ON ¢-INTERSECTING FAMILIES OF PERMUTATIONS

NATHAN KELLER, NOAM LIFSHITZ, DOR MINZER, AND OHAD SHEINFELD

ABsTrRACT. We prove that there exists a constant co such that for any t € N
and any n > cot, if A C S), is a t-intersecting family of permutations then
|A| < (n—t)!. Furthermore, if |A| > 0.75(n —t)! then there exist 1, ...,% and
Ji,---,jt such that o(i1) = j1,...,0(it) = jt holds for any o € A. This shows
that the conjectures of Deza and Frankl (1977) and of Cameron (1988) on
t-intersecting families of permutations hold for all ¢ < ¢on. Our proof method,
based on hypercontractivity for global functions, does not use the specific
structure of permutations, and applies in general to t-intersecting sub-families
of ‘pseudorandom’ families in {1,2,...,n}", like Sp.

1. INTRODUCTION

1.1. Background. A family F of subsets of [n] = {1,2,...,n} is called t-intersecting
if for any A, B € F', we have |[AN B| > t. For t = 1, such families are simply called
‘intersecting’. In 1961, Erdds, Ko, and Rado [16] proved that for any k < n/2, the
maximal size of an intersecting family of k-subsets of [n] is (}'_}), and the maximum
is obtained only for dictatorships, i.e., families of the form {S C [n] : |S| = k,i € S},
for some ¢ € [n]. The Erdgs-Ko-Rado theorem launched a field of research in ex-
tremal combinatorics which studies families of finite sets with various restrictions
on intersections between the sets in the family (see the survey [23]). One of the
central problems in this field is determining the maximal size of a t-intersecting
family F' C U, for various ‘universes’ U.

In the basic setting, where U consists of all k-element subsets of [n], Erdés, Ko,
and Rado showed in [16] that for n > ng(k,t), the maximal size is (}~!), and
asked, what is the minimal number ng(k,t) for which this upper bound holds. This
question was solved by Frankl [20] for all ¢ > 15, and then by Wilson [40] for all ¢:
they showed that the minimal number is ng(k,t) = (k—t+1)(¢ +1). Furthermore,
for all n > ng(k,t), the maximal size is obtained only for ¢t-umuvirates, i.e., families
of the form {S C [n] : |S| = k,T C S}, for some |T| = t. Friedgut [25] and
Ellis, Keller, and Lifshitz [12] obtained stability versions of the theorem, which
assert that if the size of a t-intesecting family is ‘close’ to the maximum possible
size, then it is essentially contained in a ¢t-umvirate. For ¢ = 1 (i.e., intersecting
families), stability versions were obtained much earlier by Hilton and Milner [28] and
by Frankl [21]. The more general question of determining the maximal possible size
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of a t-intersecting family for any triple (n, k,t) was solved in a celebrated theorem
of Ahlswede and Khachatrian [2], which played a central role in applications of
intersection theorems to computer science (see, e.g., [6]).

Extremal problems on t-intersecting families were studied in various other ‘uni-
verses’ U — e.g., for graphs [9], set partitions [39], and linear maps [14]. Arguably,
the most thoroughly studied ‘universe’ (except for k-subsets of [n]) is ¢-intersecting
families of permutations, i.e., families F' C S, such that for any o,7 € F, there
exist i1,...,%4 with o(i;) = 7(¢;) for j =1,...,¢.

In 1977, Deza and Frankl [22] proved an analogue of the Erdgs-Ko-Rado theorem
for permutations: they showed that the maximal size of an intersecting family F' C
Sy, is (n — 1)!, which is obtained for the dictatorship families (S,)i—; = {o € S, :
o(i1) = j}. Showing that dictatorships are the only maximal families, turned out to
be harder. This was conjectured by Deza and Frankl [22]|, but was showed only in
2003 by Cameron and Ku [5] and (independently) by Larose and Malvenuto [36].
For a general t, Deza and Frankl conjectured (in the same paper [22]) that for all
n > no(t), the maximal size is (n —t)!, which is obtained for the t-umuvirate families

(Sn)iv—sjryiv—sje =10 € Sn 1 V1 < j < t,0(i1) = ji }-
Cameron [4] conjectured in 1986 that the t-umvirates are the only maximum-sized
families for all n > ng(t).

The conjectures were open for several decades. Only in 2011, Ellis, Friedgut, and
Pilpel [10] proved that the Deza-Frankl conjecture holds when n is at least double
exponentially large in ¢ (equivalently, when ¢t = O(loglogn)). Ellis et al. [10] also
showed a decoupled version which asserts that if £y, F» C S, are cross t-intersecting,
meaning that for any o € Fy and 7 € Fj there exist i1,...,4, with o(i;) = 7(i;)
for j = 1,...,t, then |Fy||F2| < (n —t)!2, proving (in a strong form) a conjecture
of Leader [37]. The proof of Ellis et al. is quite involved and uses Fourier analysis
on the symmetric group which entails representation theory. Essentially, their idea
was to design a Cayley graph over .S,, whose adjacency matrix has a specific set of
eigenvalues and all of whose independent sets are t-intersecting sets of permutations.
They then employed the Hoffman bound, which upper bounds independent sets in
graphs in terms of their minimal eigenvalue to obtain their result. Roughly at the
same time, Ellis [8] proved that Cameron’s conjecture holds when n is at least
double exponentially large in t. He also showed a stability version, which asserts
that if |F| > (1 —1/e+ o(1))(n —t)!, then F must be contained in a t-umvirate.

As a natural ‘next step’, Ellis et al. [10] conjectured that an analogue of the
Ahlswede-Khachatrian theorem holds for t-intersecting families of permutations.
In particular, they conjectured that for all ¢ < n/2, the t-umvirates are the unique
maximum-sized t-intersecting families in S,, — namely, that the aforementioned
conjectures of Deza and Frankl [22] and of Cameron [4] hold for all n > 2¢. Note
that this bound on ¢ is the maximal possible, as for t = n/2, the family F' C S,
of all permutations that have at least ¢ + 1 fixed points among {1,2,...,¢t + 2} is
t-intersecting and its size is (t+2)- (n—t—1)! = (¢t +1)- (n— ¢ — 2)!, which is larger
than (n —t)! for all n > 8.

The first step toward proving the conjecture of Ellis et al. was obtained by Ellis
and Lifshitz [15] who showed that the conjecture holds for all ¢ = O(lolgolg0 o)
In fact, they showed a stronger result: If no o,7 € F agree on exactly ¢t — 1
elements, then |F| < (n — t)!, and the t-umvirates are the only maximum-sized
families. This setting, called ‘forbidding one intersection’, is considerably harder
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than the t-intersecting setting, and is not fully resolved even for families of k-
subsets of [n] (see [13] for the most recent results on this well-known problem,
called the Erdés-Sos problem). The proof of Ellis and Lifshitz uses the discrete
Fourier-analytic junta method [32], along with a representation-theoretic argument.
The main idea was to employ a dichotomy between a t-umvirate-structure and a
pseudorandomness notion called quasiregularity /globalness. They partitioned the
t-intersecting families into ‘global’ families. They then proved structural results
about the Fourier decomposition of the indicators of global sets, and used these to
obtain their bound.

A major breakthrough was obtained in a recent work of Kupavskii and Za-
kharov [35] who proved that the conjectures of Deza and Frankl [22] and of Cameron
[4] hold for all t = O(m)7 along with a stability version. Kupavskii and
Zakharov proved the same statement also in the harder ‘forbidding one inter-
section’ setting, for all ¢t = O(nl/ 3). Unlike all previous works in this direction
(e.g., [5, 10, 15, 22, 36]), the work of Kupavskii and Zakharov does not use any spe-
cific properties of S,, (and in particular, its representation theory). Instead, they
prove that the conjecture holds for the general setting of ¢-intersecting families in U,
where the ‘universe’ U is a ‘pseudorandom’ sub-family of ( Aj\é), and show that S,, can

be viewed as a ‘pseudorandom’ sub-family of (Ti) The technique of Kupavskii and
Zakharov is called the spread approzimations method. Similarly to [15], Kupavskii
and Zakharov reduce their analysis to the study of global sets. Their method relies
on the recent breakthrough results of Alweiss, Lovett, Wu, and Zhang [3] on the
sunflower problem in place of the Fourier analytic approach of [15].

Much less is known when ¢t may be as large as linear in n. The only result in
this setting so far was obtained by Keevash and Long [31] who proved that for any
€ > 0, there exists 6 > 0 such that if e-n <t < (1 —¢)-n and F C S,, does not
contain two permutations that agree on exactly ¢ — 1 points, then |F| < (n!)'~°.

1.2. Our results. We prove that the conjectures of Deza and Frankl [22] and of
Cameron [4] hold for all ¢t < ¢on, for a universal constant ¢g. Furthermore, we prove
a decoupled version and a stability version. Our main result is the following:

Theorem 1. There exists cg > 0 such that the following holds for allt € N and all
n > cot. Let A, B C S, be cross t-intersecting families. Then:
o |A||B| < (n—1t)12.
o If|A||B] > 0.75(n — t)!2, then there exist i1,...,i; and ji,...,j; such that
A7 B C (Sn)ilﬁjly---,it—)jf,'
e If A= B and |A| > 0.75(n — t)!, then there exist i1,...,i; and ji,...,J:
such that A C (Sn)ii—j1,...ie—ji-

The constant 0.75 was chosen for convenience of the proof, and can be replaced
with any constant larger than 1—1/e (see Remark 10). As was shown by Ellis [8] for
t = 1, the constant 1 — 1/e is optimal. Indeed, if o € S,, is the permutation which
interchanges 1 and n and leaves all other points fixed, A = (Sp)151,...t—¢t U {0},
and B = {7 € (Sp)i1....t—¢ : |TNo| > t}, then A, B are cross ¢-intersecting
and |A||B] = (1 — 1/e — o(1))(n — t)!?. Similarly, B U {o} is t-intersecting and
|IB| = (1 —=1/e —o(1))(n — t)!, which shows that the constant 0.75 in the second
and the third assertions of the theorem cannot be replaced by any constant smaller
than 1 —1/e.
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Our methods can also be used to prove a variant of Theorem 1 in the harder
‘forbidding one intersection’ setting, albeit with a smaller upper bound on ¢:

Proposition 2. Let t,n € N, such that t < cjy/n/logn, where ¢ is an absolute
constant. Let A, B C S,, such that for any 0 € A,7 € B, [oN71| #t—1. Then
|A||B] < (n —t)!2.

As this result is more technical, it will be presented in a future paper [34].

1.3. Our techniques and outline of the proof. Like in the work of Kupavskii
and Zakharov [35] we show that the assertion of the theorem holds for cross ¢-
intersecting families in any ‘pseudorandom’ subfamily of a host space. In their case
the host space is ([7;2]) and in our case the host space is (Z/nZ)". The method is in
the spirit of the Green and Tao [27] philosophy that large subsets of pseudorandom
subsets of a space X behave like large subsets of X. Green and Tao viewed the
primes as a large subset of the pseudorandom ‘almost primes’. Here we view .S,, as
a pseudorandom subset of the Abelian group (Z/nZ)"™. This allows us to employ
an analytical tool from the theory of product spaces known as hypercontractivity
for global functions developed by Keevash et al. [30].
Our proof consists of two main steps:

(1) Cross t-intersecting families have a density bump inside a dictatorship. We
show that if A, B C S, are cross t-intersecting then there exist ,j such
that the relative density of A and B inside the dictatorship (S,);—; is
significantly larger than the density of A and B, respectively.

(2) Upgrading density bump inside a dictatorship into containment in a t-
umuvirate. We show that the first step can be applied sequentially to de-
duce that A, B are essentially contained in a ¢-umvirate (Sp )i, —jy,....ii—4,
for some i1,...,4; and ji,...,j:.

The second step, presented in Section 5, is an inductive argument which requires
incorporating a stability statement as part of the proof.

The first step, which encapsulates the ‘pseudorandomness vs. structure’ philoso-
phy, is the more involved one. Here, we first use a coupling technique to embed our
families into {0, 1}”2, endowed with the biased measure p, (for a value of p that
depends on t), and argue in ({0, 1}"2,up). On the contra-positive, we assume that
A and B (viewed as subfamilies of {0, 1}"2) don’t have a density bump inside a
dictatorship (which is our notion of pseudorandomness), and reach a contradiction.

Our first sub-step is to upgrade this weak pseudorandomness notion to the
stronger notion of globalness presented in [30]. This step, presented in Section 4,
proceeds by constructing restrictions of A and B which are sufficiently large, global,
and cross t-intersecting.

The second sub-step, presented in Section 3, allows using the restrictions of A
and B to obtain a contradiction. We observe that the p,,3 measures of A and
B cannot be ‘too large’, since by the FKG correlation inequality [19], this would
imply that AN B is a ‘too large’ t-intersecting family w.r.t. to p; /3, contradicting
the biased-measure version of the Ahlswede-Khachatrian theorem [18]. We then
complete the proof by presenting a general sharp threshold argument which shows
that if the p, measure of a global subfamily of {0, 1}"2 is not extremely small,
then its f11 Mmeasure is large. This sharp threshold argument relies on the level-d
inequality for global functions, recently proved in [33].
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2. PRELIMINARIES

2.1. Notation. Constants. We use many different constants throughout the paper.
The constants whose values do matter are numbered (e.g., co,...,cs,ng), while the
values of all other constants (like C,C’, g, G) do not matter, and such notations are
re-used between different proofs. All constants are positive.

The ‘measure’ of functions. For a measure space (K, u) and a function f: K —

{0,1}, we denote u(f) := Pr,[f(z) =1].

2.2. The biased measure on the discrete cube. For 0 < p < 1, the biased
measure on {0,1}" is defined by j,(x) = p=i(1 — p)"~2%. We shall use several
classical notions and results regarding functions in L?({0, 1}", p1,).

Fourier expansion. For each i € [n], let x;(z) = \/? if ; =1 and x;(z) =
_\/g if z; = 0. For each S C [n], let xs = [[;cgXi- The set of functions
{Xs}scn is an orthonormal basis of L*({0,1}", ). Hence, any function f €
L2({0 1}", pp) admits a unique representation f = > ¢ f f(S)xs. The coefficients
f(S) are called the Fourier coefficients of f. The level of the coeflicient f( ) is |S],
and we denote by f=¢ the d’th level of f, namely, f=¢ = le' —d f( )X s

In cases where the underlying measure f, is not clear from the context, we denote
the characters by x%.

(g, p)-biased distribution. For 0 < g < p < 1, the (g, p)-biased distribution D(q, p)
is the unique probability distribution on pairs (z,y) € {0,1}" x {0,1}" such that:

(1) All the pairs (x;,y;) are mutually independent.
(2) For all i, we have Pr[z; = 1] = ¢ and Pr[y; = 1] = p.
(3) For all i, we have x; < y; with probability 1.

The marginal distribution on the second coordinate is denoted by D(p,q)(:,y) :=
er{o,l}" D(pv q)(SU, y)

One-sided noise operator. For 0 < ¢ < p < 1, the one-sided noise operator Tj_,, :
L2({0,1}", uy) — L*({0,1}™, up) is defined by T,—,f(y) = E[f(X)], where X is

induced from the distribution D(p,q) via Pr[X = z| = %.

This operator, first introduced in [1], is called a ‘one-sided noise operator’, since
x is a ‘noisy’ version of y obtained by (possibly) changing some coordinates from 1
to 0, and leaving the zero coordinates of y unchanged. (This lies in contrast with
the standard noise operator, in which coordinates may be changed from 0 to 1 as
well).

As was shown in [38, Lemma 1], the one-sided noise operator admits the following
convenient Fourier representation. For f =3¢ f (S)xE,

(2~1) Tq—>pf = ZP‘Slf(S)Xg
S

q(1—p)
p(l—q)"

where p =
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The FKG correlation inequality. We naturally identify elements of {0,1}" with
subsets of [n]. The p-biased measure of a family F' C {0,1}" is > 4. p pp(A4). A
family F' is called monotone if (A€ F)AN(AC B) = (B€F).

A special case of the classical FKG inequality [19] asserts that any two mono-
tone families are non-negatively correlated with respect to any product measure
on {0,1}". In particular, if F,G C {0,1}" are monotone families then for any
0<p<l,

(2.2) pp(F N G) = pp(F)pp(G).

The Ahlswede-Khachatrian theorem. We shall use the biased-measure version of the
classical Ahlswede-Khachatrian theorem [2], proved by Filmus in [18, Theorem 3.1,
Corollary 3.2].

Theorem 3. Let F C {0,1}" be a t-intersecting family. Then for any r > 0, if
o7 <P < g then pp(F) < py(Fir), where Fyp = {S 2 [SO[t+2r]| > t+7}.

In particular, for p = 1/3 (which is the case we will use), the theorem easily
implies the upper bound p,(F) < 0.98".

Indeed, for ¢ = 1, the biased-measure version of the Erdés-Ko-Rado theorem
yields pq/3(F) < 1/3 < 0.98! (see [18, Corollary 3.2]). For t > 2 we have § =
for t = r + 1, and hence, Theorem 3 yields

3r+1 k 3r+1—k
3r+1 1 2
pays(F) < pys(Frane) = > ( k > . (3) <3> .

k=2r+1

_r
t+2r—1

Each term in the sum is at most 1/4 of the previous term, and thus, using the
standard bound (Z) < 2nH(k/n) where H is the binary entropy function, we get

4(3r+1 N2\ 4 e 1\ %!
F)< = = z 2 oH(3)Br+1) (L 9r
s )—3(2r+1) (3> <3> <3 3

4 .
<3 -0.794371 < 2.115-0.501" ! = 2.115 - 0.501% < 0.98¢,
where the last inequality holds since ¢t > 2.

2.3. Restrictions and globalness. Let (K™, u™) be a product measure space,
and let f: K" — {0,1}. For S C [n] and = € K*, the restriction of f obtained by
fixing the coordinates in S to z is denoted by fs_, : K"\S — {0,1}.

For g > 0, a function f is called g-global if for any S C [n] and any z € K, we
have " 151(fs_,2) < g!¥lp™(f). This means that no fixing of coordinates increases
the relative density of f significantly.

g-global restrictions. For any function f : K™ — {0,1} and any g > 0, we may

n—|5|
construct a g-global restriction of f by choosing S, x such that ”ligfs”””) is max-
imal over all the choices of S,z. (If there are several maxima, we pick one of them

arbitrarily.) It is easy to see that fs_,, is indeed g-global, and also satisfies

(2.3) 1N fsma) = g1 w(f),

a fact which we will use several times. When K = p, and ﬁ < g, it’s easy to see
that the restriction S — x must be S — 1, meaning the restriction is obtained by
setting some coordinates to 1.
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Level-d inequality for global functions. We will use the following sharp version of the
level-d inequality for global functions on ({0,1}", 41,,), obtained in [33, Thm. 1.5].

Theorem 4. There exist c1,co > 0 such that the following holds. For any g > 0,
n €N, 0<p<1, and any g-global function f: {0,1}"™ — {0,1}, we have:

d
2 csg**log (upl(f) )

=418 < (12—

for all d < ¢1log(1/pp(f))-

3. GLOBAL {-INTERSECTING FAMILIES ARE SMALL

The extremal families in the classical theorems on ¢-intersecting families, like the
families F; , in the biased Ahlswede-Khachatrian theorem (Theorem 3 above) are
very asymmetric: membership in these families is determined by only a constant
number of coordinates. Thus, it is natural to anticipate that imposing a ‘regularity’
condition on the family will lead to a much stronger upper bound on its possible
size. Results in this spirit were indeed proved in several settings. Ellis, Kalai and
Narayanan [11] showed that whenever k < n/2—w(n)logn/n for any function w(n)

that grows to infinity as n — 0o, the maximum size of a symmetric intersecting
n—1

family of k-element subsets of [n] is o (( b1

)) (while the maximum size of a general

intersecting family of k-element subsets is exactly (7~;) by the Erdss-Ko-Rado
theorem). They also obtained a similar result for symmetric families of subsets of
{0,1}"™ w.r.t. the biased measure p,, for p < 1/2 — w(n) - logn/n. Ihringer and
Kupavskii [29] obtained results in this spirit for regular families of k-element subsets
of [n] (i.e., families in which each element is included in the same number of sets);
those results were recently quantitatively improved by Kupavskii and Zakharov [35].
Eberhard, Kahn, Narayanan, and Spirkl [7] obtained similar results for symmetric
intersecting families of vectors in [m]™.

In this section, we show that for any ¢ and any p < pgy for a constant pg, adding
a globality assumption (which is much weaker than a regularity assumption) is
already sufficient for deducing that a t-intersecting family has a small measure in
({0,117, 1):

As this will be convenient for us in the sequel, we prove a decoupled version of
the statement.

Proposition 5. There exist constants cs,pg > 0 such that the following holds for
any g >0, p <py,n € Nandt € [n]. Let A,B C {0,1}" be g-global, monotone,
and cross t-intersecting. Then

min(p,(A), iy (B)) < €055

To prove the proposition, we need the following sharp-threshold lemma for global
functions:

Lemma 6. There exist constants c3,po > 0 such that the following holds for any

g>0,p<po,n€Nandt € [n]. Let A C {0,1}" be g-global and monotone. If
et 1L

pp(A) >e Y532 then pa3(A) > 0.99".

Proof. Throughout the proof we omit floors and ceilings for brevity. Let 0 < py <

1/3 be a sufficiently small constant (the exact restriction is given below), and let
p < po. Let f =14 € L*({0,1}", pp) and g = 14 € L*({0,1}", p1s3), and let
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T,—1/3 be the one-sided noise operator defined in Section 2. Recall that by (2.1),
if the Fourier expansion of f w.r.t. pu,is f=> ¢ f A(S)xg then

Tyoryaf =D 01 F ()XY,
S

where p = gl/g(ll/_?’;f)’ < 2./p.

Observe that
(31) <Tp—>%f7 1- g> = E(z,y)ED(p,l/S) [f(x)(l - g(y))}

where D(p,1/3) is the (p, 1/3)-biased distribution in which = ~ p,, y ~ /3, and
x <y. As A is a monotone family, we have f(z) = 0 whenever g(y) = 0, and thus,
the right hand side of (3.1) is zero.

Now, assume on the contrary that [ (g9) < 0.99t. We have:

0=(T, 1 f,1—g) = g5 f($)T~9)(5)
S

= (i (1—g) = > p1f(9)3(9),
IS>1
and hence,
(3.2) uo(f) (L —g) = > pIf(S)

[S|=1

We bound from above the absolute value of the RHS. By the Cauchy-Schwarz
inequality,

> i) <D 2 g™ e
d=1

[S1>1
(3.3) .
c1 log(1/pp(f)) 00
= > A2 gl + > P2 - g™,
d=1 d=cy log(1/pp(f))
where ¢ is the constant from Theorem 4.
el L
Let us bound the first summand first. By assumption, we have y,(f) > e by ,

C3t

or equivalently, log ( ( f)) < . Hence, by the level-d inequality for global func-

tions (i.e., Theorem 4 above) for all d < ¢1log(1/py(f)), we have

g2d . d . +d
clded ¢
15700 < ) 2L T

where ¢y is the constant from Theorem 4. Since p < 2,/p, we have

c1log(1/pp(f)) c1log(1/pp(f)) 46203 E - d
SN T Y Mm.”g—db.(m)

d=1 d=1
c1log(1/pp(f))

d

— 1 CC3't

< o) g™ 1000( y )
d=1
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where C' (which may depend on c¢p but not on ¢3) is a sufficiently large constant
such that the last inequality holds.

We further sub-divide the sum into three sub-sums. Note that some of these
sub-sums may be vacuous.

d
e 1 <d < C-cs-t. In this range, we have (1/ C';“) < (0‘23't)d < (C'fj"‘!'t)d.
Thus,

C-c3-t d Cca-t d
B 1 C a1t 1 (C-c3-t)

=d 3 — 2
. < TR

(P9~ 27555 (ﬁ ) <mPllgle 2 1505~

d=1

C-c3-t

< 0. t, €
< pp(f) - 0.995" - =

where the penultimate inequality holds since ||g|l2 = (p1/3(9))*/? < 0.995¢,
and the last inequality holds, provided that cg is smaller than some constant
that depends only on C' (specifically, c3 < bgl% suffices).

d
o C-c3-t<d<4C -c3-t. In this range, we have (W) < 1, and

hence,

4C-c3-t d
_ 1 C-c3-t 1
=d / 3 +
pp(Fllg™ 2 1000 < d ) < pp(f) - 0.995 1000 3C -c3-t

d=C"-c3-t+1

where the last inequality holds, provided that c3 is smaller than some con-
stant that depends only on C' (specifically, c3 < ; suffices).

1
3C maxien{t-0.995%

d
o 4C-c3-t < d < cilog(l/py(f)). In this range, we have <, / C;"t) < (%)d,
and thus,

1 108(1/ 1y (1) . Spent. RN
=5 Bl < — -] <0.001 .
S ml g (x/ : ) <l g 22 (3) <0001

d=4C'"c3-t d=

Combining the sub-sums together, we obtain

c1log(1/up(f))

(3.4) S A2 g2 < 0.003u,(f).
d=1

Now, we bound from above the second summand in (3.3). We have
> PNl - lg™l2 < > pt < 2. perlost/un (1),
d=cy log(1/pup(f)) d=cy log(1/pp(f))
where the last inequality holds provided that p is sufficiently small. (As p < 2,/p,
it is sufficient that p < 1/16).
We claim that

o0

(3.5) S U T g e < 2 pr R () < 0,001, (f).
d=cy log(1/pp(f))
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As p < 2,/p, it is sufficient to show that

9000 1 << 1 )Cllog(u;(f))
,up(f)_ 2\/]3 ,

or equivalently (taking log from both sides):

10g(2000) + log (uif)) < ¢1log (uif)) log (2;13> .

This obviously holds, provided that p is smaller than a constant which depends only
on ci. (Note that yu,(f) is indeed bounded away from 1, since p,(f) < p1/3(g) <
0.99¢ < 0.99, where the first inequality follows from the monotonicity of A and the
second inequality is the assumption we made above).

Combining (3.2), (3.3), (3.4), and (3.5), we get (for all sufficiently small c3, p):

pp(f) - (1= g) < 0.004p,(f).

This yields I (1 —g) <0.004, or equivalently, [ (g) > 0.996, contradictory to the
assumption p1(g) < 0.99¢. O

Proof of Proposition 5. Let A, B be families that satisfy the assumptions of the

proposition, and assume on the contrary that both p,(A) and p,(B) are larger

sl L
than e > 92 where c3,p are the same as in Lemma 6. Applying the lemma

separately to A and B, we get
I (A) > 0.99%, and u%(B) > 0.99".

Since A and B are monotone, it follows from the FKG inequality (specifically,
by (2.2) above) that

/Jé(AﬂB) > M%(A) M%(B) > 0.99%.

Therefore, ANB is a t-intersecting family with 1 (ANB) > 0.98¢, which contradicts
the biased Ahlswede-Khachatrian theorem (Theorem 3 above). (]

4. LARGE CROSS t-INTERSECTING FAMILIES HAVE A DENSITY BUMP INSIDE A
DICTATORSHIP

Informally, a family F in a product probability space (K™, u™) is said to have a
density bump inside a set S C [n] if there exists © € K s.t. u"~15I(Fs_,,) is much
larger than p™(F) — that is, if there exists a restriction which significantly increases
the (relative) measure of the family. In these terms, a global family is a family that
does not admit significant density bumps.

Several major results in analysis of Boolean functions give sufficient conditions for
the existence of a density bump in different settings. (See, for example, the classical
Bourgain’s theorem [24] which asserts that any monotone family in ({0,1}", )
that has a small total influence, admits a density bump inside a small set S, and
its recent sharpening by Keevash et al. [30]). In this section we show a result of
this spirit for large cross t-intersecting families.

Proposition 7. For any k € N and ¢ > 0, the following holds for all n > ng(c, k)

and all t < 5-. Let A,B C S, be cross t-intersecting families. If |A| - |B| >

c-(n—1)!2, then both A and B have a density bump inside a dictatorship, meaning
there exist i1,1i2, j1,j2 s.t. |Ay—j,| > |A]l- £ and |By,_j,| > |B| - £.

n
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Structure of the proof. The proof goes by contradiction. We assume w.l.o.g. that
B does not have a density bump inside a dictatorship and arrive at a contradiction.
Then, the same argument can be repeated with the roles of A, B reversed. The
proof is divided into three cases, according to the size of ¢ (relative to n), and each
case consists of four main steps (or part of them):

(1) Embedding into a convenient space. We embed A, B into a more convenient
probability space — usually, ({0, 1}"2, p) for a properly chosen value of p.
In this step, the goal is to show that the embedding does not affect the
measure of A, B ‘too much’.

(2) Replacing one family by a global family. We replace A by a global restriction
A’ and show that B has a restriction B’ which cross ¢-intersects A’ and is
not too small.

(3) Replacing both families by global families. We replace B’ with a global
restriction B” and show that A’ has a restriction A” which is not too
small, is global, and cross t-intersects B”.

(4) A contradiction to Proposition 5. We show that (A", B”) yield a contradic-
tion to Proposition 5 which asserts that global cross-t-intersecting families
must be ‘small’.

As many of the calculations in the three cases are similar, we present each such cal-
culation in detail at the first time it appears and skip the calculation at subsequent
appearances.

Notation. In the course of the proof, we use measures with respect to different
spaces. To avoid ambiguity, we mark the measure space in superscript. In particu-
lar, 5 (A) and pU»(A) denote the uniform measure of A in S, and in U,, = [n]",
respectively, while uév(;l) and MSC (A) denote the measure of A in ({0, 1}"2 , thp) and

in ({0, 1}["2]\S,Mp), respectively.

Proof. Assume on the contrary that for k, ¢, n,t that satisfy the assumption of the
theorem, we have

(4.1) pS(A) 5 (B) 2 e D s

but B does not have a density bump inside a dictator, meaning that
. k
(4.2) Vi,j |Bi;| < |B|- o

We divide our proof into three cases:

e Case 1 — Large t: logﬁgtgmﬁ;
e Case 2 — Medium t: C(k) <t < 10?{%, where C'(k) depends only on k;
_ . n

o Case 3 — Smallt: t < Mozt
4.1. Case 1 — Large t: bzﬁ <t<nm- ﬁ.
Step 1: Embedding. We embed S, into U,, = [n]" in the standard way (i.e., o goes
to (o(1),...,0(n))), obtaining two cross t-intersecting families A, B C U,,. By the
assumption (4.1), we have

%)

43) ) (B = S (A (B () ze e

nn
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Note that the density bump assumption (4.2) remains the same in U,, as the
embedding affects only the measure of the sets (multiplying it by the same value
for all sets) but not their size.

Step 2: Replacing A by a global family. Let A’ = Ag_,, be a /n-global restriction
of A. We claim that |S| is ‘not too large’. Indeed, by (2.3) and (4.3), we have

12 () > (Vi) (4) 2 e en e
By taking logarithms, we get
log(1/c) + 2n + 2t - log(n) > |S|log(v/n),
which gives:
o g B
n - 1 -log(n) -2k

where the last inequality holds for all n > ng(c, k) since t < 157
Let B’ := Ulyiys#z: VieS) (Bs_y). Clearly, B’ cross t-intersects A’. We claim that
since | S| is not too large, B’ is non-empty. Indeed, by using a union bound, (4.2),

and then (4.4) we have

|B'| = |B| =Y |Bisa,
i€S

(4.4)

= k
> |B|- (1= ~|S]) >0

Step 3’: Reaching a contradiction. Let y € ?’ . Every element in A’ intersects y on
at least ¢ coordinates. Hence, A" C Ujg/= A%/ _,, . By the globalness of A" and a
union bound, we have

o x - GNP n—
pI (At = A < Y A, 1= Y (W (A, ) 0t

|S7|=t |S7|=t
g(t>' Rl (A < 2T/ e (A,

By rearranging and dividing by pU» (A’ ) (Which is non-zero, since A is non-empty),

we get 2" > (y/n)!, which implies ¢ < log(n)’ contradicting our assumption on ¢.

4.2. Case 2 — Medium t: C(k) <t < (n)

Step 1: Embedding. First, we embed S, 1nt0 U, like in Case 1, obtaining A, B C U,.
As we would like to apply Proposition 5, we further embed U, into the space
(({0,1}™)™, up) ~ ({0, 1}”2,up), by setting E(i1,...,in) = (€i,,...,€;,), where e,
is the 4;’th unit vector in {0,1}". For convenience, we use the notation N := n?
hereafter.

Note that the embedding preserves the t-intersection property. In addition, since
the image of the embedding is included in the slice {z € {0,1}" : > x; = n} on
which the p, measure is uniform, the effect of the embedding on the measure of
A, B is multiplication by the same factor. We claim that for p = 1/n, this factor
is at least e~™. Indeed, for each singleton i = (i1, ...,4,) € U, and its embedding
E@) = (€iy,-.-,€i,) € {07 1}V, we have

nn

(n—1)n
a1 1 11 o
ﬂjjov((eilﬂ"wein)) " (1-p) :'(1_) ZT.TZNUn(Z)'e .

By additivity of measure, we get u) (E(A)) > uU»(A)-e™" for any family A C U,,.
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Let A, B c {0,1}" be the embeddings of A, B, respectively. By (4.3) we have
(4.5) py (A) - ph (B) > eV (A" (B) > ¢+ e™*" - n ™2,

Furthermore, the notion of ‘density bump inside a dictatorship’ in the image of F
has exactly the same meaning as in U,,, and hence, by (4.2) we have

(4.6) R B) = (B

Finally, let A, B c {0,1}" be the up-closures of A, B (namely, ={z e {0,1}:
Jy € A,y < z}, and similarly for B). The families A, B are monotone, larger
than A B and cross t-intersecting. The family B does not necessarily satisfy the
‘density bump inside a dictatorship’ property, but we will get over that.

Step 2: Replacing Abya global family. Let A" = Ag_,1 be a g-global restriction
of A, for a value of g that will be determined below. (Note that when we take
a global restriction of a monotone family, we can always assume that we restrict
the coordinates to 1’s and not to 0’s, since restricting a coordinate to 0 can only

decrease the relative measure of the family.)
We claim that |S| is ‘not too large’. Indeed, by (2.3) and (4.5), we have

1> ps (A) > g1 p (A) > gl en=2le .

By the same computation as in (4.4), using the assumption ¢ < 1og( 3 this yields
4.

(47) 8% o
provided that g > go(k) and n > ng(c, k).

Let B’ := BS%O > BS%O We claim that since |S]| is ‘not too large’, B’ is ‘not
too small’. Indeed, by a union bound, (4.6), and (4.7), we have

5 2 1 .
éV(B)>/1’p (BS—>O >Mp Zup i1 >Mp (B) - (1_7‘S|)> MIJ;V(B)-
icS
As 157 (B') > uY (B'), (4.5) yields
g|5|

(48) p (&) (B) = T (A) - ) (B) 2 5 e

Thus, the families A B' we obtain are monotone, cross t- intersecting, ‘not too
small’; and one of them (i.e., A’) is global.

Step 3: Replacing A and B by global families. Let B" = BY, ,, be a g’-global
restriction of B’, for ¢’ that will be determined below. By (2.3) and (4.8), we have

[\

2 S (BY) 2 () (B) 2 (o)) e,

c
2
By the same computation as in (4.7), this yields

n
4.9 S| < —
(19) S1< 5

provided that g’ > g1(g) and n > ng(c, k). .
Let A” := Al,_,,. By a union bound, the globalness of A’, and (4.9), we have

. 1 _
(4.10) g (A") > gy (A =Yy (Af 1) > oy (A) - (=g -p-[S')) = S (A).
€S



ON ¢-INTERSECTING FAMILIES OF PERMUTATIONS 14

As piSPS (A7) > pSt (A7), (4.8) yields

nNe , ~ INe  ~ (g/)ls/l e, ~ c C n _
(4.11) P50 (AT) - pSUSV(BY) = Sy (A gy (B = e,
meaning that A”, B” are ‘not too small’. We claim that A” c {0, 1}[V\(5US") jg
2g-global. As A” is monotone, we only have to show that for any 7' C [n?]\ (SUS’)
we have
S ID(Ay) < (20) TS0 (A).
This indeed holds, as

(4.12)

PSSO (J Y = p(SUSUTY (A < (SO () < gl TS (A

< g™l 205" (A7) < (29)T 155" (A7)

where in the first inequality we used the monotonicity of A’, in the second one we
used its globalness, and in the third one we used (4.10). Hence, the families A" B
we obtain are monotone, cross t- intersecting, ‘not too small’, and G-global, for
G = max{2g,¢'}.

Step 4: Reaching a contradiction by applying Proposition 5 to A", B". By (4.11),
we have

1
—cs3t 1 gy

9

e ~ ’ C —4n —
U;()SUS) (A/'),M;SUS) (B”) Z.e 4 .n 2t > e

n

W

where the second inequality holds for all ¢ > C(g,c3) and n > ng(c, c3,k), by a
calculation similar to (4.4). (Note that as g depends only on k, the condition on ¢
boils down to t > C(k).) Hence, (A", B") contradict the assertion of Proposition 5,
being a pair of large monotone cross t-intersecting families in ({0, 1}V\(595") 1 /n)-
4.3. Case 3 — Small t: t < W The complex part in this case is the embed-
ding step, presented in detail below. The other steps are similar to the correspond-
ing steps of Case 2 and will be presented briefly.

Step 1: Embedding. Unlike Cases 1,2, we do not embed S, into U,,, since this results
in a loss of a factor of 72" in the measure, which we cannot afford in this case.
Instead, we embed S,, directly into the space (({0,1}™)™, up) ~ ({0, 1}”2,;@), by
setting £(0) = (€s(1),- - -»€x(n)); Where e; is the 7’th unit vector in {0,1}". Note
that the embeddmg preserves the t-intersection property.

Let A, B c {0,1}" be the embeddings of A, B, respectively, and let A B C
{0,1}" be the up-closures of A, B (namely, A = = {z € {0, 1}N Jye A,y <z}, and
similarly for B). When convenient, we view A, B, A, and B as families of subsets of
[N], using the natural correspondence between elements of {0,1}" and subsets of
[N]. The families A, B are monotone and cross t-intersecting. We claim that their

biased measure is not significantly less than the measure of A, B (respectively) in
Sh.

10 log(n)
n

Claim 8. In the above definitions, for any p > we have

LiSh(A),  and  pN(B) > SuS(B).

(4.13) p () > 5 >
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Proof of the claim. We define a coupling between (S, 1) and ({0,1}", p1,), in the
following way. We draw x € {0,1}" according to j,, and choose o € S,, such that
E(0) < z coordinate-wise, at uniform distribution from all the prospects. If there
are no prospects, we choose ¢ uniformly from S,,. By symmetry, this is indeed a
coupling between (S,,, i) and ({0, 1}V, u,).

Consider two indicator variables on the coupling probability space:

X(z,0) = 1{x € A}, Y(z,0) =1{c € A}.

Let U C {0,1}" be the up-closure of E(S,). Namely, U = {x € {0,1}¥ : 3o €
Sn, E(0) < z}. Note that by symmetry, the distribution of (o|z € U) is the uniform
distribution on S,,.

Observe that

3 (A) =E(Y |z € U) < E(X|z € U),

where the inequality holds since when we condition on x € U, we have Y < X as
Y =1 implies X = 1. On the other hand,

py (A) = E(X) 2 E(X|z € U) - 1) (U).

Hence, (4.13) will follow once we show that

(4.14) ) (U) >

To see this, consider the natural division of the n? coordinates of {0,1}" into n

consecutive n-tuples Ti,...,T,. For each y = (y',4%,...,y") € {0,1}", we may
define a bipartite graph G, C K, ,, in which the vertices of the left side correspond
to 11, ...,T,, the vertices of the right side correspond to 1,2,...,n, and for each i,
the vertex that corresponds to T is connected to all vertices {j € [n] : y} = 1}.

Observe that if y ¢ U, then G, does not contain a perfect matching.! By
Hall’s marriage theorem, this implies that for some 1 < k < n, there exist k
subsets 1j,,...,T;, such that in G, the vertices of U;“:lTi]. have at most k& — 1
neighbors in total. Taking the minimal k with this property, we may assume that
they have exactly k — 1 neighbors in total. The probability of this event (where
y ~ ({0,1}", u,) is bounded from above by

n
(1 — p)k(n—k+1)
(k B 1) (1-p)

1WWe note that at this point, we can deduce that Pr,n ly € U] < 1/2, and thus, ué,V(U) > %,
P

from the following classical result of Erdés and Rényi [17]: Let Gnon,p C Knn be a random
bipartite graph in which each edge is chosen independently with probability p. Then for any

= w, the probability that Gy, n,p contains a perfect matching tends to 1 as n — oo
(see [26, Theorem 6.1]). For the sake of completeness, we present the proof which is essentially

the same as the proof of Erdés and Rényi.
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Hence, by a union bound we have

11p(U°) < kzn: (Z) (ki 1) (1 = p)k(nktD)

<Z> (k ’ 1> - (1 - wlj;%(ﬂ))“*%

2 1\* 1
<2 k=1 — ) < =,
- " nd) — 2

This proves (4.14), and thus, completes the proof of the claim. O

Returning to the embedding step, we fix p = %g("), embed A and B into
0,1}V, to obtain fl, B, and then we consider the up-closures A, B of /Al, B.
Hp

As was mentioned above, A, B C {0,1}" are monotone and cross t-intersecting.
By (4.1) and (4.13), we have

N(iy. NP € -2t
(4.15) pp (A) - py (B) > yI
Step 2: Replacing A by a global family. Let A’ = Ag_,; be a g-global restriction of
A, for a value of g that will be determined below.
We claim that |S]| is ‘not too large’. Indeed, by the same computation as in the
corresponding step of Case 2 (specifically, (4.7)), we obtain

n
4.1 < —
(4.16) 51< o,

provided that g > go(k) and n > ng(c, k).

Let B’ := Bg_,o. We claim that since |S] is ‘not too large’, B’ is ‘not too small’.
To see this, let B’ := Bg_,o, where by setting the ((i — 1) - n 4 j)’th coordinate to
0 we mean that we look at the embeddings of all permutations o s.t. o(i) # j. By
a union bound and (4.16), we have

|BI.

DO | =

A A - A k
(417) B/ > B =Y _|Bisol 2 |B|- (1~ ~|5]) >
, n
€S
(Note that |B| is the number of elements of B’, viewed as a family of subsets of
[N], and similarly for the other set sizes here.) Let R’ C {0,1}" be the up-closure
of B'. As R_,, = B’, we have

sy — 1Bl ol
pr(B)="F <27

o
%>

'

<dp (R') = 45 (Ris_yo) = 43 (B,

3

where the first inequality is by (4.17), the second inequality is by (4.13), and the
third inequality holds since the coordinates of S are off in B’.
Finally, (4.1) and (4.13) yield

e~ o = 15|
(4.18) us (A (B > T (A) - p(B) >

. 7’L_2t.

el e}

Thus, the families A’, B’ we obtain are monotone, cross - intersecting, ‘not too
small’, and one of them (i.e., A") is global.
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Step 3: Replacing A and B by global families. Let B” = Bl, ., be a g'-global
restriction of B’, for ¢’ that will be determined below. By (2.3) and (4.18), we
have

ne , ~ ’ c, ~ ’ C _
1> S50 (A") 2 (¢)S) g (A = (¢)S1 2o
By the same computation as in (4.7), using the assumption ¢ < ; ( Toa(m)? this yields

1
4.19 S| < —
(119) S1< o
provided that g’ > g1(g) and n > no(c, k). }
Let A” := Al,_,,. By a union bound, the globalness of A’, and (4.19), we have

c 12 (‘ c "’/ / ].
(4.20) g (A") 2 gy (A =D (A ) 2 g (A) - (L= gop-[S7)) = gy (A).
€S

As ' 5 (A > 7 (A"), (4.18) yields

n|s’
(4.21) ,u (Sus’) (A//) (SUS’) (B//) > (g )2‘ ‘,upF(A ) ,LLEC(B/) > TC6 . n,2t7
meaning that A”, B” are ‘not too small’. In addition, by exactly the same argument
as in Case 2 (specifically, by (4.12)), A” c {0, 1}[NI\(595") is 24-global. Hence, the
families A”, B” we obtain are monotone, cross t-intersecting, ‘not too small’, and
G-global, for G = max{2g, ¢'}.
Step 4: Reaching a contradiction by applying Proposition 5 to A", B". By (4.21),
we have

—c3-t- 01 — L

(SUS (A//) SUS) (B//) > E n—2t >e 1015( ) G27
where the second inequality holds for all ¢ > 1 and n > ng(c, c3, k), by a calculation
similar to (4.4). Hence, (A", B") contradict the assertion of Proposition 5, being a

pair of large monotone cross t-intersecting families in ({0, 1}N\(SUS'), K10 log(n)/n)-

5. PROOF OF THE MAIN THEOREM

In this section we present the proof of Theorem 1. We prove a more general
statement, which can be proved more conveniently by induction.

Proposition 9. There exists a constant co > 0 such that the following holds for
any t € N.

(1) For anymn > |co-t], if A, B C S, are cross t-intersecting families, then
AIIBI < (n— )12 - max {42l 1=, 1}

(2) For any n > 2|co - t], if A,B C S, are cross t-intersecting families and
|A||B| > 2(n—1t)!?, then there exist iy, is,..., i and ji,js, ..., ji such that
A, B C (Sn)is—jrsis—sjoriv—je- If in addition, A = B, then the same
assertion holds under the weaker assumption |A| > 3(n — t)!

Assertion (2) of Proposition 9 implies Theorem 1.
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Remark 10. We note, as will be apparent from the proof, that the constant % in the
‘stability’ statement (both for general A, B and for A = B) can be replaced by any
constant larger than 1 — 1/e, provided that the constant cy is adjusted accordingly.

Proof. We prove that the proposition holds with

2
(5.1) Co > max {no <3,50) ,500} ,

where ng is as defined in the statement of Proposition 7. We prove Assertion (1)
of the proposition by induction on ¢t and n. In the induction step we assume
that Assertion (1) holds for all (#',n’) such that either (¢ < ¢) A (cot’] < n’) or
(t' =t) A (leot] < n' < n) and prove Assertion (1) for (¢,n). Assertion (2) will
follow easily from the proof of Assertion (1), as we will show at the end of the proof.

Induction basis. In the basis case, we have to show that for any ¢t € N, Assertion (1)
holds for n = |¢pt]. That is, we have to show that if n = |¢ot| and A, B C S, are
cross t-intersecting families, then |A||B| < 4™(n — t)!2.

We may assume that A, B # ). Let f € A. Every element g € B agrees with f
on at least ¢t coordinates (when we view them as elements of [n]™). For each choice
of ¢t coordinates, there are at most (n — t)! elements of S,, which agree with f on
those t coordinates. Hence,

B| < (;‘) (=) < 2"(n— ).

By the same argument, we have |A| < 2"(n — t)!, and thus, |A||B| < 4"(n — t)!?,
as asserted.

Induction step. The proof of the induction step consists of two steps:

(1) Both families are almost contained in the same dictatorship. We show that
assuming the induction hypothesis, we can ‘upgrade’ Proposition 7 to show
that both A and B are almost fully contained in the same dictatorship
(Sn>i—>j'

(2) Bootstrapping. We show that the first step can be applied repeatedly to
show that both A and B are almost fully contained in the same ¢t-umvirate
(Sn)i1—sji,....i.—j.» and deduce Assertion (1) for (¢,n) from this structural
result.

Step 1: Both families are almost contained in the same dictatorship. We
prove the following.

Claim 11. Let ¢y > max {no (%, 50) ,500}, where ng is as defined in the statement
of Proposition 7. Let t € N and let n > |cot|. Assume that Assertion (1) of
Proposition 9 holds for all (t',n’) such that either (t' < t) A (|cot’] < n') or (t' =
t) A (leot] <n’ <n). Let A,B C S, be cross t-intersecting families such that

2
(5-2) A[B] > r(n, ) - 2 (n = 1)1,

where r(n,t) = max {42l%0t)=" 1} Then there ezist i, € [n] such that

7 7
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Proof of the claim. By Proposition 7, applied with ¢ = 2 and k = 50, A has a
density bump into a dictator, meaning w.l.o.g. that

-|A
(5.4) |A1i| = LH, for some a > 50.
n

Note that Proposition 7 can be indeed applied to A and B, since the condition on
co guarantees that the hypotheses n > ng(c, k) and ¢t < 5 of the proposition are
satisfied.

For each j # i, the families A;_,;, Bi_,; C [n]™ are cross ¢-intersecting. We can
view both families as residing in ‘copies’ of S,,_1 by viewing the restrictions of all
elements of Ay_,;, B1_,; to the domain {2,3,...,n}. (Note that the set of bijections
between {2,3,...,n} and [n] \ {¢} is clearly isomorphic to S,_1). Furthermore, we
can view those ‘copies’ of S,,_1 as the same copy, by renaming the element j in the
range of Aj_,; to ¢ (which does not affect the t-intersection property). Hence, we
can apply the induction hypothesis to A;_,;, B1—; to deduce

|A1_>1'HB1_>J'| S r(n - 1,t) . (n —t— 1)'2
Using a union bound and noting that r(n — 1,t) < 4r(n,t), we get
a
(5:5) —|Al|Uji (Bioj)l = [Arsill Ujei (Bio)l < (n = 1) - dr(n, 1) - (n— ¢ = )12,

Equation (5.5) allows obtaining a lower bound on |Bj_;|. Indeed, by combin-
ing (5.5) with the assumption (5.2), we have

§ -r(n,t)(n — )1 <|A[ - [B| = |A]- (| Ujss (Bisj)| + [Bisil)
<Al Bioil + = - dr(n,t)(n = 1) - (n—t = 1)P,
and consequently,
r(n,t)(n —t — 1)1 |2 (n — )2 - 2n2=l)
Al

(Note that 2 - (n —t)? — W > 0, since n > |500¢] and a > 50).

Now, we obtain an upper bound on |U;-; (A1-;)|. By applying the argument we
used to obtain (5.5) with the roles of A, B reversed, we have |Bi_;||U;z; (Ai15;)| <
(n—1)-4r(n,t) - (n —t — 1)!?. Combining this with (5.6), we get:
(n—1)-4r(n,t)-(n—t—1)1%-]4]

r(n,t)(n =t = 1)2- [2 - (n - 12 - 220=0]7

| Ujzi (A1s)| <

and consequently,

Ui Al An—1)

5.7 < .
o0 4] 2 (n—ty2 - dnll)

Al Y Al An—1)

Al Al T 2. (p—g)2 - Al

Writing (5.8) as a quadratic inequality in the variable a (viewing n and ¢ as param-
eters) and solving it, we obtain

azg.(ux/l) or a§g~(17\/g),

Equation (5.7) allows us obtaining an inequality involving only ¢,n, and a:
a
n

(5.8)
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where A = 1 — 24(”%2 We claim that the latter is impossible. Indeed, as we

assume c¢p > 500 (see (5.1)), we have n > ¢ot > 500t > 500, and thus,

25 100
59) VA=, [1- >4 /1- 21—,
( 2—\/ (4991 /500) n n

Hence, a < 3 ) would imply

U—%M<ZO—@—€%)=M

2
in contradiction to (5.4). Therefore, we have

g (1+\F)>< <1120)>n507

or equivalently,

(5.10) Lmﬁ”><1—)LA

To see that an even stronger statement holds for Bj_,;, we combine (5.2), (5.5),
and (5.10) to get

|Bisil | Ujzi (Bisj)|  [A1sal| Ujzs (Bisy)]

BT B T AL
(n—1)-4r(n,t)(n —t —1)1* 6n(n—1)
- (1—%)1"(71,15)%(11—15)!2 ~ (n—50)(n—1t)2
< 6n2 < z
~ (n—n/10)(n — n/500)2 ~ n

where the penultimate inequality holds since n > 500t > 500 by (5.1). Conse-
quently, we have |Bi_,;| > (1 — I)|B|, and by the same argument with the roles of
A, B reversed, we have [A;_,;| > (1 — I)|A| as well. This completes the proof of
the claim. O

Step 2: Bootstrapping. Recall that we assume that Assertion (1) of Proposi-
tion 9 holds for all (¢',n’) such that either (¢’ < t)A(|cot’] < n')or (¢ = t)A(|cot] <
n’ < n), and we want to prove Assertion (1) for (¢,n).

Let A, B C S, be cross t-intersecting families such that |A||B| > r(n,t)(n —t)!?.
Assuming that ¢q satisfies (5.1), we may apply Claim 11 to deduce that there exist
i1,71 € [n] such that

7 7
G0 Aol z WA (1= 1), ad (Bl 218 (1- ).

Due to the assumption |A||B| > r(n,t)(n — t)!2, this implies
7\’ 2
Ao l1Biion 2 (1= 1) vt =0 > 2 st — 2
The families A;, ,;,, B, —j, are cross (¢t — 1)-intersecting, and may be viewed as

subfamilies of the same copy of S,_;. Hence, we may apply Claim 11 to these
restrictions, to deduce that there exist iz, j2 € [n] such that

7 7
[Aiioiussoonl 2 Aol (1= 1) and |Bicsg sl 2 [Baol (1- 1)
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and
7 ! 12 2 12
|Ai1ﬁj1,i2ﬁj2‘|Bilﬂj1,izﬁj2| > (1- E T(?’L, t)(n - t)' > g -r(n,t)(n - t)' :

(Note that the claim can indeed be applied again, as r(n — 1,t — 1) < r(n,t),
((n—=1)—=(t—=1)! = (n—1t)!, and the inductive hypothesis for (¢t — 1,n — 1)
is included in the inductive hypothesis for (¢,n)). Since by (5.1) and Bernoulli’s
inequality,

2t 2t
7 7 7 2
12 1-5) >(1--2) >1- - @)y=0972> %
(5:12) ( n) < 500t> 21— 5opr - (20 = 0972> 3,

we may apply Claim 11 again and again ¢ times, to deduce that there exist i1, ..., %
and ji,...,Jj: such that forany 1 </ <t —1,

7
(5.13) | Aiy 1o —dess | = [Aii—ga i (1 - n) ;

and similarly for B. By a union bound, (5.11) and (5.13) imply that

610 Wil 2 4110 D) 2141 (1= ¢ o) > 09814,
and similarly for B. In words, this means that both A and B are almost fully
included in the t-umvirate (Sy)i,—j,,...i,—j,- We now show that they are fully
contained in that t-umvirate.

Assume that there exists g € B\ (Sn)iy—j1,....ii—j,- As A and B are cross t-
intersecting, any f € A; ;.. i,—;, agrees with g on at least ¢ coordinates. By
assumption, such f, g can agree on at most t — 1 among the coordinates i, ..., 1%,
and hence, for each element f € A; _,;, . i, —;,, there exists ¢ & {i1,...,4:} such
that f(i) = g(i). However, for any g, there are at least |1(n — t)!] elements of
(Sn)ir—ji,....is—j, Which do not agree with g on any i ¢ {iy,..., %} (as this number
is clearly no less than the number of permutations on n — t elements that have no
fixed points), and hence,

.....

.....

1
(i < (1= D)0 -0

Therefore,
100\ ”
41181 < (5 ) Moo 1B
(5.15)
< (B o[- by o] <002
S n ! c n ! n 1<,

in contradiction to the assumption |A||B| > r(n,t)(n — t)!%.

We assumed that there exists g € B\ (Sn>i14>j1,...7it4>jt and reached a contra-
diction. This implies that B C (Sy)iy—ji,....i,—j,- By the same argument with
the roles of A, B reversed, we obtain A C (Spn)i;—j.....ii—j,- Lhis completes the
inductive proof of Assertion (1).
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Proof of Assertion (2). The first part of Assertion (2) follows immediately from the
proof of Assertion (1), by considering (¢,n) such that n > 2|c¢ot] and two cross
t-intersecting families A, B C S, such that |A||B| > 3(n — t)!? and applying to
them Step 2 of the proof (namely, the ‘bootstrapping’ step) verbatim. Note that

as in the proof of Assertion (1), we can apply Claim 11 ¢ times sequentially; the

condition which corresponds to (5.12) is satisfied since 0.972- 3 > 2

The second part of Assertion (2) (i.e., the case A = B) follows by noting that in
this case, (5.15) can be replaced by

s () ((-2) o) < () o

which implies |A4| < %(n —t)!, yielding a contradiction. This completes the proof
of the proposition. O
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