FRAFOL: FRAmework FOr Learning mutation testing

Pedro Tavares
Faculty of Engineering, University of Porto
Porto, Portugal
up201406991@edu.fe.up.pt

Domenico Amalfitano
University of Naples "Federico II"
Naples, Italy
domenico.amalfitano@unina.it

Abstract

Mutation testing has evolved beyond academic research, is deployed
in industrial and open-source settings, and is increasingly part of
universities’ software engineering curricula. While many mutation
testing tools exist, each with different strengths and weaknesses,
integrating them into educational activities and exercises remains
challenging due to the tools’ complexity and the need to integrate
them into a development environment. Additionally, it may be de-
sirable to use different tools so that students can explore differences,
e.g., in the types or numbers of generated mutants. Asking students
to install and learn multiple tools would only compound technical
complexity and likely result in unwanted differences in how and
what students learn.

This paper presents FRAFOL, a framework for learning muta-
tion testing. FRAFOL provides a common environment for using
different mutation testing tools in an educational setting.

CCS Concepts

+ Software and its engineering — Software testing and debug-
ging; » Social and professional topics — Software engineering
education.

Keywords

Software Testing, Mutation Testing, Teaching Mutation Testing,
Teaching Tool

ACM Reference Format:

Pedro Tavares, Ana Paiva, Domenico Amalfitano, and René Just. 2024.
FRAFOL: FRAmework FOr Learning mutation testing. In Proceedings of
the 33rd ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA '24), September 16-20, 2024, Vienna, Austria. ACM, New
York, NY, USA, 5 pages. https://doi.org/10.1145/3650212.3685306

1 Introduction

Mutation testing has evolved beyond academic research and is
now used in various open-source and industrial settings (e.g., [3,
16]). The increasing complexity of software systems and the need

This work is licensed under a Creative Commons Attribution-
NonCommercial 4.0 International License.

ISSTA 24, September 16-20, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s).
ACMISBN 979-8-4007-0612-7/24/09
https://doi.org/10.1145/3650212.3685306

Ana Paiva

INESC TEC, Faculty of Engineering, University of Porto

1846

Porto, Portugal
apaiva@fe.up.pt

René Just
University of Washington
Seattle, USA
rjust@cs.washington.edu

for robust testing methodologies have made mutation testing an
essential skill for software engineers [1].

Mutation analysis involves creating faulty program variants
(mutants) using well-defined rules (mutation operators) on syntactic
descriptions to systematically alter syntax or related objects [14].
This technique has been effectively employed in research to evaluate
test efficacy and aid in testing and debugging. Given an original
program and a corresponding test suite, mutation analysis creates
a set of mutants for the original program, and the mutant-detection
ratio of the test suite indicates its effectiveness. Empirical studies
support using mutants as proxies for real faults [2, 4, 13]. Another
application of mutation analysis is automated debugging, where
mutants help locate faults or iteratively modify a program until it
meets a specification, such as passing all tests in a test suite [9, 10].

Mutation testing builds on top of mutation analysis and uses
undetected mutants as test goals to enhance a test suite. Mutation
testing was once considered impractical due to the large number of
mutants that can be generated, even for small programs. However,
it is increasingly adopted in the industry thanks to new approaches
like incremental, commit-level mutation, suppression of unpro-
ductive mutants, and focusing on individual mutants rather than
overall mutant detection ratios [3, 15, 17].

Teaching mutation testing is crucial to prepare the next gener-
ation of software engineers to effectively employ this technique
and improve software quality. As mutation testing becomes more
and more prevalent in industry, there is a need to educate software
engineers about this technique, and applications of program muta-
tions more generally. However, teaching mutation testing presents
several challenges [8]. Software testing can often be very complex
and requires a deep understanding of the codebase and its princi-
ples. In practice, mutation testing can be resource-intensive and
require a considerable amount of effort to setup, configure, and
integrate it into an existing development workflow. Integrating mu-
tation testing into an existing software engineering curriculum is
challenging, as it requires balancing learning goals and theoretical
concepts with technical complexity and realistic applications.

In software engineering education, the scientific community has
grown interested in developing tools that strike the right balance
between usability and realism and enable students to learn software
testing techniques effectively. Two examples for innovative tools are
CodeDefenders [7] and Web-CAT [5]. CodeDefenders introduced a
game-based learning approach. Students play as “Attackers”, insert-
ing defects into a class under test, or “Defenders”, writing tests to
detect and guard against these defects. This interactive setup boosts

ISSTA °24, September 16-20, 2024, Vienna, Austria

engagement and sharpens test-writing skills, improving student
performance. Web-CAT (Web-based Center for Automated Testing)
automates grading and emphasizes quality in student-written test
cases. It promotes an understanding of expected code behaviour
through test-driven development principles. Web-CAT’s detailed
feedback enhances learning outcomes and reduces grading work-
load, making it a valuable tool in software testing education. Cod-
eDefenders and Web-CAT aim to provide students with practical,
engaging, and effective learning experiences.

Many software testing tools are readily available, but they often
lack comprehensive features and consistency in integration into
curricula, necessitating multiple setup procedures and extensive
prior knowledge. In the context of mutation testing for Java, nu-
merous tools have been proposed in the literature, each with its
unique features and capabilities, but the primary focus of these
tools is applications in practice or research [1]. There is a shortage
of tools that enable students to quickly gain hands-on experience
with various mutation testing tools and start writing tests.

This paper proposes FRAFOL, a “FRAmework FOr Learning mu-
tation testing”. FRAFOL aims to simplify the setup and configura-
tion requirements by offering a uniform environment for learning,
and experimenting with, mutation testing.

2 The FRAFOL tool

This section explains FRAFOL’s design rationale and provides im-
plementation details. FRAFOL provides a common environment
through which a student can use two different mutation tools, Major
and PIT. We chose these two mutation testing tools because they are
widely used in research and practice and they have complementary
features (e.g., source code vs. bytecode mutations). FRAFOL is not
specific to these two tools, and others could be integrated. FRAFOL
shields students from technical complexity but nonetheless allows
them to observe key differences, such as types of mutants and how
difficult it is to detect them. Furthermore, we implemented FRAFOL
as an extension of Defects4] [12], which is a collection of repro-
ducible Java bugs with an infrastructure of tools and scripts and
which is widely used in research and education. We chose Defects4]
because it provides uniform access to numerous realistic subjects,
including compiling and testing them.

FRAFOL aims to provide an easy-to-install and easy-to-use envi-
ronment where students can immediately start analyzing mutants
and writing tests to detect them without spending time figuring
out the intricacies of the mutation testing tools.

FRAFOL provides the following eight main features:

F1:
F2:
F3:

Provides a web interface.

Allows selecting a project version from the Defects4].
Allows selecting a mutation tool to work with (Major [11]
or PIT [6]).

Provides an IDE to i) analyze the Java code of the selected
project version and ii) develop a JUnit test class.

Allows compiling the JUnit test class.

Supports executing the selected mutation tool and the anal-
ysis of the results.

Evaluates and shows the following metrics: the number of
generated mutants, the number of killed mutants by the
JUnit test class, the number of live mutants, and the code

F4:

F5:
Feé:

F7:

1847

Tavares et al.

coverage achieved by the JUnit test class in terms of LoC
coverage and branch coverage.

F8: Shows details about live mutants to aid students in their mu-
tation testing effort. These details include an ID, the mutated
source code’s line number, the mutated method’s name, and
the applied mutation operator.

2.1 Design and Implementation

FRAFOL uses the Defects4] benchmark as its core component. De-
fects4] already interfaces with the Major mutation testing tool,
and it provides automation for various analyses, including muta-
tion analysis and code coverage. Additionally, Defects4] provides
uniform access to a repository of Java projects, each with corre-
sponding test cases produced by developers. However, Defects4]
is command-line driven and integration into a development envi-
ronment (e.g., for mutation testing) is left to end users. Figure 1
shows a UML component diagram of the FRAFOL tool: FRAFOL
extends Defects4] by integrating the PIT mutation tool and provid-
ing an Adapter to expose a unified Common Mutation API for both
mutation tools. The adapter provides a unified interface, allowing

<<components>
FRAFOL E
<ccomponent=>
WebGUI E
Project Gathering ARI Common Mutation API
b <ecomponent=>. - a)
Defects4 Framework
<<uses <<component> E <cusess i
————————— Adapter G mmmmamnay
0
Repository API Major Mutation API PIT Mutation AP
Defects4.J Projects L1 Major Mutation 8] PIT Mutation 1l
Repository Framework Framework

Figure 1: UML Component Diagram of the FRAFOL tool

different mutation testing tools to be executed using the same com-
mands. The Adapter also exposes a Project Gathering API providing
features for querying the repository of Defects4] projects. FRAFOL
also provides a WebGUI component, implemented in Python us-
ing Flask. We designed the GUI to provide a rich and interactive
web interface that simplifies the use of the Defects4] Framework
APIs and offers an integrated development environment. We chose
this approach because previous work reported that students and
instructors prefer such a setup for educational purposes [1].

FRAFOL is integrated into a Docker-based, containerized ar-
chitecture to enhance end-user experience by simplifying deploy-
ment and ensuring consistency and efficient dependency manage-
ment. Figure 2 shows the Docker-based container architecture im-
plemented, allowing FRAFOL to operate in a controlled environ-
ment. As illustrated, Docker implements a client-server architecture,
where the client communicates with the Docker daemon to build
and run containers. The container executes FRAFOL on an instance
of Ubuntu. The WebGUI manages interaction with FRAFOL, acting
as the communication bridge between the client and the GUI within
the container.

FRAFOL: FRAmework FOr Learning mutation testing

Y ———
<<internet Browser>>
Client

' User
»

ISSTA "24, September 16-20, 2024, Vienna, Austria

e
<<dacker=> 0
Desktop

Administrator
<cusos>

<<dockers>

[8000] <<dockor> (@)

Host

Registry

<<attfact>> [
- >| Ubuntu OS

pull & run on container

build

<<container=>
FRAFOL

<<artifacts>
‘WebGui

<<Github>>
build

Registry

Co_pi] | <cartitacss D)
WebGul

D

]
_____ P St O
Defectdd
Framewotk

Figure 2: UML Deployment Diagram of the FRAFOL tool

FRAFOL

Analyzer About

Mutation Data Class under mutation
Working Project: Gson-15 Mutation Tool: pit
Code Coverage: Condition Coverage: Mutation Score:
96.4% 93.6% 84.09%
190,197 88/94 148/176 live: 28
o
Mutant 4 Line Operator Method
0b673a90 317 NullReturnValsMutator endObject
0bcg9075 584 ConditionalsBoundaryMutator string
232de516 500 NullReturnValsMutator value
276949 456 NullReturnValsMutator nullValue
35316095 468 NullReturnValsMutator value
49992120 546 CallMutator flush

Dev Tests

package com.google.gson. strean;

junit.framework.TestCase;

javs.io.I0Exception;

java.io.Stringhriter;

java.io.Bufferediriter;

4

c final class StudentTest ext estlase {

ivate StringWriter stringir

Jsonriter jsonriter;

s Exception {
Stringwriter();
jsonliriter = new

}

JIsonriter(stringWriter);

testContructorliullParameter() {

public void

Compilation succeeded.

Figure 3: FRAFOL Mutation analysis integrated environment

2.2 User Interface

In the current configuration, where the Docker is installed in the
users’ local machine, FRAFOL can be accessed through the browser
at http://localhost:8000/.

The first webpage of FRAFOL shows a list of Java projects avail-
able in Defects4] and their corresponding versions. A user starts
by importing a desired project version, which results in FRAFOL
obtaining and compiling the corresponding source code, and adding
the version to the list of available project versions. Afterward, a user
can Open an imported project version and also select a mutation
testing tool to work with.

FRAFOL then configures an environment for the user selection
and redirects the user to FRAFOL’s primary web interface (Figure 3).

Figure 3 in (A) presents two tabs: one with a dashboard featuring
infographics on code coverage, condition coverage, and mutation
score data, and another with the code of the class under mutation.
(B) also includes two tabs, one displaying the source code for the
class under mutation and the other showing existing developer-
written test cases.

The user can execute the mutation tool by clicking the Mutate
button (C). FRAFOL launches the mutation tool and runs the test
suite against the generated mutants. The user may opt to run
only existing developer tests, newly developed student tests, or
both. The compilation results for “Student Tests” class may be

1848

ISSTA °24, September 16-20, 2024, Vienna, Austria

seen at (F). FRAFOL presents a table containing data on all remain-
ing live mutants (D). This data comprises mutantId, codeLine,
mutantOperator, and classMethod. Given the provided informa-
tion, the user can then analyze any live mutants, inspect the source
code that was mutated, and write test cases that detect live mu-
tants. If a test case detects a previously live mutant, such mutant is
removed from the table.

2.3 Tool Availability

FRAFOL is available at https://github.com/projFRAFOL/projFRAFOL
(see README.md for details), and a video demonstration is available

at: https://youtu.be/JMvGskRQre8. The initial version of FRAFOL

supports the Gson-15 and Cli-32 project versions. We are currently

working on a generalization that will allow other Defects4] project

versions to be included.

3 Validation

We conducted two user studies—a formative study that informed
the design of FRAFOL, and a summative study that evaluated the
current version of the tool. The formative study, involving 35 stu-
dents, using an early prototype, revealed a need for the following
key improvements: (1) easy installation through Dockerization, (2)
streamlined and unified GUI, (3) editing capabilities for test cases
in the same web environment, and (4) a side-by-side view of code
and tests. The summative evaluation asked four MSc students to
evaluate various aspects of FRAFOL, such as its usability and com-
plexity (see Table 1). These students had previously completed a
software testing course where they learned about mutation testing.
The study was carried out remotely and involved three steps:
First, the students installed FRAFOL, following the provided
guide, which took approximately 15 minutes. Second, one of the
authors gave a 10-minute presentation on FRAFOL. Third, the stu-
dents were given a list of four tasks to complete within 35 minutes:

(1) Select the Gson project, specifically version 15, and choose
the PIT mutation testing tool.

(2) Analyze only the existing developer tests and assess their
code coverage and mutation score (C in Figure 3).

(3) Analyze the results (D in Figure 3) and write a JUnit test
class (B in Figure 3) to target a specific mutant form the
list of the live mutants (D in Figure 3).

(4) Reevaluate the mutation coverage and score, this time in-
cluding developer and student test cases (C in Figure 3).

Finally, the students completed a questionnaire', which consisted
of closed questions with responses based on a 5-level Likert scale,
ranging from 1 (strongly disagree) to 5 (strongly agree). Table 1
shows the aggregated results of the questionnaire.

The results indicate that students highly appreciated the Interface
(4.3) and expressed a strong sense of Satisfaction while using the
tool (4.2). They believed that FRAFOL could significantly enhance
their learning Effectiveness (4.1) and found it Useful (4.0). The
Usability and Learnability of FRAFOL both received a score
of 3.9. Although these are positive results, there is room for im-
provement (e.g., by providing a short video tutorial). The System
feedback received a score of 3.4. Since the user study, we have

Thttps://forms.gle/V2C3tqaZ WK4YsYKK9

1849

Tavares et al.

Table 1: Students’ assessment of FRAFOL

Usability 3.9
Learnability 3.9
Satisfaction 4.2
Complexity 1.4
Effectiveness 4.1
Usefulness 4.0
System feedback 3.4
Interface 4.3

implemented a new mechanism to assist students further: by se-
lecting a live mutant in the summary table, students are redirected
to the specific line of source code that was mutated. The perceived
Complexity was rated at 1.4. As a negatively phrased question,
the low score means that students do not find the tool complex or
difficult to understand, which is a positive outcome.

4 Conclusions and Future Work

This paper presented FRAFOL (Framework For Learning Mutation
Testing). FRAFOL builds on top of the Defects4] framework, inte-
grates the PIT and Major mutation testing tools, and offers a unified
interface for mutation testing. The tool’s WebGUI and Docker-based
deployment streamline usability and accessibility, making it ideal
for teaching and learning mutation testing. FRAFOL aims at pro-
viding a user-friendly environment that supports educators and
students in mastering mutation testing techniques. Moreover, the
preliminary experimentation with four students provided valuable
insights into the usability and effectiveness of FRAFOL, setting a
promising foundation for further refinement and expansion of the
tool in educational settings.

Future work includes enhancing FRAFOL with advanced features
to aid mutation testing, such as displaying code coverage metrics, vi-
sualizing control flow graphs of the code under test, and conducting
analyses on live and productive mutants. Additionally, we aim to
streamline accessibility by enabling installation on remote servers,
eliminating the need for local Docker installations. Furthermore,
plans involve expanding experimentation to a broader student base
and integrating FRAFOL into courses tailored for industrial pro-
fessionals, thereby enhancing its practical utility and educational
impact. Finally, we plan to incorporate a dedicated set of GUIs
within FRAFOL designed for teachers. This will make it easier to
manage and monitor students’ progress, provide comprehensive
analytics on their performance, and offer intuitive interfaces for
creating and administering mutation testing tasks. Lastly, we intend
to integrate additional mutation tools in FRAFOL.

Acknowledgments

This work is being funded by the ENACTEST Erasmus+ project
number 101055874. René Just’s work is supported in part by Na-
tional Science Foundation grants CCF-1942055 and CNS-2120070.

=

FRAFOL: FRAmework FOr Learning mutation testing

References
[1] Domenico Amalfitano, Ana C. R. Paiva, Alexis Inquel, Luis Pinto, Anna Rita

Fasolino, and René Just. 2022. How do Java mutation tools differ? Commun. ACM
65, 12 (nov 2022), 74-89. https://doi.org/10.1145/3526099

[2] James H Andrews, Lionel C Briand, and Yvan Labiche. 2005. Is mutation an

appropriate tool for testing experiments?. In Proceedings of the 27th international
conference on Software engineering. 402-411.

Moritz Beller, Chu-Pan Wong, Johannes Bader, Andrew Scott, Mateusz Machalica,
Satish Chandra, and Erik Meijer. 2021. What It Would Take to Use Mutation
Testing in Industry—A Study at Facebook. In 2021 [EEE/ACM 43rd International
Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP).
268-277. https://doi.org/10.1109/ICSE-SEIP52600.2021.00036

Yiqun T Chen, Rahul Gopinath, Anita Tadakamalla, Michael D Ernst, Reid Holmes,
Gordon Fraser, Paul Ammann, and René Just. 2020. Revisiting the relationship
between fault detection, test adequacy criteria, and test set size. In Proceedings of
the 35th IEEE/ACM international conference on automated software engineering.
237-249.

P.J. Clarke, A. A. Allen, T. M. King, E. L. Jones, and P. Natesan. [n.d.]. Using
a web-based repository to integrate testing tools into programming courses. In
Proceedings of the ACM International Conference Companion on Object Oriented
Programming Systems Languages and Applications Companion, SPLASH °10. 193~
200. https://doi.org/10.1145/1869542.1869573

Henry Coles, Thomas Laurent, Christopher Henard, Mike Papadakis, and An-
thony Ventresque. 2016. PIT: a practical mutation testing tool for Java (demo). In
Proceedings of the 25th International Symposium on Software Testing and Analysis
(Saarbriicken, Germany) (ISSTA 2016). Association for Computing Machinery,
New York, NY, USA, 449-452. https://doi.org/10.1145/2931037.2948707
Gordon Fraser, Alessio Gambi, and José Miguel Rojas. 2020. Teaching Software
Testing with the Code Defenders Testing Game: Experiences and Improvements.
In 2020 IEEE International Conference on Software Testing, Verification and Vali-
dation Workshops (ICSTW). 461-464. https://doi.org/10.1109/ICSTW50294.2020.
00082

V. Garousi, M. Felderer, M. Kuhrmann, K. Herkiloglu, and S. Eldh. 2020. Exploring
the industry’s challenges in software testing: An empirical study. Journal of
Software: Evolution and Process 32, 8 (2020). https://doi.org/10.1002/smr.2251

[9]

[10]

[11

=
N

(13

[14]

[15

[16

[17

ISSTA °24, September 16-20, 2024, Vienna, Austria

Luca Gazzola, Daniela Micucci, and Leonardo Mariani. 2019. Automatic Software
Repair: A Survey. IEEE Transactions on Software Engineering 45, 1 (2019), 34-67.
https://doi.org/10.1109/TSE.2017.2755013

Ali Ghanbari, Samuel Benton, and Lingming Zhang. 2019. Practical program
repair via bytecode mutation. In Proceedings of the 28th ACM SIGSOFT In-
ternational Symposium on Software Testing and Analysis (Beijing, China) (IS-
STA 2019). Association for Computing Machinery, New York, NY, USA, 19-30.
https://doi.org/10.1145/3293882.3330559

René Just. 2014. The Major mutation framework: Efficient and scalable mutation
analysis for Java. In Proceedings of the 2014 international symposium on software
testing and analysis. 433-436.

René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4]: A database of ex-
isting faults to enable controlled testing studies for Java programs. In Proceedings
of the 2014 international symposium on software testing and analysis. 437-440.
René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid Holmes,
and Gordon Fraser. 2014. Are mutants a valid substitute for real faults in software
testing?. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering (Hong Kong, China) (FSE 2014). Association
for Computing Machinery, New York, NY, USA, 654-665. https://doi.org/10.
1145/2635868.2635929

A. Jefferson Offutt and Roland H. Untch. 2001. Mutation 2000: Uniting the Orthog-
onal. Springer US, Boston, MA, 34-44. https://doi.org/10.1007/978-1-4757-5939-
6_7

Goran Petrovi¢, Marko Ivankovi¢, Gordon Fraser, and René Just. 2021. Does
mutation testing improve testing practices?. In Proceedings of the 43rd Interna-
tional Conference on Software Engineering (Madrid, Spain) (ICSE ’21). IEEE Press,
910-921. https://doi.org/10.1109/ICSE43902.2021.00087

Goran Petrovi¢, Marko Ivankovi¢, Gordon Fraser, and René Just. 2021. Practical
mutation testing at scale: A view from google. IEEE Transactions on Software
Engineering 48, 10 (2021), 3900-3912.

Goran Petrovic, Marko Ivankovic, Bob Kurtz, Paul Ammann, and René Just. 2018.
An Industrial Application of Mutation Testing: Lessons, Challenges, and Research
Directions. In 2018 IEEE International Conference on Software Testing, Verification
and Validation Workshops (ICSTW). 47-53. https://doi.org/10.1109/ICSTW.2018.
00027

Received 2024-07-05; accepted 2024-07-26

