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—— Abstract

We study parallel repetition of k-player games where the constraints satisfy the projection property.
We prove exponential decay in the value of a parallel repetition of projection games with a value
less than 1.
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1 Introduction

We study k-player one-round games and the effect on the value of the game when we repeat
the game in parallel.

In a k-player game G, a verifier chooses k questions (z', 22, ..., 2%) from a distribution u
on the set of questions X; x Xy x ... x X}, and sends z? to player i. Player i responds to the
verifier’s question by sending an answer a’ € A; without communicating with the other players.
The verifier accepts the answers based on a fixed predicate V((z!, 22,...,2%), (a*,a?, ..., a")).
The value of the game, denoted by val(G), is the maximum, over the players’ strategies,
accepting probability of the verifier.

The n-fold parallel repetition of G, denoted by G®", is defined as follows. The verifier
sends questions ¥ = (2%, x%,...,2%) to the k players where for each j € [n], (le, x?, ... ,x?)
is sampled from the original distribution p independently. The i** player responds with
answers @' € A}. The verifier accepts the answers iff V((z},27,...,2%),(a},a3,...,ak)) =1
for each j € [n].
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If val(G) = 1, then it is easy to observe that val(G®™) is also 1. Also, val(G®") > val(G)"
as the players can achieve value val(G)" in the game G®" by simply repeating an optimal
strategy for the game G independently in all the n coordinates. The question of interest is
how does the quantity val(G®™) decay with n if the value of the game G is less than 1?7

Verbitsky [30] showed that for any k-player game G, if val(G) < 1, then val(G®") < ﬁ
where «(n) is an inverse Ackermann function. This result uses the Density Hales-Jewett
Theorem [15, 27] as a black box. For 2-player games, Raz [29] showed that if val(G) < 1, then
val(G®") < 279" where we use Q¢(+) to clarify that the constant depends on the game
G. There have been many improvements that improve the constants in the bounds, and even
get better bounds based on the value val(G) of the initial game [21, 28, 12, 7]. These results
on parallel repetition of 2-player games have found many applications in probabilistically
checkable proofs and hardness of approximation [4, 13, 23].

Mittal and Raz [26] showed that a strong parallel repetition theorem (i.e., the value of
G®" decays exponentially in n in a certain strong sense) for a particular class of more than
2-player games implies super-linear lower bounds for Turing machines in the non-uniform
model. For any k > 2, Dinur, Harsha, Venkat, and Yuen [10] showed that for a large class of
k-player games, called the connected games, the exponential decay indeed holds. The class of
connected games is defined as follows: define the graph H¢, whose vertices are the ordered
k-tuples of questions to the k-players, and there is an edge between questions ¢ and ¢’ if they
differ in the question to exactly one of the k players, and are the same for the remaining
k — 1 players. The game is said to be connected if the graph H¢ is connected.

A special 3-player (non-connected) game, called the GHZ Game [10], has received much
attention. The GHZ game, first introduced by Greenberger, Horne, and Zeilinger [19], is a
central game in the study of quantum entanglement. Holmgren and Raz [22] gave the first
polynomial decay in the parallel repetition of the GHZ game. Girish, Holmgren, Mittal, Raz,
and Zhan [16] later gave a simpler proof of the polynomial decay. Very recently, Braverman,
Khot, and Minzer [8], using a much simpler proof, improved these previous results and
showed an exponential decay in the GHZ game.

Girish, Holmgren, Mittal, Raz, and Zhan [17] considered the problem of parallel repetition
for 3-player games with binary questions and answers and showed polynomial decay for these
games. This was later improved by a subset of the authors [18] to all 3-player games over
binary questions and arbitrary answer lengths. They also study [17] player-wise connected
games G that are defined as follows. For each player 7, define the graph H;(G), whose vertices
are the possible questions for player i, and two questions z and z’ are connected by an edge
if there exists a vector y of questions for all other players, such that both (x,y) and (2, y)
are asked by the verifier with non-zero probability. The game G is player-wise connected
if, for every i, the graph H;(G) is connected. Girish et al. [17] showed polynomial decay
in the value of n-fold parallel repetition of all player-wise connected games. Observe that
the notion of player-wise connectedness is more general than the notion of connected games
defined above.

In this paper, we will study a special type of k-player games, that we refer to as projection
games. The formal definition is as follows.

» Definition 1. For any k > 2, a k-player game G is called a projection game if for every

k-tuple of question q¢ = (xt,22,...,2%), there is D, > 1 and projections O'é : Ay — [Dy]
Jori € [k], such that V((z*,2?,...,2%),(a",a?, ... a¥)) is true iff ol.(a’) = af;(ai/) for any
i,

For every question ¢ = (z!,22,...,2%), consider a k-partite hypergraph H, on the vertex

set (A1, As, ..., Ar) where (a',a?,...,a") is an hyperedge if and only if V((x!,22,...,2%),
(a,a?,...,a")) is true. Then, the projection property means that for every k-tuple of



A. Bhangale, M. Braverman, S. Khot, Y. P. Liu, and D. Minzer

questions ¢ in the support of u, each connected component in H, is a complete k-partite
hypergraph. Note that this definition of projection games is slightly more general than the

i (either ol or o2
q

usual notion of projection 2-player games [29, 28] where one of the maps o 4

is an injective map.
Our main theorem shows that if the value of a projection game G is less than 1, then the
value of n-fold parallel repetition of G decays exponentially in n.

» Theorem 2. For any k > 2, a projection k-player game G and € > 0, if val(G) =1 — ¢,
then val(G®™) < exp(—Qc.g(n)).

Projection games are a natural subclass of general games. They played a key role in
the development [2, 3, 14] of Probabilistically Checkable Proofs (PCPs). In fact, parallel
repetition from 2-player projection games had been useful in proving many [20, 25, 24, 9, 11]
tight hardness of approximation results, starting with the work of Arora, Babai, Stern, and
Sweedyk [1], Bellare, Goldreich, and Sudan [4], and Hastad [23].

Feige [13] used a k-player projection game, and parallel repetition of the game, to show
almost tight hardness of approximating the Set-Cover problem. The decay in the value of a
parallel-repeated game, in that case, follows easily from the parallel-repetition theorem for
the 2-player game, as the subgame restricted to any two players has a value less than 1.

There are k-player projection games where the decay in the value of a parallel-repeated
game does not trivially follow from the parallel-repetition theorem for the 2-player game. To
give a concrete example, consider a simultaneous Max-3-SAT instance problem defined in [6]:
the instance consists of n variables X = {1, z2,...,2,} and k instances, ¢1, ¢, ..., dr, of
Max-3-SAT defined over the same set of variables X. The verifier chooses a variable z € X
at random and selects clauses C; € ¢; independently such that « € C; for all i € [k]. The
verifier sends clause C; to player i and expects a satisfying assignment from {0, 1}3 to C; from
player i. The verifier checks if the assignments returned by the players agree on x. Consider
the scenario when it is possible to satisfy any (k — 1) out of k instances of Max-3-SAT
simultaneously, but there is no assignment to X that will satisfy all the k instances. In this
case, the value of the game is less than 1. For any k’-player subgame, where k&’ < k, the
value of the subgame is 1. Therefore, we cannot use the parallel repetition of 2-player games
to conclude that the value of n-fold parallel repetition of projection games decays with n.

1.1 Proof outline

As mentioned in the introduction, Dinur, Harsha, Venkat, and Yuen [10] showed that for any

connected k-player games H with val(H) < 1, the exponential decay holds for the value of

H®™, We start with a k-player game G which is not connected to begin with. At a high

level, we transform the game G to another game H where H is connected. While doing such

a transformation, we want to make sure we have the following two properties.

1. If val(G) < 1, then val(H) < 1.

2. There is a way to relate val(G®™) with val(H®"), possibly with a small loss in the
constants in the exponent.

As H is connected, we have val(H®") = exp(—y(n)) and this will complete the proof.
There is a trivial transformation that makes any game connected — add all possible k-tuple

of questions, play the game G on the original questions, and accept all the newly added

questions by default. It is easy to see that if val(G) < 1, then the value of the transformed

game is less than 1. However, in this case, there does not seem to be an easy way to relate

val(G®") to the value of n-fold parallel repetition of the transformed game.
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APPROX/RANDOM 2024



54:4

Parallel Repetition of k-Player Projection Games

In order to overcome the issue, we make the game G connected gradually. More concretely,
we start with a game Gy = G and iteratively, we convert the game Gy to Gyyq for £ =0,1,...
with the following three properties.

1. For every ¢ > 0, the game G, is a k-player game with the questions from the set
X1 X Xy X ... X Xp.

2. The game Gy41 is richer than the game Gy. In our case, we would be interested in
increasing the support of distribution on questions, i.e., supp(u(Ger1)) 2 supp(u(Ge))
(unless, of course, supp(u(Gy)) is full).

3. We can relate the value of the game G to the value of the game G?_ﬁl up to a fixed
polynomial factor. Furthermore, val(Gy11) < 1 if val(Gy) < 1.

Let us see that this is enough to prove our main theorem. Using properties 1 and 2, for some

t > 1, which only depends on the size of the game G, we can conclude that the game G}

has full support and hence is connected. Using property 3, we have val(G®") ~ val(GP"™)¢*,

where Cy > 0 is a constant that only depends on ¢, and furthermore val(G;) < 1 if val(G) < 1

to begin with. Finally, using the result by Dinur, Harsha, Venkat, and Yuen [10] on connected

games, we have, val(GY") = exp(—. g,(n)), and hence val(G®") = exp(—Q.t.q(n)) if

val(G) < 1.

The transformation G, to G,y

The key idea is to use the path-trick from [5] to transform the game G, (and G¢™) to another
game G411 (and G?fl) such that the support of the transformed game is potentially larger
than the original game. We illustrate the idea of such a transformation in a 3-player game
Gy.

We start with the game Gy and let u(Gy) be the distributions on the questions in Gy.
For every pair of question-triples ¢ = (x,y, 2) and ¢’ = (2/,y', 2’) from supp(u(Gy)) such
that x = 2/, we add a question triple II13((q,q’)) := (z,,2’) to the game Gy ;. Note
that in this case, we took two question-triples (¢,¢’) that share player 1’s question and
generate a question-triple in the new game with the first two players’ questions from ¢ and
player 3’s question from ¢’. We now state the set of accepting assignments for 113((¢, ¢')) as
follows. If q # ¢', then accept the question I13((q, ¢’)) by default, otherwise accept I13((q, q’))
according to the verifier from the original game G, on the question ¢(= ¢').! We call such
a transformation 7' — the superscript stands for the common player’s question from (g, ¢’)
and the subscript 3 stands for taking player 3’s question from ¢’ and rest of the questions
from ¢ in generating the question-triple in the new game. Succinctly, we write Gy41 as the
game T3 (Gy). Likewise, we can define transformations 7;} forany 1 <1¢,p < 3.

We show the following key properties of these transformations.

1. If val(Gy) < 1, then val(7}(Gy)) < 1. Furthermore, 7,/(G¢) remains a projection game if

Gy is a projection game.

2. For every n > 1, val(GF™) < val(T/(G¢)®")'/2, if G, is a projection game.

The first property is trivial — in the game U(G@), we are still playing the game Gy as a
subgame, and hence its value is less than 1 if val(G;) < 1. For the furthermore part, we are
either accepting everything by default or using the same predicate as in the original game,
and hence, this transformation maintains the projection property of the game.

! Note that the way the game Gy is defined, the set of accepting answers for the same question-triple
changes based on the underlying pair of questions (g, ¢’). For simplicity, we ignore this issue in this
proof overview, and it will be handled in the main proof.
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For the second property, we crucially use the projection property of the game G,. We
show that for any strategy (a!,a?, a?), where o' : X7 — A7, for the game G?” with value ¢,
the same strategy gives value at least €2 to the game 7;(04). We illustrate this for the game
T(Gy). Let u be the distribution of questions from Gy and p|; be the marginal distribution
on player 1’s questions, we have

< B [V(xy2). (o (x),0%(y),a’(2))]

(x,y,2)~p®"
2
= E E  [V((xy,2). (a'(x),a*(y),a’(2)))
vep®n|y (x,y,z)_~u®" s
2
< E E  [V((xy,2),(a'(x),a*(y),a’(2))) (Cauchy-Schwarz)

vep®r | (x,y,2)~u®",
X=v

_ V(xy.2) (0 (6),07 ()07 (2))
T S P L R RO S PR PNIEON)
'y 2 )~

Now, if we look at the triple (x,y,z’) sampled according to the above distribution, then for
each j € [n], we have that the triple (z;,y;, zé) is distributed according to the game T3 (Gy)
independently. In the game, T3 (Gy), for any j € [n] such that (z;,y;,z;) # (x},y}7 z;) the
new verfier is accepting by default. As for j € [n] such that (v;,y;,2;) = (2,9}, 2}), the
new verifier is accepting according to the original verifier on the question (z;,y;,2;). In
this case, suppose (a'(x);,a2(y);, (z);) and (a'(x');,a?(y’);, a(2z');) are two satisfying
assignments to the same question (z;,y;, z;) according to the original game G, with a!(x); =
al(x’); (as x = x’), then because of the projection property of the game, we have that
(al(x),02(y);,a3(z');)) must be a satisfying assignment for (x;,y;,z;). As in the game
T (Go)®", we are precisely checking this for all such j € [n], we get that the same strategy

(al, a2, a3) gives

val(T3 (Go)®™) > 2.

Putting everything together

Using the above two properties of the transformations 72, we conclude that if val(G) < 1,
then for any ¢ > 1 and vectors 7, g € [3]t,

val(G®") < val(Tje (- (T2 (T (G))) MY, and Toe (. (T2 (TH(@))) < 1.

D2

Finally, we show that there exist ¢ > 1 and vectors Z, 7 € [3]t, where t depends on the size of
the game G, such that the game T (... (7,2 (7,1 (G))) is connected (in fact, has full support).
This implies that

val(G®) < val(To (- (T2 (T3 (GNP < exp(=Qua(n)),

D2

where the last inequality follows from the result of a parallel repetition theorem [10] on
connected games.

APPROX/RANDOM 2024
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2 Preliminaries

We start with a few notations. We use p(G) to denote the distribution on the questions in
the game G. For i € [k], let u|; be the marginal distribution on the questions to player i.

For a k-tuple of questions ¢ = (z',22,...,2%), we denote the question to player i by ¢|;, i.e.,

ql1 = ', q]2 = 22, and so on. For an assignment o := (a!,a?,...,a%) to the game G, where

o' X; — A;, and any question ¢ = (z1,22,...,2%), we use the notation a|, to denote the
assignment-tuple (a!(z!), a?(2?),..., o (z¥)).

The size of the game G is referred to as the quantity k- M - Hle |X;]|A;|. Here, the
probability of every atom in supp(u(G)) is a multiple of 1/M, where M is a finite integer.
We note that as far as proving exponential decay in the n-fold repeated value of the game
G with val(G) < 1, the last assumption is without loss of generality. For instance, see [18,
Lemma 3.14] which lets us assume that the distribution of questions in G is uniform on the

support without loss of generality.

2.1 Parallel repetition of connected games

As mentioned earlier, Dinur, Harsha, Venkat, and Yuen [10] showed that for a large class of
k-player games, called connected games, the exponential decay indeed holds. Here, we define
the notion of connected games for k-player games formally.

» Definition 3 (Connected game). A game G is called connected if for every two ques-

tion pairs (z*,2%,...,2%) and ("', 22,...,2'%) from supp(u(Q)), there is an ordered list
of questions from supp(u(QG)), ((zf,22,...,25))_, for some t > 1, such that the pairs
((zt, 2%, 2", (2,22, .. 2h), (e}, 22, ..., 2F), (@', 2, ... 2'%)), and ((z},22,...,2}),
(Thp1 0,5 @p ) for all 1 < €< t—1 differ in only one out of the k questions.

We will relate the value of G®", where G is a projection game, with a value of n-fold
parallel repetition of another game H that is connected. The following theorem shows
that for connected games with a value less than 1, the value of repeated games goes down
exponentially in n.

» Theorem 4 ([10]). For any k > 2 and € > 0, if H is a connected k-player game with
val(H) =1 — ¢, then val(H®") < exp(—Qc u(n)).
2.2 Variants of multiplayer games

In this section, we simplify the class of games that we study. Towards this, we define the
notion of loosely-connected games as follows.

» Definition 5 (Loosely-connected game). A game on the question set Xy X Xa X ... X X
is loosely-connected if it is not possible to partition X; = X! U X" for all i € [k], so that all
k-tuple of questions from the support of (G) are in X{ x Xy x ... x X[ or X' x Xy x ... x X} .

The following lemma states that we can assume without loss of generality that the game
G is loosely-connected.

» Lemma 6. If the exponential decay in the k-player parallel repetition holds for all projection
loosely-connected games, then it also holds for all projection games.

Proof. The proof of this lemma is similar to the proof of [18, Lemma 2.7]. We include the
proof of this lemma here for completeness.
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Let G be any projection game that is not loosely-connected with val(G) = 1 — ¢ for some
e > 0. Without loss of generality, we can assume that there are partitions X; = X/ U X}’ for
all ¢ € [k] such that all the questions from the support of ;(G) are from X] x X5 x ... x &
or X7 x Xy x ... x X/, and furthermore, the game restricted to X{ x X5 x ... x X} (call it
G') and X x X§ x ... x X (call it G”) are loosely-connected individually. The verifier’s
distribution p(G) on the question-tuples can be thought of as = (1 — §)u’ + dp”” where the
support of p is from X x &) x ... x X/ and the support of p” is from A7 x X x ... x X

Now, since the value of the game G is at most 1—¢, we have min{val(G’), val(G")} < 1—e.
Without loss of generality, suppose we have val(G’) < 1 — . Let the value of G®" be 1. We
will show that the value of the game G/®" is also at least n — 272" for some n’ = Qs(n).
This will finish the proof of the lemma as we have val(G’®"") < exp(—Q.(n’)) using the fact
that G’ is a loosely-connected projection game.

Fix a strategy (a!,a?,...,aF) for G®" with value . The k-tuple questions from G can
be alternatively sampled as follows. First sample a set T' C [n] by adding ¢ € T independently
with probability (1 —4). Then for each ¢ € T, sample a k-tuple question from the distribution
1/ independently. Similarly, for each i ¢ T, sample a k-tuple question from the distribution
1" independently. We have,

V(@ @, 5", (@), a?(@?),...,a"(@)] = .
TCi_s[n] (B r,...,8%|p)~p/@ITI

@ |7 ----- fk|7)"’#“®‘T|

From this, by the Chernoff Bound and an averaging argument, it follows that there exists
T C [n] such that |T'| > (1 — §)n/2 and (7,72, ...,7°) ~ u"®T| such that

V@, 2h,.... (7,3, (@ (G &), ..., (7", 7))

(F1,32,...,8%)~o /1T
> —2 %0,

Here, the string (¥, ¥) is formed by plugging ¥ in the coordinates T' and Z in the coordinates

T. The distribution of the questions in the expectation above precisely corresponds to the

game G'®/TI. Thus, the strategy o' (%) := o'(i, ) for all i € [k] gives the value at least

n — 2= for the game G'®IT1, <

We also consider a slight variation in the definition of k-player games, which we call
random-predicate k-player games, where we allow a verifier to use a random predicate instead
of a fixed predicate during verification.

» Definition 7 (Random-predicate game). A random-predicate game G is defined as follows.
There exists R > 1 such that the verifier chooses the k-tuple of questions (z*,22,..., %)
according to the distribution u(G) on the set of questions and r € [R)] uniformly at random,
sends x* to player i. The player i responds with the answer a'. Finally, the verifier accepts
the answers based on a fized predicate V,.((z',2%,...,2%), (a',a?,...,a")). We denote such
games by (G, i, [R]).

The following lemma states that for this variation of connected k-player games G the
exponential decay from [10] still holds.

» Lemma 8. For any connected random-predicate k-player game H and € > 0, if val(H) =
1 — e, then val(H®") < exp(—Qe g (n)).

Proof. We can think of a random-predicate k-player game H as a (k + 1)-player game

H' as follows. In H’, the verifier selects the questions (z',z2,...,2%) from the game H

and r € [R] uniformly at random. The verifier sends z¢ to players i for i € [k], and

54:7
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sends r to player k + 1. The player i € [k + 1] responds with the answer a’ (a**! can be
anything). The verifier’s predicate in H' is V((z',22,...,2%7), (a',d?,...,a¥, a**1)) :=
Vo((zh, 22, ... 2%), (a',a?, ..., a")).

It is easy to observe that if the game H’ is connected then the game H is connected.
Furthermore, we have val(H®") = val(H'®") for any n > 1. Using this, the lemma follows
from Theorem 4. |

We can also add the projection property to a random-predicate game. The formal
definition is as follows.

» Definition 9 (Random-predicate projection game). For any k > 2, a random-predicate
k-player game (G, u, [R]) is called a random-predicate projection game if for every k-tuple of

question ¢ = (z*,22,...,2%) and r € [R), there is Dy, > 1 and projections o Ai = [Dyr]
Jori € [k], such that V,((z',2?,...,2%), (a',a?, ... a¥)) is true iff o} .(a') = afl:r(ai/) for
any i # 1.

From this point onwards, we will incorporate the property of random-predicate whenever
we refer to projection games.

In our proof, we will encounter random-predicate games where the choice of the verifier’s
predicate V,. is not uniform and may depend on the question gq. The following claim says
that we can assume that the distribution on verifier’s predicate is uniform from a set of
predicates and independent of the questions. This transformation preserves the support of
the question-distribution.

> Claim 10. Suppose G is a random-predicate k-player game where on the k-tuple of
question ¢ € X} X Xy X ... X X, the distribution on the verifier’s predicate V. is sampled
according to some distribution v, over [R], then there is another game H with the same
distribution on the questions as in G such that the verifier for H samples a random predicate
V;n where m € [M] is distributed uniformly over [M], and such that val(G®") = val(H®")
for all n > 1. Furthermore, a) M only depends on the size of the game G, and b) if G is a
random-predicate projection game, then H is also a random-predicate projection game.

Proof. Let M € Z* be a number such that for every question ¢ from the game G, each atom
from supp(v,) has probability weight ¢/M for 1 < ¢ < M. In the game G, for a question ¢ if
vy(r) = ¢/M, then in game H, we make ¢ copies Vi, (¢,), Vi, (¢, "), -, Vi.(q, ) of the verifier
predicate V,.(gq,-) for the same question ¢g. Thus, for a given question g, the verifier in H
samples a random m € [M] and decides based on the predicate Vi, (q, ).

The a) and b) from the furthermore part follow the above construction. <

3 Proof of Theorem 2

Throughout this section, we fix a random-predicate k-player projection game (G, u, [R]),
succinctly written as G, on the questions from the set X} X Xy x ... x X} and let p(G) be
the distribution on the questions in G. Using Claim 10, we can assume without loss of

generality, that along with the k-tuple questions (x!,2?,... ,l’k) ~ u, the verifier selects

r € [R] uniformly at random, and after getting answers (a',a?,...,a*) from the players,
applies the predicate V,.((z!,22,...,2%)), (a',a?,...,a")).
The key idea is to use the path-trick from [5] to relate the value of the game G (and G®™)

to another game H (and H®") which is connected.
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3.1 The path-trick and the i-links

In this section, we define the notion of a link which is analogous to the notion of the path-
trick [5] that was used in connection to studying dictatorship tests towards showing hardness
of approximation of constraint satisfaction problems.

Fix a player ¢ € [k]. An é-link from a game G is an ordered pair of original k-tuple of
questions from G with possible repetition. We will induce the following distribution on é-links
from G.

Pick a question v to player i according to the distribution of u|; and sample two k-tuple
of questions ¢ = (z!,22,...,2%) and ¢ = (y',v%,...,y"), independently from p but
conditioned on z =y = v and output (q,q’).

We denote the above distribution on the i-links with L;(G).
To see the utility of i-links, the following claim shows that the distribution L;(G®") on

the i-links in G®” is the same as the product distribution on the i-links from G.

> Claim 11. For every game G, i € [k], and n > 1, the following two distributions are
identical.
1. The distribution L;(G®").
2. The distribution D; on the 4-links from G®™ defined as follows:
For each j € [n], independently sample (g;,q}) from the distribution L;(G) where
qj = (x}, 22 ,xf) and ¢; = (yjl,yjz,,yf)
/

VER A
Let CTZ (QI»Q% v 7Qn) and = (qllvq/27 R 7Q;1) OutPU't (q_:q )

Proof. Note that ¢ and ¢, sampled from D;, are the following k-tuple of questions

(1,23, 25) (Y12, Yn)
(21,23,...,27) (W93, vn)
Kok k Kok k
(‘r17x23'~'7xn) (y17y27"'ayn)
7 7
For each j € [n], the pair of k-tuple of questions (z},%,...,2%) and (y},y?,...,y}) share

a common pivot question p; = x; = yj This means that the question-pair (¢, q_; ) share a

common n-tuple question p from player ¢, where we think of ¢, q_7 as questions from the game

G®™. This precisely corresponds to the distribution L;(G®™). <

Consider the game G the assignments o' : X; — A; for i € [k]. We say that the link
(q,¢") from the game G is 7-consistent with respect to the global assignments (a!,a?, ..., o)
if ¢ as well as ¢’ are satisfied by the predicate V. on the assignments (a',a?, ..., a%).

> Claim 12. Let n > 1, (a!,a?,...,aF) be a strategy for (G, i, [R]) with val(G) > «.

Then with probability at least €2, the link (q,q’) is r-consistent with the assignments
(a',a?,...,a%), where the probability is over (g,q') sampled according to L;(G) and r € [R]

uniformly at random.

Proof. Fix the provers’ strategies o’ : X; — A; for i € [k] with value at least . We have,

@ 7 E " Vi((zh, 2%, ..., 2%), (@ (z!), ®(z?),..., a* (")) > e
im T
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Using the Cauchy-Schwarz inequality, we have,

E< B, R 0, o )
el
2
=| E E Vi((z!,2?,..,2"), (ol (z),0?(2?),..., ¥ (ah)))
vepli | (zt,22,...,2")~p
"'E[R] zi=v
2
< E E Vi((ah,a?,. . 2h), (ol (1), a®(a?), ..., ¥ (a)))]
veuli | (zt,2?,...,2"%)~p
re(R] zt=v
(Cauchy-Schwarz)
Ca | m [ e ), @), 026), o ()
veuli @t a2 afymp L Ve(Wh o2, 0"), (@t (yh), &2 (y2), . .., aF ("))

rEIRL | (' 2, y®) o

'=y'=v

The expression inside the expectation above is precisely the probability that the ¢-link
((z,22,...,2%), (y*, 9%, ..., y*¥)) sampled from the distribution L;(G) is r-consistent with

respect to the assignments (al,a?,...,a¥). This shows that
Pr [(¢,¢") is r-consistent with respect to the assignments (a',a?,... 7Ozk)] > €2,
(a,4")~Li(G)
r€[R)
and this completes the proof. <

3.2 The transformations ’7;"

We are now ready to define the transformation on the game G that was alluded to at the

beginning of this section. We denote the transformed games by 7;}(6') for 1 <i,p < k.
The distribution on the k-tuple of questions in the game 7;i(G) isover Xp X Xo X ... x Xy

which is defined as follows.

1. The verifier samples a link (q,q’) ~ L;(G) where ¢ = (z*,...,2%) and ¢’ = (y*,...,y").

2. The verifier constructs a question-tuple by taking z? from g and (y*,...,y?~ 1 yP*L ... y¥)
from ¢’. Succinctly, we denote this operation as (y!,...,y?~ 1 2P yP*l ... yk) =
I1((q,q')) (the p stands for taking player p’s question from the first question and
the remaining players’ questions from the second question).

Before we define the set of satisfying assignments in the transformed game, we first
define the set of r-consistent assignments, where r € [R], to an i-link. An assignment to a
link (q,¢’) is an assignment to both ¢ and ¢’ (note that each k-tuple of question receives
a separate assignment from A; x As X ... X Ag). For an i-link (¢, q"), we define the set of
r-consistent assignments to (¢, q’) as follows. An r-consistent assignment to an i-link (g, ¢')
is an assignment o to the link such that

the verifier accepts 0|, on ¢ and 0|y on ¢’ according to the predicate V., and

olql, = 0lgy,» €., 0 gives the same value to the common question v to the player i from

g and ¢'.
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Note that an i-link (g, ¢’) may share more than one common question with the players, but
the r-consistency only cares about the question to player 3.

We now define the set of accepting assignments for a k-tuple of questions in the random-
predicate transformed game. The verifier chooses r € [R] uniformly at random. Suppose a
k-tuple of questions ¢ = (21, 22, ..., 2¥) is coming from an i-link (¢, q’), i.e., § = I?((q,q")),
then

Case 1: If ¢ # ¢/, then accept by default.

Case 2: If ¢ = ¢/, then ¢ = ¢q. In this case, accept according to the verifier’s predicate V.

from the game G on question §.

Note that the game 7?(6') is a random-predicate k-player game (the accepting answers
for a question ¢ depends on the underlying sampled link as well as the sampled r € [R]),
and as described, the distribution on the underlying predicate is not uniform among the set
of predicates. However, using Claim 10, without loss of generality, we can assume that the
underlying distribution on the predicate that the verifier applies in 7;}((?) is uniform from a
set of predicates (and independent of the questions). We need this as we will be applying a
series of these transformations on the original game, and the transformation above is only
defined on games where the verifier’s predicate is uniform and independent of the question gq.

In the transformed game, the verifier either accepts all the answers or accepts answers
based on the predicates from the original game G. We have the following simple, but
important, fact.

» Fact 13. If G is a random-predicate k-player projection game, then for every i,p € [k],
the game U(G) is also a random-predicate projection game.

3.2.1 Properties of the transformations 7

We start with the first claim that shows that the value of the transformed games is less than
1 if the value of G is less than 1.

> Claim 14. Fix any k-player game (G, u, [R]). For every ¢ € (0,1) and i,p € [k], if
val(G) = 1 — ¢, then val(7}(G)) = 1 — &’ where ¢’ > 0 that depends on ¢ and the size of the
game G.

Proof. First, observe that for every question-tuple ¢ = (x',22,...,2"%) from the game G,

the i-link (g, q) is present in the support of L;(G). Therefore, for every question-tuple
q = («',22,...,2"%) from the game T;/(G) that is given by the i-link (¢, ), the verifier of the
transformed game selects r € [R] uniformly at random and uses the predicate V,.. Therefore,
the transformed game ’7;}(G) is a convex combination of the original game G and another
game G'. Let i be the distribution on question-tuples in 7;(G), then it can be written as
i =0u~+ (1—96)u, where i/ corresponds to the distribution of questions from game G’ and
0 € (0,1] that depends on the size of the game G. Thus,

val(T7(G)) < 6 val(G) + (1 —8) = 6(1 — &) + (1 —6) =1 — &5 < 1. q

The following claim relates the value of the original game with the value of the transformed
games. This claim crucially uses the fact that the original game G is a projection game.

> Claim 15. For any k-player projection game (G, u, [R]), n > 1, and i,p € [k], we have
val(7)(G)®") > val(G®")?2.
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Proof. As the statement of the claim is symmetric with respect to p € [k], we prove the claim
when p = 1. For other p, the proof is similar.

Using Claim 11, the game 77/(G)®™ can be described as follows: Sample an i-link (§, )
from the distribution L;(G®™), sample 7 € [R]™ uniformly at random, and for every j € [n]
such that ¢; = q;, apply the predicate V,.; for the question I ((g5,q5))-

Let’s fix the players’ strategy a := (a!,a?,...,a*) for the game G®" that gives the value
val(G®™). For an i-link (¢,¢") from G®", consider the assignments «|; and a|z to the link
(¢,q"). Using Claim 12, for a random 7 € [R]"™ and a randomly selected i-link (7,q"), (¢,q")
is 7-consistent with respect to the global assignment o with probability at least val(G®™)2.
When this happens, we show that the assignment « satisfies the constraint on I1*((¢,q))
from the game 77/(G)®". Indeed, pick any j € [n] such that the j'* coordinate of the link
(4,q") is (g5, ;) (i-e, the same question-tuple). Here, the verifier is using the predicate V;., on
the question ¢; in the game 77/(G)®". If the link (q,¢’), is P-consistent with respect to the
global assignment «, then we have the following

Vo, ((g511, 512, - -5 45lk), (@' (@), % (@l2) 5, - -, ¥ (qk);)) = 1,

Vo, ((a511: 45l2, - -5 a5le), (@ (@' 1), 0% (d]2)5, - - -, ¥ (d|w);)) = 1.

In the game T{(G)®", the verifier is checking the following condition in the coordinate j.

Vo, (0511, ql20 - a51), (@2 (@10) 5, 0% (d]2)5, - - 0¥ (d]);)) = 1.

As G and the predicates V. satisfy the projection property, and ¢]; = q |s because (q, q ) is an
i-link, we see that if (al(cﬂl)j? az((ﬂ?)j? ) O‘k(‘ﬂk)j) and (al(‘]_;|1>jv 042((]_;‘2)3', s vo‘k(q_;|k)j)
are the accepting answers for a question according to the predicate V.., then it can be
seen easily that (a'(ql1);, @®(¢']2), - - -, (¢'|1);) is also an accepting answer for the same
question according to the same predicate V,.,. This shows that the assignment « passes the
verifier’s check on all j € [n] such that the j** coordinate of the link (¢,¢") is (¢;, ;). For
the other coordinates, the game 77/(G) always accepts.

Hence the same players’ strategy « gives val(T{(G)®") > val(G®™)2. <

Finally, we compose these transformations to get a connected game, starting with a loosely-
connected game. Towards this, for any string 8 € ([k] x [k])™, where 8; = (5], 7) € [k] x [K],
define the transformation 77 (G) as the following transformation

T (- (TR (TEHE)):

For a string 3 of length m, define a string 37 as a T repeated copy of 3. We have the
following claim.

> Claim 16. Let 8 be any permutation of the set [k] x [k]. For large enough T' > 1, the
game ’TﬂT(G) is connected (in fact, has full support) if G is loosely-connected to begin with.
Furthermore, T’ < Hle | X;| which only depends on the size of the game G.

Proof. First, any transformation 7;} does not shrink the support of the questions of the
previous game. By looking closely at the transformation 7;, we conclude the following:
if (z,22,...,2%) and (y',y2,...,y*) are both in the support of ;(G) with z* = y*, then
the following question (y*,...,y?~ % 2P, yP** ... y¥) will be in the support of u(T(G)).
Using this, we also observe that if we start with any game H with the property that the
series of transformations 77 (H) does not change the support of the questions, then no
future transformations will change the support on the questions (as 3 contains every possible
transformation 7).
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From the above discussion, we conclude that after some finite (only depends on the size
of the game G) series of such transformations 7'/3T(.)7 the support of the questions does
not increase after another series of transformations 7”. We denote the saturated game by
Gfinal 1= 78" (@) and the underlying distribution on the questions by fifina. We show that
Iinal has full support on X7 x X5 X ... x Xj.

Suppose towards a contradiction, the support of fina is not full. For any tuple ¢ of
length k and S C [k], define the tuple g|g by taking the S entries from g. Take the smallest
i € [k] such that there is an i-tuple (z',22,...,2%) where (z',2%,...,2%) # ¢|j for any
q € supp(piinal). Let 2* := (21, 22,...,2°71). For each i < ¢ < k, define the following sets.

Se = {x € &y | g € supp(pifinat) s-t. (2%, 2) = qli—1juger }-

In other words, Sy is a set of all x € A that (2*,x) can be extended to a valid question tuple
from the game Gfna. Note that by the definition of 2*, S; € X; and furthermore S; # () for

any i’ > 4, as by the minimality of 7, there is a valid question q in Gfinal such that g|j;_1; = 27,
and hence ¢|; € Sy for all ¢/ > 1.

> Claim 17. There is no g € supp(ifinal) such that q|; € S; and for some i’ > i, q|i € Syr.

Proof. Suppose there is such a question ¢ € supp(usinal) such that ¢|; € S; and for some
i’ > i, gl € Sir. Consider a question ¢’ = (2%, 22,...,2° 71 %, %,...) where ¢’|;/ = q|;+. Note
that such a ¢’ is in the supp(pfinal) from the definition of the set S;;. Furthermore, (g, q’)
is an i’-link in the game Gfna. Therefore, the question I1¢((g,q’)) will be present in the
game T, (Gfinal). Recall that IT°((¢, ¢')) = (2%, 2%,...,2""1, q|;, *,...). However, the question
(2,22, ..., 27 qli, *,...) is not in supp(ifinal) as q|; € S;. This means that the game Gfinal

is not saturated, which is a contradiction. <

This claim implies that S;; C Xy for all ' > ¢ . Indeed, if S;; = X} for some ¢/ > i, then the
above claim shows that every question ¢ € supp(iifinal), gli € S;- Hence, Gfinal (and hence G)
is not a loosely-connected game.

This claim also implies that for every question ¢ € supp(usinal) such that ¢g|; € S;, we have
qli € Siv for every i’ > i. Consider the partition of the players’ question sets X, = X U X}’
such that

For all £ <i—1, &) = {2}, and X} = X, \ &,

forallt > ¢, X =S, and X)) = &, \ &.

Because G (and hence Gfpal) is loosely connected, there must be a question ¢ € supp(ttfinal)
such that ¢g|; € Sy for every i’ > i and q|; = 2 for some 1 <t < i — 1. Consider a question
q¢ = (21,22,...,27 % x,...) such that ¢’ is in the supp(ifinal). Now, the pair of questions
(¢',q) is an t-link in the game Gfnal, furthermore, for a questions ¢” := I1*((g, ¢')), we have
q" = (24, 22,23,..., 27 qli,...) where q|; € S;. As Giina is saturated, ¢"" € supp(ifinal) but

this contradicts the definition of S;. <

3.3 Finishing the proof

Let us see why these claims above are enough to prove Theorem 2.

Proof of Theorem 2

We start with a projection game G with val(G) = 1 —¢ for some € > 0. First, using Lemma 6,
we can assume without loss of generality that G is loosely-connected. Let (i, 5) € ([k] x [k])T**
with (;,ﬁ') = BT, ie., (i, ps) is the t** entry from the string 37, where 8 and T are from
Claim 16. Let T/ =T - k2.
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Using Claim 15 on the (random-predicate) projection game G with i1, p; € [k], we have

val(G®") < val(T, (G)®™)1/2.

Fact 13 shows that 71 (G) is a projection game, and hence applying Claim 15 on the
projection game 7,1 (G) with is, py € [k], we get

val(T)1(G)®") < val(T,2 (T (G))®")'/2.

Repeating this process T” times, we get

val(G") < val(T3z; o (T2 (T (@)

Using Claim 14 repeatedly, we have

val(Tyz (- (T2 (T, (G) <1 =€,

where ¢’ > 0, that only depends on €, 7", and the size of the game G. Finally, using Claim 16,
we have that the game 7,7 (... (7;}22 (7211 (G)))) is connected and hence by Lemma 8,

val(T,7/ (. (Tp2 (T,HG))®") < exp(—Qera(n).

Overall, we get val(G®™) < exp(—Q. 7,¢(n)) and the proof is completed as T only depends
on the size of the original game G.
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