L)

Check for
updates

An End-to-end High-performance Deduplication Scheme for
Docker Registries and Docker Container Storage Systems

NANNAN ZHAO, Research & Development Institute of Northwestern Polytechnical University in Shen-
zhen, Xi’an, China

MUHUI LIN, Alibaba Group, Hangzhou, China

HADEEL ALBAHAR, Kuwait University, Sabah Al-Salem University City, Kuwait

ARNAB K. PAUL, BITS Pilani, K K Birla Goa Campus, Zuarinagar, India

ZHIJIE HUANG, Northwestern Polytechnical University, Xi’an, China

SUBIL ABRAHAM, Oak Ridge National Laboratory, Oak Ridge, USA

KEREN CHEN, Virginia Tech, Blacksburg, USA

VASILY TARASOV and DIMITRIOS SKOURTIS, IBM Research-Almaden, San Jose, USA
ALl ANWAR, University of Minnesota, Twin Cities Campus, Minneapolis, USA

ALl R. BUTT, Virginia Tech., Blacksburg, USA

The wide adoption of Docker containers for supporting agile and elastic enterprise applications has led to a
broad proliferation of container images. The associated storage performance and capacity requirements place
a high pressure on the infrastructure of container registries that store and distribute images and container
storage systems on the Docker client side that manage image layers and store ephemeral data generated at
container runtime. The storage demand is worsened by the large amount of duplicate data in images. More-
over, container storage systems that use Copy-on-Write (CoW) file systems as storage drivers exacerbate the
redundancy. Exploiting the high file redundancy in real-world images is a promising approach to drastically
reduce the growing storage requirements of container registries and improve the space efficiency of container
storage systems. However, existing deduplication techniques significantly degrade the performance of both
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registries and container storage systems because of data reconstruction overhead as well as the deduplication
cost.

We propose DupHunter, an end-to-end deduplication scheme that deduplicates layers for both Docker
registries and container storage systems while maintaining a high image distribution speed and container
I/O performance. DupHunter is divided into three tiers: registry tier, middle tier, and client tier. Specifically,
we first build a high-performance deduplication engine at the registry tier that not only natively deduplicates
layers for space savings but also reduces layer restore overhead. Then, we use deduplication offloading at the
middle tier to eliminate the redundant files from the client tier and avoid bringing deduplication overhead to
the clients. To further reduce the data duplicates caused by CoWs and improve the container I/O performance,
we utilize a container-aware storage system at the client tier that reserves space for each container and
arranges the placement of files and their modifications on the disk to preserve locality. Under real workloads,
DupHunter reduces storage space by up to 6.9% and reduces the GET layer latency up to 2.8x compared to
the state-of-the-art. Moreover, DupHunter can improve the container I/O performance by up to 93% for reads
and 64% for writes.

CCS Concepts: « Information systems — Distributed storage; Deduplication; « Software and its engi-
neering — File systems management;

Additional Key Words and Phrases: Docker registry, docker storage driver, linux file system, deduplication
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1 INTRODUCTION

Containerization frameworks such as Docker [16] have been widely adopted in modern cloud
environments. This is due to their lower overhead compared to virtual machines [1, 43], a rich
ecosystem that eases application development, deployment, and management [13], and the grow-
ing popularity of microservices [83]. By now, all major cloud platforms endorse containers as a
core deployment technology [5, 31, 35, 55]. For example, Datadog reports that in 2018, about 21%
of its customers’ monitored hosts ran Docker and that this trend continues to grow by about 5%
annually [15].

As the container market continues to expand, the amount of container images grows rapidly.
For example, Docker Hub alone stored over 9 million public images [17] and the image dataset
continues to grow. We believe that this is just the tip of the iceberg and the number of private
images is significantly higher. Other popular cloud public registries [4, 30, 39, 54], as well as on-
premises registry deployments in large organizations, experience a similar surge in the number
of images. As a result, organizations spend an increasing amount of their storage and networking
infrastructure on operating image registries. The storage demand for container images is worsened
by the large amount of duplicate data in images. As Docker images must be self-contained by
definition, different images frequently include the same, common dependencies (e.g., libraries).
Consequently, different images are prone to contain a high number of duplicate files as shared
components exist in more than one image. To reduce this redundancy, Docker employs a layer-
sharing technique, since images are structured in read-only layers. However, this is insufficient
as layers are coarse and rarely identical, because they are built by developers independently and
without coordination. Indeed, a recent analysis of the Docker Hub image dataset showed that about
97% of files across layers are duplicates [90].
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The redundant data across different images not only wastes storage resources and slows down
image distribution for Docker registries but also causes storage inefficiency for container storage
systems on the Docker client side. Moreover, Docker container storage systems that use the Copy-
on-Write (CoW) mechanism further exacerbate this redundancy and impose significant I/O over-
head to containerized applications. The Docker container storage typically leverages union file
systems, such as Overlay? file system [76], which is a shim layer sitting atop backing file systems
(e.g., Ext4 file system) to merge all layers of an image and presents a single file system tree to
the container instance. Since layers are immutable and shared across both images and containers,
Overlay2 simply uses the CoW mechanism, wherein writing to a file in a read-only layer causes
a copy of the whole file being written to a separate, per-container writable layer. The CoW mech-
anism negatively impacts the I/O performance of containerized applications [73]. Furthermore,
the backing file systems, such as Ext4 file system [44, 50], which places and manages all layers of
a container instance unaware of the container instance. Therefore, the backing file systems can-
not differentiate allocations for the same container. Our experiments show that Ext4 places the
writable layer of a container instance far away from the read-only layers, which negatively im-
pacts both locality and I/O performance, especially for HDD-based storage systems (detailed in
Section 3.2).

Deduplication is an effective method to reduce capacity demands of intrinsically redundant
datasets [60]. However, applying deduplication to a Docker registry or container storage system is
challenging. First, layers are stored in the registry as compressed tarballs that do not deduplicate
well [52]. And decompressing layers first and storing individual files incurs high reconstruction
overhead and slows down image pulls. The slowdowns during image pulls are especially harm-
ful, because they contribute directly to the startup times of containers. Our experiments show
that, on average, naive deduplication increases layer pull latencies by up to 98X compared to a
registry without deduplication. Second, applying deduplication on the container storage system
incurs substantial CPU and memory overheads, such as data fingerprint calculations and index
searches, consequently slowing down image pulls and impairing the performance of container
runtime operations.

In this article, we propose DupHunter, an end-to-end deduplication framework to increase stor-
age efficiency for both Docker registry and container storage system while reducing the corre-
sponding overhead. DupHunter is composed of three tiers: registry tier, middle tier, and client
tier. DupHunter first utilizes domain-specific knowledge about the stored data on registry stor-
age system and user access pattern to reduce the impact of layer deduplication on image distri-
bution performance at the Docker registry tier. Then, it exploits the registry’s global knowledge
about layer deduplication to eliminate the redundant files from container storage system by us-
ing deduplication offloading at the middle tier. Moreover, to further mitigate redundant data and
eliminate CoW overhead from container storage system at the client tier, DupHunter uses a novel
container-aware storage system that places all files of a container instance closer and redirects
updates instead of using CoW to preserve locality and speed up I/O performance.

For this purpose, DupHunter offers three key contributions:

(1) DupHunter exploits existing redundancy policies and user access patterns to improve image
distribution performance for Docker registry. It keeps a specified number of layer replicas
as-is, without decompressing and deduplicating them. Accesses to these replicas do not ex-
perience layer restoring overhead. Any additional layer replicas needed to guarantee the de-
sired availability are decompressed and deduplicated. Moreover, DupHunter monitors user
access patterns and proactively restores layers before layer download requests arrive. This
allows it to avoid reconstruction latency during pulls.
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(2) DupHunter deduplicates the container storage system by offloading deduplication to reg-
istries to avoid imposing deduplication overhead on the client side. DupHunter registry only
sends deduplicated layers to clients to eliminate redundant files on the client side, reduce net-
work load, and consequently speed up image pulls and container startups.

(3) DupHunter uses a container-aware storage system to make sure that files of a container
are placed closer on the disk to maintain good locality and speed up container I/O perfor-
mance. The container-aware storage system reserves space for each container during image
unpacking. Changes to the files in the read-only layers are redirected to the preallocated
space instead of performing CoW operations.

We evaluate DupHunter on a six-node cluster using real-world workloads and layers. Du-
pHunter outperforms the state-of-the-art Docker registry, Bolt [48], by reducing layer pull
latencies by up to 2.8X. On the Docker client side, DupHunter can improve the container I/O
performance by up to 93% for reads and 64% for writes. Moreover, DupHunter reduces storage
consumption by up to 6.9%.

2 BACKGROUND AND RELATED WORK

We first provide the background on the Docker registry and container storage system, including
storage drivers and backing file systems, then discuss existing deduplication works.

2.1 Docker Registry

The main purpose of a Docker registry is to store and distribute container images to Docker clients.
A registry provides a REST API for Docker clients to push images to and pull images from the
registry [18, 19]. Docker registries group images into repositories, each containing versions (tags)
of the same image, identified as <repo-name:tag>. For each tagged image in a repository, the
Docker registry stores a manifest, i.e., a JSON file that contains the runtime configuration for a
container image (e.g., environment variables) and the list of layers that make up the image. A
layer is stored as a compressed archival file and identified using a digest (SHA-256) computed over
the uncompressed contents of the layer. When pulling an image, a Docker client first downloads
the manifest and then the referenced layers (that are not already present on the client). When
pushing an image, a Docker client first uploads the layers (if not already present in the registry)
and then the manifest.

The current Docker registry software is a single-node application with a RESTful API The reg-
istry delegates storage to a backend storage system through corresponding storage drivers. The
backend storage can range from local file systems to distributed object storage systems such as
Swift [59] or others [3, 36, 59, 72]. To scale the registry, organizations typically deploy a load bal-
ancer or proxy in front of several independent registry instances [6]. In this case, client requests
are forwarded to the destination registries through a proxy, then served by the registries’ backend
storage system. To reduce the communication overhead between the proxy, registry, and backend
storage system, Bolt[48] proposes to use a consistent hashing function instead of a proxy, distrib-
ute requests to registries, and utilize the local file system on each registry node to store data instead
of using a remote distributed object storage system. Multiple layer replicas are stored on Bolt reg-
istries for high availability and reliability. DupHunter is implemented based on the architecture of
Bolt registry for high scalability.

Registry performance is critical to Docker clients. In particular, the layer pulling performance
(i.e., GET layer performance) impacts container startup times significantly [34]. A number of works
have studied various dimensions of registry performance for a Docker image dataset [6, 9, 34, 70, 76,
89, 90]. However, such works do not provide deduplication for the registry. A community proposal
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Fig. 1. Container storage system.

exists to add file-level deduplication to container images [2], but as of now lacks even a detailed
design, let alone performance analysis. Skourtis et al. [69] propose restructuring layers to optimize
for various dimensions, including registry storage utilization. Their approach does not remove all
duplicates, whereas DupHunter leaves images unchanged and can eliminate all duplicates in the
registry. Finally, a lot of works aim to reduce the size of a single container image [20, 32, 63, 78],
and are complementary to DupHunter.

2.2 Container Storage System on the Docker Client Side

A Container storage system on the Docker client side is composed of a storage driver and a backing
file system. After an image is downloaded from a Docker registry, Docker utilizes a storage driver
(e.g., Overlay2 file system [73]) to store image layers on top of a backing file system (e.g., Ext4 [44]).
Figure 1 shows an example of a container storage stack. Applications inside a container instance
access to a file in a specific layer are sent to the backing file system-Ext4 file system via the storage
driver-Overlay?2 file system.

The purpose of storage drivers is to create a pluggable architecture. During the creation of a
container instance, the storage driver organizes the image layers into a particular stacking order:
when files with the same name exist in multiple layers, only the one in the topmost layer is visible.
In addition, a writable layer is created and stacked at the top as shown in Figure 1. Then, the storage
driver presents the immutable image layers and the writable layer as a single root file system to
the container instance.

Overlay?2 file system. Overlay2 file system is a popular modern union file system and the default
storage driver due to its good performance and simple implementation [16, 79]. To create a con-
tainer from an image, Overlay2 combines a list of image layers (referred to lowerdir) and the
container’s writable layer (referred to upperdir) and presents them as a single directory called
merged. merged is the container mount point, which presents a unified file system view to the
container instance. When the lowerdir and the upperdir contain the same files, the uppdir ob-
scures the existence of the same files in the lowerdir. Any modifications made to the container
are written to the upperdir. For instance, if a file in the lowerdir is opened with a write-mode
flag, then the whole file will be copied up to the upperdir in spite of small changes or no updates
at all.

Ext4 file system. For a container instance, the image layers and the data written inside the con-
tainer are actually stored and managed by the backing file systems. Ext4 is the default file system
for a majority of modern Linux distributions and a commonly used backing file system for Over-
lay2 due to its reliability, stability, scalability, and high performance [16, 44]. To improve the per-
formance of sequential file read/writes and reduce metadata overhead, Ext4 stores the file content
as extents instead of fixed blocks by allocating contiguous blocks for files, wherein each extent
represents a set of logically contiguous blocks within the file and also contiguous on-disk[44]. To
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reduce performance degradation due to fragmentation and maintain locality, Ext4 tries to co-locate
small related files and reserve space for big files that grow. Moreover, Ext4 places all the files in a
directory together to maintain locality. This is because all the files in a directory may be related,
therefore it is useful to place them together.

Related work on container storage system optimizations. Many storage drivers leverage CoW op-
erations to create layers efficiently. A disk block can be shared by multiple files due to block-level
CoWs. Since file access and caching are based on logic file address, reading a block from the disk
multiple times brings multiple redundant copies to the cache. TotalCoW [85], HP-Mapper [33],
and Reference [89] are proposed to reduce redundant cached file blocks due to CoWs. Their meth-
ods include identifying if the requested blocks exist in the page cache, mapping the file (logical)
block to the disk block in the page cache, and so on. These methods focus on improving cache
efficiency for CoWs while our container-aware storage system (detailed in Section 4.4) targets op-
timizing storage efficiency for disks. Therefore, these methods are complementary to our container-
aware storage system.

CAST [84] enables simultaneous CoW operations to avoid the overhead of searching and modi-
fying files. This is due to the fact that when a container modifies a file in the lower layer, Overlay2
will first copy the file into the upper layer and rename the file to the upper layer to hide the cor-
responding file in the lower layer. During the rename operation, Overlay2 uses a global lock to
prevent deadlock. CAST disables the global lock for CoW operations, since the rename operations
do not cause deadlock, consequently improving concurrent CoW performance. Similarly, CAST is
also complementary to our container-aware storage system.

Baoverlay [73] is a block-accessible Overlay file system that provides fine-grained accessibility
to files so that CoW to a file only involves copying a number of blocks rather than the whole
file. For a partial-block write, Baoverlay first writes the new data into the upper layer. Baoverlay
defers the copying of the remaining portions to the future read requests. In this case, Baoverlay can
significantly degrade read performance. Similarly to Overlay? file system, Baoverlay ignores the
data placement and locality for container instances, thus performing inadequately for HDD-based
storage systems.

Related work on container storage system analysis. Many researchers have conducted a compre-
hensive analysis of container storage drivers in different aspects to present the challenges and
projections for future container storage system design. For example, Qiumin Xu et al. [86] com-
pare different container storage drivers and analyze the performance impact among different stor-
age options (e.g., direct attached SSD and NVMT( storage) for deploying Docker containers. Vasily
Tarasov et al. [77] aim to provide the choice of an appropriate storage solution for Docker contain-
ers by analyzing the performance impact of different storage drivers, layers, and devices under
different concurrency levels.

2.3 Deduplication

Data deduplication has received considerable attention, particularly for virtual machine images [37,
40,71, 91]. Many deduplication studies focus on primary and backup data deduplication [26-28, 46,
47, 49, 56, 68, 75, 82, 92] and show the effectiveness of file- and block-level deduplication [53, 74].
To further reduce storage space, integrating block-level deduplication with compression has been
proposed [80]. In addition to local deduplication schemes, a global deduplication method [57] has
also been proposed to improve the deduplication ratio and provide high scalability for distributed
storage systems.

Data restoring latency is an important factor for storage systems with deduplication support.
Efficient chunk caching algorithms and forward assembly are proposed to accelerate data restore

ACM Trans. Storage, Vol. 20, No. 3, Article 18. Publication date: June 2024.



An End-to-End Deduplication Scheme for Docker Container Images 18:7

performance [10]. At first glance, one could apply existing deduplication techniques to solve the
issue of high data redundancy among container images. However, as we demonstrate in detail in
Section 3.3, such a naive approach leads to slow reconstruction of layers on image pulls, which
severely degrades container startup times. DupHunter is specifically designed for Docker registries,
which allows it to leverage image and workload information to reduce deduplication and layer
restore overhead.

Deduplication related work on Docker images. BED [88] provides block-level deduplication for
both the registry and client side. During image pulling, BED client first pulls the image’s block
fingerprint list and calculates the unique block fingerprints based on local block fingerprints, then
downloads the unique block fingerprints. Afterwards, BED client reconstructs the image. The cal-
culation of unique block fingerprints and image reconstruction incur considerable overhead (e.g.,
CPU and memory) on the client side, and consequently slow down image pulling especially when
only a small number of images are been pulled by the client [88].

Gear [22] is a file-level deduplication method for both the registry and client side by using a
special image format—Gear image. Gear image is one of the on-demand remote image formats that
are proposed in References [34, 45] to speedup container deployment. Since Gear images are not
compatible with Docker images, Docker images have to be converted into Gear images and then
pulled by Gear clients. As the amount of Docker images stored in Docker Hub is continuously
increasing, it is infeasible to convert all Docker Hub images to Gear images in advance. If the
requested image has not been converted into a Gear image, then the image has to be first converted
into a Gear image and then pulled by the Gear client. However, the conversion process to the Gear
image format takes considerable time, because it involves file system traversal, file fingerprint
calculations, and Gear image build time, leading to longer container deployment time. Another
drawback of Gear is that it still needs to download the required files during the run phase, which
degrades container running performance.

Our proposed scheme, DupHunter, avoids introducing data deduplication overhead to the client
side as opposed to BED. Also, compared to Gear, DupHunter uses Docker images and does not de-
grade container running performance. Moreover, the DupHunter registry provides multiple differ-
ent deduplication mode options and better space efficiency than Gear. In addition, Gear and BED
focus more on reducing the amount of data transferred during pulling operations. DupHunter
delves deeper into optimizing the efficacy for both Docker registries and Docker container stor-
age systems. For example, the DupHunter registry uses prefetching/preconstruction to speed up
layer pullings and provides various deduplication modes to support a range of uses (detailed in
Section 4.2). The DupHunter client utilizes a container-aware storage system that not only avoids
bringing the redundant data caused by CoWs but also improves data locality for good I/O perfor-
mance (detailed in Section 4.4).

3 MOTIVATING OBSERVATIONS

The need and feasibility of DupHunter is based on four key observations: (1) container images
have a lot of redundancy; (2) container storage system has bottlenecks; (3) existing scalable dedu-
plication technologies significantly increase image pull latencies; and (4) image access patterns
can be predicted reliably.

3.1 Redundant Files Across Layers

Container image layers exhibit a large degree of redundancy in terms of duplicate files. Although
Docker supports the sharing of layers among different images to remove some redundant data
in the Docker registry, this is not sufficient to effectively eliminate duplicates. According to the
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deduplication analysis of the Docker Hub dataset [90], 97% of files have more than one file dupli-
cate, resulting in a deduplication ratio of 2 in terms of capacity. We believe that the deduplication
ratio is much higher when private repositories are taken into account.

The duplicate files are executables, object code, libraries, and source code, and are likely im-
ported by different image developers using package installers or version control systems such as
apt, pip, or git to install similar dependencies. However, as layers often share many but not all
files, this redundancy cannot be eliminated by Docker’s current layer-sharing approach. R-way
replication for reliability further fuels the high storage demands of Docker registries. Hence, satis-
fying demand by adding more disks and scaling out storage systems quickly becomes expensive.

Cross-layer duplicate files. To further study the deduplication characteristics for layers, we an-
alyze a 47 TB image dataset [12] and show the CDF distribution of inter-layer duplicate files
(Figure 2(a)) and CDF of duplicate files across layers (Figure 2(b)). Note that inter-layer duplicate
files are files that are duplicated in more than one layer. As shown in Figure 2(a), less than 0.006%
of layers do not have any inter-layer redundant files, meaning that the majority of layers contain
cross-layer duplicate files. As shown in Figure 2(b), we see that 19% of files and their redundant
copies (if they have) are stored in the same layers. These redundant copies are called intra-layer
duplicate files. The remaining 81% of the files and their redundant copies are scattered in multiple
layers, indicating that the majority of redundant files are cross-layer duplicate files. Although the
Docker client can be configured to avoid downloading redundant layers, it cannot guarantee that
cross-layer redundant files are not repeatedly downloaded, resulting in wasted network bandwidth
and slow layer pulling operations.

3.2 Bottlenecks in the Container Storage System

While containerized applications run independently and are isolated in the containers, they lack
isolation from the operating system. For example, containers share the same backing file system,
therefore files from different containers are interleaved, because the backing file systems does not
differentiate allocations for the same container. Specifically, when Ext4 is used as the backing file
system for Docker, all the layers of an image are first downloaded from Docker registry, then de-
compressed and unpacked to the underlying Ext4 file system. During layer unpacking, Ext4 places
all the files of each layer directory close to each other to maintain locality. Moreover, Ext4 stores
each file contiguously by allocating a single extent for each file. When a container is instantiated
later, an upperdir is then created and stored on Ext4. Since Ext4 lacks the knowledge that the
previously unpacked image layers (i.e., lower layers) and the newly created upperdir belong to
the same container instance, the upperdir and its future containing files are not placed close to
the lower layers.
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Table 1. Deduplication Ratio Versus Increase in GET Layer Latency

Technology | Dedup. ratio, compressed layers | Dedup. ratio, uncompressed layers | GET latency increase w.r.t. uncompressed layers
Jdupes 1 2.1 36X
VDO 1 4 60%
Btrfs 1 2.3 51x
ZFS 1 2.3 50%
Ceph 1 3.1 98X

We used a test case to illustrate the fragmentation of the container storage system using Over-
lay2 as the storage driver and Ext4 as the backing file system (see Section 6 for a more detailed
description of the system setup), as shown in Figure 3. We first launched a container from a fio
image [25] with a lower layer made up of 50 16 KB read-only files, then wrote 4KB data to each file,
which resulted in 50 files first copied to the container’s upper layer and then modified correspond-
ingly. Figure 3 shows how far these two layers are placed on disk. Note that the physical addresses,
measured by using filefrag [24], are the first physical block numbers allocated to the files. Ext4
is not aware that the two layers belong to the same container and should be placed close to each
other, resulting in poor locality. As depicted in Figure 3, the distance between the two layers is
4 GB.

Additionally, exacerbating the fragmentation issue described above, storage drivers that use
CoW file systems suffer from significant CoW overhead. For example, modifying a file in a read-
only layer results in the entire file being copied to the upper layer, leading to high data redundancy
and write penalties [33].

3.3 Drawbacks of Existing Technologies

A naive approach to eliminating duplicates in container images could be to apply an existing
deduplication technique. To experimentally demonstrate that such a strategy has significant short-
comings, we try four popular local deduplication technologies, VDO [81], Btrfs [8], ZFS [87],
Jdupes [38], in a single-node setup and on one distributed solution, Ceph [11], on a 3-node cluster.
The deduplication block sizes are set to 4 KB for both VDO and Ceph, and 128 KB for both Btrf's [8]
and ZFS [87] by default. Table 1 presents the deduplication ratio and pull latency overhead for
each technology in two cases: (1) when layers are stored compressed (as-is); and (2) when layers
are uncompressed and unpacked into their individual files. Note that the deduplication ratios are
calculated against the case when all layers are compressed (the details of the dataset and testbed
are presented in Section 6).

Deduplication ratios. Putting the original compressed layer tarballs in any of the deduplication
systems results, unsuprisingly, in a deduplication ratio of 1. This is because even a single byte
change in any file in a tarball scrambles the content of the compressed tarball entirely [14, 52].
Hence, to expose the redundancy to the deduplication systems, we decompress every layer before
storing it.

After decompression, all deduplication schemes yield significant deduplication ratios. Jdupes,
Btrfs, and ZFS reduce the dataset to about half and achieve deduplication ratios of 2.1, 2.3, and
2.3, respectively. Ceph has a higher deduplication ratio, since it uses a smaller deduplication block
size, while VDO shows the highest deduplication ratio as it also compresses deduplicated data.

It is important to note that for an enterprise-scale registry, a large number of storage servers
need to be deployed and single-node deduplication systems (Jdupes, Btrfs, ZFS, and VDO) can
only deduplicate data within a single node. Therefore, in a multi-node setup, such solutions can
never achieve optimal global deduplication, i.e., duplication across nodes.

Pull latencies. To analyze layer pull latencies, we implement a layer restoring process for each
technology. Restoring includes fetching files, creating a layer tarball, and compressing it. We
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measure the average GET layer latency and calculate the restore overhead compared to GET re-
quests without layer deduplication.

As shown in Table 1, the restoration overhead is high. The file-level deduplication scheme
Jdupes increases the GET layer latency by 36%. This is caused by the expensive restoring process.
Btrfs, ZFS, and VDO show an increase of more than 50X, as they are block-level deduplication
systems, and hence they also add file restoring overhead. The overhead for Ceph is the highest,
because restoration is distributed and incurs network communication.

In summary, our analysis shows that while existing technologies can provide storage space
savings for container images (after decompression), they incur high cost during image pulls due to
slow layer reconstruction. At the same time, pull latency constitutes the major portion of container
startup times even without deduplication. According to Reference [34], pulling images accounts
for 76% of container startup times. This means that, for example, for Btrfs the increase of layer
GET latency by 51x would prolong container startup times by 38x. Hence, deduplication has a
major negative impact on the startup times of containerized applications.

3.4 Predictable User Access Patterns

A promising approach to mitigate layer restoring overhead is predicting which layers will be ac-
cessed and preconstruct them. In DupHunter, we can exploit the fact that when a Docker client
pulls an image from the registry, it first retrieves the image manifest, which includes references to
the image layers.

User pulling patterns. Typically, if a layer is already stored locally, then the client will not fetch
this layer again. We use the IBM Cloud registry workload [6] to analyze the user pulling patterns.
The traces span ~80 days for seven registry clusters: Dallas, Frankfurt, London, Sydney, Develop-
ment, Prestaging, and Staging. Figure 4 shows the CDF of layer GET counts by the same clients. The
analysis shows that the majority of layers are only fetched once by the same clients. For example,
97% of layers from Syd are only fetched once by the same clients. This suggests that, by observing
access patterns, we are able to predict, whether they will pull a layer or not by keeping track of
user access history.

Layer preconstruction. We analyze the inter-arrival time between a GET manifest request and
the subsequent GET layer request. As shown in Figure 5, the majority of intervals are greater than
1 second. For example, 80% of intervals from London are greater than 1 second, and 60% of the
intervals from Sydney are greater than 5 s. There are several reasons for this long gap. First, when
fetching an image from a registry, the Docker client fetches a fixed number of layers in parallel
(three by default) starting from the lowest layer. In the case where an image contains more than
three layers, the upper layers have to wait until the lower layers are downloaded, which delays the
GET layer request for these layers. Second, network delay between clients and registry often ac-
counts for a large portion of the GET latency in cloud environments. As we show in Section 6, layer
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preconstruction can significantly reduce layer restoring overhead. In the case of a shorter duration
between a GET manifest request and its subsequent GET layer requests, layer preconstruction can
still be beneficial, because the layer construction starts prior to the arrival of the GET request.

4 DUPHUNTER DESIGN

In this section, we first provide an overview of the three-tier DupHunter deduplication model
(Section 4.1). We then describe in detail how the end-to-end deduplication is performed and im-
proves performance across the following three tiers: DupHunter registry tier (Section 4.2), Middle
tier (Section 4.3), DupHunter client! tier (Section 4.4).

4.1 Overview

Figure 6 shows the three-tier architecture of DupHunter that comprises a client tier, a middle tier,
and a registry tier. First, DupHunter registry tier is responsible for storing and distributing Docker
images to clients. DupHunter uses a Dedup-engine to mitigate redundant data(Section 4.2). Second,
the middle tier is a logical tier that offloads deduplication from the client tier to the registry tier
to eliminate deduplication overhead for clients (Section 4.3). Third, the client tier is responsible
for fetching images from the registry tier, storing them on the local storage system, and running
Docker containers.

Dedup-engine at registry tier. As shown in Figure 6, Dedup-engine provides different deduplica-
tion modes by performing deduplication and uses prefetch/preconstruct cache to speedup image
distribution(detailed in Section 4.2). The deduplication metadata and user access information are
kept in the database.

Deduplication offloading at middle tier. Deduplication offloading involves both the registry tier
and the client tier as shown in Figure 6 (detailed in Section 4.3). Upon a GET layer request, Dedup-
engine will first deduplicate the requested layer for clients by utilizing the layer deduplication-
related information and user access history, and then send a deduplicated layer to the client. After
receiving the deduplicated layer, the client uses a file remapping technique to share files among
different images and containers.

Container-aware storage system at client tier. DupHunter uses a container-aware storage system
to optimize data layout, reduce the redundant data, and speed up container I/O requests as shown
in Figure 6 (Section 4.4). Upon receiving an image, the container-aware storage system reserves
space for the container instance and places the container data closer for good locality.

!The client refers to Docker’s container-based platform that includes the Docker client and the Docker daemon.
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4.2 Dedup-engine at Registry Tier

As shown in Figure 7, Dedup-engine consists of two parts: (1) a cluster of storage servers, each
exposing the registry REST API for DupHunter clients; and (2) a distributed metadata database for
storing deduplication metadata. Dedup-engine uses three techniques to reduce deduplication and
restore overhead for registries: (1) replica deduplication modes; (2) parallel layer reconstruction;
and (3) proactive layer prefetching/preconstruction.

Replica deduplication modes. For higher fault tolerance and availability, existing registry setups
replicate layers. Dedup-engine also performs layer replication, but additionally deduplicates files
inside the replicas.

A basic deduplication mode n (B-mode n) defines that Dedup-engine should only keep n layer
replicas intact and deduplicate the remaining R — n layer replicas, where R is the layer replica-
tion level. At one extreme, B-mode R means that no replicas should be deduplicated, and hence
provides the best performance but no data reduction. At the other end, B-mode 0 deduplicates all
layer replicas, i.e., it provides the highest deduplication ratio but adds restoration overhead for GET
requests. The remaining in-between B-modes allow to trade off performance for data reduction.

For heavily skewed workloads, Dedup-engine also provides a selective deduplication mode (S-
mode). The S-mode utilizes the skewness in layer popularity, observed in Reference [6], to decide
how many replicas should be deduplicated for each layer. As there are hot layers that are pulled
frequently, S-mode sets the number of intact replicas proportional to their popularity. This means
that hot layers have more intact replicas, and hence can be served faster, while cold layers are
deduplicated more aggressively.

Deduplication in Dedup-engine, for the example of B-mode 1, works as follows: Dedup-engine
first creates three-layer replicas across three servers. It keeps a single layer replica as the primary
layer replica on one server. Deduplication is then carried out in one of the other servers storing a
replica, i.e., the layer replica is decompressed and any duplicate files are discarded while unique
files are kept. The unique files are replicated and saved on different servers for fault tolerance.
Once deduplication is complete, the remaining two layer replicas are removed. Any subsequent
GET layer requests are sent to the primary replica server first, since it stores the complete layer
replica. If that server crashes, then one of the other servers is used to rebuild the layer and serve
the GET request.

To support different deduplication modes, Dedup-engine stores a mix of both layer tarballs and
individual files. This makes data placement decision more complex with respect to fault tolerance,
because individual files and their corresponding layer tarballs need to be placed on different servers.
As more tarballs and files are stored in the cluster, the placement problem gets more challenging.

To avoid accidentally co-locating layer tarballs and unique files, which are present in the tar-
ball, and simplify the placement problem, Dedup-engine divides storage servers into two groups
(Figure 7): a primary cluster consisting of P-servers and a deduplication cluster consisting of D-
servers. P-servers are responsible for storing full layer tarball replicas and replicas of the manifest,
while D-servers deduplicate, store, and replicate the unique files from the layer tarballs. The split
allows Dedup-engine to treat layers and individual files separately and prevent co-location dur-
ing placement. The split is based on deduplication modes. For example, B-mode 0 does not have
P-servers while B-mode 3 does not have D-server. For the remaining modes, the partitioning of
P-servers and D-servers is determined by the intact layer dataset size and the unique file dataset
size. To determine the intact layer size and the unique file dataset size, we can begin by estimating
the rate of data growth using various prediction models [7, 21]. Once we have this information, we
can then estimate the intact layer size and unique file dataset size by leveraging the deduplication
ratios of different deduplication modes. If storage space becomes insufficient for incoming data,
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then we add more servers to the pools. To balance the data among servers, we can use algorithms
designed for data balancing and data distribution in distributed storage systems, such as CHT [41].
This article focuses on the optimization of deduplication techniques, but we plan to research layer
dataset estimation and the partitioning of P-servers and D-servers in the future.

P- and D-servers form a two-level storage hierarchy. In the default case, the primary cluster
serves all incoming GET requests. If a request cannot be served from the primary cluster (e.g., due
to a node failure, or Dedup-engine operating in B-mode 0 or S-mode), then it will be forwarded to
the deduplication cluster and the requested layer will be reconstructed.

Parallel layer reconstruction. Dedup-engine speeds up layer reconstruction through parallelism.
As shown in Figure 7, each D-server’s local storage is divided into three parts: the layer staging area,
preconstruction cache, and file store. The layer staging area temporarily stores newly added layer
replicas. After deduplicating a replica, the resulting unique files are stored in a content addressable
file store and replicated to the peer servers to provide redundancy. Once all file replicas have been
stored, the layer replica is deleted from the layer staging area.

Dedup-engine distributes the layer’s unique files onto several servers (see Section 4.2.1). All
files on a single server belonging to the same layer are called a slice. A slice has a corresponding
slice recipe, which defines the files that are part of this slice, and a layer recipe defines the slices
needed to reconstruct the layer. This information is stored in Dedup-engine’s metadata database.
Each slice can be independently reconstructed at each server in parallel. This allows D-servers
to rebuild layer slices in parallel and thereby improve reconstruction performance. DupHunter
maintains layer and file fingerprint indices in the metadata database.

Predictive cache prefetch and preconstruction. To reduce the layer access latency, Dedup-engine
employs a cache layer in both the primary and the deduplication clusters, respectively. Each P-
server has an in-memory user-behavior-based prefetch cache to reduce disk I/Os. When a GET man-
ifest request is received from a user, Dedup-engine predicts which layers in the image will actu-
ally need to be pulled and prefetches them in the cache. Additionally, to reduce layer restoring
overhead, each D-server maintains an on-disk user-behavior-based preconstruct cache. As with the
prefetch cache, when a GET manifest request is received, Dedup-engine predicts which layers in
the image will be pulled, preconstructs the layers, and loads them in the preconstruct cache (see
Section 4.2.4).

4.2.1 Deduplicating Layers. Dedup-engine maintains a layer index. After receiving a PUT layer
request, Dedup-engine first checks the layer fingerprint in the layer index to ensure an identi-
cal layer is not already stored. If not, then Dedup-engine replicates the layer r times across the
P-servers and submits the remaining R — r layer replicas to the D-servers. Those replicas are tem-
porarily stored in the layer staging areas of the D-servers. Once the replicas have been stored
successfully, Dedup-engine notifies the client of the request completion.

File-level deduplication. Once in the staging area, one of the D-servers decompresses the layer
and starts the deduplication process. First, it extracts file entries from the tar archive. Each file
entry is represented as a file header and the associated file content [29] as shown in Figure 8.
The file header contains metadata such as file name, path, size, mode, and owner information.
Dedup-engine records every file header in slice recipes (Figure 8) to be able to correctly restore
the complete layer archive later (described below).

To deduplicate a file, Dedup-engine computes a file Id by hashing the file content and checks if
the Id is already present in the file index. If present, then the file content is discarded. Otherwise,
the file content is assigned to a D-server and stored in its file store, and the file Id is recorded in
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the file index (Figure 8). The file index maps different file Ids to their physical replicas stored on
different D-servers.

Layer partitioning. DupHunter picks D-servers for new unique files to improve reconstruction
times. For that, it is important that different layer slices are similarly sized and evenly distributed
across D-servers. To achieve this, Dedup-engine employs a greedy packing algorithm. Consider
first the simpler case in which each file only has a single replica. Dedup-engine first sorts the new
unique files and partitions by size. Next, it assigns the largest file to the smallest partition until all
the unique files are assigned. Note that during layer partitioning, Dedup-engine does not migrate
existing shared files to reduce I/O overhead.

In the case where a file has more than one replica, Dedup-engine performs the above-described
partitioning per replica. That means that it first assigns the primary replicas of the new unique files
to D-servers according to the location of the primary replicas of the existing shared files. It then
does the same for the secondary replicas and so on. Dedup-engine also ensures that two replicas
of the same file are never placed on the same node.

Unique file replication. Next, Dedup-engine replicates and distributes the unique file replicas
across D-servers based on the layer partitioning. The headers and content pointers of all files in
the deduplicated layer that are assigned to a specific D-server are included in that D-server’s slice
recipe for that layer. After file replication, Dedup-engine adds the new slice recipes to the metadata
database.

Dedup-engine also creates a layer recipe (Figure 8) for the uploaded layer and stores it in the
metadata database. The layer recipe records all the D-servers that store slices for that layer and
which can act as restoring workers. When a layer needs to be reconstructed, one worker is se-
lected as the restoring master, responsible for gathering all slices and rebuilding the layer (see
Section 4.2.2). Figure 8 shows an example deduplication process. The example assumes B-mode
1 with three-way replication, i.e., each unique file has two replicas distributed on two different
D-servers. The files f1, f2, and f3 are already stored in Dedup-engine, and f1’, f2, and f3’ are
their corresponding replicas. Layer L1 is being pushed and contains files f1-f6. f1, f2,and f3 are
shared files between L1 and other layers, and hence are discarded during file-level deduplication.
The unique files f4, f5, and f6 are added to the system and replicated to D-servers A, B, and C.

After replication, server B contains f2, f5, f1’, and f4’. Together f2 and f5 form the primary
slice of L1 at server B, denoted as L1 :: B :: P. This slice Id contains the layer Id the slices belongs
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to (L1), the node, which stores the slice (B) and the backup level (P for primary). The two backup
file replicas f1’ and f4’ on B form the backup slice L1 :: B :: B. During layer restoring, L1 can be
restored by using any combination of primary and backup slices to achieve maximum parallelism.

4.2.2 Restoring Layers. The layer restoration performance is critical to keep pull latencies low.
Hence, Dedup-engine parallelizes slice reconstruction on multiple nodes and avoids generating
intermediate files on disk to reduce disk I/O.

The restoring process works in two phases: slice reconstruction and layer reconstruction. Con-
sidering the example in Figure 8, restoring works as follows:

According to L1’s layer recipe, the restoring workers are three D-servers: D-servers A, B, and C.
The node with the largest slice is picked as the restoring master, also called layer constructor (A in
the example). Since A is the restoring master it sends GET slice requests for the primary slices
to B and C. If a primary slice is missing, then the master locates its corresponding backup slice by
consulting the layer recipe, slice recipe, and the file index, and sends a GET slice request to the
corresponding D-server.

After a GET slice request has been received, B’s and C’s slice constructors start rebuilding their
primary slices in parallel and send them to A as shown in Figure 9. Meanwhile, A instructs its local
slice constructor to restore its primary slice for L1. To construct a layer slice, a slice constructor first
gets the associated slice recipe from the metadata database. The recipe is keyed by a combination
of layer Id, host address and requested backup level, e.g., L1 :: A :: P. Based on the recipe, the
slice constructor creates a slice tar file by concatenating each file header and the corresponding
file contents; it then compresses the slice and passes it to the master. The master concatenates all
the compressed slices into a single compressed layer tarball and sends it back to the client.

4.2.3 Integrating with Different Redundant Policies. Note that the goal of Dedup-engine is to
provide flexible deduplication modes to meet different space-saving and performance requirements
and mitigate layer restore overhead. The above design of Dedup-engine mainly focuses on file-level
deduplication and assumes layer replication.

To achieve a higher deduplication ratio, Dedup-engine can integrate with block-level dedupli-
cation. After removing redundant files, D-servers can further perform block-level deduplication
only on unique files by using systems such as VDO [81] and Ceph [57]. However, higher dedupli-
cation ratios come with higher layer restoring overhead as the restoring latency for block-level
deduplication is higher than that of file level, as we show in Section 6. This is because to restore a
layer, its associated files need to be first restored, which incurs extra overhead. Furthermore, when
integrating with a global block-level deduplication scheme, the layer restoring overhead will be
higher due to network communication. In this case, it is beneficial to maintain a number of layer
replicas on P-servers to maintain a good performance.

While Dedup-engine exploits existing replication schemes, it is not limited to those. If the reg-
istry is using erasure coding for reliability, then Dedup-engine can integrate with the erasure cod-
ing algorithm to improve space efficiency. Specifically, after removing redundant files from layers,
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Dedup-engine can store unique files as erasure-coded chunks. While Dedup-engine can not make
use of existing replicas to improve pull performance in this case, its preconstruct cache remains
beneficial to mitigate high restoring overheads as shown in Section 6.

A known side effect when performing deduplication is that the loss of a chunk has a bigger
impact on fault tolerance as the chunk is referenced by several objects [67]. To provide adequate
fault tolerance, Dedup-engine maintains at least three copies of a layer (either as full layer replicas
or unique files that can rebuild the layer) in the cluster.

4.2.4  Caching and Preconstructing Layers. DupHunter maintains a cache layer in both the pri-
mary and deduplication clusters to speedup pull requests. The primary cluster cache (in-memory
prefetch cache) is to avoid disk I/O during layer retrievals while the deduplication cluster on-disk
cache stores preconstructed layers, which are likely to be accessed in the future. Both caches are
filled based on the user access patterns seen in Section 3.

Request prediction. To accurately predict layers that will be accessed in the future, DupHunter
keeps track of image metadata and user access patterns in two data structures: ILmap and ULmap.
ILmap maps an image to its containing layer set. ULmap stores for each user the layers the user has
accessed and the corresponding pull count. A user is uniquely identified by extracting the sender’s
IP address from the request. If Dedup-engine has not seen an IP address before, then it assumes
that the request comes from a new host, which does not store any layers yet.

When a GET manifest request r is received, Dedup-engine first calculates a set of image layers
that have not been pulled by the user r.addr by calculating the difference Sy between the image’s
layer set and the user’s accessed layer set:

Sa = ILmap[r.img] — ULmap[r.addr]. (1)

The layers in Sy are expected to be accessed soon. Dedup-engine then fetches the layers in Sp into
the cache.

Cache handling in leveled storage. The introduction of the two caches results in a five-level stor-
age architecture of DupHunter as shown in Figure 10. Requests are passed through the tiers from
top to bottom. Upon a GET layer request, DupHunter first determines the P-server(s) which is (are)
responsible for the layer and searches the prefetch cache(s). If the layer is present, then the request
will be served from the cache. Otherwise, the request will be served from the layer store.

If a GET layer request cannot be served from the primary cluster due to a failure of the cor-
responding P-server(s), then the request will be forwarded to the deduplication cluster. In that
case, DupHunter will first lookup the layer recipe. If the recipe is not found, then the layer has
not been fully deduplicated yet and DupHunter will serve the layer from one of the layer stage
areas of the responsible D-servers. If the layer recipe is present, then DupHunter will contact the
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restoring master to check, whether the layer is in its preconstruct cache. Otherwise, it will instruct
the restoring master to rebuild the layer.

Both the prefetch and the preconstruct caches are write-through caches. When a layer is evicted,
it is simply discarded, since the layers are read-only. We use an Adaptive Replacement Cache (ARC)
replacement policy [51], which keeps track of both the frequently and recently used layers and
adapts to changing access patterns.

4.3 Deduplication Offloading at Middle Tier

The middle tier connects both the client side and the registry side to eliminate duplicate files from
the container storage system and accelerate container deployment. When a GET layer request
r is received, the Dedup-engine utilizes the layer deduplication-related metadata and user access
information to remove the duplicates that have already been stored by user r.addr from layer r.layer.
After that, the deduplicated layer r.layer’ is sent to the user. Consequently, the duplicate files in
the container storage system can be mitigated. Moreover, the amount of data that needs to be
transferred to the users can be reduced.

4.3.1 Removing Duplicate Files from Requested Layer. When a GET layer request r is received,
Dedup-engine first calculates a set of files in layer r.layer that have not been pulled by user r.addr
by calculating the difference Fp between the layer’s file set and the user’s downloaded file set:

Fpn = LFmap|r.layer] — UFmap[r.addr], (2)

where LFmap maps a layer to its containing file set while UFmap stores for each user, the files the
user has downloaded. DupHunter keeps track of layer metadata and user access patterns in LFmap
and UFmap to calculate Fa.

Recall from Section 4.2.4 that DupHunter preconstructs/prefetches layers when a GET manifest
request r is received. If layer r.layer has not been pulled by user r.addr, i.e., r.layer C S (as shown
in Equation (1)), then the files in Fa have not been downloaded by the user. Then, the files in F
will be put into the deduplicated layer.

Next, for file in the layer that has already been stored by the user, ie., file ¢ Fn (Fn =
LFmap(r.layer] N UFmap[r.addr]), we replace it with a reference to the copy of the file existing in
the layer pulled earlier by the user r.addr, and put the reference into the deduplicated layer. Finally,
the deduplicated layer is compressed and sent to user r.addr.

4.3.2 Integrating with Different Deduplication Modes. When deduplication offloading is inte-
grated with B-mode 0, the overhead of layer construction can be significantly reduced, as only a
small deduplicated layer needs to be created.

For the remaining deduplication modes (B-mode 1-3 and S-mode), they maintain at least one
intact layer replica, which enables them to directly send the layer replica to the users without any
layer restoring overhead. However, when deduplication offloading is combined with these four
deduplication modes, it results in a certain amount of overhead in constructing the deduplicated
layer. This is because DupHunter registry first needs to construct a deduplicated layer and then
send it to the users. The process of constructing a deduplicated layer involves decompressing the
requested layer, packing the necessary files, and creating the deduplicated layer. To minimize the
overhead in constructing deduplicated layers, our system, DupHunter, proactively preconstructs
deduplicated layers before receiving a GET layer request. Additionally, we utilize an in-memory
buffer to store the decompressed layers, thereby avoiding disk I/O.

4.3.3  Shared File Remapping. To ensure file operation correctness of the container storage sys-
tem on the client side, DupHunter client utilizes an efficient shared file remapping mechanism to

ACM Trans. Storage, Vol. 20, No. 3, Article 18. Publication date: June 2024.



18:18 N. Zhao et al.

| Container A |

oo B (20 (B3] (@] |

. Shared file mapping
Overlay? file system table
Upper layer
Id | Location | Reference
Lower layer 2 L3
Lower layer 1 ... | L3:../f3 L2:.../r3

il T I [ ayers

Backing file system (Ext4)

Fig. 11. File remapping.

resolve the references in a deduplicated layer and redirect the file accesses correspondingly. During
deduplicated layer unpacking, references are resolved and recorded in a shared file mapping table
as shown in Figure 11. The shared file mapping table stores each unique file’s Id (fingerprint), loca-
tion, and all the references to it. For instance, reference r3 in the deduplicated layer L2 is resolved
in the file path of f3 in layer L3.

In Linux file systems, files are identified and described by an index node, referred to inode, that
stores the file attributes and disk block locations of the file’s data. And directories are like tables
that contain one entry per file (i.e., dentry), containing the file name and the pointer to the inode
of that file. Therefore, before the instantiation of a container, we create dentries that point to the
inodes of associated target files in the corresponding layer directories for the references.

Figure 11 shows an example of file remapping. Before the initiation of the storage driver for con-
tainer A, we insert a dentry f3 in layer directory L2 that points to the inode of file f3 in the backing
file system. This way f3’ points to the same data blocks as f3 as shown in Figure 11. Consequently,
when an application in container A accesses f3 in the merged root file system, the request will be
directed to f3’ in layer L2 and follows to its data blocks in the backing file system.

4.4 Container-aware Storage System at Client Tier

To further reduce the amount of redundant data and eliminate the CoW overhead caused by con-
tainer storage drivers, we change the CoW mechanism in the container storage driver and use a
container-aware storage system to optimize the container data layout on disk.

4.4.1 Container-aware Preallocation. To maintain good locality and keep data for each con-
tainer in close proximity, we utilize a container-aware allocator that is integrated with the backing
file system (i.e., Ext4) to reserve space during image unpacking, before starting each container.

Once the manifest of an image is downloaded, the Dedup-client discloses the mapping of layers
to images in hints to the backing file system so that the backing file system can use this information
to exploit data locality. Disclosure hints describe the container image name and size, its containing
layer names and sizes, and the upper layer name. Here, a layer name indicates the name of the path
that stores the corresponding layer content. The disclosing hints are issued through an I/O-control
(ioctl) system call in our implementation.

When unpacking an image, we allocate additional space beyond the requested amount to accom-
modate new files, modifications to existing files, and other potential changes once the container
is launched. This extra space will be reclaimed when the associated images are deleted, ensuring
efficient use of resources. The size of the preallocated space is related to the uncompressed image
size indicated in the disclosure hints, with larger images receiving a correspondingly larger addi-
tional allocation. To minimize fragmentation, an in-memory preallocation range is maintained for
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each container. However, it is essential to note that users may launch multiple containers from a
single image, which could result in the reserved space being insufficient to hold all new files or
modifications. In such cases, we rely on the vanilla Ext4 allocator to allocate additional space for
the new data.

Figure 12 provides an example of container-aware preallocation for container A, wherein files
within each layer are positioned closer together on the disk during unpacking. Since layers are
immutable, each file contains only one single extent. Additionally, all layers belonging to an image
are also positioned in close proximity to one another, with a reserved space allocated for the upper
layer of the container. After the container is started, data written to the upper layer are stored
within the preallocated reserved space.

4.4.2 Container-aware Redirect-on-Write. To reduce the overhead of CoWs, we use a container-
aware redirect-on-write (ROW) technique that redirects the updates to the read-only files in the
lower layers and stores the updates nearby instead of copying the whole files up into the upper
layer.

The existing CoW mechanism is implemented in the storage driver. For example, in Overlay2,
the CoW mechanism is injected in the Overlay2 open function. If a file in a lower layer is opened
with a write-mode flag, then the whole file will be copied up into the upper layer no matter whether
the file would be updated or not. Instead, we inject our container-aware ROW mechanism in the
backing file system, because the container data is actually stored and managed by the backing file
system.

Figure 13 illustrates an example of the container-aware ROW. The backing file system Ext4 is
divided into an array of data blocks. The rewrites to a data block of file f4 in layer L1 are redirected
to the reserved space for the upper layer. This approach ensures that all data belonging to a con-
tainer is stored in close proximity. After that, f4 in Layer L1 is split into three extents: Extent 0,
an old Extent 1’, and a new Extent 1 that stores the rewrites to Extent 1’. The three extents are all
included in the inode i4 as shown in Figure 13. Extent 0 and Extent 1 constitute a new file that is
stored in the upper layer while Extent 0 and Extent 1’ form a read-only file in the lower layer L1.
Moreover, to speed up file data lookup, the extents are arranged as trees if the number of extents
exceeds a tunable threshold as shown in Figure 13.

Moreover, a new Overlay? file (i.e., Overlay2 inode) in the upper layer is created. As shown
in Figure 13, a new Overlay?2 file f4' is created and is associated with Ext4 file inode i4. During
container-aware ROW, the valid and invalid extent information is recorded in the Ext4 file inode,
allowing it to serve read requests from the container correctly. Note that we need to keep Extent
1" and its reference in the inode i4. This is because layers are shared among images and containers,
therefore other images or containers may access the old extents.
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Write request processing in storage driver. The CoW mechanism in the storage driver is changed
accordingly. Writes to a read-only file in a lower layer will not trigger the CoW mechanism. Instead,
it will invoke the backing file system’s container-aware ROW functions.

The storage driver, such as Overlay2, utilizes virtual inodes known as Overlay2 inodes to inter-
cept the operations on a backing file system like Ext4. An Overlay2 inode contains overlay-specific
metadata and is associated with the actual file’s inode in the backing file system. In the Overlay?2
open function, we disable the CoW mechanism. When there are write requests to a read-only file
in a lower layer, Overlay2 invokes the backing file system’s container-aware ROW functions and
creates a new Overlay2 inode in the upper layer. Note that our modifications to the backing file
system do not impact the behavior of read/write requests from non-containerized applications, as
these applications do not invoke the container-aware CoW functions.

5 IMPLEMENTATION

Our implementation of DupHunter builds upon the Docker registry and container storage system
on the Docker client side, with a focus on the implementation of the three main components:
the Dedup-engine, deduplication offloading, and the container-aware storage system. The Dedup-
engine is implemented in Go by adding ~2,000 lines of code to Bolt [48]. Note that Bolt is based
on the Docker registry [18] for high availability and scalability (see Bolt details in Section 2.1.)
Deduplication offloading is implemented on both Moby [62] and the Dedup-engine. The container-
aware storage system is implemented by modifying both Linux’s Ext4 file system [44] and Overlay2
file system [23].

Dedup-engine implementation. DupHunter Dedup-engine can use any POSIX file system to store
its data and uses Redis [64] for metadata, i.e., slice and layer recipes, file and layer indices, and
ULmap and ILmap. We chose Redis because it provides high lookup and update performance and
it is widely used in production systems. Another benefit of Redis is that it comes with a Go client
library, which makes it easy to integrate with the Docker Registry. We enable append-only file in
Redis to log all changes for durability purposes. Moreover, we configure Redis to save snapshots
every few minutes for additional reliability. To improve availability and scalability, we use three-
way replication. In our setup, Redis is deployed on all nodes of the cluster (P-servers and D-servers)
so that a dedicated metadata database cluster is not needed. However, it is also possible to setup
Dedup-engine with a dedicated metadata database cluster.

To ensure that the metadata is in a consistent state, Dedup-engine uses Redis’ atomicity so that
no file duplicates are stored in the cluster. For the file and layer indices and the slice and layer
recipes, each key can be set to hold its value only if the key does not yet exist in Redis (i.e., using
SETNX [65]). When a key already holds a value, a file duplicate or layer duplicate is identified and
removed from the registry cluster.

Additionally, Dedup-engine maintains a synchronization map to ensure that multiple layer
restoring processes do not attempt to restore the same layer simultaneously. If a layer is currently
being restored, then subsequent GET layer requests to this layer wait until the layer is restored.
Other layers, however, can be constructed in parallel.

Both the metadata database and layer store used by Dedup-engine are scalable and can handle
large image datasets. Dedup-engine’s metadata overhead is about 0.6% in practice, e.g., for a real-
world layer dataset of 18 GB, Dedup-engine stores less than 100 MB of metadata in Redis.

Deduplication offloading implementation. Deduplication offloading is implemented by modifying
both the client side and the registry side. Since the registry is unaware of users’ layer operations
except layer pulling/pushing, such as deleting layer in image deletion operations (i.e., Docker rmi).
Hence, to accurately record the client-side layer set state, DupHunter needs to retrieve client-side
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Table 2. Workload Parameters

Trace | #GET #GET #PUT #PUT #Unique | #Accessed
Layer Manifest | Layer Manifest | Layers Unique

Dataset
Size (GB)

Dal 6,963 7,561 453 23 1,870 18

Fra 4,117 10,350 508 25 1,012 9

Lon 2,570 11,808 582 40 1,979 13

Syd 3,382 11,150 453 15 558 5

layer set changes. To do this, we modify the Docker client module in Moby so that it sends the layer
set changes to Dedup-engine whenever the layer set changes including container instantiation.
Then Dedup-engine will update the corresponding UFmap after the changes are received.

Container-aware storage system implementation. DupHunter’s container storage system uses
Overlay2 as the storage driver and Ext4 as the backing file system in our implementation. The
container-aware RoW is implemented by modifying the allocation strategy in Ext4. In the future,
we plan to implement the container-aware storage system based on other backing file systems,
such as XFS, Btrfs, and so on.

6 EVALUATION

Our evaluation aims to answer two primary questions: first, how effective is our end-to-end dedu-
plication scheme; and second, how does this scheme affect the performance of both the Docker
registry’s layer pulling process and the container storage system.

6.1 Evaluation Setup

Testbed. Our testbed is composed of two clusters: the DupHunter registry cluster and the Du-
pHunter client cluster. The DupHunter registry cluster has six nodes, each equipped with eight
cores, 16 GB of RAM, a 500 GB SSD, and a 10 Gbps NIC. The DupHunter client cluster has ten
nodes, each with 8 cores, 32 GB of RAM, a 500 GB SSD, a 2 TB HDD, and a 10 Gbps NIC.

Dataset. We downloaded 0.93 TB of popular Docker images (i.e., images with a pull count greater
than 100) with 36,000 compressed layers, totaling 2 TB after decompression. Such dataset size
allowed us to quickly evaluate Dedup-engine’s different modes without losing the generality of
results. The file-level deduplication ratio of the decompressed dataset is 2.1.

Workload generation. To evaluate how DupHunter registry performs with production registry
workloads, we use the IBM Cloud Registry traces [6] that come from four production registry
clusters (Dal, Fra, Lon, and Syd) and span approximately 80 days. We use Docker registry trace
player [6] to replay each workload as shown in Table 2. Note that the accessed unique dataset
size in Table 2 is calculated based on the requested layer size in each workload. As the traces do
not contain specific image data and the trace player only generates random layers, we modify the
player to match requested layers in the IBM trace with real layers downloaded from Docker Hub
based on the layer size.Consequently, each layer request pulls or pushes a real layer. For manifest
requests, we generate random well-formed, manifest files.

In addition, our workload generator uses a proxy emulator to decide the server for each re-
quest. The proxy emulator uses consistent hashing [42] to distribute layers and manifests. It main-
tains a ring of registry servers and calculates a destination registry server for each push layer or

ACM Trans. Storage, Vol. 20, No. 3, Article 18. Publication date: June 2024.



18:22 N. Zhao et al.

Table 3. Deduplication Ratio Versus GET Layer Latency

Mode | Deduplication ratio | GET layer performance improvement
B-mode 1 1.5 1.6X
S-mode 1.3 2X
B-mode 2 1.2 2.6X
B-mode 3 1 2.8%
B-mode 0 Dedup ratio GET layer performance degradation
GF-R (Global file-level [three replicas]) ‘
2.1 \ -1.03x
GF+LB-R (Global file- and local block-level [three replicas]) ‘
3.0 \ —2.87X
GB-EC (Global block-level [Erasure coding]) ‘
6.9 \ —6.37X

manifest request by hashing its digest. For pull manifest requests, the proxy emulator maintains
two consistent hashing rings, one for the P-servers, and another for the D-servers in DupHunter
registry cluster. By default, the proxy first queries the P-servers but if the requested P-server is not
available, it pulls from the D-servers.

Schemes. We evaluate DupHunter registry’s deduplication ratio and GET layer (i.e., complete
layer) performance using different deduplication and redundancy schemes in Section 6.2. The base
case considers three-way layer replication and file-level deduplication. In that case, DupHunter
registry provides five deduplication modes: B-mode 0, 1, 2, 3, and S-mode. Note that B-mode 0
deduplicates all layer replicas (denoted as global file-level deduplication with replication or GF-
R) while B-mode 3 does not deduplicate any layer replicas. To evaluate how DupHunter registry
works with block-level deduplication, we integrate B-mode 0 with VDO. For each D-server, all
unique files are stored on a local VDO device. Hence, in that mode DupHunter provides global file-
level deduplication and local block-level deduplication (GF+LB-R). We also evaluate DupHunter
registry with an erasure coding policy instead of replication. We combine B-mode 0 with Ceph
such that each D-server stores unique files on a Ceph erasure coding pool with global block-level
deduplication enabled. We denote this scheme as GB-EC. We compare each scheme to Bolt [48]
with three-way replication as our baseline (No-dedup).

Second, we evaluated the container deployment time and running performance of DupHunter
by enabling deduplication offloading and compared it with Gear [22]. To show the impact of dedu-
plication offloading and on-demand remote image technique on container deployment and run-
ning performance, we disabled our container-aware preallocation and ROW techniques in this
experiment.

Finally, we measured the impact of DupHunter’s container-aware storage system on container
I/O performance by enabling container-aware preallocation and ROW techniques, and compared
it with both Overlay2 [23] and Baoverlay [73] by using HDDs and SSDs as the storage devices,
respectively.

6.2 Deduplication Ratio Versus Layer Pulling Performance

We first evaluate DupHunter registry’s performance/deduplication ratio trade-off for all of the
above described deduplication schemes. For the replication scenarios, we use three-way replication
and for GB-EC, we use a (6,2) Reed Solomon code [61, 66]. Both replication and erasure coding
policies can sustain the loss of two nodes. We use 300 clients spread across 10 nodes and measure
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the average GET layer latency across the four production workloads. Table 3 shows the results
normalized to the baseline.

We see that all four performance modes of DupHunter registry (B-mode 1, 2, and 3, and S-mode)
have better GET layer performance compared to No-dedup. B-mode 1 and 3 reduce the GET layer
latency by 1.6X and 2.8, respectively. This is because the prefetch cache hit ratio on P-servers is
0.98 and a high cache hit ratio significantly reduces disk accesses. B-mode 3 has the highest GET
layer performance but does not provide any space savings, since each layer in B-mode 3 has three
full replicas. B-mode 1 and 2 maintain only one and two layer replicas for each layer, respectively.
Hence, B-mode 1 has a lower performance improvement (i.e., 1.6X) than B-mode 2 (i.e., 2.6X), but
has a higher deduplication ratio of 1.5X. S-mode lies between B-mode 1 and 2 in terms of the
deduplication ratio and performance. This is because, in S-mode, popular layers have three-layer
replicas while cold layers only have a single replica.

Compared to the above four modes, B-mode 0 has the highest deduplication ratio, because all
layer replicas are deduplicated. Consequently, B-mode 0 adds overhead to GET layer requests com-
pared to the baseline performance. As shown in Table 3, if file-level deduplication and three-way
replication are used, then the deduplication ratio of B-mode 0 is 2.1, while the GET layer perfor-
mance is 1.03x slower.

If block-level deduplication and block-level compression are used (GF+LB-R), then the dedupli-
cation ratio increases to 3.0 while the GET layer performance decreases to 2.87x. This is because
of the additional overhead added by restoring the layer’s files prior to restoring the actual layer.
Compared to replication, erasure coding naturally reduces storage space. The deduplication ratio
with erasure coding and block-level deduplication is the highest (i.e., 6.9). However, the GET layer
performance decreases by 6.37%, because to restore a layer, its containing files, which are split into
data chunks and spread across different nodes, must first be restored.

Overall, DupHunter registry, even in B-mode 0, significantly decreases the layer restoring over-
head compared to the naive approaches shown in Table 1 in Section 3.3. For example, DupHunter
registry’s B-mode 0 with VDO (the GF+LB-R scheme) has a GET layer latency only 2.87x slower
than the baseline compared to a the VDO-only scheme, which is 60x slower compared to the base-
line. In addition, the DupHunter registry currently provides five deduplication modes. But, we
believe that DupHunter can provide more modes by combining two redundant policies together.
For example, we decompose S-mode by using two redundant policies: popular layers using three-
way replication, and cold layers using erasure coding. In this case, the DupHunter registry can
achieve a deduplication ratio of 3.3x and a 2.1x performance degradation. In the future, we plan
to implement various deduplication modes for different uses.

6.3 The Impact of Deduplication Offloading

To understand how deduplication offloading accelerates container deployment, we first show the
traffic reduction ratio during layer pulling by enabling deduplication offloading. Then, we com-
pare the container deployment time and running performance improvements for both Gear [22]
and DupHunter compared to Docker [16]. Furthermore, we evaluated the overhead of data dedu-
plication to explain the necessity of offloading deduplication from the client side to the registry
side.

6.3.1 Layer Pulling Speedup.

Network traffic reduction. Figure 14 shows the ratio of the volume of transferred data during
layer pulling operations for Bolt [48] to that of DupHunter, which is called data reduction ratio. Du-
pHunter significantly reduces network traffic for layer pulling operations. On average, DupHunter
reduces the amount of data transferred during layer pulling operations by 3,440x. The majority of
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layers that are transmitted are effectively reduced in size. For example, the sizes of 65% of layers
transferred during layer pulling operations are reduced more than 2X, respectively. The maximum
data reduction reaches 734,530%. Overall, the amount of data transferred can be significantly re-
duced by using deduplication offloading.

Deployment improvements. To measure the deployment improvements by using deduplication
offloading, we experimented using the following setup: We utilize the workload in Reference [22],
which consists of two parts: (1) a collection of the top 50 popular official image series, totaling
0.1 TB, and (2) a test harness for executing the simplest tasks in the container. The dataset has
a file-level deduplication ratio of 2X. We use a single client for both Gear [22] and DupHunter.
During the experiment, the client executes pull and run commands separately, so we can measure
the average time taken for the pull and run phases independently.

Figure 15 shows the pull and run speedup for both DupHunter and Gear [22] relative to Docker.
As shown, the first three schemes are DupHunter deduplication modes, i.e., B-mode 1, S-mode, B-
mode 2-3, and B-mode 0s (GF-R, GF+LB-R, and GB-EC). The rest two schemes—Gear-IC and Gear-
NIC belong to Gear. We evaluated Gear [22] in two scenarios: If the requested image has not been
converted into a Gear image, then the image has to be first converted into a Gear image and then
pulled by the Gear client, which is called Gear with image format conversion (denoted as Gear-IC
as shown in Figure 15); Otherwise, Gear clients can directly pull the Gear image, which is an ideal
scenario for Gear and is referred to as Gear without image format conversion (denoted as Gear-
NIC as shown in Figure 15). The reason for evaluating Gear-IC is the infeasibility of converting all
Docker images to Gear images in advance, especially with the continuous increase of Docker Hub
images.

As shown in Figure 15, Gear without image format conversion can significantly shorten the
pulling time but consumes more time in the run phase. For example, Gear without image format
conversion accelerates pulling performance to 5.2X. But the run time for the two Gear schemes
increases 2.9% on average. This is because Gear uses an on-demand remote image technique that
only downloads a smaller amount of required files that cannot be found locally on demand, signif-
icantly accelerating pulling operations. However, Gear still needs to download the required files
on demand during the run phase, which takes extra time and slows down running performance.
The total amount of data transferred for Gear is 0.02 TB.

The pulling time of Gear with image format conversion increases 6.2X. This is because Gear
image format conversion consumes a lot of time (detailed inSection 2.3), resulting in a longer
container deployment time.

The maximum pulling speedup for DupHunter is 1.9X (i.e., B-mode 1-3 and S-mode). The pulling
time of the remaining three deduplication modes is longer due to deduplicated layer construction
overhead. GB-EC has the longest pulling time but it provides the highest deduplication ratio. Its
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deduplication ratio reaches 6.9%, respectively, while Gear only saves half of the storage space [22].
Furthermore, DupHunter provides equivalent running performance with Docker, since DupHunter
does not fetch files from the registry during the run phase.

Note that deduplication offloading involves constructing deduplicated layers for users. This re-
duces the deduplication overhead on the client side but also leads to an overhead of constructing
the deduplicated layer on the registry side. When the deduplication offloading is integrated with
deduplication mode B-mode 0 (GF-R, GF+LB-R, and GB-EC), the layer construction overhead is
considerably reduced as only a small deduplicated layer needs to be constructed. In the experi-
ment, deduplication offloading reduces the total amount of data being constructed by a significant
margin, resulting in a transfer of approximately 0.05 TB of data, up to a 2X reduction compared to
Docker registry. Additionally, the preconstruct cache can further improve the pulling speed. The
preconstruction cache hit ratio for GF-R, GF+LB-R, and GB-EC reaches 0.95, 0.9, and 0.8. We see
that the pulling speedup for GF-R and GF+LB-R is 1.8 and 1.12x, respectively, while pulling time
increases by 3.3 for GB-EC as shown in Figure 15.

When deduplication offloading is integrated with the rest deduplication modes (B-mode 1-3
and S-mode), it also introduces an additional deduplicated layer construction overhead. With-
out deduplication offloading, these four deduplication modes maintain at least one intact layer
replica, allowing them to directly deliver the layer replica to the users without any layer construc-
tion overhead. However, with deduplication offloading enabled, the Duphunter registry first needs
to construct a deduplicated layer before sending it to users. This involves decompressing the re-
quested layer, packing the necessary files, and creating the deduplicated layer. Nevertheless, the
deduplicated layer construction overhead can be mitigated by reducing the amount of transferred
data and layer preconstruction. The preconstruction cache hit ratio for B-mode 1-3 and S-mode
reaches 0.98. The high preconstruction cache hit ratio is achieved, because the Duphunter registry
has prior knowledge of the layer dataset on the client side, which allows it to preconstruct the
requested deduplicated layers before it receives the GET layer request.

6.3.2 CPU and Memory Overhead Due to Data Deduplication. To justify the necessity of dedu-
plication offloading, we compared CPU and memory overhead for two schemes: (1) Deduplication
offloading scheme: data deduplication is offloaded from the client side to the registry side; (2) Non-
deduplication offloading scheme: data deduplication is conducted on the client side. In this case,
the client performs layer deduplication on its local layer dataset independently to remove the re-
dundant files stored in the layer dataset on the client side. The client iterates over the layers and
performs the following steps: (1) Decompress the layer into individual files; (2) Compute a fin-
gerprint for each file in the layer; (3) Comparing the fingerprints of all files with the file index
to determine if identical files are already stored locally; (4) Store the unique files locally; (5) Up-
date the metadata related to deduplication; (6) Remove the layer from the client. Note that the
main overhead in the deduplication process arises from decompression and file digest calculation,
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which can result in high CPU and memory usage. We measure the CPU (Figure 16) and memory
utilization (Figure 17) on the client side.

CPU consumption. To analyze the CPU overhead because of data deduplication, we measure the
average CPU utilization on the Docker client sides for both the deduplication offloading scheme
(denoted as Offloading in Figure 16) and the Non-deduplication offloading scheme (denoted as
Non-offloading in Figure 16), respectively. As shown in Figure 16, Non-deduplication offloading
scheme introduces considerable computation overhead to the clients. For example, the average
CPU utilization increases from 38% to 92% as the concurrent layer pulling threads increase from 1
to 5. This is because decompression and file digest calculation require a high CPU utilization. The
CPU utilization for the deduplication offloading scheme remains stable and low (around 12%) as the
number of concurrent layer pulling threads increases. This is because the deduplication offloading
scheme offloads the data deduplication from the Docker client side to the Docker registry side,
resulting in negligible CPU overhead on the client side.

Memory consumption. To understand the memory overhead due to data deduplication, we mea-
sure the memory consumption on the Docker client side for both the deduplication offloading
scheme and the Non-deduplication offloading scheme, respectively. As shown in Figure 17, Non-
deduplication offloading scheme consumes significantly more memory than the deduplication
offloading scheme. For example, Non-deduplication offloading scheme consumes 41.4-43.3 GB
memory totally as the concurrent layer pulling threads increase from 1 to 5. This suggests that
the data deduplication process is a CPU-memory intensive workload. While for deduplication of-
floading scheme, the total memory consumption remains stable at 0.28 GB as the concurrent layer
pulling threads increase. This is because the data deduplication is offloaded to DupHunter registry
servers. Consequently, the impact of data deduplication on the clients is negligible.

To sum up, applying deduplication on the client side can introduce significant overhead and
consequently slow down container runtime performance. However, deduplication offloading tech-
nique does not bring overhead to the client side. In our implementation, the registry stores the
layers in staging areas once a layer is pushed by a client, and performs offline distributed layer
deduplication, which ensures that image distribution performance is unaffected.

6.4 Effectiveness of Container-aware Storage System

To understand how DupHunter’s container-aware storage system improves containers’ I/O perfor-
mance, we compared it with Baoverlay and vanilla Overlay2. Specifically, we first launch multiple
fio containers [25] and create a new layer containing 1,000 16 MB files. After that, we commit
the containers as new images and run the newly created images as container instances. We then
randomly rewrite 4 KB of data to each of the first 500 files in the preceding read-only layer for each
container, and measure the write performance. The read performance is measured by randomly
reading 4KB of data from the 1,000 files. Moreover, we conducted experiments both on HDDs and
SSDs to show how DupHunter’s container-aware storage system performs on different storage
devices.

When an HDD is used as the storage device, the container-aware storage system of DupHunter
can significantly improve read and write performance, as shown in Figures 18 and 19. For read
operations, DupHunter shows 75% and 93% performance improvement for one container and five
containers compared to Overlay2 and Baoverlay, respectively. This is because the container-aware
storage system of DupHunter collocates data for each container to improve data locality, which
largely reduces disk seek time for HDDs. For write operations, DupHunter brings 40%—-64% perfor-
mance improvement as the number of containers increases from one to five compared to Overlay2.
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This is because DupHunter only writes a small amount of new data by using RoWs while Overlay2
copies the whole files.

We observe that read performance improvement is much higher than write performance im-
provements. The reason is that RoW operations need to modify metadata in both Overlay2 and
Ext4 file systems, which may cause competition. Compared to Baoverlay, DupHunter shows 17%—
28% write performance improvements as the number of containers increases from one to five. This
is because the container-aware storage system of DupHunter can reduce disk seek time for HDDs
by colocating data.

Unlike HDDs, SSDs have no moving parts, so disk seek time is not an issue for SSDs. When an
SSD is used as the storage device, we observe that DupHunter, Overlay2, and Baoverlay2 show
similar read performance as shown in Figure 20. For write performance, both DupHunter and
Baoverlay show 10%-20% performance improvement compared to Overlay2 as the number of con-
tainers increases from 1 to 5 as shown in Figure 21. This is because both DupHunter and Baoverlay
only write the new data instead of copying the whole files.

In summary, the container-aware storage system of DupHunter exceeds both Overlay2 and
Baoverlay for HDD-based storage systems. When deploying on SSDs, container-aware storage
system performs similarly to Baoverlay and has better write performance than Overlay?2.

6.5 Dedup-engine Cache Effectiveness

Next, we analyze Dedup-engine’s caching behavior. We first study the prefetch cache and then the
preconstruct cache.

6.5.1 Prefetch Cache. To understand how the prefetch cache improves the P-servers’ perfor-
mance, we first show its hit ratio compared to two popular cache algorithms: LRU [58] and
ARC [51]. Moreover, we compare DupHunter’s prefetch cache with another prefetch algorithm,
which makes predictions based on PUT requests [6] (denotes as ARC+P-PUT). Both of these algo-
rithms are implemented on ARC, since ARC outperforms LRU. DupHunter’s prefetch algorithm,
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based on user behavior (UB), is denoted as ARC+P-UB. We vary the cache sizes from 5% to 15% of
each workload’s unique dataset size. Figure 22 shows the results for the four production workloads
(Dal, Syd, Lon, and Fra).

For a cache size of 5%, the hit ratios of LRU are only 0.59, 0.58, 0.27, and 0.10, respectively. ARC
hit ratios are higher compared to LRU (e.g., 1.6X Lon), because after a user pulls a layer, the user is
not likely to repull this layer in the future as it is locally available. Compared to LRU, ARC maintains
two lists, an LRU list and an LFU list, and adaptively balances them to increase the hit ratio.

ARC+P-PUT improves the ARC hit ratio by 1.9% for Lon. However, ARC+P-PUT only slightly
improves the hit ratio for the other workloads. This is because ARC+P-PUT acts like a write cache
that temporally holds recently uploaded layers and waits for the clients that have not yet pulled
these layers to issue GET requests. This is not practical, because the layer reuse time (i.e., interval
between a PUT layer request and its subsequent GET layer request) is long. For example, the reuse
time is 0.5 h for Dal on average based on our observation. Moreover, ARC+P-PUT ignores the fact
that some clients always repull layers. Dedup-engine’s ARC+P-UB achieves the highest hit ratio.
For example, ARC+P-UB’s hit ratio for Dal is 0.89, resulting in a 4.2X improvement compared to
ARC+P-PUT.

As shown in Figure 22, the hit ratio increases as the cache size increases. For example, when
cache size increases from 5% to 15%, the hit ratio for ARC under workload Lon increases from 0.44
to 0.6. ARC+P-UB achieves the highest hit ratio of 0.96 for a cache size of 15% under workload Lon.
Overall, this shows that by exploiting user behavior ARC+P-UB can achieve high hit ratios, even
for smaller cache sizes.

Figure 23 shows the 99th percentile of GET request latencies for P-servers with different cache al-
gorithms. The GET layer latency decreases with higher hit ratios. For example, when the cache size
increases from 5% to 15%, the 99th percentile latencies decrease from 0.19 to 0.15 s for DupHunter’s
ARC+P-UB under workload Dal and the cache hit ratio increases from 0.8 to 0.92. Moreover, when
the cache size is only 5%, ARC+P-UB significantly outperforms the other three caching algorithms.
For example, ARC+P-UB reduces latency by 1.4 X compared to LRU for workload Fra. We also
observe that there is an inconsistency between cache hit ratio improvements and tail latency
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reduction because of the uneven distribution of layer sizes. When the cache size increases, caching
more big-sized layers will result in a significant reduction in tail latency. Otherwise, it will lead to
a moderate reduction in tail latency.

6.5.2  Preconstruct Cache. For the preconstruct cache to be effective, layer (i.e., complete layer)
restoring must be fast enough to complete within the time window between the GET manifest and
GET layer request.

Layer restoring performance. To understand the layer restoring overhead, we disable the pre-
construct cache and measure the average GET layer latency when a layer needs to be restored on
D-servers. We evaluate GB-EC, GB+LB-R, and GF-R and compare it to No-dedup.

We break down the average reconstruction latency into its individual steps. The steps in layer
reconstruction include looking up the layer recipe, fetching and concatenating slices, and transfer-
ring the layer. Fetching and concatenating slices in itself involves slice recipe lookup, slice packing,
slice compression, and slice transfer. No-dedup contains three steps: layer metadata lookup, layer
loading from disk to memory, and layer transfer.

As shown in Figure 24, GF-R has the lowest layer restoring overhead compared to GF+LB-R
and GB-EC. It takes, on average, 0.44 s to rebuild a layer tarball for GF-R. Compared to the No-
Dedup scheme, the GET layer latency of GF-R increases by 3.1x. Half of the GET layer latency is
spent on slice concatenation. This is because slice concatenation involves writing each slice into a
compressed tar archive, which is done sequentially. Slice packing and compression are faster, 0.07
and 0.05 s, respectively, because slices are smaller and evenly distributed on different D-servers.

For the GF+LB-R scheme, it takes 0.55 s to rebuild a layer on average. Compared to GF-R, adding
local block-level deduplication increases the overall overhead by up to 1.4x due to more expensive
slice packing. It takes 0.18 s to pack a slice into an archive, 2.7x higher than GF-R’s slice packing
latency as reading files from the local VDO device requires an additional file restoring process.

The GB-EC scheme has the highest layer restoring overhead. The bottleneck is again slice pack-
ing, which takes 5 s. This is because each file is split into four data chunks, distributed on different
D-servers, and deduplicated. To pack a slice, each involved file needs to be reconstructed from
different D-servers and then written to a slice archive, which incurs considerable overhead.

Preconstruct cache impact. To understand how the preconstruct cache improves D-servers’ GET
layer performance, we first show its hit ratio on D-servers with three deduplication schemes (GF-R,
GF+LB-R, and GF-EC). The cache size is set to 10% of the unique dataset.

Figure 25 shows the preconstruct cache hit ratio breakdown. Hit means the requested layer is
present in the cache while Wait means the requested layer is in the process of preconstruction
and the request needs to wait until the construction process finishes. Miss means the requested
layer is neither present in the cache nor in the process of preconstruction. As shown in the figure,
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GF-R has the highest hit ratio, e.g., 0.98 for the Dal workload. Correspondingly, GF-R also has the
lowest wait and miss ratios, because it has the lowest restoring latency and a majority of the layers
can be preconstructed on time.

Note that the miss ratio of the preconstruct cache is slightly lower than that of the prefetch
cache across all traces. This is because we use an in-memory buffer to hold the layer archives that
are in the process of construction to avoid disk I/O. After preconstruction is done, the layers are
flushed to the on-disk preconstruct cache. In this case, many requests can be served directly from
the buffer and consequently, layer preconstruction does not immediately trigger cache eviction like
layer prefetching. The preconstruct cache eviction is delayed til the layer preconstruction finishes.

GF+LB-R shows a slightly higher wait ratio than GF-R. For example, the wait ratios for GF-R and
GF+LB-R are 0.04 and 0.06, respectively, under workload Syd. This is because the layer restoring
latency of GF+LB-R is slightly higher than GF-R. GB-EC’s wait ratio is the highest. Under workload
Syd, 39% of GET layer requests are waiting for GB-EC as layers cannot be preconstructed on time.

Figure 26 shows the corresponding average GET layer latencies of D-servers compared to No-
dedup. GF-R and GF+LB-R increase the latency by 1.04x and 3.1X%, respectively, while GB-EC adds
a 5X increase. This is due to GB-EC’s high wait ratios.

Scalability. To analyze the scalability of the preconstruct cache under higher load, we increase
the number of concurrent clients sending GET layer requests, and measure the request wait ratio
(Figure 27) and the average wait time (Figure 28).

Under workload Fra and Syd, the wait ratio for GB-EC increases dramatically with the number
of concurrent clients. For example, the wait ratio increases from 15% to 28% as the number of
concurrent clients increases from 50 to 300. This is because the layer restore latency for GB-EC is
higher and with more concurrent client requests, more requested layers cannot be preconstructed
on time. Under workload Lon and Dal, the wait ratio for GB-EC remains stable. This is because
the client requests are highly skewed. A small number of clients issue the majority of GET layer
requests. Correspondingly, GB-EC also has the highest wait time. Under workload Fra and Syd,
the average wait time increases from 0.6 to 1.1 s and 0.4 to 1.4 s, respectively, as the number of
clients increases from 50 to 300 for GB-EC.

Although some layers cannot be preconstructed before the GET layer requests arrive, the pre-
construct cache can still reduce the overhead, because layer construction starts prior to the arrival
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of the GET requests. This is shown by the fact that the wait times are significantly lower than the
layer construction times. For GF-R and GF+LB-R, the average wait times are only 0.001 s and 0.003
s, respectively, under workload Dal. When the number of concurrent clients increases, the aver-
age wait time of GF-R and GF+LB-R remains low. This means that the majority of layers can be
preconstructed on time for both GF-R and GF+LB-R, and the layers that cannot be preconstructed
on time do not incur high overhead.

7 CONCLUSION

We presented DupHunter, an end-to-end high-performance deduplication scheme that provides
high-performance deduplication for both Docker registries and container storage systems. To
deduplicate layers stored in Docker registries, DupHunter supports multiple configurable dedu-
plication modes to meet different space-saving and performance requirements. DupHunter par-
allelizes layer reconstruction locally and across the Docker registry cluster to further mitigate
overheads. By exploiting knowledge of the application domain, DupHunter introduces a novel
layer prefetch/pre-construct cache algorithm based on user access patterns. DupHunter’s prefetch
cache can improve GET latencies by up to 2.8X while the preconstruct cache can reduce the restore
overhead by up to 20.9x compared to the state of the art. Moreover, to deduplicate redundant data
from the container storage system on the Docker client side, DupHunter avoids storing redundant
files on the container storage system and further speeds up layer pulling by using deduplication
offloading. In addition, to eliminate the data duplicates caused by CoW mechanism in the container
storage system, DupHunter uses a container-aware storage system that preallocates space for the
container and makes sure that files in a container and their modifications are placed and redirected
closer on the disk to speedup container I/O performance.

To enable the deduplication offloading scheme, it is required that the registry has knowledge of
the client-side layer dataset information. However, this requirement may raise concerns regarding
data privacy and security when used on cloud platforms. The deduplication offloading scheme
can be used for on-premises infrastructure where one can have complete access to the container
clusters that run DupHunter clients and the storage cluster that runs the DupHunter registry. In
this scenario, the registries can keep track of the layer dataset on the client side, which leads to a
significant improvement in the storage efficiency of Docker images. In the future, our focus will
be on developing a secure deduplication offloading scheme that ensures the protection of data
privacy.
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