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Particle dynamics simulations are used to determine the shear-induced microstructure and
rheology of jammed suspensions of soft particles. These suspensions, known as soft parti-
cle glasses (SPGs), have an amorphous structure at rest but transform into ordered phases
in strong shear flow when the particle size distribution is relatively monodisperse. Here, a
series of bidisperse SPGs with different particle radii and number density ratios are consid-
ered, and their shear-induced phase diagrams are correlated with the macroscopic rheology
at different shear rates and volume fractions. These shear-induced phase diagrams reveal
that a combination of these parameters can lead to the emergence of various microstruc-
tures such as amorphous, layered, crystals, and in some cases, coexistence of amorphous
and ordered phases. The evolution of the shear stress is correlated with the change in
the microstructure and is a shear-activated process. Stress shows pseudo-steady behavior
during an induction period before the final microstructural change leading to the forma-
tion of ordered structures. The outcomes provide a promising method to control the phase

behavior of soft suspensions and build new self-assembled microstructures.
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I. Introduction

Microstructure and macroscopic shear rheology of yield stress fluids, such as soft particle glasses
(SPGs),'? are determined by the volume fraction of particles ¢, shear rate , and particle size
distribution.>"8 SPGs, which are in the form of concentrated emulsions, microgels, star polymers

with many arms,?®

consist of deformable particles that are jammed at volume fractions above the
random close packing of equivalent hard-sphere suspensions (i.e., @rcp = 0.64).19 In these sus-
pensions, every particle is trapped in a cage formed by the first neighboring particles in contact.
At contacts, particles exert elastic and lubrication forces onto one another. Unlike hard-sphere
glasses, which solely encounter forces arising from excluded volume interactions, SPGs undergo
compression through a bulk osmotic force and interact through an elastic repulsive potential.> De-
pending on the particle size distribution, they can form ordered structures in shear flow at volume
fractions larger than ¢,cp.6’7’1 112 SPGs behave like weak elastic solids at rest but flow macroscopi-
cally and exhibit shear thinning behavior under the application of stresses larger than a stress value
known as the dynamic yield stress 0'y.1'13 The shear rate dependence of the shear stress is often
expressed by the Herschel-Bulkley (HB) equation, o = oy + k7", where n is the exponent close to
0.50, k is the consistency parameter.%14

It has been recognized that the distribution of particle sizes significantly influences the crystal-

15-18 prior works have investigated the impact of polydispersity

lization behavior of hard spheres.
on the rheological properties and phase behavior of hard spheres.!® In a quiescent state, suspen-
sions with particle size distribution skewed towards smaller sizes transform into small crystallites
that are not aligned or ordered in a consistent pattern across the material, resembling a smectic-
like phase.?%2! Suspensions with symmetrical and skewed size distribution towards large particles
exhibit qualitatively distinct growth behaviors.?? This observation implies a growth mechanism in
which crystallization coincides with a local fractionation process near the crystal-fluid interface.
The crystallization process in colloidal hard spheres proceeds through two distinct stages: precur-
sor and induction stages.”>?* These stages are marked by the growth of clusters with long-lived
nonequilibrium structures, followed by a delayed nucleation process, respectively. The limited
growth due to polydispersity is responsible for the induction stage and directly contributes to
the delayed nucleation. Furthermore, experimental observations, using poly-methylmethacrylate,
have shown that colloidal crystals of type AB, and AB13 in binary hard sphere suspensions are

formed, and the stability of these crystals rely on the size ratios.!”-18
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In the case of hard spheres, the application of either oscillatory or steady shear influences
the microstructure and rheology of colloidal suspensions, particularly comprised of sterically
stabilized colloidal particles.>>~>® These hard particles can form shear-induced microstructures.
Shear-induced ordering has been observed previously in volume fractions below the random close-
packing fractions for hard spheres . In general, the phase behavior of Brownian soft particles
below random-close packing at rest is similar to that seen in the hard sphere since the dominant
interaction is based on thermal motion.293¢ Both the structural and rheological characteristics
of dense colloidal suspensions are influenced by factors such as the volume fraction of colloids,
size distribution, inter-colloid interactions and the shearing conditions. Generally, in oscillatory
shear flow, suspensions of hard spheres show different arrangements. FCC ordering is observed
at low strain and frequency amplitudes, while hexagonally close-packed layers form at higher
amplitudes.® Oscillatory shear flow can induce order-to-disorder transition.3” These amorphous to
crystalline transitions include crystalline formations such as face-centered cubic (FCC) structures,
layers stacked in hexagonal patterns (HCP) between ¢ = 0.545 and 0.58, as well as string, and
liquid-like arrangements. 383

Compared to hard spheres, the process of quiescent crystallization in dense suspensions of
soft colloids is generally more complex, primarily due to particle shape fluctuations and volume
adjustments.?!*0 The softness and spatial distribution of particles within the microstructure deter-
mine the macroscopic characteristics of these colloidal suspensions.>*!*> In quiescent conditions,
a variety of structures can emerge, and their nature is based on the interplay of Brownian, repulsive,

and attractive forces.5*3

In the case of relatively monodisperse microgels, the initiation of fluid-
crystal coexistence takes place at the identical volume fraction of 0.494, similar to hard spheres.
Conversely, polydisperse microgels do not undergo crystallization but instead form an entropic
glassy state, progressing further into a jammed glassy state.** When experimentally investigating
poly(N-isopropylacrylamide) microgels, Scotti ef al. observed a shift in the fluid-crystal transition
to higher concentrations depending on the the polydispersity of the suspension.* It is important
to note that even minor changes in the particles’ surface roughness can significantly affect their
interactions and phase behavior.*® Thus, the phase behavior of concentrated suspensions depends
on the volume fraction and the interaction at contact.

Similar to hard spheres, soft particles undergo microstructural changes when subjected to os-

cillatory or steady shear flows in experiments, and the response of spherical jammed suspensions

undergoing shear deformation is characterized by out-of-equilibrium phase diagrams.*’*° These
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diagrams illustrate that above the freezing point, amorphous suspensions can transition into FCC
structures, sliding layer configurations, or mixtures depending on the applied strain amplitude and
frequency.?® In oil-in-water emulsions subjected to large-amplitude shear oscillations, light scat-
tering studies have revealed the induction of sliding hexagonal layers in the microstructure. The
specific ordering observed is contingent upon the volume fraction and shear history of the sample,
particularly near or above the jamming volume fraction.’® Ultrasoft colloidal star polymers with
a volume fraction close to the glass transition line exhibit a crystal-to-crystal transition under os-
cillatory shear flow. For instance, 1,4-polybutadiene stars undergo a direct transformation from
a BCC-dominated phase to an HCP-like microstructure within an intermediate range of Péclet
numbers.!

Similarly in simulations, utilization of either oscillatory or steady shear flows alters both the
microscopic arrangement of colloidal soft suspensions and their rheological response.’? In this

regard, Khabaz et al.%7

studied the rheology of polydisperse soft particles with varying degrees of
polydispersity undergoing both steady and oscillatory shear flows. The impact of steady shear and
polydispersity on the rheological properties and microstructure of SPGs was explored. Jammed
suspensions of soft particles, irrespective of their volume fractions, can undergo shear-induced or-
dering. The microstructure transforms from an amorphous phase to a layered structure aligned
parallel to the flow-vorticity plane. The influence of particle geometry on these transforma-
tions, particularly for elongated particles, has been explored by Bearon and Durham,>* who found
that elongation can significantly enhance directional alignment and migration under shear. In-
terestingly, similar behaviors have been observed in studies of confined micro-swimmers, where
anisotropic diffusion and external shear fields significantly alter migration patterns and orientation
dynamics.>* This structural rearrangement is associated with a decrease in shear stress and the
elastic energy of the suspensions. Furthermore, it was demonstrated that the disorder-to-layered
transformation is a shear-activated process. There is an initial induction period before the forma-
tion of the layered structure in which stress shows a pseudo-steady state behavior. This duration of
this induction period follows a universal exponential decay as a function of shear rate with varying
volume fractions. The same behavior was reported in large amplitude oscillatory shear flow when
the maximum shear rate is large enough.”

As discussed, polydisperse concentrated suspensions show shear-induced phase transition in
experiments and simulations.'>#>33-3 On the other hand, bidispersity of particle size distribution

has a notable impact on suspension rheology. 6738 For example, a dense bidisperse suspension of
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soft spheres exhibits a relative viscosity lower than that of a monodisperse hard-sphere suspension
at the same hard particle volume fraction.’® Previous work has verified the decrease in relative
viscosity by experimentally studying bidisperse suspensions using non-Brownian glass beads in
glycerin.®® This difference in relative viscosity can be attributed to the capacity to attain a larger
maximum packing fraction in soft colloidal suspensions.®! In relation to our current study, Mal-
branche et al.>® investigated the rheology of shear thickening bidisperse suspensions, and ordering
was observed when the ratio of volume fraction of the large particles to total volume fraction
was greater than 0.85. Inspired by this work, we investigate the rheology and microstructure of
jammed suspensions formed by bidisperse soft particles. Specifically, our objectives are: (1) to
understand the effect of the ratio of particle radii and their number density ratio on microstruc-
ture when bidisperse soft particles are considered, (2) to quantify the quality of the shear-induced
phases using proper structural parameters such as in-plane pair distribution functions and bond
order parameters and (3) to provide phase diagrams of bidisperse suspensions in shear flow. To
pursue these objectives, we apply a three-dimensional (3D) particle simulations,® and explore the
impact of particle size distribution, shear rate, and volume fraction on the evolution of microstruc-
ture in steady shear flow. Our results show that aside from volume fraction and shear rate, two
additional parameters, which are the number density ratio of the large particles to small particles
and the ratio of their radii, are needed to determine the shear-induced phase behavior. Tuning these
parameters leads to the formation of shear-induced layered, amorphous, crystals and, in some rare
cases, the coexistence between amorphous and ordered structures.

II. Simulation details and method

A. Suspensions specifications

10,000 particles with a bidisperse size distribution are suspended in a Newtonian liquid with a
viscosity 1, in a cubic periodic box, as seen in Fig. 1(A). Two parameters are used to control
the dispersity of the suspension, namely r and X. r represents the radius ratio of large to small
particles, i.e., r = R;/R;, and X represents the number density ratio of each population, i.e., X =
np/ns. The volume fraction and the total number of particles are fixed; thus, the box length for
a given volume fraction can vary by adjusting » and X values. Overall, three volume fractions,
¢ =0.70,0.80, and 0.90, are studied in these simulations.

B. Force law and shear flow protocol

Following previous works on this topic,!® we utilize the methodology for simulating SPGs in

shear flow with a subtle difference in the force law where the normal contact elastic force (fgﬁ)
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FIG. 1. (A) Configuration of a bidisperse suspension with a volume fraction of ¢ = 0.80 with X = 0.10
and r = 1.60 subjected to shear flow with an applied shear rate of yn,/E* in a periodic simulation box. The
velocity (u), gradient (V), and vorticity (@) directions are indicated. (B) Schematic showing the pair-wise

interaction between particles ¢ and f3.

between particles are governed by the Hertz law according to:

fo5 = gE*eé'ngnL, D
where E* is the contact modulus of the individual particle (E* = E/2(1 — v?), with E is the
Young’s modulus and v is the Poisson ratio), €y is the dimensionless overlap parameter which
is defined as £, = (Rq +Rp — rqp)/Re, Where R. = RqRp/(Rq + Rp) is the effective radius of
the two particles in contact and rqg is the distance between particles o and 8. n, is the normal
vector to the facets at contact as shown in Fig. 1(B). Two particles in contact also experience

elastohydrodynamic (fggD ) force according to:

£25° = —(Nsuap E*RY)€gpny, ()
where w4 is the magnitude of the relative velocity of two particles in the direction parallel to
the facets in contact, i.e., n. The vector nj lies in the tangential plane at the contact point.
Its specific direction within this plane is critical for modeling the sliding interactions that occur
when particles move relative to each other under shear, and usually, this alignment is parallel to
the shear direction, ensuring that the EHD force represents the shear-driven relative velocities of
the particles along the contact plane. This particular orientation is necessary for calculating the

rel

component of relative velocity that is tangential to the point of contact, u,’, which influences the

shear interactions between the particles. It is calculated by ulrfll = (uﬁ —Ug) NN =Uyg-N Ny,
rel

where up’

is the component of relative velocity along n | . The relative tangential velocity is given

by u,’le =u— (R + Rﬁ QB) X n |, where U =u,—u-nnj. In our suspensions, since the
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volume fraction is high, the rotational motion of our particles is limited, therefore, u,’le =u. The

rel
n
direction of the applied force is n| = Hin”l‘l Considering these two forces and using the scales of
un
I

the particle size R and time 7n,/E*, the dimensionless equation of motion for particle ¢ in shear

flow becomes:

1
d%a o M [4/m\ w15, Ms\ 2 32
G Tt g( E) %%Rc“ﬁ o %(”aﬁ,\\RC> LTI E)

where M = %I (I is the identity tensor) is the mobility coefficient and is set to 0.01.5 u$ =
%yaex describes the shear advection velocity of a particle &, e, is the unit vector in the flow
direction. Note that the dimensionless shear rate of y1n,/E* which emerges from this equation
is used to impose the shear rate on the suspensions by applying the Lees—Edwards boundary
conditions.%? The stress tensor is then computed as a function of time using the Kirkwood for-
mula, i.e., o = ﬁEaZBfaﬁ (Xq — XB), where f,5 is the total force exerted on particle & by particle
B, and L is the length of the cubic box.%% In all simulations, the suspensions are subjected to shear
flow for at least 200 strains.

III. Results and discussion

A. Shear rheology

The effects of particle radii ratio, r, and number density ratio, X, on shear stress, 6 /E*, and elastic
energy, UR3 /E*, per unit volume of suspensions as functions of strain, ¥, at nondimensional shear
rates of ym,/E* = 10~ (high) and yn,/E* = 10~ (low) are shown in Fig. 2. Starting from a
disordered state, at a volume fraction of ¢ = 0.80, the shear stress of suspensions with r = 1.65,
X =0.50 and r = 1.65, X = 0.10 shows an initial linear increase and an overshoot at y, = 0.4
(Fig. 2(A)). This overshoot strain is consistent with the range obtained for SPGs in previous
simulations, ¥, = 0.1 — 0.4,% and experiments.®* When r = 1.65, X = 0.10, the shear stress attains
a steady state value after the overshoot point as seen in Fig. 2(A), when r = 1.65 and X = 0.50,
the shear stress shows a pseudo-steady state over the strain of ¥;yp, known as the induction period,
before a rapid drop to its steady state value. The latter is reminiscent of the stress-strain behavior
seen in polydisperse soft particles when the polydispersity index is smaller than 0.2. Over this
strain interval, amorphous suspensions undergo structural rearrangements, which act as precursors
to phase transition from glassy to layers parallel to the flow-vorticity plane®’ at larger strains. We
also note that the trend of the y;yp is similar to prior works;® Yinp decreases with an increase in

the shear rate and a decrease in the volume fraction.
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FIG. 2. (A and B) Shear stress, 6/E*, and (C and D) elastic energy, UR? /E*, per unit volume as a function
of shear strain, 7, for different bidisperse suspensions with r = 1.65, X = 0.50 and X = 0.10 at shear rate
of yns/E* = 107%, r = 1.25, X = 0.02 and X = 0.50 at shear rate of yn,/E* = 10~° at volume fraction of
¢ =0.80.

In Fig. 2(B), the stress response is plotted for the suspensions, which show glassy (r = 1.25,
X = 0.50) and crystalline microstructures (r = 1.25, X = 0.02), at a low shear rate of yn;/E* =
102, We note that we do not observe stress overshoot at low shear rates. The shear stress of the
glassy microstructure reaches a steady state value after the initial increase. On the other hand, the
system with » = 1.25, X = 0.02 enters a pseudo-steady state period before it shows fluctuations
past a strain of ¥ = 1. The fluctuations in the stress values for the suspension are caused by the
deviation of the particle’s position from the lattice points, indicating the possibility of having a
crystalline structure.® Similarly, the dimensionless elastic energy per unit volume shows the same
behavior as observed in the shear stress (Fig. 2C-D). In suspensions under a high shear rate of
yns/E* = 1074, the elastic energy initially increases and then plateaus out for the glassy system,
or decreases to its steady state for the layered configuration as shown in Fig. 2(C). The elastic
energy shows constant values for the glassy structure while it rapidly drops at Y = 1 to its steady-

state for the crystalline structure as shown in Fig. 2(D) at a low shear rate of yn,/E* = 107°.
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FIG. 3. Steady-state flow curve as a function of shear rate for suspensions with » = 1.65,X = 0.10,0.50 and

r=1.25,X = 0.02 at volume fraction ¢ = 0.80.

The flow curve of a few selected suspensions at ¢ = 0.80, which cover a wide range of mi-
crostructures at steady-state, are presented in Fig. 3 (see Table. I for summary of results). The
shear-stress response for the disordered suspensions with r = 1.65,X = 0.10 follows the HB equa-
tion. The exponent value obtained for the suspensions is n = 0.4 +0.05, which is slightly smaller
than the value of 0.5 found by SPGs with stiffer contact force law."8 This deviation is also due
to the limited number of shear rates investigated at higher rates. In addition, there is a weak de-
pendence of the shear stress on the number density ratio of the suspensions, X, in the low shear
rate regime. In contrast, the dependence of the flow curve on this parameter becomes negligible
in the power-law flow regime. At high enough shear rates, i.e., 1,/E* = 1074, the shear-stress
response for the suspensions with » = 1.65,X = 0.50 plateaus instead of showing a monotonic
increase. This behavior is a direct consequence of the decreases of the shear stress as seen in Fig.
2(A) where the stress attains a lower steady-state than the glassy suspensions after experiencing
an induction period followed by crystallization. The discontinuity in the flow curve is similar to
the results reported by Khabaz er al.>!'! In suspensions with a low polydispersity index, a discon-
tinuity in the flow curve at intermediate or high shear rates was observed for mildly polydisperse
suspensions. This discontinuity shifts to higher shear rates when there is an increase in polydisper-

sity and volume fraction of the suspensions. In the case of suspensions with r = 1.25,X = 0.10,

9
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particles at all shear rates transition to ordered structures, but the nature of the microstructure
shows a sharp change at a shear rate of 71,/E* = 107 and then shear stress shows a significant
drop than expected value based on the HB relationship. The rearrangements of particles occurring
in the microstructure are responsible for the evolution in the shear stress and elastic energy seen

in Fig. 2, which are discussed next.

TABLE I. Shear induced microstructures of the selected suspensions in IIT A.

Suspensions  Shear rate (yn,/E*) Microstructure

r=1.65,X=0.50 1074 Layered
r=1.65X=0.10 1074 Glassy
r=125X=0.02 107° Crystalline
r=125X=0.0 100 Glassy

B. Microstructure
Local microstructure

To clarify the effect of shear flow on the microstructure of suspensions at steady state, the
two-dimensional (2D) pair distribution functions in the flow-gradient, g,v(r), and flow-vorticity,
guw(r), planes are determined at different shear rates. Since there are two sets of particles, i.e.,
small and large, all combinations of these pair distribution functions are determined in Figs. 4
and 5. At both high and low shear rates, g,v(r) and g, (r) for glassy structures show one major
peak indicating that there is only a short range structure at contact distance between particles in
the first neighbor shell. The latter confirms the existence of a disordered structure at steady state
as shown in Figs. 4(A), 4(C), 5(B), and 5(D). However, when a layered microstructure is formed,
more peaks are observed at large r, as seen in Figs. 4(B) and 4(D). Finally, crystalline structures
show several well-defined peaks at large distances which are associated with the formation of an
ordered phase (Figs. 5(C) and 5(A)). Comparison between the structures in the u® and uV planes
shows that there is a larger peak in the g,¢(r) than in g,y (r) which indicates that the particles
are more packed in the flow-vorticity plane than the flow-gradient plane. The number density
ratio and radius ratio of these bidisperse suspensions play a critical role in determining the final
microstructure. Holding » constant and decreasing X results in a glassy microstructure, as seen
in Fig. 4 and Fig. 5 while decreasing r and keeping X constant yield glassy and crystalline

microstructures in selected systems. These variations indicate that different combinations of X

10
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and r produce distinct microstructures and phase behaviors.
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FIG. 4. Flow-gradient and flow-vorticity pair distribution functions of bidisperse suspensions at ¢ = 0.80

as a function of the two-dimensional distance (r) at high shear rate of yn,/E*

showing a glassy (A and C) and layered microstructure (B and D).

A r=125Xx=050 10 r=1.25X=0.02]
o nsy/E =10"° o ngy/E =1 0
e Ok
B4 Glass [ Crystal
o O 4
2
2
00 10 15 00 5 10 15
r r
8 8
C r=1.25X=0.50 r=1.25X=0.02
ngY/E =10 ngY/E =10
6 6
=
=
o Glass
2
0

10~ and suspensions

FIG. 5. Flow-gradient and flow-vorticity pair distribution functions of bidisperse suspensions at ¢ = 0.80 as
a function of the two-dimensional distance (r) at low shear rate of 77,/E* = 10~° and suspensions showing

a glassy (A and C)and a crystalline (B and D) microstructure.
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To measure the variance in the configuration of the particles at steady-state, especially the crys-

talline structures, the microstructures are characterized by calculating the local order parameters,

gy for particle i,%5-%7 using the following equation:
. an | N2
@) =\|37 L O @

where / and m are indices used in the definition of spherical harmonics and, ¢ (i) is given as:
mi - 1 Nb(l) m

40=5%0 1:21 Y/ (xij), ®)
N, (i) is the number of neighbors of particle 7, ¥;"(r;;) are spherical harmonics coefficients for
neighboring particles j and r;; is the separation vector. These parameters are quantitative metrics
used to evaluate the level of order and arrangement within a set of particles and to detect whether
the particles are in a fluid-like environment or a solid-like environment.%® The ¢; quantifies the
degree of local ordering by assessing the symmetry and alignment of particles within a given re-
gion or cluster. This g; parameter is close to zero in the amorphous phase and acquires a specific
nonzero value for a given crystalline structure.%> In our systems, we calculate these quantities for
all particles. The probability density of g; at the steady state, along with snapshots of the mi-
crostructure and analysis of crystalline structure, are presented for these selected systems in Fig.
6. A disordered microstructure can be seen in Fig. 6(A) for suspensions with » = 1.65,X = 0.10.
In Fig. 6(B), when r = 1.75,X = 0.8, most of the particles are configured in layered structures
parallel to the flow-vorticity plane that does not correspond to any known crystalline structures.
Furthermore, Fig. 6(C) shows clusters of crystalline assemblies. Mostly FCC and HCP config-
urations are detected in the crystalline phase. The order parameters, g4 and gg are particularly
sensitive to the fourth and sixth orders of spherical harmonics, respectively. This makes them
well-suited to detect symmetries associated with common crystal structures.®> The distribution of
g4 and gg for glassy structure (Fig. 6D) shows normal distributions with average values of 0.1
and 0.2, respectively. These averages slightly shift to larger values for the layered structure (Fig.
6E). Interestingly, the distributions for the selected crystalline structure show a bimodal behavior
with peak values of g4 = 0.169 and 0.2, and g¢ = 0.49 and 0.538. Note that for a perfect FCC
crystal lattice, values of g4 = 0.171 and g¢ = 0.507 have been reported, whereas for a perfect HCP
crystal, these parameters take values of g4 = 0.107 and g = 0.445, respectively.>%70 In com-
parison to reported values, the co-existence of an FCC and an HCP crystalline structure is evident

for r =1.25 and X = 0.02.
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FIG. 6. (A-C) Microstructure, (D-F) crystallinity analysis, and (G-H) distribution of ¢4 and g¢ values of
suspensions with » = 1.65,X = 0.10, r = 1.75,X = 0.80, and r = 1.25,X = 0.02, at steady state. The

crystalline phases have been identified using polyhedral template matching.”!

In addition to the distribution of these parameters, average bond order parameters g, and gg
are calculated and plotted as a function of strain, ¥, in Fig. 7 at shear rates of yn,/E* = 107*
and 10~°. These metrics provide a generalized view of the level of order within the system as
the jammed suspensions are sheared. The results showed that the g, and g4 values of the layered
and crystalline bidisperse suspensions are higher than the glassy ones at both high and low shear
rates. The g, and g¢ values of a layered system were higher than the glassy system, as shown in
Fig. 7(A). In comparison between a glassy and a crystalline system, the crystalline system showed
lower g, but higher gg, indicating the prominent presence of an HCP crystal. Furthermore, the
crystalline g, and gg values showed an initial increase until ¥ = 10 followed by fluctuations and

attainment of a steady state as seen in Fig. 7(B).
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FIG. 7. Average bond order parameters (g,) and (g¢) as a function of strain (y) for different bidisperse
systems at shear rates of (A) yn,/E* = 10~* and (B) ms/E* = 10~°. In each plot, two suspensions with

ordered and disordered structures are selected.

2. Phase diagram

There are four parameters that control the phase behavior, i.e., yn;/E*, X, r, and ¢. Thus,
considering the behavior of the pair distribution functions and using values of the local bond order
parameters, g4 and g¢,%’ we construct phase diagrams of these suspensions by holding the shear

rate and volume fraction constant while varying X and r values as seen in Fig. 8. Depending
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on the phase, g4 and g¢ distribution can vary significantly. For an amorphous system, g4 and gg
values are 0.10 and a maximum of 0.36, respectively. The distribution is slightly shifted for layered
structures, and the values do not fall under the amorphous criterion. Finally, in a HCP crystalline
structure, the values of g4 and gg are 0.107 and 0.445, respectively. These values are 0.17 and
0.507, respectively, for an FCC crystalline structure.®-6%70 In addition to bond order parameters,
polyhedral template matching’' was used to identify if the particles correspond to any known
crystalline configuration. If the majority of the particles (i.e., more than 90%) do not belong to
any known lattice structure and form layers parallel to the flow-vorticity plane, they are called
"layered," while others that show a coexistence between FCC and HCP are named crystal. Note
that the layered systems show smooth steady stress response after the induction period, while
crystals show high fluctuations. In Fig. 8(A-C), at high shear rates and a volume fraction of
¢ = 0.70, only a small region with amorphous microstructure is present. This amorphous phase
behavior is observed when 0.1 < X < 0.2 and 1.6 < r < 1.75. Outside of these domains, soft
particles rearrange into either layered structures or form crystals in shear flow. With decreasing
shear rate, the presence of glassy structures becomes more evident as seen in Fig. 8(D) and Fig.
8(E). Crystals start forming near monodisperse boundaries and when X =1 at low shear rates of
yMs/E* = 1078 and 10~° as observed in Fig. 8(F). For ¢ = 0.80, at high shear rates, crystals are
observed at X = 0.05 and X = 0.95 for nearly all r considered. Fig. 8(G-L) shows that several
glassy and crystalline phases are generated. When r > 3 and X = 0.50 crystals structures appear,
and at X = 0.95, all systems at different particle size ratio  become crystal. This non-monotonic
dependence of the phase diagram on the size ratio r, as observed in 8(E) can be attributed to
a complex interplay of factors including particle size distribution, volume fraction, and shear-
induced dynamics. In monodisperse systems, the uniformity of particle size promotes optimal
packing under shear, facilitating the formation of crystalline structures. On the other hand, at very
high size ratios, r > 3, the smaller particles can effectively fill the gaps between larger particles,
enhancing order due to improved packing and alignment under shear. Moreover, the behavior
under shear significantly influences the microstructural transitions from amorphous to ordered
states, particularly noticeable at these size extremes. When size ratio, r, is large, the motion of
small particles around larger ones under shear allows for more effective particle rearrangements,
leading to crystalline formations.””

On the other hand, at X = 0.05, crystalline structures are seen only at r < 2. It can be concluded

that at high shear rates, an increase in X and r will result in an ordered structure, and a decrease of
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X towards a monodisperse system will result in crystallization. At lower shear rates, an increase
in the dominance of the glassy phase is observed, accompanied by reduced layering and enhanced
crystallization, as evident in Fig. 8(I) and Fig. 8(J). These results suggest the prevalence of the
glassy phase and the suppression of layering in the majority of bidisperse suspensions, especially
at the two lowest shear rates. Moving towards the lowest shear rates, crystals are formed, no
layering occurs and the phases are glassy and crystalline as seen in Fig. 8(K) and Fig. 8(L). For
the suspensions at ¢ = 0.90, mostly glassy and crystalline structures are observed throughout the
shear rates. Layering is only observed at the two highest shear rates of y1;/E* = 10~* and 107>
and only glassy and crystalline structures are observed at lower shear rates.

Interestingly, at volume fractions of ¢ = 0.80 and 0.90, a few suspensions, over the simulation
time scale of 1000 strain units, show the coexistence of the amorphous and ordered structures.
In these suspensions, large particles tend to form ordered structures, and the smaller ones form
disordered microstructures (Fig.9). We note that the generic behavior of the flow curve and stress
response of these systems with coexistence is similar to the ones forming layered structures. The
pair distribution function between the small-small and large-large pairs confirms this existence. In
summary, from the phase diagrams, it is observed that glassy systems are observed at low shear
rates throughout all the volume fractions, layered microstructures are prevalent at high shear rates
of ym/E* = 10~* and 107>, especially at ¢ = 0.70 and ¢ = 0.80, and crystals are mostly found
when suspensions compositions are close to a monodisperse case or large X values, where the
number density ratio of the larger particles is greater.

C. Kinetics of the transition and reversibility

The shear stress and elastic energy in the bidisperse suspensions, which eventually transform into
ordered structures, experience a swift decrease with strain after reaching the induction stage, where
stress shows a relatively prolonged pseudo-steady behavior. As seen earlier, analysis of the mi-
crostructure revealed that this decline is associated with rearrangements in the structure within
the flow-gradient and flow-vorticity planes. It was established that the y;xp shows an exponential
decay with the shear stress, i.e., Yvp ~ exp(—E /), where E is a fitting parameter.® Thus, the
induction strain should decrease with the applied shear rate for a given suspension. Indeed, we
also observe the same behavior for the bidisperse suspensions studied here in Fig. 10. As dis-
cussed earlier, there are four parameters that affect yiyp, i.e., Yinp = Yinp (X, y1s/E*, ¢). Values
of the induction strain y;yp are plotted as a function of X and shear rate for systems with different

volume fractions in Fig. 10. Throughout all volume fractions, the relationship between X and

16



AlIP
é/_ Publishing

Shear-induced phase behavior of soft colloids

(I) —_ 0 70 | A Layered = Class o Crystal o Glass-Crystal
4 T T N " 1 4 T T - T ] 4 T I,IE.=1\ o]
A ngE=10 B ny/E'=10 L 2 NWEE100 1
3 A A A - 4 4
= _gAA N N “3:AA a "3-.:A “ . -
2k
edes @ 0GPt ies 109 Ch TG, i E
1 L 1 LA A 1 LB im
0.00 025 0.50 075 1.00 0.00 025 0.50 075 1.00 0.00 025 0.50 0.75 1.00
—X — X
4D nyE=107 4 41E ngE=108 4 4F nyE=10° 4
A = ] = o = o A a o 9
o 3 A L N kY™ o o, 3fam o d
L L - L] - n L] L] - L] - L] o
2 . i 2. - d 2 - g
L L] L L] - L] L L L - L
{lace 1+ A~ o d qlea 1+ A o oo qloa 1 A 1o, d
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
X X X
4{G T naE=0t ] afH T agE=10s ] afl mgE=0T T
P A > o A A o o o o o o o
L 3Fa o o, 3Faa o o o, 3=o = [ o o
o o o == 0 ° @ o ] ] = o
2 [a 2 2 o
IR ERN IR N T
1823, L a [ .. B L1 Q 1 B o] 8. a
0.00 025 050 0.75 1.00 0.00 0.25 050 0.75 1.00 0.00 0.25 050 0.75 1.00
X X X
4fJ ngE=107 | 4K nE=100 | 4 nJ/E=10° -
oo o o o - & o o " 0 [} o o
L 3mom [ o o, 3fam m o o o, 3 [ o o o
L] L o o = = L o o L L o o
2um = ] O 2pmm w ] O 2me w u = oo
1: H H 1: H ) 1: H )
1 8 8, o] B .o 1 0% 8, o} Ao 1 B B Ao
0.00 025 050 0.75 1.00 0.00 025 050 0.75 1.00 0.00 0.25 050 0.75 1.00
X X X
T T T T T T
4M nyE=10* 4 4N ny/E=10% 1 41O ng/E'=10°
L 3Fa a o o o, 34 o o o o, 3= (] [ o o
i A A o o L] A A o o L] - L - o
2= o o o o 2= L] L] o o 2Fm [ [ [ o
TN N P | JBR A R B B
000 025 050 075 1.00 0.00 025 050 075 1.00 0.00 025 0.50 0.75 1.00
X X X
T T T T T T T T
4P nyE=107 1 41Q ney/E'=10" 4R ngy/E=10°
‘_3»- [ [ cy‘_3—- [ o o &,_3-- [l o o o
L L] L o o L - L o o] - - L L o o
2+ = ] [ [ o 2 m [] [ L o 2m [ [l [ o
- L] - L] 8 - - - - 8 L] L] - - 8
4868 A, B . & (B6A A, B . & (6a 8. B B
000 025 050 075 1.00 0.00 025 050 075 1.00 0.00 025 0.50 0.75 1.00
X X X

FIG. 8. Phase diagrams of the bidisperse SPGs as a function of number density ratio, X, and particle size
ratio, r, at ¢ = 0.70 (A-F), ¢ = 0.80 (G-L), and ¢ = 0.90 (M-R) at different shear rates ranging between
yns/E* =107° and 104,
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FIG. 9. 3D pair distribution function between liquid-liquid and solid-solid particles of suspensions with
r=2.50 and X = 0.20 at ¢ = 0.80 and yn,/E* = 107>, Inset shows the flow-gradient view of the simulation

box.

Yinp is direct. yyyp increases with an increase in number density ratio X and a decrease in shear
rate y1,/E*. The longest induction stage of y;yp = 135 was observed for a system with ¢ = 0.80,
r=13.50, and X = 0.95 at shear rate of yn,/E* = 10~°. However, there is no apparent correlation
between r and the induction strain. Nevertheless, for a given r, the induction strain decreases with
the increase of ¢.

Furthermore, we track the evolution of the microstructure of selected systems as a function of
strain for a selected system with ¢ = 0.80 and r = 2.00,X = 0.50 in Fig. 11 by determining the
maximum values of the 2D-dimensional pair distribution functions in both #V and u® planes that
correspond to their value at the first peak, whose location does not change as a function of strain.
As shown on the graphs, the induction period for this system corresponds to the strain range of
1 <y < 30. During this period, the small-small and small-large pairs do not show a change in
the value of g/'¢*(r). While g}*(r) shows a slight decrease between small-large and an increase
for large-large pairs. Then, both the small-small (Fig. 11(A)) and large-large (Fig. 11(C)) pair
distributions show transition increases with a high rate during the stress reduction stage. This
increase is more pronounced for the large particles. After experiencing this transition, all pair
distribution functions attain a steady state consistent with transient stress behavior. Note that in
suspensions with low polydispersity index, particles showed rearrangement in the flow-vorticity

plane during the induction period,® while in bidisperse suspensions, the majority of the structure
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ns/E*, obtained at (A) ¢ = 0.70, (B) ¢ = 0.80, and (C) ¢ = 0.90. The color bar indicates the value of the
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FIG. 11. The magnitude of the pair distribution function at the first peak between (A) small-small, (B)

small-large, and (C) large-large pairs as a function of strain for a system with ¢ = 0.80, r = 2.00, and

X = 0.50 and at a shear rate of yn,/E* = 107,

change occurs during the stress reduction stage.

We further test the reversibility of these transitions by subjecting the shear-induced structures

to different shear rate rates. It is important to keep in mind that these phase transitions are shear-

activated. For instance, as seen in Fig. 12 starting with a layered microstructure with r = 2.00

and X = 0.5 obtained at a shear rate of y1;/E* = 10~>, the microstructure becomes amorphous as
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FIG. 12. Simulation snapshots of suspensions with (A and B) r =2.00 and X = 0.50 and (C and D) r = 1.05
and X = 0.95 at y = 0 and y = 2.0. The shear rates used in these simulations are yn,/E* = 107 and 1073
for the layered and crystal phases, respectively. (E) Evolution of the shear stress as a function strain. The

volume fraction of suspensions is ¢ = 0.80.

the shear rate is decreased to y1,/E* = 107°. This observation is applicable to all layered struc-
tures. Consider a system with r = 1.05 and X = 0.95, the suspensions show crystalline structure
at ym,/E* = 107° as seen in Fig. 11(C-D). When this structure is subjected to a higher shear
rate of yns/E* = 1077 it transforms into an amorphous one. This behavior is reminiscent of the
shear melting process seen in hard-sphere suspensions. Previous works’>7* discovered that once
a high shear rate is applied to an initially crystallized microstructure, the microstructure becomes
disordered. Shear melting proceeds by temporary melting of localized domains of particles. With
an increase in shear rate, particles spend more time in the disordered environments, but ordered
domains keep nucleating and melting indefinitely, whereas the suspension as a whole is consid-
ered to be shear melted. In the case of soft particles, the critical strain required to eliminate the
crystalline phase is about ¥ = 0.5. This is evident from the stress-strain curve shown in Fig. 12(E),
where initially, stress linearly increases in the solid phase and reaches the static yield point, and
then suspensions start flowing by significantly reducing the shear stress. Thus, this static yield

strain highlights the end of the crystalline structure and the onset of the flow.
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IV.  Conclusions

We studied the effect of shear flow on the microstructure of jammed suspensions of bidisperse soft
particles. Our results show that these soft jammed suspensions undergo shear-induced microstruc-
tural transformation depending on the applied shear rate, yn,/E™*, and suspension volume fraction,
¢, number density ratio of particles, X, and particle size ratio, r. Different combinations of X and
r at a given volume fraction produce distinct microstructures such as crystal, amorphous, combi-
nation of crystal and amorphous, and layered phase. Typically, at high shear rates, the transient
shear stress shows an overshoot and attains a steady state in amorphous suspensions, and their flow
curve is described using the HB relationship. When shear-induced layering occurs, the shear stress
shows a significant drop after experiencing an induction period and then reaches steady state. The
duration of this induction period grows when shear rate increases and X decreases, though we ob-
served no evident correlation between the induction strain and particle size ratio. The consequence
of the latter is that flow curve plateaus in the suspensions showing layering.

These layers are formed in the direction parallel to the flow-vorticity plane. Analysis of the
pair distribution function shows that during the induction period, there are minor structural rear-
rangements. The observed alignment and layered structuring in our bidisperse suspensions under
shear bear similarities to the bioconvective patterns formed by gyrotactic cells in shear flows, high-
lighting the universal nature of shear-induced phenomena across different scales and systems.”
The latter is somewhat different from our prior work,® where there were significant rearrange-
ments for particles to form these layered structures. Clearly, when particles are bidisperse, the
phase transition is facilitated. Furthermore, crystalline structures emerge when the suspensions
are monodisperse or X is a large number. Bond order parameter analysis showed that these crys-
talline structures are dominated by HCP and FCC lattices. Apart from these distinct microstruc-
tures, a few suspensions showed a coexistence of the amorphous and crystals. In particular number
and radius ratios, the larger particles formed the crystal domain, and the smaller ones showed an
amorphous structure. Using these parameters along with the shear rate and volume fraction of the
suspensions, shear-induced phase diagrams of these suspensions were constructed.

Examining the microstructure through pair distribution functions, bond order parameters, and
phase diagrams provided further insights into the sensitivity of these jammed suspensions to vari-
ations in particle size distributions. The composition-dependent dominance of glassy, layered, or

crystalline states showed the significance of » and X, especially in dictating the prevalence of spe-
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cific structures at varying shear rates. In summary, this comprehensive study offers an understand-
ing of the multifaceted interplay between parameters governing the microstructure and rheological
responses of bidisperse suspensions of soft particles. The microstructures, which show coexistence
between amorphous and crystal, persist over 1000 strain units and possibly correspond to a stable

1.72 observed

thermodynamic state rather than a kinetically trapped one. Furthermore, LaCour et a
ordering in hard sphere suspensions when there is an excess of the smaller particles, where they
act like plasticizers and enable suspensions to reach a greater supersaturation before kinetic ar-
rest occurs. However, studying this phenomenon, i.e., kinetic arrest, extends beyond the scope of
the present study. This coexistence opens new avenues in shear-induced phase equilibrium prob-
lems in these suspensions which make a prominent distinction compared to the prior works. For

example, a thermodynamic model based on the framework proposed by Bonnecaze et al.’®

may
be utilized to describe this coexistence which will be pursued in future work. Bonnecaze et al.’s
framework, which effectively utilizes excess entropy scaling to correlate transport properties such
as viscosity and diffusivity with microstructural states, provides a robust basis for this analysis.
By applying this model, we aim to determine whether the observed coexistent structures in our
systems are thermodynamically stable or are results of kinetic entrapment. Finally, this research
opens avenues to investigate the phase behavior of hard sphere suspensions with a bidisperse size
distribution in shear flow since it has not been thoroughly investigated.
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