


ISSTA ’24, September 16–20, 2024, Vienna, Austria Tavares et al.

engagement and sharpens test-writing skills, improving student

performance. Web-CAT (Web-based Center for Automated Testing)

automates grading and emphasizes quality in student-written test

cases. It promotes an understanding of expected code behaviour

through test-driven development principles. Web-CAT’s detailed

feedback enhances learning outcomes and reduces grading work-

load, making it a valuable tool in software testing education. Cod-

eDefenders and Web-CAT aim to provide students with practical,

engaging, and effective learning experiences.

Many software testing tools are readily available, but they often

lack comprehensive features and consistency in integration into

curricula, necessitating multiple setup procedures and extensive

prior knowledge. In the context of mutation testing for Java, nu-

merous tools have been proposed in the literature, each with its

unique features and capabilities, but the primary focus of these

tools is applications in practice or research [1]. There is a shortage

of tools that enable students to quickly gain hands-on experience

with various mutation testing tools and start writing tests.

This paper proposes FRAFOL, a “FRAmework FOr Learning mu-

tation testing”. FRAFOL aims to simplify the setup and configura-

tion requirements by offering a uniform environment for learning,

and experimenting with, mutation testing.

2 The FRAFOL tool

This section explains FRAFOL’s design rationale and provides im-

plementation details. FRAFOL provides a common environment

throughwhich a student can use two different mutation tools, Major

and PIT.We chose these twomutation testing tools because they are

widely used in research and practice and they have complementary

features (e.g., source code vs. bytecode mutations). FRAFOL is not

specific to these two tools, and others could be integrated. FRAFOL

shields students from technical complexity but nonetheless allows

them to observe key differences, such as types of mutants and how

difficult it is to detect them. Furthermore, we implemented FRAFOL

as an extension of Defects4J [12], which is a collection of repro-

ducible Java bugs with an infrastructure of tools and scripts and

which is widely used in research and education. We chose Defects4J

because it provides uniform access to numerous realistic subjects,

including compiling and testing them.

FRAFOL aims to provide an easy-to-install and easy-to-use envi-

ronment where students can immediately start analyzing mutants

and writing tests to detect them without spending time figuring

out the intricacies of the mutation testing tools.

FRAFOL provides the following eight main features:

F1: Provides a web interface.

F2: Allows selecting a project version from the Defects4J.

F3: Allows selecting a mutation tool to work with (Major [11]

or PIT [6]).

F4: Provides an IDE to i) analyze the Java code of the selected

project version and ii) develop a JUnit test class.

F5: Allows compiling the JUnit test class.

F6: Supports executing the selected mutation tool and the anal-

ysis of the results.

F7: Evaluates and shows the following metrics: the number of

generated mutants, the number of killed mutants by the

JUnit test class, the number of live mutants, and the code

coverage achieved by the JUnit test class in terms of LoC

coverage and branch coverage.

F8: Shows details about live mutants to aid students in their mu-

tation testing effort. These details include an ID, the mutated

source code’s line number, the mutated method’s name, and

the applied mutation operator.

2.1 Design and Implementation

FRAFOL uses the Defects4J benchmark as its core component. De-

fects4J already interfaces with the Major mutation testing tool,

and it provides automation for various analyses, including muta-

tion analysis and code coverage. Additionally, Defects4J provides

uniform access to a repository of Java projects, each with corre-

sponding test cases produced by developers. However, Defects4J

is command-line driven and integration into a development envi-

ronment (e.g., for mutation testing) is left to end users. Figure 1

shows a UML component diagram of the FRAFOL tool: FRAFOL

extends Defects4J by integrating the PIT mutation tool and provid-

ing an Adapter to expose a unified Common Mutation API for both

mutation tools. The adapter provides a unified interface, allowing

Figure 1: UML Component Diagram of the FRAFOL tool

different mutation testing tools to be executed using the same com-

mands. The Adapter also exposes a Project Gathering API providing

features for querying the repository of Defects4J projects. FRAFOL

also provides a WebGUI component, implemented in Python us-

ing Flask. We designed the GUI to provide a rich and interactive

web interface that simplifies the use of the Defects4J Framework

APIs and offers an integrated development environment. We chose

this approach because previous work reported that students and

instructors prefer such a setup for educational purposes [1].

FRAFOL is integrated into a Docker-based, containerized ar-

chitecture to enhance end-user experience by simplifying deploy-

ment and ensuring consistency and efficient dependency manage-

ment. Figure 2 shows the Docker-based container architecture im-

plemented, allowing FRAFOL to operate in a controlled environ-

ment. As illustrated, Docker implements a client-server architecture,

where the client communicates with the Docker daemon to build

and run containers. The container executes FRAFOL on an instance

of Ubuntu. The WebGUI manages interaction with FRAFOL, acting

as the communication bridge between the client and the GUI within

the container.

1847





ISSTA ’24, September 16–20, 2024, Vienna, Austria Tavares et al.

seen at (F). FRAFOL presents a table containing data on all remain-

ing live mutants (D). This data comprises mutantId, codeLine,

mutantOperator, and classMethod. Given the provided informa-

tion, the user can then analyze any live mutants, inspect the source

code that was mutated, and write test cases that detect live mu-

tants. If a test case detects a previously live mutant, such mutant is

removed from the table.

2.3 Tool Availability

FRAFOL is available at https://github.com/projFRAFOL/projFRAFOL

(see README.md for details), and a video demonstration is available

at: https://youtu.be/JMvGskRQre8. The initial version of FRAFOL

supports the Gson-15 and Cli-32 project versions. We are currently

working on a generalization that will allow other Defects4J project

versions to be included.

3 Validation

We conducted two user studies—a formative study that informed

the design of FRAFOL, and a summative study that evaluated the

current version of the tool. The formative study, involving 35 stu-

dents, using an early prototype, revealed a need for the following

key improvements: (1) easy installation through Dockerization, (2)

streamlined and unified GUI, (3) editing capabilities for test cases

in the same web environment, and (4) a side-by-side view of code

and tests. The summative evaluation asked four MSc students to

evaluate various aspects of FRAFOL, such as its usability and com-

plexity (see Table 1). These students had previously completed a

software testing course where they learned about mutation testing.

The study was carried out remotely and involved three steps:

First, the students installed FRAFOL, following the provided

guide, which took approximately 15 minutes. Second, one of the

authors gave a 10-minute presentation on FRAFOL. Third, the stu-

dents were given a list of four tasks to complete within 35 minutes:

(1) Select the Gson project, specifically version 15, and choose

the PIT mutation testing tool.

(2) Analyze only the existing developer tests and assess their

code coverage and mutation score (C in Figure 3).

(3) Analyze the results (D in Figure 3) and write a JUnit test

class (B in Figure 3) to target a specific mutant form the

list of the live mutants (D in Figure 3).

(4) Reevaluate the mutation coverage and score, this time in-

cluding developer and student test cases (C in Figure 3).

Finally, the students completed a questionnaire1, which consisted

of closed questions with responses based on a 5-level Likert scale,

ranging from 1 (strongly disagree) to 5 (strongly agree). Table 1

shows the aggregated results of the questionnaire.

The results indicate that students highly appreciated the Interface

(4.3) and expressed a strong sense of Satisfactionwhile using the

tool (4.2). They believed that FRAFOL could significantly enhance

their learning Effectiveness (4.1) and found it Useful (4.0). The

Usability and Learnability of FRAFOL both received a score

of 3.9. Although these are positive results, there is room for im-

provement (e.g., by providing a short video tutorial). The System

feedback received a score of 3.4. Since the user study, we have

1https://forms.gle/V2C3tqaZWK4YsYkK9

Table 1: Students’ assessment of FRAFOL

Usability 3.9

Learnability 3.9

Satisfaction 4.2

Complexity 1.4

Effectiveness 4.1

Usefulness 4.0

System feedback 3.4

Interface 4.3

implemented a new mechanism to assist students further: by se-

lecting a live mutant in the summary table, students are redirected

to the specific line of source code that was mutated. The perceived

Complexity was rated at 1.4. As a negatively phrased question,

the low score means that students do not find the tool complex or

difficult to understand, which is a positive outcome.

4 Conclusions and Future Work

This paper presented FRAFOL (Framework For Learning Mutation

Testing). FRAFOL builds on top of the Defects4J framework, inte-

grates the PIT and Major mutation testing tools, and offers a unified

interface formutation testing. The tool’sWebGUI andDocker-based

deployment streamline usability and accessibility, making it ideal

for teaching and learning mutation testing. FRAFOL aims at pro-

viding a user-friendly environment that supports educators and

students in mastering mutation testing techniques. Moreover, the

preliminary experimentation with four students provided valuable

insights into the usability and effectiveness of FRAFOL, setting a

promising foundation for further refinement and expansion of the

tool in educational settings.

Future work includes enhancing FRAFOLwith advanced features

to aid mutation testing, such as displaying code coverage metrics, vi-

sualizing control flow graphs of the code under test, and conducting

analyses on live and productive mutants. Additionally, we aim to

streamline accessibility by enabling installation on remote servers,

eliminating the need for local Docker installations. Furthermore,

plans involve expanding experimentation to a broader student base

and integrating FRAFOL into courses tailored for industrial pro-

fessionals, thereby enhancing its practical utility and educational

impact. Finally, we plan to incorporate a dedicated set of GUIs

within FRAFOL designed for teachers. This will make it easier to

manage and monitor students’ progress, provide comprehensive

analytics on their performance, and offer intuitive interfaces for

creating and administering mutation testing tasks. Lastly, we intend

to integrate additional mutation tools in FRAFOL.

Acknowledgments

This work is being funded by the ENACTEST Erasmus+ project

number 101055874. René Just’s work is supported in part by Na-

tional Science Foundation grants CCF-1942055 and CNS-2120070.

1849



FRAFOL: FRAmework FOr Learning mutation testing ISSTA ’24, September 16–20, 2024, Vienna, Austria

References
[1] Domenico Amalfitano, Ana C. R. Paiva, Alexis Inquel, Luís Pinto, Anna Rita

Fasolino, and René Just. 2022. How do Java mutation tools differ? Commun. ACM
65, 12 (nov 2022), 74–89. https://doi.org/10.1145/3526099

[2] James H Andrews, Lionel C Briand, and Yvan Labiche. 2005. Is mutation an
appropriate tool for testing experiments?. In Proceedings of the 27th international
conference on Software engineering. 402–411.

[3] Moritz Beller, Chu-PanWong, Johannes Bader, Andrew Scott, Mateusz Machalica,
Satish Chandra, and Erik Meijer. 2021. What It Would Take to Use Mutation
Testing in Industry—A Study at Facebook. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP).
268–277. https://doi.org/10.1109/ICSE-SEIP52600.2021.00036

[4] Yiqun T Chen, Rahul Gopinath, Anita Tadakamalla, Michael D Ernst, Reid Holmes,
Gordon Fraser, Paul Ammann, and René Just. 2020. Revisiting the relationship
between fault detection, test adequacy criteria, and test set size. In Proceedings of
the 35th IEEE/ACM international conference on automated software engineering.
237–249.

[5] P. J. Clarke, A. A. Allen, T. M. King, E. L. Jones, and P. Natesan. [n. d.]. Using
a web-based repository to integrate testing tools into programming courses. In
Proceedings of the ACM International Conference Companion on Object Oriented
Programming Systems Languages and Applications Companion, SPLASH ’10. 193–
200. https://doi.org/10.1145/1869542.1869573

[6] Henry Coles, Thomas Laurent, Christopher Henard, Mike Papadakis, and An-
thony Ventresque. 2016. PIT: a practical mutation testing tool for Java (demo). In
Proceedings of the 25th International Symposium on Software Testing and Analysis
(Saarbrücken, Germany) (ISSTA 2016). Association for Computing Machinery,
New York, NY, USA, 449–452. https://doi.org/10.1145/2931037.2948707

[7] Gordon Fraser, Alessio Gambi, and José Miguel Rojas. 2020. Teaching Software
Testing with the Code Defenders Testing Game: Experiences and Improvements.
In 2020 IEEE International Conference on Software Testing, Verification and Vali-
dation Workshops (ICSTW). 461–464. https://doi.org/10.1109/ICSTW50294.2020.
00082

[8] V. Garousi, M. Felderer, M. Kuhrmann, K. Herkiloğlu, and S. Eldh. 2020. Exploring
the industry’s challenges in software testing: An empirical study. Journal of
Software: Evolution and Process 32, 8 (2020). https://doi.org/10.1002/smr.2251

[9] Luca Gazzola, Daniela Micucci, and Leonardo Mariani. 2019. Automatic Software
Repair: A Survey. IEEE Transactions on Software Engineering 45, 1 (2019), 34–67.
https://doi.org/10.1109/TSE.2017.2755013

[10] Ali Ghanbari, Samuel Benton, and Lingming Zhang. 2019. Practical program
repair via bytecode mutation. In Proceedings of the 28th ACM SIGSOFT In-
ternational Symposium on Software Testing and Analysis (Beijing, China) (IS-
STA 2019). Association for Computing Machinery, New York, NY, USA, 19–30.
https://doi.org/10.1145/3293882.3330559

[11] René Just. 2014. The Major mutation framework: Efficient and scalable mutation
analysis for Java. In Proceedings of the 2014 international symposium on software
testing and analysis. 433–436.

[12] René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A database of ex-
isting faults to enable controlled testing studies for Java programs. In Proceedings
of the 2014 international symposium on software testing and analysis. 437–440.

[13] René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid Holmes,
and Gordon Fraser. 2014. Are mutants a valid substitute for real faults in software
testing?. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering (Hong Kong, China) (FSE 2014). Association
for Computing Machinery, New York, NY, USA, 654–665. https://doi.org/10.
1145/2635868.2635929

[14] A. Jefferson Offutt and Roland H. Untch. 2001. Mutation 2000: Uniting the Orthog-
onal. Springer US, Boston, MA, 34–44. https://doi.org/10.1007/978-1-4757-5939-
6_7

[15] Goran Petrović, Marko Ivanković, Gordon Fraser, and René Just. 2021. Does
mutation testing improve testing practices?. In Proceedings of the 43rd Interna-
tional Conference on Software Engineering (Madrid, Spain) (ICSE ’21). IEEE Press,
910–921. https://doi.org/10.1109/ICSE43902.2021.00087

[16] Goran Petrović, Marko Ivanković, Gordon Fraser, and René Just. 2021. Practical
mutation testing at scale: A view from google. IEEE Transactions on Software
Engineering 48, 10 (2021), 3900–3912.

[17] Goran Petrovic, Marko Ivankovic, Bob Kurtz, Paul Ammann, and René Just. 2018.
An Industrial Application of Mutation Testing: Lessons, Challenges, and Research
Directions. In 2018 IEEE International Conference on Software Testing, Verification
and Validation Workshops (ICSTW). 47–53. https://doi.org/10.1109/ICSTW.2018.
00027

Received 2024-07-05; accepted 2024-07-26

1850


