
DOSCrack: Deobfuscation Using Oracle-guided

Symbolic Execution and Clustering

of Binary Security Keys

Jiaming Wu

University of Florida

jiaming.wu@ufl.edu

Olivia Dizon-Paradis

University of Florida

paradiso@ufl.edu

Sazadur Rahman

University of Central Florida

mohammad.rahman@ucf.edu

Damon Woodard

University of Florida

dwoodard@ufl.edu

Domenic Forte

University of Florida

dforte@ece.ufl.edu

Abstract—Design-for-test/debug (DfT/D) introduces scan chain
testing to increase testability and fault coverage by inserting scan
flip-flops. However, these scan chains are also known to be a
liability for security primitives. In previous research, dynamically
obfuscated scan chains (DOSC) were introduced to protect logic-
locking keys from scan-based attacks by obscuring test patterns
and responses. In this paper, we present DOSCrack, an oracle-
guided attack to de-obfuscate DOSC using symbolic execution
and binary clustering, which significantly reduces the candidate
seed space to a manageable quantity. Our symbolic execution
engine employs scan mode simulation as well as satisfiability
modulo theories (SMT) solvers to reduce the possible seed
space, while obfuscation key clustering allows us to effectively
rule out a group of seeds that share similarities. An integral
component of our approach is the use of sequential equivalence
checking (SEC), which aids in identifying distinct simulation
patterns to differentiate between potential obfuscation keys.
We experimentally applied our DOSCrack framework on four
different sizes of DOSC benchmarks and compared their run-
time and complexity. Our research effectively addresses critical
vulnerabilities in scan-chain obfuscation methodologies, offering
insights into DfT/D and logic locking for both academic research
and industrial applications. Our framework emphasizes the need
to craft robust and adaptable defense mechanisms against scan-
based attacks.

Index Terms—logic locking, scan-based attack, clustering,
symbolic execution

I. INTRODUCTION

Scan-based testing is a commonly practiced design-for-test

(DfT) scheme that facilitates the detection and diagnosis of

faults in integrated circuits (ICs) because of its high con-

trollability and observability [1]. By replacing registers with

scan flip-flops and connecting them into scan chains, DfT

allows access to internal nets and assists in the extraction of

register values in sequence. DfT and scan chain architectures

are integral components that contribute significantly to the

efficiency and effectiveness of IC testing processes and yield

improvement. For example, in the pre-silicon design of IC,

Synopsys Tetramax [2] is popularly used for automatic test

pattern generation (ATPG) and silicon testability analysis,

which automates the process of generating test patterns to

test digital ICs for potential defects. In post-silicon testing,

the JTAG [3] and Nexus standards are widely adopted, us-

ing ATPG test patterns to perform boundary scan tests and

debugging.

By increasing controllability and observability, scan flip-

flops also introduce weaknesses to scan-based attacks. Scan-

based attacks, which are types of side-channel attacks, aim to

extract secret keys through the analysis of scan data obtained

from scan chains. In order to secure crypto-chips from scan-

based attacks, multiple countermeasures have been proposed.

These are mainly categorized into two strategies: scan chain

obfuscation and scan I/O restriction. Scan chain obfuscation

aims to prevent attackers from controlling the scan chain by

modifying the scan structure, inserting obfuscation gates, or

adding sub-chains alongside the original scan chain. Agrawal

et al. [4] proposed an obfuscated scan chain structure that

incorporates XOR gates at random points in the scan chain.

Atobet et al. [5] proposed the state-dependent scan flip-

flop that replaces scan flip-flop at random points to prevent

attackers from identifying the correct scan timing. Lee et al. [6]

proposed subchain modification techniques that allow Lock &

Key controls and scan order obfuscation to prevent attacks

from accessing the scan structure. The Dynamic Obfuscated

Scan Chain [7] integrates the permutation of scan chains

with XOR gates and employs logic locking techniques using

dynamic keys. Moreover, DOSC incorporates a shadow chain

that restricts the dynamic keys from leakage to the scan output.

This means that both obfuscation and scan I/O restriction

are applied in DOSC, providing a robust defense mechanism

against unauthorized access or attacks.

In this paper, we propose the DOSCrack, a novel strategy

to deobfuscate dynamically obfuscated scan chains (DOSC).

Our contributions are listed below.

• We proposed DOSCrack, a novel deobfuscation frame-

work that incorporates structural analysis, symbolic exe-

cution, and key candidate clustering.

• We incorporated sequential equivalence checking to pin-

point distinguishing patterns that effectively differentiate

potential keys between clusters.

• We experimentally applied our framework on different

DOSC benchmarks with different bits of seed. The frame-

work demonstrates scalability, with the recorded run time

exhibiting a proportional increase as the seed size grows.

The rest of the paper is organized as follows. Section II

gives the necessary background of techniques as well as the

Fig. 1. Dynamically obfuscated scan chain architecture. [7]

structure of the dynamically obfuscated scan chain. Section III

introduces the novel DOSCrack deobfuscation framework.

Section IV analyzes the results of applying our framework

to DOSC benchmarks. Finally, Section V concludes the paper

with key takeaways and future works.

II. BACKGROUND AND PRELIMINARY CONCEPTS

In this section, we provide an overview of the architecture

of DOSC and introduce the fundamental concepts of symbolic

execution as well as our threat model.

A. DOSC Architecture

The DOSC [7] architecture is shown in Figure 1. It consists

of four parts: the control unit, the LFSR (linear feedback shift

register), the shadow chain, and the obfuscated scan chain.

The control unit generates signals that load the seed from

non-volatile memory and regulates the clock frequency of the

shadow chain. Then the LFSR takes the seed for obfuscated

key sequence generation, and the shadow chain protects the

obfuscated key from potential differential attacks. The DOSC

seed is considered confidential information to interpret correct

test responses. If DOSC is used to protect logic-locked circuits,

knowing DOSC’s seed would allow an attacker to perform

Boolean satisfiability (SAT) attacks [8] against the locked

functional circuit.

Previously. the Boolean satisfiability (SAT) attack was per-

formed against the DOSC architecture itself in an attempt to

obtain the LSFR’s seed. To do so, sequential circuit unrolling

was utilized [9]. It was found that DOSC architecture was

robust against SAT attacks because such unrolling inevitably

results in scalability issues for Boolean SAT solvers.

B. Symbolic Execution

Symbolic execution is a program analysis technique used

in testing, debugging, and verification. Instead of executing

a program with concrete input values, symbolic execution

operates on symbolic values and expressions. Symbolic execu-

tion engines are often combined with simulations to generate

Fig. 2. Workflow of DOSCrack deobfuscation.

feasible execution paths and further utilize satisfiability (SAT)

or satisfiability modulo theories (SMT) solvers to find the

executing patterns. In our deobfuscation framework, we lever-

age the built-in symbolic execution engine from EISec [10]

to convert our target netlist into C code. Subsequently, the

generated C code undergoes symbolic modeling.

C. Threat Model

In this section, we briefly review the threat model of Design-

for-Test/Debug (DfT/D) and present the assumptions of our

DOSCrack attack framework. In the context of semiconductor

supply chains, the design house typically dispatches the DfT/D

inserted netlist to contract third-party fab/foundries for the

production of chips and performing scan testing (i.e., JTAG)

on fabricated chips. These contract foundries, therefore have

full access to the scan chains embedded in the design as well

as the DfT/D insertion techniques. This accessibility presents a

potential risk as it allows these facilities to conduct scan-based

attacks. Based on this context, our DOSCrack framework

operates under the assumption that potential attackers have

knowledge of the DOSC architecture and access to the scan

chain. This threat model also aligns well with Kerckhoffs’s

principle which states that the security of a cryptosystem must

only lie in the secrecy of its keys and everything else should

be considered public knowledge. In our threat model, the

attacker’s goal is to find DOSC’s seed.

While many scan-based attacks (i.e. differential scan-based

attacks) necessitate certain understanding of the chip’s func-

tional logic to be effective, our method exclusively relies on

running an unlocked chip (or simulating an unlocked design)

in scan mode and does not require any knowledge of the

functional logic. This feature sets our DOSCrack framework

apart from many other oracle-guided attacks.

III. DOSCRACK FRAMEWORK

An overview of the DOSCrack framework is illustrated in

Figure 2. Our objective is to narrow down the candidate seed

space to a manageable quantity, where we can eliminate incor-

rect obfuscation keys until only a singular valid seed remains.

Algorithm 1 Structual Analysis

Input: DOSC netlist N ;
Output: LFSR netlist, scan chain netlist;

1: DOSC netlist → EXERT interaction analysis
2: if feedback nets detected then
3: FSM registers ← LFSR
4: feedback nets connectivity ← XOR gate inputs
5: else if feedback nets not detected then
6: datapath registers ← scan chains
7: end if
8: return LFSR netlist, Scan chain netlist; feedback nets connec-

tivity

Our framework is composed of four integral components:

First, we use an unlocked chip (or equivalently simulate an

unlocked chip’s DOSC and scan chain) to act as an oracle;

second, we employ structural analysis to distinguish between

the Linear Feedback Shift Register (LFSR) and scan chains;

third, we conduct symbolic execution followed by employing

an SMT solver to rule out keys; and fourth, we utilize clus-

tering algorithms to efficiently categorize the remaining key

candidates. This process iterates until the number of candidate

seeds/keys is small enough to brute force.

A. Structural Analysis

As explained in the threat model (Section II-C), we assume

that there is access to an open-source DOSC architecture and

the attacker’s goal is to obtain the LFSR seed. Structural

analysis begins by identifying the LFSR, shadow chain, and

scan chains so that symbolic engines can modulate each part

separately. The LFSR is typically implemented as a finite state

machine (FSM) in a physical context. This implementation

means that the LFSR is designed to transition between a finite

number of states denoted by state registers. On the other hand,

scan chains are implemented with datapath registers. These

registers are used to store and shift data through the scan

chain during testing or debugging processes, which allows

for sequential loading and shifting of test data. Therefore,

structural analysis distinguishes the LFSR and scan chains

based on their distinct physical implementations and functional

roles.

Algorithm 1 shows the detailed steps of our structural anal-

ysis. During structural analysis, the interaction analysis tool

EXERT [11] is employed to identify FSMs and datapaths (line

1). This identification is based on the characteristic features of

the FSM that align with the expected behavior of an LFSR,

primarily its feedback network typically constructed from

XOR gates (line 2 to 6). This process effectively separates

the LFSR and scan chains (line 8), allowing for more precise

modeling with symbolic engines.

B. Oracle Interaction in Test Mode

To apply the proposed deobfuscation framework, random

input sequences are applied to the target oracle which already

has an LFSR activation seed for its scan chain. These pat-

terns/responses are provided/collected in test mode, where the

random inputs with a certain number of sequences are fed into

Fig. 3. Structure of a 5-bit LFSR.

TABLE I
TABLE OF SYMBOLIC REPRESENTATION FROM SEED TO OBFUSCATION

KEY FOR EACH LFSR BIT (0 ≤ i ≤ 4) AT CLOCK CYCLES 1,2, . . ., t FOR

THE EXAMPLE IN FIG. 3.

Cycle

i
0 1 2 3 4

0 s0 s1 s2 s3 s4
1 s0 ⊕ s2 s0 s1 s2 s3
2 s0 ⊕ s2 ⊕ s1 s0 ⊕ s2 s0 s1 s2

.

.

.

.

.

.

t L0

t−1
⊕ L2

t−1
L1

t−1
L2

t−1
L3

t−1
L4

t−1

the scan input (SI) port, while an equivalent number of patterns

are shifted out from the scan out (SO) port after certain clock

cycles. We utilize the oracle in test mode, which ensures

that the resulting patterns do not incorporate functional logic.

This also improves the performance of our deobfuscation

framework by focusing the attack only on the scan chain.

C. Symbolic Execution Engine and Symbolic Equation System

In this section, we delve into the methodology employed

by our symbolic execution engine, with a specific focus

on the process of recovering the symbolically assigned n-

bit seed, with bits denoted as (s0, s1, · · · , sn−1) from the

symbolic equation system. This system is constructed through

the symbolic modeling of both the LFSR and the scan chain.

1) Symbolic Execution Engine: The symbolic execution

engine modulates the LFSR and the scan chains by converting

the target netlist to functionally equivalent C code, where

every bit of the unknown seed is represented as a symbolic

variable. As our structural analysis identifies the LFSR and

the scan chains, the symbolic execution engine proceeds to

model the LFSR and the scan chains separately. An LFSR

is most often a shift register whose input bit is driven by the

XOR of some bits of the overall shift register value. Structural

analysis provides detailed information about the connectivity

of the feedback nets, which represent the locations within the

LFSR register where the XOR gate receives its inputs. To

symbolically represent LFSR outputs, we denote these two

inputs as (x, y). We describe the i-th bit output of LFSR

at cycle t as Li
t. Thus, a general LFSR output at cycle t is

represented as:

Li
t =

{

Lx
t−1 ⊕ L

y
t−1, when i = 0;

Li
t−1, otherwise

This equation modeling the LFSR outputs can be described as

follows. The first bit of the LFSR is always connected to the

output of the XOR gate. At every clock cycle, the first bit of

the LFSR is updated based on the output from the XOR gate,

Fig. 4. Example of scan chain modeling with N = 3 at any clock cycle T .

The scan out is denoted as SOT+3
= SIT ⊕ LT

0
⊕ L

T+1

1
⊕ L

T+2

2

with the inputs of the XOR gate identified through structural

analysis as being at positions (x, y) within the LFSR. For the

rest of the bits in the LFSR, from position 1 to n − 1, the

shifting process occurs when each bit shifts from its previous

state to the next position.

Figure 3 shows an example of 5-bit LFSR with x = 0
and y = 2. Table I shows the cycled output based on

seed (s0, s1, · · · , s4). At cycle 0, the seed (s0, s1, · · · , s4)
is loaded into the LFSR cells and the output of any cycle t

can be computed based on the connectivity information (x, y)
obtained from structural analysis. Thus we define the function

f which represents the LFSR output given the seed and cycle t

as L⃗t = f [(s0, s1, · · · , sn−1), t], where L⃗t denotes the LFSR

output in a vector form.

The symbolic engine models the shadow chain and the

scan chains together. Both scan chains and shadow chains can

be conceptualized as cascading datapath registers, receiving

inputs from the SI port of the scan chain and the obfuscation

key input, whereas the outputs are directed to the SO port. The

symbolic engine then models the transformed C code, treating

it as a symbolic equation representing the relationship between

the inputs and the outputs.

Table II shows an example of conversion from netlist to C

code to symbolic equation for a single scan chain cell. This

scan chain cell is located at the end of the scan chain that

connects directly to the SO port. By generating every symbolic

equation for all scan cells, the symbolic equation that connects

the SI port to the SO port is formulated and represented as

SOT+N = SIT
N
⊕

t,i=0

LT+i
t , where N denotes the length of

scan chains and T denotes the cycle when scan in patterns are

shifted into the scan chain. The
N
⊕

t,i=0

denotes the continuous

XOR operation of Li
t and is derived by symbolically modeling

the scan chains.

Figure 4 shows an example of scan chain modulation under

this equation with N = 3, where SOT+3 = SIT ⊕ LT
0 ⊕

LT+1
1 ⊕LT+2

2 . This equation captures the relationship between

the Scan In (SI) and Scan Out (SO) patterns, effectively encap-

sulating the dynamics of how the obfuscation key values are

processed within the scan chain. Given the tracking of SI and

SO patterns with correlated obfuscation keys, we define the

function g where SOT+N = g[SIT , (L
T
0 , L

T
1 , · · · , L

T+N−1
t)]

which is derived such that the SO pattern is symbolically rep-

resented with corresponding SI pattern with a certain sequence

of XOR operation on obfuscation key.

2) Symbolic Equation System and Solver: In the previous

section, the obfuscation keys are symbolically represented in

Table I, and the scan chains are modeled with symbolic equa-

TABLE II
TABLE OF CONVERSION FROM NETLIST TO C CODE AND SYMBOLIC

EQUATION SETUP

Netlist

wire shadow chain/N1, Scan out;

SDFFQX scan reg[1] (.D(n1),.SI(out[1]),.SE(test se),

.CK(CK),.Q(Scan out);

AND2X1 U1(.A(in[0],.B(shadow chain/N1,.Y(out[1]);

C code

bool shadow chain/N1, Scan out;

out[1] = in[0] & shadow chain/N1;

if(test se == 0) {Scan out = n1;}
else {Scan out = out[1]; m+=1;}

Symbolic

equation
Scan out == shadow chain/N1 & in[0]

tions in Table II in our running example. The two symbolic

equations then form simultaneous equations f and g:
{

L⃗t = f [(s0, s1, · · · , sn−1), t] ;

SOT+N = g
[

SIT , (L
T
0 , L

T
1 , · · · , L

T+N−1
t)

]

As discussed in Section III-B, the scan-in and scan-out patterns

are generated from test mode interactions with the oracle.

By putting m pairs of simulated corresponding SI and SO

patterns into the simultaneous equations, we construct the

symbolic equation system that encompasses m equations,

each representing their relationship and transformation. As

a result, in the symbolic equation system we developed, the

assigned seed constitutes the only set of symbolic variables.

By applying an SMT solver to this system of equations, we

can effectively solve for possible solutions of these variables

and recover candidate seeds.

D. Obfuscation Key Clustering

Our system utilizes the SMT solver to generate solutions for

a symbolic equation system, which in turn produces the space

of obfuscation keys and the corresponding seed values. To

effectively narrow down the possible seed space, it is essential

to introduce more symbolic equations by further querying

more SI patterns to the oracle to produce more symbolic

equations. However, the effectiveness of generating SO and SI

patterns from random simulations diminishes over iterations.

This diminishing effect occurs because the candidates for

obfuscation keys begin to form similarities, making it increas-

ingly difficult for random SI vectors to effectively differentiate

between them based on SO patterns. As a result, the random

simulation approach becomes less capable of exploring and

identifying differences among potential obfuscation keys.

To address this problem, we applied the K-means clustering

algorithm to categorize existing candidates of obfuscation

keys into groups to rule them out as a whole. The overall

workflow is illustrated in Figure 5. After using symbolic

execution and equation solvers, we produce a certain number

of key candidates as a starting point. We then utilize the

Hamming distance (HD) metric, ideal for binary data, for

the K-means clustering algorithm to cluster key candidates.

From two distinct clusters, we select centroid keys and map

them back to their corresponding symbolic seeds. We then

construct a miter with an XOR gate for Sequential Equivalence

Checking (SEC), which compares DOSC architectures loaded

Fig. 5. Workflow of generating distinguishing patterns with Jasper SEC.

Fig. 6. Flow chart with checkpoints that evaluate silhouette scores. Two
silhouette score thresholds determine when to abort clustering and when to
redo clustering.

with different seeds, generating distinguishing input patterns

tailored to each cluster. We query the oracle with this tailored

input sequence to form a new symbolic equation that is

then added to our symbolic equation system and solvers.

This approach effectively addresses the limitations of ran-

dom simulation. The generated input sequence is specifically

designed to produce distinct outputs, which implies that the

corresponding symbolic equation can eliminate one of the two

key candidates. Furthermore, due to the similarity of keys

within the same cluster, this equation is likely to rule out

even more keys in that cluster! Thus, this method efficiently

solves the issue of diminishing returns in random simulation.

By iteratively selecting different keys from various clusters,

we can formulate more equations, effectively reducing the key

candidate space to a size suitable for brute force.

Our process involves iterative re-clustering as more obfus-

cation keys are ruled out and the clarity of cluster margins

decreases. Figure 6 shows the flowchart of the conditions

under which re-clustering should be invoked, alongside deci-

sion points for transitioning to brute-force elimination. During

the iterative process of selecting clusters, we incorporate two

critical checkpoints to assess the silhouette score, a common

metric for evaluating the quality of clustering results. The

initial checkpoint after K-means clustering ensures effective

clustering results. A silhouette score below 0.6 triggers a

switch to brute-force key elimination. A subsequent evaluation

occurs after eliminating a certain number of keys. At this

point, we calculate the silhouette score, taking into account

both the reduced key set under the initial cluster formations. If

the silhouette score remains above the threshold, indicates that

clustering is still effective and the generation of distinguishing

patterns is still efficient. Conversely, a score drop below this

threshold signals the need for re-clustering. These silhouette

score checkpoints ensure our approach dynamically adapts,

maintaining efficiency in isolating key groups with each iter-

ation.

IV. EXPERIMENTAL RESULTS AND EVALUATION

We synthesize four DOSC benchmarks with different LFSR

seed sizes (8-bit, 16-bit, 32-bit, and 64-bit) to evaluate DO-

SCrack. Our framework is tested exclusively based on test

mode simulation of a seed-loaded oracle netlist with the func-

tional input port of the scan flip-flop open. To further simplify

the application of our DOSCrack method, we establish only

a single scan chain for each benchmark and the length of

scan cells is identical to its seed size for every benchmark.

We operate under the assumption that these seeds are not

reachable or accessible during normal operation as would be

the case with a physical oracle chip. Test mode simulation is

performed by Synopsys VCS. The benchmarks are synthesized

with Synopsys Design Compiler. We used an Intel(R) Xeon

E5-2450L CPU for the synthesis of DOSC benchmarks, test

mode simulation, and running of DOSCrack. The run time

results are shown in Table III and illustrated in Figure 7.

1) DOSC with 8-bit Seed: Our testing of the DOSCrack

framework starts with a DOSC benchmark configured with

an 8-bit seed and a corresponding 8-bit LFSR. Both the

scan chains and the shadow chain comprise eight scan cells

each, aligning with the 8-bit size of the seed. Given the

modest 8-bit size of the seed, our symbolic execution engine

operates efficiently and the SMT solver has generated just 3

potential key candidates. Consequently, there is no requirement

to employ clustering algorithms to manage the obfuscation

key candidates’ space. The total run time is 10.2 minutes and

the simulation time for SI/SO patterns is 8.3 minutes. The

remaining 3 keys were trivially brute forcing pruned to find

DOSC’s actual LFSR seed.

2) DOSC with 16-bit Seed: In our evaluation of a DOSC

benchmark with a 16-bit seed under the same configuration

and simulation, the SMT solver identified 356 potential seed

candidates, apt for clustering analysis. Initial clustering formed

14 groups with a silhouette score of 0.68, suggesting effective

grouping. By selecting cluster combinations for the Jasper

SEC system, 91 distinguishing patterns were generated, each

(a) (b)

Fig. 7. Number of keys ruled out with run-time bar charts and Clustering histograms for (a) 32-bit DOSC and (b) 64-bit DOSC per iteration of clustering.
With each successive re-clustering iteration in our process, the distribution of keys within clusters becomes increasingly narrow.

TABLE III
RESULTS OF DOSCRACK WITH DIFFERENT SEED SIZES. × MEANS NOT

APPLICABLE. IN THE TOTAL RUN TIME ROW, ‘M’, ‘H’, AND ‘D’ DENOTE

MINUTES, HOURS, AND DAYS.

DOSC seed size 8-bit 16-bit 32-bit 64-bit

of Scan IO patterns 400 400 500 500

of Obfuscation Key Candidates 3 356 50288 ≤ 2
17

of Clusters × 14 107 2440

of Seed Candidates 3 23 327 6508

Total Run Time 10.2m 37.9m 858m 3d23h

forming a symbolic equation to help eliminate roughly 4

possible key candidates. This reduced the key candidates’

space to 23 keys without the need for further clustering.

Subsequent brute-force methods then identified the correct

seed candidates within the total runtime of 37.9 minutes,

demonstrating the approach’s efficiency.

3) DOSC with 32-bit Seed: Unlike the previous test, we

increase the number of initial SI/SO patterns generated from

simulation as we aim to explore the diminishing issues ex-

plained in Section III-D. We generated 400 SI/SO patterns to

build symbolic equations and further generated another 100

patterns to compare the number of solutions from the SMT

solver. This led to the SMT solver identifying 50,354 solutions

with 400 patterns and 50,288 with 500, demonstrating that

a 25% increase in patterns only reduced key candidates by

66. This highlights the diminishing issue, underscoring the

necessity of clustering and SEC miter techniques for produc-

ing distinguishing patterns. Through clustering, we narrowed

down the key candidates from 50,288 to 327 across 107

clusters. As the process progressed, a linear decrease in the HD

between clusters was observed 7(a), indicating the remaining

keys within each cluster become more similar.

4) DOSC with 64-bit Seed: The biggest benchmark we

tested emphasizes the 64-bit seed of DOSC. The initial out-

come from the SMT solver reveals approximately 150,000

obfuscation key candidates, which equates to around 217 solu-

tions. Clustering results show the number of 2440 groups and

we go through iterations of clustering whenever the silhouette

score is below 0.6. Figure 7(b) shows the run-time results in

the bar chart and the clustering distribution in the histogram.

The 64-bit DOSC takes 5 iterations of clustering and the

number of keys distribution becomes more narrow through

each iteration. The final phase of our analysis involved pruning

out the remaining 6,508 key candidates using a brute-force

approach. The average time taken to brute force test 1,000

random keys in our analysis, often referred to as the ’pruning

time’, is approximately 2.5 hours.

V. SUMMARY AND FUTURE WORK

In this paper, we present DOSCrack, an oracle-guided

attack that utilizes symbolic execution and binary clustering

to break DOSC. By applying DOSCrack on different sizes

of benchmarks, our framework successfully reduced the key

candidates’ number and broke the 64-bit seed DOSC in

3d23h, which is much more efficient compared to the run-out

threshold of 10 days for traditional SAT attacks. Additionally,

in our testing, the brute-force effort to rule out 1,000 keys took

approximately 2.5 hours. This duration highlights the signifi-

cantly greater complexity of the brute-force method compared

to our approach. Future work in this area could concentrate

on developing more advanced algorithms for intelligently

selecting different clusters to generate distinguishing patterns.

By enhancing the method of choosing clusters, we may further

improve the distinctiveness of the patterns generated, thereby

more effectively ruling out obfuscation keys.

REFERENCES
[1] J. Aerts and E. J. Marinissen, “Scan chain design for test time reduction

in core-based ics,” in Proceedings International Test Conference 1998
(IEEE Cat. No. 98CH36270), pp. 448–457, IEEE, 1998.

[2] “Testmax atpg:advanced pattern generation.” https://www.synopsys.com/
implementation-and-signoff/test-automation/testmax-atpg.html.

[3] “Ieee standard for test access port and boundary-scan architecture,” IEEE
Std 1149.1-2013 (Revision of IEEE Std 1149.1-2001), pp. 1–444, 2013.

[4] M. Agrawal, S. Karmakar, D. Saha, and D. Mukhopadhyay, “Scan based
side channel attacks on stream ciphers and their counter-measures,”
in Progress in Cryptology - INDOCRYPT 2008 (D. R. Chowdhury,
V. Rijmen, and A. Das, eds.), (Berlin, Heidelberg), pp. 226–238,
Springer Berlin Heidelberg, 2008.

[5] Y. Atobe, Y. Shi, M. Yanagisawa, and N. Togawa, “State dependent scan
flip-flop with key-based configuration against scan-based side channel
attack on rsa circuit,” in 2012 IEEE Asia Pacific Conference on Circuits
and Systems, pp. 607–610, 2012.

[6] J. Lee, M. Tehranipoor, C. Patel, and J. Plusquellic, “Securing designs
against scan-based side-channel attacks,” IEEE Transactions on Depend-
able and Secure Computing, vol. 4, no. 4, pp. 325–336, 2007.

[7] D. Zhang, M. He, X. Wang, and M. Tehranipoor, “Dynamically ob-
fuscated scan for protecting ips against scan-based attacks throughout
supply chain,” in 2017 IEEE 35th VLSI Test Symposium (VTS), pp. 1–6,
2017.

[8] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of
logic encryption algorithms,” in 2015 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), pp. 137–143, IEEE,
2015.

[9] M. S. Rahman, A. Nahiyan, S. Amir, F. Rahman, F. Farahmandi,
D. Forte, and M. Tehranipoor, “Dynamically obfuscated scan chain to
resist oracle-guided attacks on logic locked design.” Cryptology ePrint
Archive, Paper 2019/946, 2019. https://eprint.iacr.org/2019/946.

[10] F. Fowze, M. Choudhury, and D. Forte, “Eisec: Exhaustive information
flow security of hardware intellectual property utilizing symbolic execu-
tion,” in 2022 Asian Hardware Oriented Security and Trust Symposium
(AsianHOST), pp. 1–6, 2022.

[11] J. Wu, F. Fowze, and D. Forte, “Exert: Exhaustive integrity analysis for
information flow security,” in 2022 Asian Hardware Oriented Security
and Trust Symposium (AsianHOST), pp. 1–6, 2022.

