuration 1.

Table 1. Interaction Database Snapshot for IOR in FPP Mode Using a PFL Layout

File Name File Size | Extent ID | Extent Start | Extent End ‘ Stripe Size ‘ Stripe Count | MPI Rank
/mnt/lustre/ior/test.0 | 8,589,934,592 1 0 134,217,728 | 134,217,728 1 0
/mnt/lustre/ior/test.0 | 8,589,934,592 2 134,217,728 536,870,912 | 134,217,728 3 0
/mnt/lustre/ior/test.0 | 8,589,934,592 3 536,870,912 | 2,147,483,648 | 201,326,592 8 0
/mnt/lustre/ior/test.0 | 8,589,934,592 4 2,147,483,648 | 8,589,934,592 | 402,653,184 16 0
/mnt/lustre/ior/test.1 | 8,589,934,592 1 0 134,217,728 | 134,217,728 1 1
/mnt/lustre/ior/test.1 | 8,589,934,592 2 134,217,728 536,870,912 | 134,217,728 3 1
/mnt/lustre/ior/test.1 | 8,589,934,592 3 536,870,912 | 2,147,483,648 | 201,326,592 8 1
/mnt/lustre/ior/test.1 | 8,589,934,592 4 2,147,483,648 | 8,589,934,592 | 402,653,184 16 1

For example, a 766.175 MB file size will be allocated an 833 KB (0.1%) bigger file, which ensures
allocating equal-sized stripes on all the OSTs, and hence contributing to a load-balanced setup.
Further details on the equations can be found in Reference [87].

writeBytes = AP % 2 x N * stripeCount (2)
with
writeBytes

N = .
AP * 2 * stripeCount

®)

5.5.3 Interaction Database. The interaction database is an SQL database that resides on
the Lustre clients. It serves as the medium through which the MDS and clients interact with each
another. First, the output set from the configuration manager is stored in the database. Different
table formats are used to store PFL and non-PFL file layouts. Tables 1 and 2 show example snapshots
of the interaction database for IOR in FPP mode with two processes each writing 8 GB in PFL and
non-PFL layout, respectively. For the PFL layout, we use the example Configuration 1, as discussed
in Section 2.3. As seen in Table 1, every file is associated with all the extents specified in the PFL
configuration. For each file, we store the file name, the file size in bytes, the extent ID from the PFL
configuration file, the corresponding start and end range for the extent, stripe size, stripe count,
and the MPI rank. For the non-PFL layout, shown in Table 2, we store the file names, stripe size of
the files, number of stripes associated with every file, and the MPI Rank.

As every client application has an individual database on the client node, the size of the database
depends on the total number of files created by an application. This decentralized nature of the
database helps in scalability by not needing to save the tremendous number of files created by all
applications running in the HPC cluster in a single database. The database querying frequency

ACM Trans. Storage, Vol. 20, No. 2, Article 11. Publication date: April 2024.

Tarazu: An Adaptive End-to-End 1/O Load Balancing Framework 11:19

Table 2. Interaction Database Snapshot for IOR in FPP Mode Using a
Non-PFL Layout

] File Name \ Stripe Size \ Stripe Count | MPI Rank ‘
/mnt/lustre/ior/test.0 | 1,073,741,824 8 0
/mnt/lustre/ior/test.1 | 1,073,741,824 8 1

Table 3. List of Statistics Collected from Relevant System Components

l Component [Factors [Discussion
Metadata Server (MDS) CPU% CPU and memory utilization
Memory% reflect the system load.
/proc/sys/lnet/stats Load on the Lustre networking
layer connected to MDS.
Object Storage Server (OSS) | CPU% Reflects the system load
Memory% of the management server.
/proc/sys/lnet/stats Load on the Lustre networking
layer connected to OSS.
Object Storage Target (OST) | obdfilter.*.stats Overall statistics per OST.
obdfilter.*.job_stats Statistics per job per OST.
obdfilter.*0ST*.kbytesfree | Available disk space per OST.
obdfilter.*0ST*.brw_stats |I/O read/write time and sizes per OST.

is also kept to a minimum, as the database needs to be accessed only for file creation requests.
Subsequent file read and write accesses do not need the database.

5.6 Phase 2b: Server Statistics Collection

The statistics collection needs to be lightweight and scalable so it can handle up to thousands
of OSSs in a seamless manner without affecting the file system activities. Therefore, ZeroMQ
(¢MQ) [31] is used as a message queue, which has been proven to be lightweight and efficient
at large-scale. To ensure scalability, an asynchronous publish-subscribe model is used where the
OSSs act as publishers and the MDS acts as a subscriber. Table 3 shows the list of system metrics
collected.

Each OSS has a statistics publisher module responsible for sending system usage statistics
from the OSS to the MDS. A configuration file is given to every OSS that contains a list of all OSTs
along with the OSS ID. For each OSS, the total capacity and the available capacity are recorded
from the lustre/obd filter directory. We also collect the CPU, memory, and network usage of the
OSS by reading the proc/loadavg, proc/meminfo, and Inet files. The statistics publisher module
runs every 60 seconds on all OSSs so we can get the most current statistics about the MDS without
overloading the OSSs. The lightweight nature of the statistics collection is tested where the results
show that, on average, it has negligible CPU and only 0.1% memory usage on the OSSs.

The statistics subscriber on the MDS is responsible for

(1) collecting CPU, memory, and network utilization from the MDS,

(2) subscribing to statistics from the OSSs via ZeroMQ, and

(3) parsing and preparing all the collected statistics.

The CPU, memory, and network usage recorded on the MDS is important in determining when
to run the OST allocation algorithm. To not interrupt normal MDS activity, the OST allocation
algorithm runs only when the CPU and memory utilization fall below 70% and 50%, respectively.
These utilization thresholds can be manually tuned. The collected statistics from the MDS and

ACM Trans. Storage, Vol. 20, No. 2, Article 11. Publication date: April 2024.

11:20 A. K. Paul et al.

ALGORITHM 1: Obtaining list of OSTs for each request.

Input: OSS statistics cpu & mem, OST statistics totalKbytes & kbytesAvail, Write Requests stripeSize
& stripeCount
Output: OST AllocationList

1 begin

2 for OSS oss in OSSList do

3 ossLoad = (cpuweight = cpu) + (memweight = mem)

4 for OST ost in OSTList do

5 ostCostToReach = OSSLoad

6 ostCost = (totalKbytes — kbytesAvail)/totalKbytes

7 maxStripeSize = max(stripeSize) from both PFL and non-PFL interaction databases
8 ostCapacity = kbytesAvail /maxStripeSize

9 flowGraph = buildGraph(Requests, OSS, OST)

10 OSTAllocationList = minCostMaxFlow(flowGraph)

1 return (OSTAllocationList)

12 Function buildGraph

Input: Requests req, StripeCount sc, OSTCostToReach ossLoad, ostCost ostLoad, OSTCapacity
ostCap

Output: FlowGraph G

13 totalDemand = sum of stripeCount for all Requests

14 G.addNode(‘source’, totalDemand)

15 G.addNode(‘sink’, -totalDemand)

16 for request r inreg do

17 G.addEdge(‘source’, r, cost = 0, capacity = sc)

18 for OST ost in ostList do

19 L G.addEdge(r, ost, cost = ossLoad, capacity = 1)

20 for OST ost in ostList do

21 L G.addEdge(ost, ‘sink’, cost = ostLoad, capacity = ostCap)
22 return (G)

the OSS are parsed and used as input to the OST allocation algorithm. Our results show that the
statistics collection on the MDS has a CPU utilization of 0.1% and negligible memory usage.

5.7 Phase 3: OST Allocation Algorithm

Algorithm 1 shows the steps employed for allocating OSTs for a client write request. The inputs
used for the OST allocation algorithm consist of the statistics collected from the OSSs and
OSTs as well as the write requests from the PFL and non-PFL interaction databases residing on the
clients. The information required is the stripe size and stripe count of every request. The requests
from all client applications are collected and together sent as input to the allocation algorithm. This
makes the algorithm non-sensitive towards any particular application and have a global view of all
the applications and OSSs. The OST allocation algorithm employs a minimum-cost maximum-flow
approach [3]. The flow graph that is used to solve the problem is shown in Figure 13.

The cost to reach an OST is the load of the OSS containing the OST. The cost of an OST is defined
as the ratio of bytes already used in the OST to the total size of the OST. The allocation algorithm
should be able to handle both PFL and non-PFL applications. The PFL requests have varied stripe
sizes. Therefore, to have consistency in the allocation algorithm, we compute the maximum stripe

ACM Trans. Storage, Vol. 20, No. 2, Article 11. Publication date: April 2024.

Tarazu: An Adaptive End-to-End 1/O Load Balancing Framework 11:21

Cost = OSS Load
Capacity =1

Cost=0 N
Capacity = StripeCount @
Source .

Applications + @
Requests

OSTs

_ TotalKBytes — KBytesAvail

h TotalKBytes
KBytesAvail

maxStripeSize

Cost

Capacity =

Sink

Fig. 13. Minimum-cost maximum-flow graph used in the OST allocation algorithm.

Table 4. Interaction Database Snapshot Showing the OST Allocation for IOR in FPP Mode Using a PFL
Layout (Ext.: Extent, St.: Stripe)

[FileName | FileSize |[ExtID| ExtStart | ExtEnd | StSize [#St.[Rank [OST List]
/mnt/lustre/ior/test.0 | 8,589,934,592 1 0 134,217,728 | 134,217,728 | 1 0 10
/mnt/lustre/ior/test.0 | 8,580934,592 | 2 | 134,217,728 | 536,870912 [134,217,728 | 3 | 0 [242934
/mnt/lustre/ior/test.0 | 8,589,934,592 3 536,870,912 | 2,147,483,648 | 201,326,592 | 8 0 15228251121733
/mnt/lustre/ior/test.0 | 8,580,934,592 | 4 [2,147,483,648 | 8,589,934,592 [402,653,184 | 16 | 0 |14231630164 2632

2012312235517
/mnt/lustre/ior/test.1 | 8,589,934,592 1 0 134,217,728 | 134,217,728 | 1 1 24
/mnt/lustre/ior/test.1 | 8,589.934,592 | 2 [134,217,728 | 536,870912 [134217728 | 3 | 1 [13929
/mnt/lustre/ior/test.1 | 8,589,934,592 3 536,870,912 | 2,147,483,648 | 201,326,592 | 8 1 22113521571710
/mnt/lustre/ior/test.1 | 8,589.934,592 | 4 [2,147,483,648 | 8,589,934,592 | 402,653,184 | 16 | 1 |[1423163016154262

322012283125

size across both PFL and non-PFL databases from all client applications. The capacity of an OST
is defined as the number of stripes that can be handled by the OST. This is calculated by dividing
the available space in the OST by the maximum stripe size.

To construct the flow graph shown in Figure 13, source and sink nodes need to be identified.
The total demand for the source node is the total number of stripes requested by all application
requests, and the total demand for the sink node is the negative amount of the total number of
stripes requested. The Ford-Fulkerson algorithm [84] is used to solve the minimum-cost maximum-
flow problem. This approach outputs a list of OSTs (OSTAllocationList), which will yield a balanced
load over all OSSs and OSTs. For our implementation, we use the Python library networkx. Our
tests show that the algorithm uses about 1.58% of CPU and 0.1% of memory on the MDS.

The MDS uses a scalable publisher-subscriber model via ZeroMQ [31] to interoperate with the
interaction database, which helps in scaling Tarazu to a large number of clients [70]. We use the
MySQL 8.0.12 Community Server Edition. Our results show that writing and retrieving data from
the interaction database is very efficient, using <0.3% and <0.4% of CPU and memory, respectively.

The OSTAllocationList is then shared with the respective clients using our publisher-subscriber
model via ZeroMQ. The complete set of requests is stored in the interaction database. Example
entries for the database with the complete allocation for an IOR application in FPP mode with two
processes each writing an 8 GB file in both PFL (Configuration 1) and non-PFL layouts are shown
in Tables 4 and 5, respectively. We add a new column OST List in the database. The OST List is a
space-separated load-balanced list of OSTs for every write request. This example is for a setup with
7 OSSs and 35 OSTs (5 OSTs associated with every OSS)—therefore, OST IDs range from 1 to 35.
The placement library (Tarazu-PL) uses this information to place the requests, thus completing

ACM Trans. Storage, Vol. 20, No. 2, Article 11. Publication date: April 2024.

11:22 A. K. Paul et al.

Table 5. Interaction Database Snapshot Showing OST Allocation for IOR in FPP Mode Using a
Non-PFL Layout

’ File Name \ Stripe Size \ Stripe Count | MPI Rank \ OST List
/mnt/lustre/ior/test.0 | 1,073,741,824 8 0 302051 22351423
/mnt/lustre/ior/test.1 | 1,073,741,824 8 1 2019192923318

ALGORITHM 2: File layout creation on the MDS.

Input: File Name file, Access mode flags
Output: Call to real metadata operation (e.g., open())

1 begin
2 if fileExits(file) == TRUE then // File exits; return.
3 L return realMetadataOperation(file, flags)
4 flags = flags | O_LOV_DELAY_CREATE
5 result = queryInteractionDatabase(f'ile)
6 if numMySQLrows(result) == 1 then // Non-PFL layout.
7 row = fetchMySQLrow(result)
8 layoutEA = allocLayoutEA(row.stripeCount, row.stripeSize, row — OSTs)
9 | createLayoutEAonMDS(file, flags, 0644, layoutEA)
10 else if numMySQLrows(result) > 1then // PFL layout.
1 while row = fetchMySQLrow(result) do
12 allocExtentPFL(layout PFL, row.extentEnd, row.stripeCount, row.stripeSize,
row — OSTs)
13 | createCompositeLayoutMDS(file, flags, 0644, layoutPFL)
u | return realMetadataOperation(file, flags)

the load-balanced allocation of resources. If for any run of the application Tarazu-PL is unable to
find more than 50% of files in the interaction database, then miniRecorder, AIPA, and the OST
Allocation Algorithm will be executed again to update the interaction database.

5.8 Phase 4: Applying Metadata Information

The Tarazu-PL placement library complements the prediction model by providing a lightweight,
portable, and user-friendly mechanism to apply predicted file layout information (i.e., the meta-
data information of a file) to an application’s file I/O without the need to modify the source code.
Tarazu-PL relies on function interposition provided by the dynamic linker GNU to prioritize itself
over standard system calls and the profiling interface to MPI (PMPI). Hence, Tarazu-PL can
be used by preloading it through LD_PRELOAD. This results in metadata operations being passed to
Tarazu-PL, which supports both non-PFL and PFL file layouts for FPP and SSF as well as various
1/0 interfaces such as POSIX I/O, MPI-1O, and HDF5.

For each file creation request, Tarazu-PL queries the interaction database once via the MySQL
C API with the file name passed by the original metadata operation, fetches the matching rows,
and applies the predicted striping pattern to the file if the file does not already exist. To facilitate
this, Lustre provides a user library called llapi that allows file striping patterns to be specified via
a C APIL Tarazu-PL mimics the behavior of llapi and communicates directly with Lustre’s Logical
Object Volume (LOV) client to create the file metadata on the MDS, similar to References [58, 87].

Algorithm 2 describes a simplified version of the placement library’s mode of operation, which
is run on the clients. If the result returned by the MySQL query contains only one row, then

ACM Trans. Storage, Vol. 20, No. 2, Article 11. Publication date: April 2024.

Tarazu: An Adaptive End-to-End 1/O Load Balancing Framework 11:23

the non-PFL layout is used by allocating a Layout Extended Attributes (Layout EA) with the
predicted striping pattern on the MDS. The striping pattern is applied by initializing the layout
EA with the stripe count, stripe size, and the list of OSTs retrieved from the interaction database.
It should be noted that the configured striping pattern differs from the default RAID 0 pattern
typically applied by Lustre. Instead of writing multiple data segments in a round-robin fashion
as introduced in Section 2.1, Tarazu provides larger, contiguous stripes, therefore avoiding file
locking contention when multiple processes are accessing the same file. If the query results in
more than one row, then PFL is used. For both FPP and SSF, each row represents a non-overlapping
range. Tarazu-PL iterates over all lines, assigns an array of sub-layouts (one for each file extent),
and applies the predicted striping pattern to the file by storing it in a composite layout on the MDS.
Composite layouts allow specifying different striping patterns for different extents in the same
file.

6 SIMULATOR ENVIRONMENT AND WORKLOAD GENERATION

To enable scaling experiments, we implement a discrete-time simulator. In the following, we de-
scribe the design of the simulator based on Darshan-based workload generation and give a brief
validation of the simulation results.

6.1 Overview of Existing Parallel File System Simulators

Before we discuss the design of the discrete-event simulator, we present an overview of previous
work on file system simulation and argue why they cannot be directly applied to our research.

The Lustre simulator [104] was developed as an event-driven simulation platform to research
scalability, analyze I/O behaviors, and design various algorithms at large scale. It simulates disks,
the Linux I/O elevator, a file system with mballoc block allocation, a packet-level network, and
three Lustre subsystems: client, MDS, and OSS. The main focus of this simulation tool is the eval-
uation of the Network Request Scheduler (NRS). Since this simulator was developed in 2009, it
is based on Lustre 1.8 and therefore is not compatible with our experiments.

Another open-source simulator developed in 2009 is IMPIOUS (Imprecisely Modelling I/O
is Usually Successful) [52]. IMPIOUS is trace-driven and provides abstract models to capture
the key characteristics of three parallel file systems; PVES, PanFS, and Ceph. Depending on the
simulated file system, the simulator can be configured to distinguish different characteristics such
as data placement strategies, resource locking protocols, redundancy strategies, and client-side
caching strategies. Due to its age and the lack of supporting Lustre as a file system, IMPIOUS
cannot be used for our evaluation.

Liu et al. have introduced PFSsim [46, 47], which is also a trace-driven simulator designed for
evaluating I/O scheduling algorithms in parallel file systems. It uses OMNeT++ for detailed net-
work models and relies on DiskSim [38] to simulate disk operations. Since PFSsim only supports
PVFS2 and mainly focuses on I/O scheduling algorithms, it cannot be used to evaluate Tarazu at
scale.

In 2012, the parallel file system simulator FileSim [21] was introduced by Erazo et al., which is
based on SimCore, a generic discrete-event simulation library. It provides pluggable models with
different levels of modeling abstraction for different parallel file system components. In addition,
FileSim supports trace-driven simulation, which can be used to validate parallel file system models
by comparing against the behavior observed in the real systems. Even though the description of
the simulator would fit our requirements needed to simulate Tarazu in large-scale deployments,
it was not available anymore at the time of this writing.

The Hybrid Parallel I/O and Storage System Simulator (HPIS3) [23] was introduced in 2014
by Feng et al. It provides a co-design tool targeting the optimization of hybrid parallel I/O and

ACM Trans. Storage, Vol. 20, No. 2, Article 11. Publication date: April 2024.

11:24 A. K. Paul et al.

storage systems, where a set of SSDs and HDDs are deployed as storage nodes. HPIS3 is built
on Rensselaer Optimistic Simulation System (ROSS) [13], a parallel simulation platform, and
capable of simulating a variety of parallel storage systems with two distinct types of hybrid system
design, namely, buffered-SSD and tiered-SSD storage systems. Hence, HPIS3 is targeting a different
scenario than Tarazu and therefore is not applicable to our use case.

Other simulators relying on ROSS are CODES [15] and BigSim [106]. CODES provides a tool for
I/O and storage system simulations. Its main target is the exploration and co-design of exascale
storage systems for different I/O workloads. Initially, workloads could only be described via the
CODES I/O language. In 2015, Snyder et al. [79] proposed an I/0 workload abstraction (IOWA).
IOWA describes different techniques to generate workload for simulation frameworks depending
on the use case, including workload generation from Recorder [49] and Darshan [12]. Since
our simulation use case is mostly concerned with the bandwidth performance when reading or
writing to the parallel file system, we only adopt the workload generation techniques proposed by
IOWA.

6.2 Simulator Design

As discussed in the previous section, there are no simulators that can either simulate the different
components in the Lustre file system or integrate various OST allocation algorithms to help
evaluate Tarazu. Therefore, we have designed and implemented a discrete-time simulator
based on the overall design of the Lustre file system, as shown in Figure 1. The simulator also
allows implementations of different OST allocation algorithms (such as LSA and Tarazu). This
helps in evaluating Tarazu at scale by comparing it to the default LSA allocation strategy in
Lustre.

The simulator consists of four key components that are very similar to those of Lustre’s OST,
0SS, MDT, and MDS. These implement the various Lustre operations and allow us to collect data
about the system behavior. The MDS is also equipped with multiple strategies for OST selection,
such as round-robin, random, and the OST allocation algorithm designed for Tarazu. We have
implemented a wrapper component that enables communication between our various simulator
components. The wrapper is responsible for processing the input, managing the MDS, OST, and
OSS communication and data exchange, and driving the simulation. All the network components
in the simulator are modeled using the Network Simulator (NS-3) [59]. The application traces
collected from the client side are modeled as clients in the simulator. In our simulations, all initial
conditions are the same at the beginning of each OST allocation strategy.

The steps for building the simulator are shown in Algorithm 3. The application trace file gen-
erated from the Darshan traces, which is explained in the next section, serves as input to the
simulator along with the configuration file for PFL, number of I/O routers, and LNet routers. First
the time-series set of requests are generated from the application traces by reading the configura-
tion file and calculating the request size and stripe count. The network topology of the simulator
is built next.

The major components of our Lustre Simulator are as follows:

— Application: Parses the trace file and the PFL configuration. The trace file is converted into
a time-series event list with request size and stripe count.

— I/0 Router: These are simulated as network components placed between the client nodes
(Application) and the storage nodes. It forms one of the most important components to sim-
ulate the network traffic from multiple applications in our simulator.

— LNet Router: Handles the OSS in the cluster. All packets coming to the I/O Router will be
redirected through the LNet Router, which keeps track of the OSS where the packets are
being sent and accordingly updates the load on the OSS.

ACM Trans. Storage, Vol. 20, No. 2, Article 11. Publication date: April 2024.

Tarazu: An Adaptive End-to-End 1/O Load Balancing Framework 11:25

ALGORITHM 3: Lustre Simulator.
Input: Application traceFile, Config File config, Number of IO Routers numIORtr, Number of LNet
Routers numLNetRtr
1 begin
2 Read Application Traces

3 numRequests = len(traceFile)

4 stripeCount = read config

5 for Request req in numRequests do

6 L events.append(reqSize, stripeCount, timeStamp)
7 begin

8 Build Network Topology
9 for LNetRtr in numLNetRtr do

10 Get numOSS and CPU LoadPerOSS

1 for oss in numOSS do

12 Get numOSTs

13 for ost in numOST do

14 L Get totalDiskSpace and usedDiskSpace

5| Set DataRate and LinkDelay across I/O Routers, LNet Routers, OSS, and OST.

16 begin

17 Schedule Events

18 for event in numEvents do

19 stripeSize = reqSize/stripCount

20 begin

21 Get OSTs for Request

22 | Run the placement algorithm (LSA or Tarazu) to get the OSTList
23 for OST in OSTList do

24 WriteToOST(stripeSize)

25 begin

26 Get the OSS from the LNetRtr
27 Update CPULoadPerOSS

28 Update usedDiskSpace in OST

— OSS: This module handles the load distribution on the OSTs under each OSS. For each OSS,
it keeps track of the list of active OSTs, CPU usage of the OSS—which is calculated by the
combined usage of all the associated OSTs.

— OST: This module handles the final step of the packet transfer from the Application. It re-
duces the disk space on the OST in accordance to the packet size as well as contributes to
the calculation of the OSS CPU usage.

This network topology helps in simulating the application requests. As discussed before, the
time series set of requests is stored as an event list. At the simulated time instance, the event is
taken from the event list, and the stripe size is calculated by dividing the write bytes by the number
of stripes. The stripe size and the number of stripes help in getting the OST list by running the
appropriate OST allocation algorithm (LSA or Tarazu). Once the OST list is received, the writing
to each corresponding OST is simulated by the I/O Router followed by the LNetRouter, the OSS,

ACM Trans. Storage, Vol. 20, No. 2, Article 11. Publication date: April 2024.

11:26 A. K. Paul et al.

Generated I/0 Workload

Darshan delay=5 open delay=1 write delay=1 write delay=2 close
File Record
rank: 0 A
opents:5.0: [
closets:10.0 | f----
1st write ts: 6.0:
last write end ts: 8.0 | & & Insertion sort used to combine
#writes: 2 file record operations into a
totzlil write time: 1.0 single 1/0 workload

Fig. 14. Transforming Darshan file records into an 1/0 workload derived from Reference [79].

and finally the OST. Accordingly, the disk usage in OST and the CPU usage in the OSS is updated
based on the stripe size.

6.3 Darshan-based Workload Generation

Darshan logs [12] are used to generate I/O traces for real-world HPC workloads. The Darshan
I/O characterization tool maintains details of every file that is opened by the application. The I/O
interfaces recorded are POSIX, MPI-10, STDIO, HDF5, and PnetCDF used to access the file. For the
purpose of this article, we only focus on the POSIX and MPI-IO interfaces. The major counters
collected by Darshan for every file at the POSIX interface are:

— Timestamps of the first file open/read/write/close operation - POSIX_F_*_START_TIMESTAMP
— Timestamps of the last file open/read/write/close operation - POSIX_F_*_END_TIMESTAMP
— Cumulative time spent on reading from a file - POSIX_F_READ_TIME

— Cumulative time spent on writing to a file - POSIX_F_WRITE_TIME

— Total number of bytes that were read from a file - POSIX_BYTES_READ

— Total number of bytes written to a file - POSIX_BYTES_WRITTEN

— Rank that accessed a file - rank

The process of converting the file-wise Darshan records into a time-series I/O trace is discussed
below. The ranks accessing the file indicate whether the application was run in file-per-process
mode or single-shared-file mode. Each file is arranged based on increasing order of first open
timestamp. The I/O idle time for every file is calculated by subtracting the cumulative time spent
on reading and writing from the duration between the file open start and file close end timestamps.
This idle time (or delay) along with the cumulative bytes read or written are uniformly distributed
for every file within the file open start timestamp and file close end timestamp. Once the distribu-
tion of every file’s I/O activity is done, insertion sort is used to sort and combine the I/O activity of
the application in a time-series manner. This process of regenerating I/0 workload of an applica-
tion from its Darshan record is in sync with a technique proposed by Snyder et al. [79]. Figure 14
shows the general process of transforming Darshan logs into comprehensive I/O workloads. In
this work, we use this technique to build the trace files of three real-world workloads discussed in
Section 7.1.3 that are fed as inputs to the Lustre simulator discussed in the previous section.

6.4 Validation of the Lustre Simulator

To validate the ns-3-based Lustre simulator and the Darshan-based workload trace generation,
we use the Darshan logs of IOR [40] that ran on Summit [41], the world’s fourth-largest

ACM Trans. Storage, Vol. 20, No. 2, Article 11. Publication date: April 2024.

Tarazu: An Adaptive End-to-End 1/O Load Balancing Framework 11:27

Table 6. Comparison of File System Bandwidth by Running IOR Doing POSIX
I/O on the Titan Supercomputer and the Lustre Simulator

File Size | #Nodes ‘Bandwidth (GB/s) Bandwidﬁth (GB/s)
Titan Supercomputer | Lustre Simulator

128 MB 32 7.9 6.2
128 MB 256 38.4 33.5
128 MB 512 54.3 48.7
128 MB 1,024 72.1 69.9
128 MB 2,048 90.8 88.1
128 MB 4,096 111.4 105.6
512 MB 1,024 76.5 75.8
512 MB 2,048 111.6 110.5
512 MB 4,096 132.5 130.4

supercomputer, according to the latest Top-500 list [82]. As the first step, time-series-based IOR
traces are generated using the Darshan logs. These traces are then fed into the Lustre simulator.
Since Summit is based on IBM Spectrum Scale, we use the real bandwidth results of IOR as well
the Lustre setup from Titan [22], a decommissioned supercomputer housed at Oak Ridge National
Laboratory that had Lustre file system as the storage backend.

The results from the IOR runs on the Lustre simulator and Titan are shown in Table 6. As seen
from the results, for both 128 MB and 512 MB file sizes, and a large number of nodes, the Lustre
simulator is able to provide approximately similar file system bandwidth. This enables us to use
the Darshan-based workload trace generation approach along with the Lustre simulator for the
scalability evaluation of Tarazu.

In addition, we also validate the correctness of the simulator by using the same cluster system
setup for Lustre as described in Section 7.1.1 (35 OSTs, 7 OSSs) and executing the traces of HACC-
I/O (8 processes, 50 million particles) under PFL Configuration 2 and IOR (8 processes, 64 GB)
under PFL Configuration 1 simultaneously. The simulator provides a similar OST utilization
percentage for both LSA and Tarazu as discussed in Section 7.2.4 with a read and write through-
put of 428 MB/s and 529 MB/s, respectively, for LSA and 612 MB/s and 490 MB/s for Tarazu,
respectively.

7 EVALUATION

To the best of the authors’ knowledge, Tarazu is the first work to consider a global view of all
system resources when deciding data placement for application I/O requests. Existing approaches
(e.g., References [91] and [58]) balance load among I/O servers on a per-application basis on the
client side and do not consider the global view, i.e., the requirements of other applications or
the OSS and OST utilization. Moreover, such client-side techniques cannot handle multiple I/O
requests from different applications simultaneously and are therefore not comparable to Tarazu.
For these reasons, we decided to use the standard LSA approach as the basis for our performance
evaluation.

7.1 Test Environment

7.1.1 Cluster System Setup. We evaluate Tarazu using a Lustre testbed, which consists of 10
nodes with 1 MDS, 7 OSSs, and 2 client nodes. All of the nodes run CentOS 7 atop a machine with
8 cores, 3.2 GHz AMD FX-8320E processor, and 16 GB main memory. Each OSS has 5 OSTs, each
supporting 10 GB of attached storage, resulting in a 350 GB Lustre capacity. Our experiments are

ACM Trans. Storage, Vol. 20, No. 2, Article 11. Publication date: April 2024.

11:28 A. K. Paul et al.

Table 7. HPC Workloads Used for the Scalability Study

Application genomicPrediction | E3SM [98] cosmoFlow [50]
Domain Science | Bioinformatics Earth Science | Astrophysics
#Compute Nodes | 128 256 64

Total Read (GB) | 110.6 100.8 250.6

Total Write (GB) | 80.2 150.3 52.4

based on the HACC I/O kernel [28] and the IOR benchmark [40], as both can be run in FPP and
SSF sharing modes. In all experiments, we use MPI-IO as the parallel I/O interface. All tests were
performed at least three times, and the results represent the measured average values.

7.1.2 Performance Measurements and Metrics. We analyze the following performance metrics:
effective read and write bandwidth, load balance, and resource utilization. To capture the degree of
load balancing across all OSTs for a given test run, we define the metric OST Cost as the ratio of the
maximum utilization of any OST to the average utilization of all OSTs, as shown in Equation (4).
An ideal load balanced system has the OST Cost of 1.

Maximum OST Utilization

OST Cost = —— ()
Average OST Utilization

The OST Utilization of an OST is the storage used by the client application on the OST relative
to the total storage available on the OST.

7.1.3 Large-scale HPC Workloads. We generate the traces of three real-world HPC workloads
from different domain sciences using the process discussed in Section 6.3. The details of the work-
loads that ran on Summit [41]—the world’s second-largest supercomputer based on the latest
Top500 list [82]—are outlined in Table 7.

The genomicPrediction code uses the DeepGP package [110], which implements multilayer
perceptron (MLP) networks, convolutional neural network (CNN), ridge regression, and lasso
regression for genomic prediction. Therefore, this workload implements deep learning models for
predicting complex traits that fall in the category of emerging HPC workloads. For this reason, we
see comparatively higher reads than writes in this workload.

The Energy Exascale Earth System Model (E3SM) [98] workload is part of an ongoing,
state-of-the-science earth system modeling, simulation, and prediction project that optimizes
the use of Department of Energy (DOE) laboratory resources to meet the science needs of the
nation and the mission needs of DOE. A major motivation for the E3SM project is the paradigm
shift in computing architectures and their related programming models as capability moves into
the exascale era. The E3SM model simulates the fully coupled climate system at high-resolution
(15-25 km) and will include coupling with energy systems; it has a unique capability for variable
resolution modeling using unstructured grids in all its earth system component models. Therefore,
this workload represents the exascale real-world HPC workload, which is simulation workload,
and thus produces much higher writes than reads.

The cosmoFlow [50] workload aims to process large 3D cosmology datasets on modern HPC
platforms. It adapts the deep learning network to a scalable architecture for a large problem size
of voxels and predicts three cosmological parameters. The workload uses efficient primitives in
MKL-DNN for 3D convolutional neural networks, which are used in an optimized TensorFlow [1]
framework for CPU architectures. Thus, this workload represents the extreme use case of emerging
machine learning workloads on HPC systems, which is shown by the large difference in the amount
of data read and written.

ACM Trans. Storage, Vol. 20, No. 2, Article 11. Publication date: April 2024.

Tarazu: An Adaptive End-to-End 1/O Load Balancing Framework 11:29

Table 8. PFL Striping Layouts Used for the Evaluation

PFL Configuration 1 PFL Configuration 2
Extent Range \ Stripe Count | Extent Range \ Stripe Count
[0, 128 MB) 1 [0, 128 MB) 1
[128 MB, 512 MB) 3 [128 MB, 2 GB) 12
[512 MB, 2 GB) 8 [2 GB, EOF) 32
[2 GB, EOF) 16

LSA: 16 Processes, 32 GB —+— Tarazu: 16 Processes, 32GB --+--
LSA: 16 Processes, 128 GB —*— Tarazu: 16 Processes, 128GB ----

@
o

o
o

OST Utilization (%)
TN
o o

o 5 RS K Y @ S ®
OST IDs

Fig. 15. OST utilization for IOR for FPP and non-PFL layout (stripe count = 8).

These traces of these three workloads are fed as input (representing data usage by client nodes)
to the simulator described in Section 6.2. The evaluation is described in Section 7.5.

7.1.4 File Striping Layouts. For the non-PFL setup, the stripe count is set to 8 and the stripe
size is calculated as described in Section 5.5.2. To evaluate Tarazu with PFL, we use two differ-
ent PFL configurations, as shown in Table 8. Configuration 1 was introduced in Section 2.3 and
reflects a standard choice for a PFL file layout as described in the Lustre operations manual [61].
Configuration 2 is a three-component PFL layout, which exceeds the number of available OSTs in
our cluster system. Hence, according to the Lustre manual, Configuration 2 should result in worse
I/O performance than Configuration 1 for our cluster of only 35 OSTs, while providing comparable
results as Configuration 1 on our large-scale simulator.

7.2 OST Utilization

7.2.1 Load Balance for IOR in FPP Mode. Figure 15 shows the comparison of load under Tarazu
and the default LSA allocation policy on 35 OSTs in our cluster setup in terms of OST Utilization
for the IOR benchmark with different data sizes. We see that Tarazu balances the load on all OSTs
in a near-optimal manner. For example, for 16 processes and 32 GB of data in total, the maximum
load observed with LSA is on OST-18 with an OST utilization of 25%, while the average utilization
is 16.06%, resulting in an OST Cost of 1.56. In contrast, the maximum load observed under Tarazu
is 18% with the corresponding OST Cost of 1.08, i.e., we observe a near-optimal resource utilization.
The almost horizontal line for the OST Utilization for Tarazu emphasizes its effectiveness. Overall,
Tarazu is able to reduce the OST Cost by 30.8% compared to the default approach. We observe a
similar trend for IOR with 16 processes and 128 GB of data in total. In this case, the OST Cost is
1.25 and 1.1 under LSA and Tarazu, respectively, which means that Tarazu provides a 12% better
OST Cost than the default LSA policy.

As can be seen in Figures 16 and 17, Tarazu is able to balance the load near-optimal for IOR
using PFL Configuration 1 and 2 as well. For 16 processes writing 32 GB data in total, we obtain

ACM Trans. Storage, Vol. 20, No. 2, Article 11. Publication date: April 2024.

11:30 A. K. Paul et al.

LSA: 16 Processes, 32GB —+— Tarazu: 16 Processes, 32GB --+--
70} LSA: 16 Processes, 128GB —*— Tarazu: 16 Processes, 128GB ----
;\;60 3
550%
Saof
5
301
1]
Ol

X B 9 K3 ® @) »
OST IDs

Fig. 16. OST utilization for IOR in FPP mode and PFL Configuration 1.

80
LSA: 16 Processes, 32GB —+— Tarazu: 16 Processes, 32GB --+--
70} LSA: 16 Processes, 128GB —»— Tarazu: 16 Processes, 128GB -->--

a D
(=]

OST Utilization (%)
(] B
o o

n

OST IDs

Fig. 17. OST utilization for IOR in FPP mode and PFL Configuration 2.

an OST cost of 1.58 and 1.08 under LSA and Tarazu, respectively, for PFL Configuration 1, and
an OST cost of 1.5 and 1.02 under LSA and Tarazu, respectively, for PFL Configuration 2, thereby
providing a 31.6% and 32% improvement in load balance. Similar results can be seen for IOR with
16 processes and 128 GB of total file data.

It is important to note that for large files, such as the second IOR experiment with 8 GB
non-PFL files per process, the data distribution with Tarazu is less optimal than with small
non-PFL files or PFL files in general. This is because typically the stripe count is set to a fixed
default value by the system administrator, in this case eight, and the complete file is divided in
the specified number of stripes with relatively large stripes. Hence, PFL is much better suited
for real-world HPC applications and therefore significantly contributes to the effectiveness of
Tarazu.

7.2.2 Load Balance for HACC-1/O in FPP Mode. For HACC-1/O, we evaluate Tarazu with 8
processes with 50 million particle data and 16 processes with 20 million particle data. Each process
creates one file that is stored on the Lustre OSTs with the default non-PFL layout (i.e., stripe count
of 8) and using the two PFL configurations. The total data generated is approximately 14.3 GB and
11.7 GB for 8 and 16 processes, respectively.

Similar to IOR, we observe a significant improvement in load balancing for HACC-I/O, as shown
in Figure 18, when compared to the default LSA policy. Note that C1 denotes PFL Configuration
1 and C2 Configuration 2, while N refers to non-PFL in Figure 18. The OST Cost for 16 processes
with LSA and Tarazu for non-PFL layout is 1.8 and 1.2, respectively, where Tarazu reduces the
OST Cost by 33%. A similar behavior is observed for PFL, where the OST Cost is significantly lower
than for the LSA policy and is close to 1.00 for Tarazu, i.e., close to optimal.

ACM Trans. Storage, Vol. 20, No. 2, Article 11. Publication date: April 2024.

Tarazu: An Adaptive End-to-End 1/O Load Balancing Framework 11:31

2.5

LSA =72 Tarazu ——

n

N

NONNNNNNNNNNN

OST Cost
o

o

o -
NV V VRV
NONONONONONUONNONNN
AHHHHITRII NN
NN

NSO
SOOI
ZNONONONONNONONNNNNY

\
N

N
N

£ VA
0_%9_50“‘ O\AG?—ZO‘\'\ 2™ 02-‘6?‘20““ *—%?'BON\ WCa
Configuration, #Processes and #Particles

Fig. 18. OST cost for HACC-I/O in FPP mode. On the x-axis, C1 represents experiments with PFL Configu-
ration 1, C2 represents experiments with PFL Configuration 2, and N represents non-PFL results.

3.5
LSA 274 Tarazu &omn)

3
/ //
25 s
/

-— /

3 o g
O / //
= / //
w15 //
o / //
1 %
/ //
0 5 / ;/
7

0

fec) c®
cA 28 2P A8

#Processes-Total Data

Fig. 19. OST Cost for IOR in SSF mode. On the x-axis, C1 represents experiments with PFL Configuration 1
and N represents non-PFL results.

7.2.3 Load Balance for Single Shared Files. In SSF mode, all processes write into and read from
a single shared file. We run IOR in SSF mode for both non-PFL and PFL Configuration 1. We
run IOR with 8 processes generating 8 GB and 16 GB files. The results are shown in Figure 19.
We observe that Tarazu is able to reduce the OST cost for all scenarios when compared to the
default LSA approach. The OST cost can be reduced by 38% and 37.8% in non-PFL and PFL layouts,
respectively. Also, as discussed in the previous section, we observe that Tarazu provides better I/O
performance for SSF when compared to LSA. When comparing PFL versus non-PFL files, overall
the OST cost is lower when using PFL for single shared files.

7.2.4 Load Balance for Concurrent Application Runs. We also evaluate Tarazu with concurrent
application runs by simultaneously running IOR and HACC-1/O with different job configurations
from two different client nodes. Each client runs 8 MPI processes. Per process, one file is created
and stored on the OSTs with PFL Configuration 1 for IOR and PFL Configuration 2 for HACC-
I/O. The total number of particle data stored for each file for HACC-I/O is 50 million, and the
total data size for IOR is 64 GB. As with the single application tests, we observe a significant
improvement in load balancing for concurrent applications compared to LSA. Figure 20 shows the
comparison of load under both approaches on our tesbed. We see that Tarazu balances the load
over all OSTs. The maximum load observed with LSA is on OST9 with a utilization of 51%, while
the average utilization is 35%, resulting in an OST Cost of 1.46. In contrast, under Tarazu, the OST
Cost observed is 1.08, thereby improving the load balance by 26%. Moreover, the CPU utilization
and memory usage on the MDS while using Tarazu for load balancing in concurrent application

ACM Trans. Storage, Vol. 20, No. 2, Article 11. Publication date: April 2024.

11:32 A. K. Paul et al.

®
o

LSA: IOR(8P, 64GB), HACC-IO (8P, 50M) ——
Tarazu: IOR(8P, 64GB), HACC-IO (8F, 50M) --+--

~
o

o
o

<]
o

OST Utilization (%)

N 5 9 K3 S ® Y)
OST IDs

Fig. 20. OST utilization for a simultaneous execution of IOR and HACC-1/O in FPP mode with PFL Config-
uration 1T and PFL Configuration 2, respectively.

80

LSA: 16 Processes, 128GB —+— LSA: 16 Processes, 32GB
Tarazu: 16 Processes, 128GB --+-- Tarazu: 16 Processes, 32GB --+--

0SS Utilization (%)
£ (4] (2] ~
o o o o

6’881 0882 0Ss3 0ss4 0SS5 0Sss6 0ss7
OSS IDs

Fig. 21. OSS utilization for IOR in FPP mode for PFL Configuration 1.

runs is observed to be about 1.55% and 0.12%, respectively. We observe similar improvements in
load balance for concurrent application in the non-PFL striping pattern as well.

7.3 OSS Utilization

We want to achieve an end-to-end load balance in the file system. Therefore, Tarazu needs to
balance the load on both OSSs and OSTs for an overall load-balanced setup. In our next experiment,
we measure the utilization of each OSS under the default Lustre allocation policy and Tarazu. To
this end, we aggregate the load (storage utilization) on each OST and calculate the ratio of storage
being used with respect to the total storage in each OSS. In a balanced scenario, each OSS should
be utilized equally by hosting an equal share of application data.

Figure 21 shows the comparison of OSS Utilization of all seven OSSs of our testbed under Tarazu
in comparison to the default approach. For the sake of brevity, we present the results of IOR with
16 processes in FPP mode, storing a total application data of 32 GB and 128 GB under PFL Config-
uration 1. We observe that with LSA, the OSSs are slightly imbalanced, while Tarazu provides a
near-optimal load balance across the available OSSs.

7.4 1/0 Performance

Next, we compare the effective read and write performance for HACC-I/O and IOR. We measure
the I/O rate for storing the data to and reading the data from the OSTs. In Figures 22(a)-22(c), the
read performance results are shown for the FPP and SSF sharing modes with both PFL and non-PFL
striping layouts. We see an improvement of up to 43% in read performance for Tarazu compared

ACM Trans. Storage, Vol. 20, No. 2, Article 11. Publication date: April 2024.

Tarazu: An Adaptive End-to-End 1/O Load Balancing Framework 11:33
HACC-10 Read Performance for File Per Process I0R Read Performance for File Per Process I0R Read Performance for Single Shared File
0 LSA o Tarazu v | °F° [SA o Tarazu i | 0% LSA nooee Tarazu
700 800 2500
@ I I
E 2750 gzooo
600 =3 =
% %wa %1500
5500 K o o praze)
3 0% S50 S1ooo &
4 K& 4 @ bSos IN
- . N
e N N SN N RN TSN
BN RN R N BN &N w50 N 3 o\ y R BN \ SN
300
2\ 2\ 2\ 2\ 2\ 2\) S]]) S C1-8P-8GB C1-8P-16GB N-8P-8GB N-8P-16GB
0'\'39'50 AN (22 BN o2 (I A28 o00° 18P 00O e >
[Conf e %p #Pantcl (9% oA c,l _81- W Yx-\ Configuration-#Processes-Total Data
onfiguration-#Processes-#Particles Configuratidn-#Processes-Total Data
(a) (b) (©
HACC-IO Write Performance for File Per Process I0R Wite Performance for File Per Process I0R Wite Performance for Single Shared File
450 1200 200
LsA Tarazu S LSA Tarazu 53 LSA Tarazu
400 1100 1100
350
= =000 5 Y 1000
F30o E N N § 2
2. 2900 \ 900
£ = N N N =
200 2 800 § § g 2 800
£.150 S £ £
gwo § N S s s g T {
N N 00 N N N\ a0 \
° § N N § N

M N " N M "
0\'5"‘600\»\@?'@ P
Configuration-#Processes-#Particles

500
o

ABP”

o o 3 P 3 P

B T AP P

A oA oA o
Con |gura||8n-#Pmcesses-To al Data

(e)

C1-8P-8GB C1-8P-16GB N-8P-8GB N-8P-16GB
Configuration-#Processes-Total Data

(d) (f)

Fig. 22. Read and write performance of IOR and HACC-I/O for FPP and SSF with PFL and non-PFL layouts.
On the x-axis, C1 represents experiments with PFL Configuration 1, C2 represents experiments with PFL
Configuration 2, and N represents non-PFL results.

to the standard Lustre allocation policy. This improvement is achieved by evenly loading the OSTs
and OSSs, which mitigates resource contention and thus improves parallel data access.

It should be noted that the read performance improvements for FPP with PFL Configuration 2
(denoted as C2 in the graphs) are marginally lower than with Configuration 1. These results are
consistent with our earlier assumption that I/O performance degrades when the total number of
stripes in a PFL file exceeds the number of available OSTs. A similar trend can be observed for
experiments in the SSF mode, which is why we did not pursue any further experiments with PFL
Configuration 2 on our 10-node testbed. In addition, it should be noted that for small systems
such as our Lustre testbed, there is no significant benefit from using PFL, because the system and
workload are too small to benefit from such an advanced feature.

The write performance results for HACC-I/O and IOR are shown in Figures 22(d)-22(f). Please
note that the displayed results are small-scale experiments run on a rather small testbed with
only seven OSSs and two client nodes. As the number of writing processes increases, the number
of competing processes on the small testbed system increases. This results in increased file
locking contention when accessing MDS and OSSs. Hence, the write performance with Tarazu
is impacted by up to 10%, especially with PFL Configuration 2. When using PFL Configuration
1 and non-PFL settings, the write bandwidth is on par with or marginally lower compared to the
default LSA policy. Since the main target of our end-to-end I/O control plane are data-intensive
workloads with a larger amount of I/O requests and varying I/O request sizes (i.e., read/write
data sizes) on HPC production environments, the observed overhead during file creation calls and
allocation of appropriate OSTs for applications with limited I/O needs to be further investigated
but can be neglected in most real-world scenarios. As can be seen in Section 7.5, the overhead is
even more negligible or non-existent for concurrent applications on large-scale parallel storage
deployments. Overall, we believe that the significant improvements in resource utilization
and read performance outweigh the overhead observed when writing data to the parallel file
system.

ACM Trans. Storage, Vol. 20, No. 2, Article 11. Publication date: April 2024.

11:34 A. K. Paul et al.

Read Performance for non-PFL Configuration Read Performance for PFL Configuration 1 Read Performance for PFL Configuration 2
3500 3500 3500
LSA &8 Tarazu (553 LSA &asaa Tarazu C553) LSA &5 Tarazu (55
__3000 & __3000 N __3000 N
2 N 2 N N 2 N
2 2500 N D 2500 N N 2 2500
= \ = N \| < \
% 2000 N ii % 2000 N R ii % 2000 N
N N N N
Bsoo . N N § 1500 N N § N\ N § 1500 N \
1000 . N B BN N = 1000 N N SN NI = 1000 N BN
y RN RN \ N \ N \| ¥ NN \
\ KAN] 08 N\ N PO \ 08 N\ N\ ﬂ \ KAN]
500 BN R XN N 500 BN RIN N\ XN N 500 N\ SN N N
160-20 480-60 800-100 1024-128 3600-450 160-20 480-60 800-100 1024-128 3600-450 160-20 480-60 800-100 1024-128 3600-450
#0STs-#0SSs #0OSTs-#0SSs #0OSTs-#0SSs
(2) (b) (©
Write Performance for non-PFL Configuration Write Performance for PFL Configuration 1 Write Performance for PFL Configuration 2
3000 3000 3000
LSA Tarazu &3 LSA Tarazu =3 LSA Tarazu =3
2500 2500 2500
3 N 3 3 N
= 2000 § § = 2000 w = 2000 § §
: N N B N N |3 N N
g 1500 5 § \ 3 1500 § \ 3 1500 § §
= 1000 @ I\ s s 2 1000 N § @ s s = 1000 Q S s s
500 160-20 480-60 800-100 1024-128 3600-450 500 16020 480-60 800100 1024-128 3600-450 500 160-20 480-60 800100 1024-128 3600-450
#0OSTs-#0SSs #0OSTs-#0SSs #0OSTs-#0SSs
(@ (e) ()

Fig. 23. Read and write performance of concurrent real-world application runs for different system scales.

7.5 Scalability Study

To showcase the scalability of our proposed framework, we evaluate Tarazu with the discrete-time
simulator introduced in Section 6.2 using three real-world HPC application traces described in
Section 7.1.3. We evaluate the scalability of Tarazu for running multiple HPC workloads simulta-
neously on a large number of compute nodes reading and writing data on a large number of OSTs,
corresponding to the scale of a real HPC cluster. For the scalability study, we use three real-world
HPC application traces, namely, genomicPrediction, E3SM, and cosmoFlow (see Section 7.1.3 for
additional details), concurrently on the simulator and scale the number of OSTs from 160 to 3,600.
In all configurations, the capacity of each OST is 10 GB and there are eight OSTs connected to each
0SS, achieving a maximum file system capacity of 36 TB. While the capacity of the simulated file
systems may appear to be rather small, the interesting part for this work is to scale the number of
OSTs. The more OSSs and OSTs available, the higher the achievable aggregate I/O bandwidth. At
the same time, the potential for load imbalance increases significantly. As an example, consider the
storage system of the first exascale system Frontier [43]. It consists of 450 OSS nodes each equipped
with 2x HDD OSTs and 1x NVMe OST. The configuration of our simulations is therefore repre-
sentative for current exascale systems, at least from the OST perspective. The selected workloads
provide a representative mix of emerging deep and machine learning and traditional simulation
workloads.

Figures 23(a)-23(c) show the read performance results of the concurrent application runs using
the non-PFL, PFL Configuration 1, and PFL Configuration 2 file layouts. For all file striping layouts,
Tarazu outperforms LSA, and the overall performance with PFL exceeds that of non-PFL runs. The
selected real-world application traces portray a mixed I/O workload with different file sizes. PFL
was specifically designed to cope with such mixed workloads, which is reflected in the improved
performance results. For example, for the configuration with 3,600 OSTs and 450 OSSs, Tarazu with
PFL Configuration 1 provides a read bandwidth of 3.34 GB/s, which corresponds to a performance
increase of 36.3%, while the read bandwidth with LSA is only 2.1 GB/s. As expected, both PFL
configurations perform equally well on large-scale storage systems.

The simulator confirms that Tarazu scales well for running concurrent applications on medium
and large Lustre installations. In contrast to the write performance results on our small Lus-
tre testbed, the write bandwidth with Tarazu is equal to or better than LSA, as shown in

ACM Trans. Storage, Vol. 20, No. 2, Article 11. Publication date: April 2024.

Tarazu: An Adaptive End-to-End 1/O Load Balancing Framework 11:35

Figures 23(d)-23(f). This validates that Tarazu poses no bottleneck or significant overhead for real-
world deployments. Instead, Tarazu provides a near-optimal load balance and a significantly im-
proved read performance, which is critical for the post-processing of large-scale application data.

8 DISCUSSION AND FUTURE WORK
8.1 Emerging Workloads

High performance computing (HPC) workloads are no longer restricted to traditional check-
point/restart applications. The rise in popularity and functionality of machine learning and deep
learning approaches in various science domains, such as biology, earth science, and physics, has led
to the read-intensive nature of applications [68]. Tarazu helps in improving the read throughput
of such applications, as shown in the results of cosmoFlow with Tarazu. Moreover, applications
will increasingly make use of the PFL feature of Lustre, which allows a higher flexibility during file
creation. As part of our future work, we aim to integrate Tarazu with Lustre and test its efficacy
on the world’s first exascale supercomputer Frontier [42].

8.2 Initial Training through Statistical Analysis and Darshan Logs

Currently, Tarazu uses miniRecorder on the client side to record the I/O characteristics of applica-
tions. This information is then parsed, processed, and passed to the prediction model. To further au-
tomate Tarazu’s workflow, we plan to support logs from popular I/O characterization and tracing
tools like Darshan as input to our prediction model. This will further facilitate the use and integra-
tion of Tarazu into production systems, as many HPC centers already use tools such as Darshan
by default for system analysis. To further fine-tune the prediction model and placement algorithm,
modular and automated workload analysis frameworks such as MAWA-HPC [109] could be used
as an additional input on the clients.

8.3 Rebalancing of Existing Application Datasets

One of the main limitations of Tarazu is that the load-balancing mechanism is only applied to
newly generated data, and only when the placement library is explicitly used by the user. However,
since read-intensive workloads in particular can benefit greatly from Tarazu, the integration of
a rebalancing mechanism running in the background for already existing data and training sets
is quite reasonable. This can be achieved, for example, by a server-side daemon that redistributes
already existing data when the server load is low.

8.4 Metadata Load Balancing

One of the main contributions of Tarazu is the creation of a global view of all system resources
along the I/O path, which is then used to guide data placement decisions and achieve load balanc-
ing by taking global statistics into account. Future systems will continue to scale, and we expect
backend I/O servers and metadata servers to scale accordingly. Centralized metadata servers will
therefore no longer be viable, as they serialize parallel file accesses, which can become a significant
performance bottleneck. With the introduction of Lustre’s Distributed Name Space (DNE) fea-
ture, the metadata load for a single file system can be distributed across multiple metadata servers.
DNE is realized through a mechanism called striped directories. Here, the structure of a directory
is split into shards that are distributed across multiple MDTs. However, the user must specify the
layout for a specific directory for each application run or workflow.

In the future, we plan to extend the prediction model to not only facilitate sophisticated file
striping layouts for individual files, but also provide transparent metadata load balancing to better
support data-intensive workloads.

ACM Trans. Storage, Vol. 20, No. 2, Article 11. Publication date: April 2024.

11:36 A. K. Paul et al.

8.5 Integration of Tarazu into Other Hierarchical HPC File Systems

The latest implementation of Tarazu relies on Lustre’s monitoring capabilities. Similar monitor-
ing functionalities can be found in other multi-tier file systems such as BeeGFS [30], IBM GPFS
(Spectrum Scale) [77], and Ceph [63, 90, 92]. Although our particular prototype is based on Lus-
tre, the metrics and architectural component assumptions we have chosen can largely be general-
ized across the spectrum of large-scale parallel file systems, such as decoupling of MDSs and data
servers (OSDs), data striping, and striping width and length. For example, Ceph’s built-in ceph
mon dump and GPFS’s mmpmon provide even more detailed data collection capabilities and are
compatible with our proposed algorithms.

The main challenge for supporting file systems such as BeeGFS and Ceph will be the integration
of the stripe placement mechanisms. Here, special API extensions will be necessary to apply the
striping patterns and advanced file layouts. For example, we are currently working on an extension
to the Ceph user API that will adapt striping functionality from the llapi library to Ceph.

8.6 System-specific Autotuning of PFL Configuration

PFL simplifies the use of Lustre so users can expect reasonable performance for a variety of file
I/O patterns without having to explicitly understand the parallel I/O model. Specifically, users do
not necessarily need to know the size or concurrency of the output files before they are created
and explicitly specify an optimal layout for each file to achieve good performance. Therefore, the
integration of features like PFL is an essential step to support future HPC workloads. For PFL, it is
recommended that small files have a lower stripe count (to reduce overhead), and as the file size
increases, the stripe count should also be increased (to spread the storage footprint and increase
bandwidth). In addition, the layout should only be expanded until the total number of strips reaches
or exceeds the number of OSTs. At this point, it is beneficial to add a final layout expansion to EOF
that spans all available OSTs to maximize the bandwidth at the end of the file (if it continues to
grow significantly in size).

Currently, Tarazu only supports the use of a static PFL configuration. Discussions with system
administrators of current HPC systems have confirmed that today’s Lustre deployments often use
system-wide static PFL configurations. This creates a tradeoff between I/O bandwidth performance
and usability, as few users know which striping settings are beneficial for their workload. To exploit
the full performance potential, we plan to develop a PFL tuner that can automatically determine the
best PFL configuration, depending on the underlying parallel storage system and the application
I/O pattern. Here, we will also consider the new Self-Extending Layout (SEL) [61] feature, which
is an extension to PFL. SEL allows the MDS to change the defined PFL configuration dynamically.

8.7 Further Improving the Scalability of Tarazu

For simplicity reasons, Tarazu currently relies on MySQL databases for the implementation of
the interaction database. However, relational databases do not perform well when a wide variety
of information needs to be queried, because relational databases such as MySQL store data in an
organized manner. Document-oriented databases like MongoDB, a type of NoSQL database, can
store huge amounts of data and also have very powerful query and indexing capabilities. Future
work will address the performance bottleneck in our design by evaluating different database tech-
nologies for the interaction database. This will minimize the incurred overhead when intercepting
the file creation requests and therefore improve the I/O latency for file creation and write requests.

9 CONCLUSION

This article proposes Tarazu, an end-to-end control plane for optimizing parallel and distributed
HPC I/O systems such as Lustre by providing efficient load balancing among storage servers.

ACM Trans. Storage, Vol. 20, No. 2, Article 11. Publication date: April 2024.

Tarazu: An Adaptive End-to-End 1/O Load Balancing Framework 11:37

Tarazu offers a global view of the system, enables coordination between clients and servers, and
manages performance degradation due to resource contention by accounting for operations on
both clients and servers. Our implementation facilitates near-optimal load balancing across OSTs
and OSSs in Lustre and is able to handle concurrent execution of workloads with different file I/O
sizes by supporting both PFL and non-PFL file layouts in a scalable and distributed manner.

We evaluate Tarazu on a real Lustre testbed with the benchmarks IOR and HACC-I/O for various
file layouts and with different SSF and FPP sharing strategies. Compared to the default Lustre LSA
policy, Tarazu provides up to 33% improvement in balancing the load. Moreover, we also observe
an I/O performance improvement of up to 43% for reads without affecting the performance for
writes. In addition, we design a time-discrete simulator based on ns-3 and use three real-world HPC
application traces from the Summit supercomputer to demonstrate the effectiveness and scalability
of the transparent design of Tarazu on large-scale storage systems. The selected workloads show
that Tarazu is equally suitable for traditional simulation workloads and emerging HPC workloads.

REFERENCES

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G.
Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaogiang Zheng.
2016. TensorFlow: A system for Large-Scale machine learning. In 12th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI’16). USENIX Association, 265-283. Retrieved from https://www.usenix.org/
conference/osdil6/technical-sessions/presentation/abadi

[2] Megha Agarwal, Divyansh Singhvi, Preeti Malakar, and Suren Byna. 2019. Active learning-based automatic tuning
and prediction of parallel I/O performance. In IEEE/ACM 4th International Parallel Data Systems Workshop (PDSW’19).
IEEE, 20-29. DOI: https://doi.org/10.1109/PDSW49588.2019.00007

[3] Ravindra K. Ahuja. 2017. Network Flows: Theory, Algorithms, and Applications. Pearson Education, Chennai, India.

[4] Ali Anwar. 2018. Towards Efficient and Flexible Object Storage Using Resource and Functional Partitioning. Ph.D.
Dissertation. Virginia Tech.

[5] Ali Anwar, Yue Cheng, Aayush Gupta, and Ali R. Butt. 2016. MOS: Workload-aware elasticity for cloud object stores.
In 25th ACM International Symposium on High-performance Parallel and Distributed Computing (HPDC’16). ACM,
New York, NY, 177-188. DOI: https://doi.org/10.1145/2907294.2907304

[6] Ayse Bagbaba. 2020. Improving collective I/O performance with machine learning supported auto-tuning. In 2020
IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW’20). IEEE, 814-821. DOI : https:
//doi.org/10.1109/IPDPSW50202.2020.00138

[7] Ayse Bagbaba and Xuan Wang. 2021. Improving the MPI-IO performance of applications with genetic algorithm
based auto-tuning. In IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW’21). IEEE,
798-805. DOI : https://doi.org/10.1109/IPDPSW52791.2021.00118

[8] Babak Behzad, Surendra Byna, and Marc Snir. 2019. Optimizing I/O performance of HPC applications with autotun-

ing. ACM Trans. Parallel Comput. 5, 4 (2019), 27 pages. DOI : https://doi.org/10.1145/3309205

Jean Luca Bez, Suren Byna, and Shadi Ibrahim. 2023. I/O access patterns in HPC applications: A 360-degree survey.

ACM Comput. Surv. 56, 2 (2023), 41 pages. DOI : https://doi.org/10.1145/3611007

[10] P.J.Braam. 2004. The Lustre Storage Architecture (Tech. Rep.). Technical Report. Retrieved from http://wiki.lustre.org/

[11] Peter J. Brockwell and Richard A. Davis. 2016. Introduction to Time Series and Forecasting (3rd ed.). Springer Interna-

tional Publishing, Cham, Switzerland.
[12] Philip Carns, Robert Latham, Robert Ross, Kamil Iskra, Samuel Lang, and Katherine Riley. 2009. 24/7 characterization
of petascale I/O workloads. In IEEE International Conference on Cluster Computing and Workshops. IEEE, 12 pages.
DOI: https://doi.org/10.1109/CLUSTR.2009.5289150

[13] Christopher D. Carothers, Kalyan S. Perumalla, and Richard M. Fujimoto. 1999. Efficient optimistic parallel simu-
lations using reverse computation. ACM Trans. Model. Comput. Simul. 9, 3 (1999), 224-253. DOI : https://doi.org/10.
1145/347823.347828

[14] Fahim Chowdhury, Yue Zhu, Todd Heer, Saul Paredes, Adam Moody, Robin Goldstone, Kathryn Mohror, and Weikuan
Yu. 2019.1/O characterization and performance evaluation of BeeGFS for deep learning. In 48th International Confer-
ence on Parallel Processing (ICPP’19). ACM, New York, NY. DOI : https://doi.org/10.1145/3337821.3337902

[15] J. Cope, N. Liu, S. Lang, P. Carns, C. Carothers, and R. Ross. 2011. CODES: Enabling Co-design of multi-layer exascale

storage architectures. In Workshop on Emerging Supercomputing Technologies.

[

—

ACM Trans. Storage, Vol. 20, No. 2, Article 11. Publication date: April 2024.

11:38 A. K. Paul et al.

[16] Rafael Ferreira da Silva, Henri Casanova, Kyle Chard, Taina Coleman, Dan Laney, Dong Ahn, Shantenu Jha, Dorran
Howell, Stian Soiland-Reyes, Ilkay Altintas, Douglas Thain, Rosa Filgueira, Yadu N. Babuji, Rosa M. Badia, Bartosz
Balis, Silvina Caino-Lores, Scott Callaghan, Frederik Coppens, Michael R. Crusoe, Kaushik De, Frank Di Natale,
Tu Mai Anh Do, Bjoern Enders, Thomas Fahringer, Anne Fouilloux, Grigori Fursin, Alban Gaignard, Alex Ganose,
Daniel Garijo, Sandra Gesing, Carole A. Goble, Adil Hasan, Sebastiaan Huber, Daniel S. Katz, Ulf Leser, Douglas
Lowe, Bertram Ludéscher, Ketan Maheshwari, Maciej Malawski, Rajiv Mayani, Kshitij Mehta, André Merzky, Todd S.
Munson, Jonathan Ozik, Loic Pottier, Sashko Ristov, Mehdi Roozmeh, Renan Souza, Frédéric Suter, Benjamin Tovar,
Matteo Turilli, Karan Vahi, Alvaro Vidal-Torreira, Wendy R. Whitcup, Michael Wilde, Alan Williams, Matthew Wolf,
and Justin M. Wozniak. 2021. Workflows community summit: Advancing the state-of-the-art of scientific workflows
management systems research and development. CoRR abs/2106.05177 (2021)

[17] C.S. Daley, D. Ghoshal, G. K. Lockwood, S. Dosanjh, L. Ramakrishnan, and N. J. Wright. 2020. Performance charac-
terization of scientific workflows for the optimal use of Burst Buffers. Fut. Gen. Comput. Syst. 110 (2020), 468-480.
DOI : https://doi.org/10.1016/j.future.2017.12.022

[18] Bin Dong, Xiugiao Li, Qimeng Wu, Limin Xiao, and Li Ruan. 2012. A dynamic and adaptive load balancing strategy
for parallel file system with large-scale I/O servers. J. Parallel Distrib. Comput. 72, 10 (2012), 1254-1268. DOI : https:
//doi.org/10.1016/j.jpdc.2012.05.006

[19] Matthieu Dorier, Gabriel Antoniu, Franck Cappello, Marc Snir, and Leigh Orf. 2012. Damaris: How to efficiently lever-
age multicore parallelism to achieve scalable, jitter-free I/O. In IEEE International Conference on Cluster Computing.
IEEE, 155-163. DOI : https://doi.org/10.1109/CLUSTER.2012.26

[20] Matthieu Dorier, Shadi Ibrahim, Gabriel Antoniu, and Rob Ross. 2015. Using formal grammars to predict I/O be-
haviors in HPC: The Omnisc’IO approach. IEEE Trans. Parallel Distrib. Syst. 27, 8 (2015), 2435-2449. DOI: https:
//doi.org/10.1109/TPDS.2015.2485980

[21] Miguel A. Erazo, Ting Li, Jason Liu, and Stephan Eidenbenz. 2012. Toward comprehensive and accurate simulation
performance prediction of parallel file systems. In IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN’12). IEEE, 1-12. DOI : https://doi.org/10.1109/DSN.2012.6263930

[22] Oak Ridge Leadership Facility. 2022. Titan Supercomputer. Oak Ridge National Laboratory. Retrieved from https:
//www.olcf.ornl.gov/olcf-resources/compute-systems/titan/

[23] Bo Feng, Ning Liu, Shuibing He, and Xian-He Sun. 2014. HPIS3: Towards a high-performance simulator for hybrid
parallel I/O and storage systems. In 9th Parallel Data Storage Workshop. IEEE, 37—-42. DOI : https://doi.org/10.1109/
PDSW.2014.12

[24] Rafael Ferreira da Silva, Rosa Filgueira, Ilia Pietri, Ming Jiang, Rizos Sakellariou, and Ewa Deelman. 2017. A character-
ization of workflow management systems for extreme-scale applications. Fut. Gen. Comput. Syst. 75 (2017), 228-238.
DOI: https://doi.org/10.1016/j.future.2017.02.026

[25] Mike Folk, Gerd Heber, Quincey Koziol, Elena Pourmal, and Dana Robinson. 2011. An overview of the HDF5 tech-
nology suite and its applications. In EDBT/ICDT’11 Workshop on Array Databases. ACM, New York, NY.

[26] John Fragalla, Bill Loewe, and Torben Kling Petersen. 2020. New Lustre features to improve Lustre metadata and
small-file performance. Concurr. Computat.: Pract. Exper. 32, 20 (2020), 6 pages. DOI : https://doi.org/10.1002/cpe.5649

[27] Jim Garlick. 2010. Lustre Monitoring Tool (LMT). https://github.com/LLNL/Imt

[28] S. Habib, V. Morozov, N. Frontiere, H. Finkel, A. Pope, and K. Heitmann. 2013. HACC: Extreme scaling and perfor-
mance across diverse architectures. In International Conference on High Performance Computing, Networking, Storage
and Analysis (SC’13). ACM, New York, NY. DOI : https://doi.org/10.1145/2503210.2504566

[29] Shuibing He, Xian-He Sun, and Adnan Haider. 2015. HAS: Heterogeneity-aware selective data layout scheme for
parallel file systems on hybrid servers. In IEEE International Parallel and Distributed Processing Symposium. IEEE.
DOI : https://doi.org/10.1109/IPDPS.2015.23

[30] Jan Heichler. 2014. An Introduction to BeeGFS v1.1. https://www.beegfs.de/docs/whitepapers/Introduction_to_
BeeGFS_by_ThinkParQ.pdf. Accessed February 16, 2024.

[31] Pieter Hintjens. 2013. ZeroMQ: Messaging for Many Applications. O’Reilly Media, Inc.

[32] L. Huang and S. Liu. 2020. OOOPS: An innovative tool for IO workload management on supercomputers. In IEEE
26th International Conference on Parallel and Distributed Systems (ICPADS’20). IEEE. DOI : https://doi.org/10.1109/
ICPADS51040.2020.00069

[33] Xu Ji, Bin Yang, Tianyu Zhang, Xiaosong Ma, Xiupeng Zhu, Xiyang Wang, Nosayba El-Sayed, Jidong Zhai, Weiguo

Liu, and Wei Xue. 2019. Automatic, application-aware I/O forwarding resource allocation. In 17th USENIX Conference

on File and Storage Technologies (FAST’19). USENIX Association, 265-279. Retrieved from https://www.usenix.org/

conference/fast19/presentation/ji

Sunggon Kim, Alex Sim, Kesheng Wu, Suren Byna, Yongseok Son, and Hyeonsang Eom. 2020. Towards HPC I/O per-

formance prediction through large-scale log analysis. In 29th International Symposium on High-Performance Parallel

and Distributed Computing. ACM, New York, NY, 77-88. DOI : https://doi.org/10.1145/3369583.3392678

—

(34

[l

ACM Trans. Storage, Vol. 20, No. 2, Article 11. Publication date: April 2024.

Tarazu: An Adaptive End-to-End 1/O Load Balancing Framework 11:39

[35]

[36]

[37]
[38]
[39]
[40]
[41

[42
[43]

—

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]
[52]
[53]
[54]
[55]
[56]

[57]

Seong Jo Kim, Seung Woo Son, Wei-keng Liao, Mahmut Kandemir, Rajeev Thakur, and Alok Choudhary. 2012. IOPin:
Runtime profiling of parallel I/O in HPC systems. In SC Companion: High Performance Computing, Networking Storage
and Analysis. IEEE, 18-23. DOI : https://doi.org/10.1109/SC.Companion.2012.14

Donghun Koo, Jik-Soo Kim, Soonwook Hwang, Hyeonsang Eom, and Jachwan Lee. 2016. Utilizing progressive file
layout leveraging SSDs in HPC cloud environments. In IEEE Ist International Workshops on Foundations and Appli-
cations of Self* Systems (FAS*W’16). IEEE, 90-95. DOI : https://doi.org/10.1109/FAS-W.2016.30

Anoop S. Kumar and Somnath Mazumdar. 2016. Forecasting HPC workload using ARMA models and SSA. In Inter-
national Conference on Information Technology (ICIT’16). IEEE, 294-297. DOI : https://doi.org/10.1109/ICIT.2016.065
Parallel Data Lab. 2024. The DiskSim Simulation Environment (V4.0). Carnegie Mellon University. Retrieved from:
https://www.pdl.cmu.edu/DiskSim/

Lawrence Berkeley National Laboratory and Argonne National Laboratory. 2022. TOKIO: Total Knowledge of 1/0.
Retrieved from https://www.nersc.gov/research-and-development/storage-and-i-o-technologies/tokio/

Lawrence Livermore National Laboratory. 2021. IOR Benchmark Summary. Retrieved from https://asc.llnl.gov/
sequoia/benchmarks/IORsummaryv1.0.pdf

Oak Ridge National Laboratory. 2021. Summit Supercomputer. Retrieved from https://www.olcf.ornl.gov/summit/
Oak Ridge National Laboratory. 2022. Frontier Supercomputer. Retrieved from https://www.olcf.ornl.gov/frontier/
Dustin Leverman. 2022. Oak Ridge National Laboratory Storage Ecosystem. In Platform for Advanced Scientific
Computing Conference (PASC’22). Retrieved from https://linklings.s3.amazonaws.com/organizations/pasc/pasc22/
submissions/stype117/PYFgV-msa274s1.pdf

Xiuqiao Li, Limin Xiao, Meikang Qiu, Bin Dong, and Li Ruan. 2014. Enabling dynamic file I/O path selection at
runtime for parallel file system. . Supercomput. 68, 2 (2014), 996-1021. DOI : https://doi.org/10.1007/s11227-013-1077-
6

Seung-Hwan Lim, Hyogi Sim, Raghul Gunasekaran, and Sudharshan S. Vazhkudai. 2017. Scientific user behavior and
data-sharing trends in a petascale file system. In International Conference for High Performance Computing, Network-
ing, Storage and Analysis (SC’17). ACM, New York, NY, 1-12. DOI : https://doi.org/10.1145/3126908.3126924
Yonggang Liu, Renato Figueiredo, Dulcardo Clavijo, Yigi Xu, and Ming Zhao. 2011. Towards simulation of parallel
file system scheduling algorithms with PFSsim. In 7th IEEE International Workshop on Storage Network Architecture
and Parallel I/O (SNAPI'11). IEEE, 12 pages.

Yonggang Liu, Renato Figueiredo, Yigi Xu, and Ming Zhao. 2013. On the design and implementation of a simulator
for parallel file system research. In IEEE 29th Symposium on Mass Storage Systems and Technologies (MSST’13). IEEE,
5 pages. DOI : https://doi.org/10.1109/MSST.2013.6558438

Glenn K. Lockwood, Wucherl Yoo, Suren Byna, Nicholas J. Wright, Shane Snyder, Kevin Harms, Zachary Nault, and
Philip Carns. 2017. UMAMI: A recipe for generating meaningful metrics through holistic I/O performance analysis.
In 2nd Joint International Workshop on Parallel Data Storage & Data Intensive Scalable Computing Systems. ACM, New
York, NY, 55-60. DOI : https://doi.org/10.1145/3149393.3149395

Huong Luu, Babak Behzad, Ruth Aydt, and Marianne Winslett. 2013. A multi-level approach for understanding I/O
activity in HPC applications. In IEEE International Conference on Cluster Computing (CLUSTER’13). IEEE, 5 pages.
DOI : https://doi.org/10.1109/CLUSTER.2013.6702690

A. Mathuriya, D. Bard, P. Mendygral, L. Meadows, J. Arnemann, L. Shao, S. He, T. Karnd, D. Moise, S. J. Pennycook,
K. Maschhoff, J. Sewall, N. Kumar, S. Ho, M. F. Ringenburg, P. Prabhat, and V. Lee. 2018. CosmoFlow: Using deep
learning to learn the universe at scale. In International Conference for High Performance Computing, Networking,
Storage and Analysis (SC’18). IEEE, 11 pages. DOI : https://doi.org/10.1109/SC.2018.00068

Rick Mohr, Michael Brim, Sarp Oral, and Andreas Dilger. 2016. Evaluating Progressive File Layouts for Lustre. In
Cray User Group Conference (CUG’16).

E. Molina-Estolano, C. Maltzahn, J. Bent, and S. A. Brandt. 2009. Building a parallel file system simulator. 7. Phys.:
Confer. Series 180 (July 2009), 012050. DOI : https://doi.org/10.1088/1742-6596/180/1/012050

Frank Mueller, Xing Wu, Martin Schulz, Bronis R. de Supinski, and Todd Gamblin. 2012. ScalaTrace: Tracing, analysis
and modeling of HPC codes at scale. In Applied Parallel and Scientific Computing. Springer Berlin, 410-418. DOI : https:
//doi.org/10.1007/978-3-642-28145-7_40

Lustre Networking. 2008. High-Performance Features and Flexible Support for a Wide Array of Networks.

Sarah Neuwirth. 2018. Accelerating Network Communication and I/O in Scientific High Performance Computing Envi-
ronments. Ph. D. Dissertation. Heidelberg University, Germany.

Sarah Neuwirth, S. Oral, F. Wang, and Ulrich Bruening. 2016. An I/O load balancing framework for large-scale ap-
plications (BPIO 2.0). In Poster at SC’16.

Sarah Neuwirth and Arnab K. Paul. 2021. Parallel I/O evaluation techniques and emerging HPC workloads: A per-
spective. In IEEE International Conference on Cluster Computing (CLUSTER’21). IEEE, 671-679. DOI : https://doi.org/
10.1109/Cluster48925.2021.00100

ACM Trans. Storage, Vol. 20, No. 2, Article 11. Publication date: April 2024.

11:40 A. K. Paul et al.

[58] Sarah Neuwirth, Feiyi Wang, Sarp Oral, and Ulrich Bruening. 2017. Automatic and transparent resource contention
mitigation for improving large-scale parallel file system performance. In IEEE 23rd International Conference on Parallel
and Distributed Systems (ICPADS’17). IEEE, 604-613. DOI : https://doi.org/10.1109/ICPADS.2017.00084

[59] NSNAM. 2023. NS-3 Network Simulator. Retrieved from https://www.nsnam.org/

[60] James Oly and Daniel A. Reed. 2002. Markov model prediction of I/O requests for scientific applications. In 16th Inter-

national Conference on Supercomputing (ICS’02). ACM, New York, NY, 147-155. DOI : https://doi.org/10.1145/514191.

514214

OpenSFS and EOFS. 2021. Lustre Operations Manual 2.x. Retrieved from https://www.lustre.org/documentation/

Sarp Oral, James Simmons, Jason Hill, Dustin Leverman, Feiyi Wang, Matt Ezell, Ross Miller, Douglas Fuller, Raghul

Gunasekaran, Youngjae Kim, Saurabh Gupta, Devesh Tiwari Sudharshan S. Vazhkudai, James H. Rogers, David

Dillow, Galen M. Shipman, and Arthur S. Bland. 2014. Best practices and lessons learned from deploying and op-

erating large-scale data-centric parallel file systems. SC’14: Proceedings of the International Conference for High Per-

formance Computing, Networking, Storage and Analysis, IEEE, 217-228. DOI:10.1109/SC.2014.23

[63] Akshita Parekh, Urvashi Karnani Gaur, and Vipul Garg. 2020. Analytical modelling of distributed file systems (Glus-

terFS and CephFS). In Reliability, Safety and Hazard Assessment for Risk-Based Technologies. Springer Singapore,

213-222. DOI: https://doi.org/10.1007/978-981-13-9008-1_18

Tirthak Patel and Suren Byna. 2020. Uncovering access, reuse, and sharing characteristics of I/O-intensive files on

large-scale production HPC systems. In 18th USENIX Conference on File and Storage Technologies (FAST’20). USENIX

Association, 91-101. Retrieved from https://www.usenix.org/conference/fast20/presentation/patel-hpc-systems

[65] Tirthak Patel, Suren Byna, Glenn K. Lockwood, and Devesh Tiwari. 2019. Revisiting I/O behavior in large-scale

storage systems: The expected and the unexpected. In International Conference for High Performance Computing,

Networking, Storage and Analysis (SC’19). ACM, New York, NY, Article 65, 13 pages. DOI :https://doi.org/10.1145/

3295500.3356183

Arnab K. Paul, Olaf Faaland, Adam Moody, Elsa Gonsiorowski, Kathryn Mohror, and Ali R. Butt. 2020. Understanding

HPC application I/O behavior using system level statistics. In IEEE 27th International Conference on High Performance

Computing, Data, and Analytics (HiPC’20). IEEE, 202-211. DOI : https://doi.org/10.1109/HiPC50609.2020.00034

[67] Arnab K. Paul, Arpit Goyal, Feiyi Wang, Sarp Oral, Ali R. Butt, Michael J. Brim, and Sangeetha B. Srinivasa. 2017.

/O load balancing for big data HPC applications. In IEEE International Conference on Big Data (Big Data’17). IEEE,

233-242. DOI : https://doi.org/10.1109/BigData.2017.8257931

Arnab K. Paul, Ahmad Maroof Karimi, and Feiyi Wang. 2021. Characterizing machine learning I/O workloads on

leadership scale HPC systems. In 29th International Symposium on Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems (MASCOTS 21). IEEE, 1-8. DOI : https://doi.org/10.1109/MASCOTS53633.2021.9614303

[69] Arnab Kumar Paul and Bibhudatta Sahoo. 2017. Dynamic virtual machine placement in cloud computing. In Resource

Management and Efficiency in Cloud Computing Environments. IGI Global, 136-167. DOI : https://doi.org/10.4018/978-

1-5225-1721-4.ch006

Arnab K. Paul, Steven Tuecke, Ryan Chard, Ali R. Butt, Kyle Chard, and Ian Foster. 2017. Toward scalable monitoring

on large-scale storage for software defined cyberinfrastructure. In 2nd Joint International Workshop on Parallel Data

Storage & Data Intensive Scalable Computing Systems. Association for Computing Machinery, New York, NY, 49-54.

DOI: https://doi.org/10.1145/3149393.3149402

[71] Arnab Kumar Paul, Wenjie Zhuang, Luna Xu, Min Li, M. Mustafa Rafique, and Ali R. Butt. 2016. CHOPPER: Op-

timizing data partitioning for in-memory data analytics frameworks. In IEEE International Conference on Cluster

Computing (CLUSTER’16). IEEE, 110-119. DOI : https://doi.org/10.1109/CLUSTER.2016.41

Gregory F. Pfister. 2001. An introduction to the InfiniBand™ architecture. High Perform. Mass Stor. Parallel I/O 42

(2001), 617-632.

Prabhat and Quincey Koziol. 2014. High Performance Parallel I/O. CRC Press.

Yingjin Qian, Eric Barton, Tom Wang, Nirant Puntambekar, and Andreas Dilger. 2009. A novel network request

scheduler for a large scale storage system. Comput. Sci.-Res. Devel. 23, 3-4 (2009), 143-148. DOI : https://doi.org/10.

1007/500450-009-0073-9

Neeraj Rajesh, Hariharan Devarajan, Jaime Cernuda Garcia, Keith Bateman, Luke Logan, Jie Ye, Anthony Kougkas,

and Xian-He Sun. 2021. Apollo: An ML-assisted real-time storage resource observer. In 30th International Sympo-

sium on High-Performance Parallel and Distributed Computing. Association for Computing Machinery, New York, NY,

147-159. DOI : https://doi.org/10.1145/3431379.3460640

Ramesh R. Sarukkai. 2000. Link prediction and path analysis using Markov chains. Comput. Netw. 33, 1-6 (2000),

377-386. DOI : https://doi.org/10.1016/S1389-1286(00)00044-X

Frank B. Schmuck and Roger L. Haskin. 2002. GPFS: A shared-disk file system for large computing clusters. In st

USENIX Conference on File and Storage Technologies (FAST’02). USENIX Association, 231-244.

(61
(62

—

(64

=

(66

=

(68

—

(70

[t

(72

—

—
~
@

&

(74

=

(75

[

(76

=

(77

—

ACM Trans. Storage, Vol. 20, No. 2, Article 11. Publication date: April 2024.

Tarazu: An Adaptive End-to-End 1/O Load Balancing Framework 11:41

[78]

[79]

[80]

[81]

(82]
[83]

[84]

[85]

[86]

[87]

(88
[89]

=

[90]

[o1]

[92]

[93]

[94]

[95]

[96]

Shane Snyder, Philip Carns, Kevin Harms, Robert Ross, Glenn K. Lockwood, and Nicholas J. Wright. 2016. Modular
HPC I/O characterization with Darshan. In 5th Workshop on Extreme-Scale Programming Tools (ESPT’16). IEEE, 9-17.
DOI: https://doi.org/10.1109/ESPT.2016.006

Shane Snyder, Philip Carns, Robert Latham, Misbah Mubarak, Robert Ross, Christopher Carothers, Babak Behzad,
Huong Vu Thanh Luu, Surendra Byna, and Prabhat. 2015. Techniques for modeling large-scale HPC I/O workloads. In
6th International Workshop on Performance Modeling, Benchmarking, and Simulation of High Performance Computing
Systems. ACM, New York, NY, 11 pages. DOI : https://doi.org/10.1145/2832087.2832091

Huaiming Song, Yanlong Yin, Xian-He Sun, Rajeev Thakur, and Samuel Lang. 2011. A segment-level adaptive data
layout scheme for improved load balance in parallel file systems. In 11th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid’11). IEEE, 414-423. DOI : https://doi.org/10.1109/CCGrid.2011.26

Rajeev Thakur, William Gropp, and Ewing Lusk. 1999. On implementing MPI-IO portably and with high performance.
In 6th Workshop on I/O in Parallel and Distributed Systems (IOPADS99). ACM, New York, NY, 23-32. DOI:https:
//doi.org/10.1145/301816.301826

TOP500.0rg. 2022. TOP500 List. Retrieved from https://www.top500.org/lists/top500/2022/06/

Yuichi Tsujita, Tatsuhiko Yoshizaki, Keiji Yamamoto, Fumichika Sueyasu, Ryoji Miyazaki, and Atsuya Uno. 2017. Alle-
viating I/O interference through workload-aware striping and load-balancing on parallel file systems. In ISC High Per-
formance (ISC’17). Springer International Publishing, Cham, 315-333. DOI : https://doi.org/10.1007/978-3-319-58667-
0_17

Alan Tucker. 1977. A note on convergence of the Ford-Fulkerson flow algorithm. Math. Oper. Res. 2, 2 (1977), 143-144.
DOI: https://doi.org/10.1287/moor.2.2.143

Andrew Uselton, Mark Howison, Nicholas J. Wright, David Skinner, Noel Keen, John Shalf, Karen L. Karavanic, and
Leonid Oliker. 2010. Parallel I/O performance: From events to ensembles. In IEEE International Symposium on Parallel
& Distributed Processing (IPDPS’10). IEEE, 1-11. DOI : https://doi.org/10.1109/IPDPS.2010.5470424

Sudharshan S. Vazhkudai, Ross Miller, Devesh Tiwari, Christopher Zimmer, Feiyi Wang, Sarp Oral, Raghul Gu-
nasekaran, and Deryl Steinert. 2017. GUIDE: A scalable information directory service to collect, federate, and analyze
logs for operational insights into a leadership HPC facility. In International Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC’17). ACM, New York, NY, 1-12. DOI : https://doi.org/10.1145/3126908.
3126946

Bharti Wadhwa, Arnab K. Paul, Sarah Neuwirth, Feiyi Wang, Sarp Oral, Ali R. Butt, Jon Bernard, and Kirk W.
Cameron. 2019. iez: Resource contention aware load balancing for large-scale parallel file systems. In IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS’19). IEEE, 610-620. DOI : https://doi.org/10.1109/IPDPS.
2019.00070

Stephen R. Walli. 1995. The POSIX family of standards. StandardView 3, 1 (Mar. 1995), 11-17.

Chen Wang, Jinghan Sun, Marc Snir, Kathryn Mohror, and Elsa Gonsiorowski. 2020. Recorder 2.0: Efficient parallel
I/0 tracing and analysis. In IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW’20).
IEEE, 1-8. DOI : https://doi.org/10.1109/IPDPSW50202.2020.00176

Feiyi Wang, Mark Nelson, Sarp Oral, Scott Atchley, Sage Weil, Bradley W. Settlemyer, Blake Caldwell, and Jason Hill.
2013. Performance and scalability evaluation of the Ceph parallel file system. In 8th Parallel Data Storage Workshop.
ACM, New York, NY, 14-19. DOI: https://doi.org/10.1145/2538542.2538562

Feiyi Wang, Sarp Oral, Saurabh Gupta, Devesh Tiwari, and Sudharshan S. Vazhkudai. 2014. Improving large-scale
storage system performance via topology-aware and balanced data placement. In 20th IEEE International Conference
on Parallel and Distributed Systems (ICPADS’14). IEEE, 656—-663. DOI : https://doi.org/10.1109/PADSW.2014.7097866
Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Carlos Maltzahn. 2006. Ceph: A scalable, high-
performance distributed file system. In 7th Conference on Operating Systems Design and Implementation (OSDI’06).
USENIX Association, 307-320.

Marc C. Wiedemann, Julian M. Kunkel, Michaela Zimmer, Thomas Ludwig, Michael Resch, Thomas Bonisch, Xuan
Wang, Andriy Chut, Alvaro Aguilera, Wolfgang E. Nagel, Michael Kluge, and Holger Mickler. 2013. Towards I/O anal-
ysis of HPC systems and a generic architecture to collect access patterns. Computer Science-Research and Development
28 (2013), 241-251. DOI:10.1007/s00450-012-0221-5

Steven A. Wright, Simon D. Hammond, Simon J. Pennycook, Robert F. Bird, J. A. Herdman, Ian Miller, Ash Vadgama,
Abhir Bhalerao, and Stephen A. Jarvis. 2013. Parallel file system analysis through application I/O tracing. Comput. J.
56, 2 (2013), 141-155. DOI : https://doi.org/10.1093/comjnl/bxs044

Xing Wu and Frank Mueller. 2013. Elastic and scalable tracing and accurate replay of non-deterministic events. In
27th International ACM Conference on International Conference on Supercomputing (ICS’13). ACM, New York, NY,
59-68. DOI : https://doi.org/10.1145/2464996.2465001

Xing Wu, Karthik Vijayakumar, Frank Mueller, Xiaosong Ma, and Philip C. Roth. 2011. Probabilistic communication
and I/O tracing with deterministic replay at scale. In International Conference on Parallel Processing. IEEE, 196-205.
DOI : https://doi.org/10.1109/ICPP.2011.50

ACM Trans. Storage, Vol. 20, No. 2, Article 11. Publication date: April 2024.

11:42 A. K. Paul et al.

[97] Peter Xenopoulos, Jamison Daniel, Michael Matheson, and Sreenivas Sukumar. 2016. Big data analytics on HPC
architectures: Performance and cost. In IEEE International Conference on Big Data (Big Data’16). IEEE, 2286-2295.
DOI : https://doi.org/10.1109/BigData.2016.7840861

[98] Shaocheng Xie, Wuyin Lin, Philip J. Rasch, Po-Lun Ma, Richard Neale, Vincent E. Larson, Yun Qian, Peter A.

Bogenschutz, Peter Caldwell, Philip Cameron-Smith, Jean-Christophe Golaz, Salil Mahajan, Balwinder Singh, Qi

Tang, Hailong Wang, Jin-Ho Yoon, Kai Zhang, and Yuying Zhang. 2018. Understanding cloud and convective char-

acteristics in version 1 of the E3SM atmosphere model. Journal of Advances in Modeling Earth Systems 10, 10 (2018),

2618-2644.D0I:10.1029/2018MS001350

Cong Xu, Suren Byna, Vishwanath Venkatesan, Robert Sisneros, Omkar Kulkarni, Mohamad Chaarawi, and Kalyana

Chadalavada. 2016. LIOProf: Exposing Lustre File System Behavior for I/O Middleware. InCray User Group Meeting

(CUG’16).

Pengfei Xuan, Walter B. Ligon, Pradip K. Srimani, Rong Ge, and Feng Luo. 2017. Accelerating big data analytics on

HPC clusters using two-level storage. Parallel Comput. 61 (2017), 18—34. DOI : https://doi.org/10.1016/j.parco.2016.08.

001

Bin Yang, Xu Ji, Xiaosong Ma, Xiyang Wang, Tianyu Zhang, Xiupeng Zhu, Nosayba El-Sayed, Haidong Lan, Yibo

Yang, Jidong Zhai, Weiguo Liu, and Wei Xue. 2019. End-to-end I/O monitoring on a leading supercomputer. In 16th

USENIX Symposium on Networked Systems Design and Implementation (NSDI'19). USENIX Association 379-394. Re-

trieved from https://www.usenix.org/conference/nsdi19/presentation/yang

Bin Yang, Wei Xue, Tianyu Zhang, Shichao Liu, Xiaosong Ma, Xiyang Wang, and Weiguo Liu. 2023. End-to-end

I/O monitoring on leading supercomputers. ACM Trans. Storage 19, 1, Article 3 (Jan. 2023), 35 pages. DOI: https:

//doi.org/10.1145/3568425

Bin Yang, Yanliang Zou, Weiguo Liu, and Wei Xue. 2022. An end-to-end and adaptive I/O optimization tool for

modern HPC storage systems. In IEEE International Parallel and Distributed Processing Symposium (IPDPS’22). IEEE,

1294-1304. DOI : https://doi.org/10.1109/IPDPS53621.2022.00128

[104] Qian Yingjin, Wang Di, and Nirant Puntambekar. 2009. Lustre Simulator. Retrieved from https://github.com/
yingjinqian/Lustre-Simulator

[105] Zeng Zeng and Bharadwaj Veeravalli. 2008. On the design of distributed object placement and load balancing
strategies in large-scale networked multimedia storage systems. IEEE Trans. Knowl. Data Eng. 20, 3 (2008), 369-382.
DOI : https://doi.org/10.1109/TKDE.2007.190694

[106] G.Zheng, Gunavardhan Kakulapati, and L. V. Kale. 2004. BigSim: A parallel simulator for performance prediction of

extremely large parallel machines. In 18th International Parallel and Distributed Processing Symposium. IEEE, 10 pages.

DOI: https://doi.org/10.1109/IPDPS.2004.1303013

Mingfa Zhu, Guoying Li, Li Ruan, Ke Xie, and Limin Xiao. 2013. HySF: A striped file assignment strategy for parallel

file system with hybrid storage. In IEEE 10th International Conference on High Performance Computing and Communi-

cations and IEEE International Conference on Embedded and Ubiquitous Computing (HPCC & EUC’13). IEEE, 511-517.

DOI : https://doi.org/10.1109/HPCC.and.EUC.2013.79

[108] Zhaobin Zhu, Niklas Bartelheimer, and Sarah Neuwirth. 2023. MAWA-HPC: Modular and Automated Workload Anal-
ysis for HPC Systems. In Poster at ISC High Performance Conference (ISC’23). DOI : https://doi.org/10.13140/RG.2.2.
10671.92325

[109] Zhaobin Zhu, Sarah Neuwirth, and Thomas Lippert. 2022. A comprehensive I/O knowledge cycle for modular
and automated HPC workload analysis. In IEEE International Conference on Cluster Computing (CLUSTER’22). IEEE,
581-588. DOI : https://doi.org/10.1109/CLUSTER51413.2022.00076

[110] Laura Zingaretti and Miguel Pérez-Enciso. 2022. Deep Learning for Genomic Prediction (DeepGP). Retrieved from
https://github.com/lauzingaretti/DeepGP

[99

[

[100

[t

[101

—

[102

—

[103

—_

[107

—

Received 18 January 2023; revised 7 September 2023; accepted 26 December 2023

ACM Trans. Storage, Vol. 20, No. 2, Article 11. Publication date: April 2024.

