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ABSTRACT
The safety monitoring for nonlinear dynamical systems with embedded neural network components is
addressed in this paper. The interval-observer-based safety monitor is developed consisting of two auxil-
iary neural networks derived from the neural network components of the dynamical system. Due to the
presence of nonlinear activation functions in neural networks, we use quadratic constraints on the global
sector to abstract the nonlinear activation functions in neural networks. By combining a quadratic con-
straint approach for the activation function with Lyapunov theory, the interval observer design problem
is transformed into a series of quadratic and linear programming feasibility problems to make the inter-
val observer operate with the ability to correctly estimate the system state with estimation errors within
acceptable limits. The applicability of the proposed method is verified by simulation of the lateral vehicle
control system.
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1. Introduction

Complex dynamical systems, such as autonomous vehicles and
various cyber-physical systems (CPS), have been greatly bene-
fiting from the fast advancement of artificial intelligence (AI)
and machine learning (ML) technologies. Many new theories
have been proposed on this basis, such as stable neural net-
work controllers and observers (Levin & Narendra, 1992; Wu
et al., 2014; L. Zhang et al., 2017), adaptive neural network con-
trollers (Niu et al., 2020; Takahashi, 2017) and various neural
network controllers (Hunt et al., 1992). Real-timemonitoring of
these dynamical systems embedded with neural network com-
ponents is essential to ensure the system’s safety. External inputs
may have adversarial effects on the normal working state of the
system; even with the most advanced neural networks, imper-
ceptible perturbations in the input may lead to an erroneous
result (Moosavi-Dezfooli et al., 2017). In addition, these sys-
tems are highly susceptible to erroneous outputs if they are
subjected to adversarial attacks, which can have serious safety
consequences. Therefore, to ensure the security of dynamical
systems embedded in neural networks, it is essential to develop
a technique that can monitor the operational state of dynamical
systems in real time.

Most current approaches to safety or security verification
take the form of offline computation. In general, verification
using offline calculation requires a large amount of compu-
tational resources due to its high computational complexity.
For example, for a type of neural networks with the activation
function of rectified linear unit (ReLU), the safety verifica-
tion problem can be represented as various complex computa-
tional problems. Based on polyhedral operations, a geometric
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computation method is proposed to obtain the exact output set
of the neural network using ReLU activation function (Xiang
et al., 2017b; Xiang, Tran, Rosenfeld et al., 2018). Based on
those results, themethods in Tran,Manzanas Lopez et al. (2019)
and Tran, Musau et al. (2019) extended it by proposing a novel
approach with the aid of a specific convex set representation
called star sets, which greatly improved scalability. A mixed-
integer linear programming (MILP) method to validate neural
networks was proposed in Lomuscio and Maganti (2017). The
work (Dutta et al., 2019) focuses on neural networks with ReLU
activation functions; they used a Taylor-model-based flowpipe
construction scheme and replaced the neural network feedback
with a polynomial mapping approach for a small fraction of the
input to obtain an over-approximated reachable set. In addi-
tion, this method can be extended to other activation units after
processing by segmental linearisation (Dutta et al., 2018). The
work (Xiang, Tran & Johnson, 2018) introduces a simulation-
based approach to output reachability estimation for neural
networks with common activation functions. This paper (Xiang
et al., 2021) takes the dynamic system embedded in the feed-
forward neural network named multilayer perceptrons (MLPs)
as the research object, and develops a recursive algorithm with
over-approximating the reachable set of the closed-loop system.
The security verification of the system is achieved by checking
the emptiness of the intersection between the insecure sets and
the over-approximation of the reachable sets.

It is worth noting that the open-loop computational struc-
ture of these offline methods makes them quite challenging to
implement in online settings. On the other hand, offline meth-
ods are difficult to detect system security issues in a timely
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manner, and the system state and parameters may differ from
run-time when offline. Therefore, developing an online security
monitoring method is very important. For this reason, inspired
by observer design theory, we propose an alternative solution
to design closed-loop systems for run-time monitoring based
on instantaneous measurements of the system. We resort to
develop interval observers for dynamical systems with neural
networks. The interval observer can estimate the upper and
lower bounds of the operating state trajectory of the dynamical
system in real-time, which can achieve real-time safety mon-
itoring of the dynamical system (Bolajraf et al., 2011; Cacace
et al., 2015; Chebotarev et al., 2015; Efimov & Raïssi, 2016; Yw.
Zhang et al., 2020). As shown inXiang (2021), unlike the general
interval observer design approach, the observer gains as well as
auxiliary neural networks have to be designed through a series
of optimisation problems to ensure that the interval observer
can correctly estimate the upper and lower state bounds and a
suitable estimation error. The design of the auxiliary neural net-
works in the interval observer is also necessary to simulate the
behaviour of the neural network in the original system for bet-
ter state estimation. The work (D. Zhang et al., 2020) applies
interval observers to the safety monitoring of the state of charge
(SOC) of lithium-ion batteries. The coupled equivalent circuit-
thermal model is adopted in this paper, avoiding the complex
structure and calculation caused by the traditional model with
electrically and thermally coupled parallel connection of cells.
The innovation of thework lies in considering cell heterogeneity
as the uncertainty bounding functions and achieving the separa-
tion of the state number of interval observers from the number
of parallel batteries.

During the design of interval observers, it is challenging
to apply classical control theory, such as Lyapunov theory, for
analysing dynamical systems embedded in neural network com-
ponents due to the various types of nonlinear activation func-
tions in neural networks. A popular approach is using quadratic
constraints (QCs) to abstract the nonlinear activation functions
in neural networks. The work (Anderson et al., 2007) analyses
the stability of the feedback loop, including neural networks,
by replacing the nonlinear and time-varying components of
the neural networks with integral quadratic constraints (IQCs).
Quadratic constraints are used to abstract the nonlinear acti-
vation functions and projection operators in neural network
controllers in Hu et al. (2020), enabling the reachability analy-
sis of closed-loop systems with neural network controllers. The
approach in Fazlyab et al. (2022) uses quadratic constraints to
abstract various properties of the activation function, such as
bounded slope, monotonicity, and cross-layer repetition, thus
formulating the safety verification problem for neural networks
as the SDP feasibility problem. In addition, the characterisation
of the input-output of neural networks through quadratic con-
straints allows other issues to be solved, such as the input-output
sensitivity analysis of neural networks (Xiang, Tran & John-
son, 2018), safety verification and robustness analysis (Fazlyab
et al., 2022), Lipschitz constant estimation of feedforward neural
networks (Fazlyab et al., 2019), etc.

Synthesizing the previous discussions, the main contribu-
tions of this paper are as follows: (1) A global quadratic con-
straint formulation method for error dynamic systems is dis-
cussed; (2) A novel interval observer designmethod is proposed

for the nonlinear dynamical systems with neural networks, and
its core contribution is to abstract the nonlinear activation func-
tion of neural networks by the quadratic constraints method,
so that some control theories applicable to linear systems can
also be applied to the nonlinear dynamical systems with neural
networks in this paper.

The rest of the paper is organised as follows. In Section 2,
the system and problem formulation under discussion are pre-
sented. The main findings are given in Section 3, where the
designmethods for quadratic constraints on the activation func-
tion and auxiliary neural networks are presented, and the design
of the interval observer gains L and L is represented in the
form of a series of convex optimisation problems. The conclu-
sion obtained is applied to a lateral control system for vehicles
in Section 4. In Section 5, conclusions and future research
directions are given.

Notations: In this paper, the notation R represents real num-
bers, and R+ is defined by R+ = {τ ∈ R, τ ≥ 0}. The notation
R
n represents the vector space of all n-tuples of real numbers,

and R
n×n is the space of n × n matrices with real entries. The

superscript ‘T’ denotes thematrix transpose. The block diagonal
matrix is denoted by the symbol diag{· · · }. The notation In ∈
R
n×n denotes then-dimensional identitymatrix. Given amatrix

A ∈ R
m×n, ‖A‖ denote its Frobenius norm. For two vectors

x1, x2 ∈ R
n or matrices A1,A2 ∈ R

n×n, the relations x1 < x2
and A1 < A2 are interpreted elementwisly. The relation Q � 0
(Q ≺ 0) means that Q ∈ R

n×n is positive (negative) definite. In
addition, Q> 0 (Q ≥ 0) means that all elements in this matrix
Q ∈ R

n×n are positive (nonnegative). Mn ∈ R
n×n is defined as

the collection of all n-dimensional Metzler matrices.

2. System description and problem formulation

2.1 System description

In this paper, we consider a class of learning-enabled nonlin-
ear dynamical systems embedded with neural networks in the
following form {

ẋ(t) = f (x(t), u(t),�(x(t)))

y(t) = g(x(t))
, (1)

where x ∈ R
nx , u(t) ∈ R

nu and y ∈ R
ny are the state vector,

input and output of the system, respectively. f : R
nx+nu → R

nx

and g : R
nx → R

ny are nonlinear functions. � : R
nx → R

nx is
the neural network component. Without causing ambiguity, we
omit the time index t in some of the variables.

Specifically, this work considers a class of dynamical sys-
tems embedded with neural networks, which have the form of
a Lipschitz nonlinear model as

L :

{
ẋ = Ax + B��(x) + Buu(t) + f (x)

y = Cx
, (2)

where A ∈ R
nx×nx , B� ∈ R

nx×nL+1
+ , Bu ∈ R

nx×nu+ , C ∈ R
ny×nx

and f (x) is a Lipschitz nonlinear function satisfying the follow-
ing Lipschitz inequality

‖f (x1) − f (x2)‖ ≤ β‖x1 − x2‖,β > 0. (3)
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Remark 2.1: Many nonlinear systems in the form of ẋ =
f (x, u,�(x)) can be represented in the form of (2) if f is
differentiable with respect to x and u. The neural network �(x)
is the interval component that affects the behaviour of the sys-
tem. For instance, the model (2) represents a state feedback
closed-loop system if the neural network �(x) is trained as a
feedback controller.

For the system (2), there are two sources of uncertainty: the
initial values for state x(0) and the instantaneous values of input
u(t).We assume that all these uncertainties belong to the known
interval as shown in the following assumption.

Assumption 2.1: Let x(0) ≤ x(0) ≤ x(0) for some known x(0)
and x(0) ∈ R

nx , and let the known bounded functions u and u
such that u(t) < u(t) < u(t),∀t ≥ 0.

Suppose that the nonlinear function f (x) has the following
properties.

Assumption 2.2: Suppose there exist functions f , f : R
2nx →

R
nx such that

f (x, x) ≤ f (x) ≤ f (x, x), (4)

holds for any x ≤ x ≤ x.

Remark 2.2: Assumptions 2.1 and 2.2 emphasise that the initial
state, the input signal and the nonlinear function of the origi-
nal system, must numerically lie in the interval consisting of the
initial state, the input signal and the nonlinear function of the
interval observer, respectively. This is to ensure that the interval
observer can correctly achieve the interval estimate for the state
of the original system, which means x ≤ x ≤ x, in other words,
to ensure that the error system is a positive system.

Assumption 2.3: Suppose there exist scalars a1, a1, a2, a2 ∈ R+
and vectors ρ, ρ ∈ R

nx+ such that

f (x) − f (x, x) ≤ a1(x − x) + a2(x − x) + ρ,

f (x, x) − f (x) ≤ a1(x − x) + a2(x − x) + ρ,

holds for the nonlinear functions f (x, x), f (x), f (x, x) defined in
Assumption 2.2.

Remark 2.3: Under the Lipschitz condition (3), the estimation
of parameters a1, a1, a2, a2, ρ, ρ in Assumption 2.3 can be
obtained through routine calculation, and the detailed estima-
tion procedures can be found in Lemma 6 of Zheng et al. (2016)

An L-layer feedforward neural network�(x) : R
n0 → R

nL+1

is considered in this work, which is defined by the following
recursive equation

N :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ω[0] = x(t)

v[l] = W[l]ω[l−1] + b[l] l = 1, . . . , L

ω[l] = φ[l](v[l]) l = 1, . . . , L

�(x) = W[L+1]ω[L] + b[L+1]

, (5)

where ω[l] ∈ R
nl denotes the output from the lth layer with

nl neurons of the neural network. v[l] ∈ R
nl denotes the input

to the activation function of the lth layer of the neural net-
work. �(x) ∈ R

nL+1 is the output of the neural network feed-
back controller. W[l] ∈ R

nl×nl−1 and b[l] ∈ R
nl represent the

weight matrix and bias vector of the lth layer neural network,
respectively. In the lth layer neural network, for vectors v[l] =
[v[l]1 , v[l]2 , . . . , v[l]nl ]

T , we define φ[l] = [ψ [l],ψ [l], . . . ,ψ [l]]T to be
the series of activation functions and a single activation func-
tion is ψ , where φ[l](v[l]) is the action on each element in the
vector, i.e.

φ[l](v[l]) = [ψ [l](v[l]1 ),ψ [l](v[l]2 ), . . . ,ψ [l](v[l]nl )]
T .

Here, the following assumptions about the activation function
are given.

Assumption 2.4: Suppose that for activation functionsψ [l], l =
1, . . . , L, the following properties hold:

• Any two scalars x1 and x2 are given, there must be a scalar
α > 0 such that

|ψ [l](x1) − ψ [l](x2)| ≤ α|x1 − x2|, ∀l = 1, . . . , L. (6)

• Any two scalars x1 ≤ x2 are given, and we have

ψ [l](x1) ≤ ψ [l](x2), ∀l = 1, . . . , L. (7)

Remark 2.4: Assumption 2.4 above applies to the most com-
mon activation functions, such as ReLU, sigmoid, tanh, and
leaky ReLU. For condition (6), the α can be obtained by the
maximum Lipschitz constant of all ψ [l]. The condition (7) is
satisfied because the common activation functions are mono-
tonically increasing. Without loss of generality, we suppose that
the activation functions are the same in each layer.

2.2 Problem formulation

Our proposed solution to the problem of safety monitoring of
neural-network-embedded systems is to design a state estimator
which is capable of estimating the upper and lower bounds of the
state variable x(t) to monitor the operation status of the system
in real time. Information about the system L in the form of (2)
being used for the estimator design includes: the system matri-
ces A, B�, Bu, C, the nonlinear function f, the neural network
�, namely the weight matrix {Wl}L+1

l=1 , the bias vector {bl}L+1
l=1 ,

the known bounded functions u, u and the output y(t). The
run-time safety estimator design problem can be expressed as
follows.

Problem2.1: For a dynamical system embeddedwith neural net-
works in the form of (2), how can we design a run-time safety
state estimator such that its instantaneous state estimates, x and
x, satisfy x ≤ x ≤ x,∀t ≥ 0?

To solve the above problem, we consider the development of
a run-time safety state estimator in the form of the Luenberger
interval observer{

ẋ = (A − LC)x + Ly + B��(x, x) + Buu(t) + f (x, x)

ẋ = (A − LC)x + Ly + B��(x, x) + Buu(t) + f (x, x)
(8)
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where the initial state of the interval observer satisfies x(0) ≤
x(0) ≤ x(0), u(t) satisfies u(t) < u(t) < u(t),∀t ≥ 0, as shown
in Assumption 2.1, and f (x, x), f (x, x) satisfy Assumptions 2.2
and 2.3. The auxiliary neural networks �(x, x) and �(x, x) and
the observer gains L and L are to be determined.

Here, let the error state e = x − x, e = x − x, so that we can
obtain the expression for the error dynamical system in the
following form{

ė = (A − LC)e + B�
� + Bu(u − u) + f (x) − f (x, x)

ė = (A − LC)e + B�
� + Bu(u − u) + f (x, x) − f (x)
(9)

where 
� = �(x) − �(x, x),
� = �(x, x) − �(x), the ini-
tial state of the error system satisfy e(0) ≥ 0 and e(0) ≥ 0.

We find that the instantaneous estimates of the interval
observer satisfy x(t) ≤ x(t) ≤ x(t),∀t ≥ 0 if we can make the
state variable e(t) ≥ 0, e(t) ≥ 0,∀t ≥ 0. Thus, Problem 2.1 can
be further formulated as follows.

Problem2.2: For a dynamical system embeddedwith neural net-
works in the form of (2), how can we design the observer gains L
and L, and the auxiliary neural networks �(x, x) and �(x, x) in
the interval observer (8) such that error state instantaneous esti-
mates e(t) ≥ 0 and e(t) ≥ 0,∀t ≥ 0 in error dynamical system
(9)?

To solve Problem 2.2, we review the conclusions related to
positive systems.

Definition 2.1: If all elements outside the main diagonal of a
matrix A ∈ R

n×n are nonnegative, then A ∈ Mn.

Lemma2.1 (Wang et al., 2022): Thematrix PA ∈ Mn still holds
if P is a diagonal positive definite matrix and A ∈ Mn.

Lemma 2.2 (Efimov & Raïssi, 2016): Considering a system in
the form of ẋ(t) = Ax(t) + d(t), for A ∈ Mn, the state x(t) is ele-
mentwise nonnegative for all t ≥ 0 if x(0) ≥ 0 and d(t) ∈ R

n+,
and the system is called cooperative.

According to Lemma 2.2, we propose the following proposi-
tion as the solution to Problem 2.2, provided that x(t) and u(t)
satisfy Assumption 2.1 and f (x, x) and f (x, x) satisfy Assump-
tions 2.2 and 2.3.

Proposition 2.1: Problem 2.2 can be solved if the observer gains,
L and L, and the auxiliary neural networks, �(x, x) and �(x, x),
satisfy the following conditions

A − LC ∈ Mnx , (10)

A − LC ∈ Mnx , (11)

�(x) − �(x, x) ∈ R
nL+1
+ , (12)

�(x, x) − �(x) ∈ R
nL+1
+ . (13)

Proof: According to Assumptions 2.1, 2.2, it is clear that f (x) −
f (x, x) ∈ R

nx+ , x(0) − x(0) ∈ R
nx+ and Bu(u − u) ∈ R

nx+ . Since

B�(�(x) − �(x, x)) ∈ R
nx+ holds and A − LC ∈ Mnx , accord-

ing to Lemma 2.2, we can conclude e(t) ≥ 0,∀t ≥ 0. The same
can be said for e(t) ≥ 0,∀t ≥ 0. Thus the proof is complete. �

It is worth noting that the conditions in Proposition 2.1
hold only to prove that e(t) ≥ 0, e(t) ≥ 0,∀t ≥ 0. Under the
conditions that Proposition 2.1 holds, it is possible that
limt→∞ e(t) = ∞ and limt→∞ e(t) = ∞happen.Although the
interval observer (8) can provide estimated boundaries of the
states of the system (2), the estimation error can be extremely
large making the estimates meaningless. Therefore, the concept
of practical stability, which is related to the boundedness of the
system states as time grows, is introduced.

Lemma 2.3 (Ge & Wang, 2004): Considering the system (2), if
there exists a continuous Lyapunov function V(x) satisfying a1(‖
x ‖) ≤ V(x) ≤ a2(‖ x ‖), making V̇(x) ≤ −c1V(x) + c2, where
a1 and a2 are classK functions of the state x, and c1 and c2 are pos-
itive constants, then the solution x(t) is uniformly bounded and
the system is globally practically uniformly exponentially stable.

3. Observer-based safety monitoring design

The aim of this section is to design the interval observer gains
L and L, and the auxiliary neural networks �(x, x) and �(x, x)
that satisfy Proposition 2.1. In order to minimise the estima-
tion errors, the convergence of the error system also needs to
be considered. First, we introduce the design method of auxil-
iary neural networks �(x, x) and �(x, x) based on the neural
network �(x) defined in (5).

For a given neural network �, the lth layer weight matrix is
in the following form of

W[l] = [w[l]
i,j ] =

⎡
⎢⎢⎢⎢⎣
w[l]
1,1 w[l]

1,2 · · · w[l]
1,nl−1

w[l]
2,1 w[l]

2,2 · · · w[l]
2,nl−1

...
...

. . .
...

w[l]
nl ,1 w[l]

nl ,2 · · · w[l]
nl ,nl−1

⎤
⎥⎥⎥⎥⎦ , (14)

wherew[l]
i,j expresses the element in ith row and jth column. Two

auxiliary weight matrices are defined as follows

W[l] = [w[l]
i,j ],w

[l]
i,j =

{
w[l]
i,j , w[l]

i,j < 0
0, w[l]

i,j ≥ 0
,

W[l] = [w[l]
i,j ],w

[l]
i,j =

{
w[l]
i,j , w[l]

i,j ≥ 0
0, w[l]

i,j < 0
.

(15)

Obviously, we can get W[l] = W[l] + W[l]. Then two auxiliary
neural networks �(x, x) : R

2n0 → R
nL+1 and �(x, x) : R

2n0 →
R
nL+1 are constructed with inputs x, x ∈ R

n0 in the expression
of

N :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ω[0] = x(t)

v[l] = W[l]ω[l−1] + W[l]
ω[l−1] + b[l]

ω[l] = φ[l](v[l])

�(x, x) = W[L+1]ω[L] + W[L+1]
ω[L] + b[L+1]

, (16)
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N :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ω[0] = x(t)

v[l] = W[l]ω[l−1] + W[l]
ω[l−1] + b[l]

ω[l] = φ[l](v[l])

�(x, x) = W[L+1]ω[L] + W[L+1]
ω[L] + b[L+1]

,

(17)

where l = 1, . . . , L.
In the case x ≤ x ≤ x, the following lemma proves that the

auxiliary neural networks�(x, x) and�(x, x) identified by (16)
and (17) can satisfy (12) and (13) in Proposition 2.1, i.e.�(x) −
�(x, x) ∈ R

nL+1
+ ,�(x, x) − �(x) ∈ R

nL+1
+ .

Lemma 3.1 (Xiang, 2021): Considering the neural network � :
R
n0 → R

nL+1 and auxiliary neural networks �(x, x) : R
2n0 →

R
nL+1 , �(x, x) : R

2n0 → R
nL+1 described by (16) and (17), the

following condition
[
�(x) − �(x, x)
�(x, x) − �(x)

]
∈ R

2nL+1
+ , (18)

holds for any x ≤ x ≤ x.

The above constructed neural networks and Lemma 3.1
provide a method for designing the auxiliary neural networks
�(x, x) and�(x, x) that meet the conditions in Proposition 2.1.
Next, we need to design the observer gains L andL such that (10)
and (11) in Proposition 2.1 hold and the estimation error is
within an acceptable range. The nonlinear activation function
makes it difficult to incorporate the above results into the convex
optimisation framework which is usually used for observer gain
design. Inspired by the approach proposed in the literature (Yin
et al., 2022), we can abstract the activation function by quadratic
constraints.

3.1 Quadratic constraints on the activation functions

Considering the error dynamical system (9) and in connec-
tion with the definition of the auxiliary neural networks (16)
and (17), the following results can be obtained

� − � = W[L+1]ω[L] + b[L+1] − (W[L+1]ω[L]

+ W[L+1]
ω[L] + b[L+1])

= (W[L+1] + W[L+1]
)ω[L] − (W[L+1]ω[L]

+ W[L+1]
ω[L])

= W[L+1]
ξ [L] − W[L+1]ξ

[L],

� − � = W[L+1]ω[L] + W[L+1]
ω[L] + b[L+1]

− (W[L+1]ω[L] + b[L+1])

= W[L+1]ω[L] + W[L+1]
ω[L] − (W[L+1]

+ W[L+1]
)ω[L]

= −W[L+1]ξ [L] + W[L+1]
ξ
[L],

v� − v� =

⎡
⎢⎢⎢⎣
v[1] − v[1]

v[2] − v[2]
...

v[L] − v[L]

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
W[1]

(x − x) − W[1](x − x)
W[2]

ξ [1] − W[2]ξ
[1]

...
W[L]

ξ [L−1] − W[L]ξ
[L−1]

⎤
⎥⎥⎥⎥⎦ ,

v� − v� =

⎡
⎢⎢⎢⎣
v[1] − v[1]

v[2] − v[2]
...

v[L] − v[L]

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

−W[1](x − x) + W[1]
(x − x)

−W[2]ξ [1] + W[2]
ξ
[1]

...
−W[L]ξ [L−1] + W[L]

ξ
[L−1]

⎤
⎥⎥⎥⎥⎦ ,

where ξ [l] = ω[l] − ω[l] and ξ
[l] = ω[l] − ω[l].

Furthermore, the following relationship is readily available
⎡
⎢⎢⎣

� − �

� − �

v� − v�

v� − v�

⎤
⎥⎥⎦ = N

⎡
⎢⎢⎣

x − x
x − x

ω� − ω�

ω� − ω�

⎤
⎥⎥⎦ , (19)

where N is defined in Table 1, and

ω�(t) =

⎡
⎢⎣

ω[1](t)
...

ω[L](t)

⎤
⎥⎦ , ω�(t) =

⎡
⎢⎣

ω[1](t)
...

ω[L](t)

⎤
⎥⎦ ,

φ(v�) =

⎡
⎢⎣

φ[1](v[1])
...

φ[L](v[L])

⎤
⎥⎦ ∈ R

n� ,

φ(v�) =

⎡
⎢⎣

φ[1](v[1])
...

φ[L](v[L])

⎤
⎥⎦ ∈ R

n� ,

in which n� = n1 + n2 + · · · + nL.
Abstracting the activation function based on quadratic con-

straints (QCs) is an essential approach in the following interval
observer design. Let us first define an offset local sector.

Definition 3.1 (Yin et al., 2022): Suppose that given α,β , v̂, v̂,
v∗ ∈ R, where α ≤ β , v̂ ≤ v∗ ≤ v̂. The activation function ψ :
R → R satisfies the offset local sector [α,β] around the given
point (v∗,ψ(v∗)) if

(
ψ(v) − α
v)(β
v − 
ψ(v)) ≥ 0, ∀v ∈ [v̂, v̂], (20)

where 
v = v − v∗ and 
ψ(v) = ψ(v) − ψ(v∗).

If the function ψ satisfies a local offset sector [α,β] centred
at any point (v∗,ψ(v∗)), it means that the function ψ satisfies
a global offset sector [α,β]. As shown in Figure 1(a), func-
tion ψ(v) = tanh(v) satisfies the global sector bound around
the point (1,ψ(1)) with [α,β] = [0, 1]. For global sector con-
straints, the value of α,β are independent of the chosen ref-
erence point (v∗,ψ(v∗)) and are only related to the chosen
activation function.When the input to the function is restricted
to v ∈ [v̂, v̂], the stricter offset local sector constraint will be
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Table 1. Definition of N in (19).

N =

⎡
⎢⎢⎣

N�x N�x N�ω N�ω

N�x N�x N�ω N�ω

Nvx Nvx Nvω Nvω
Nvx Nvx Nvω Nvω

⎤
⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 · · · W
[L+1]

0 0 · · · −W[L+1]

0 0 0 0 · · · −W[L+1] 0 0 · · · W
[L+1]

W
[1] −W[1] 0 · · · 0 0 0 · · · 0 0

0 0 W
[2] · · · 0 0 −W[2] · · · 0 0

...
...

...
. . .

...
...

...
. . .

...
...

0 0 0 · · · W
[L]

0 0 · · · −W[L] 0

−W[1] W
[1]

0 · · · 0 0 0 · · · 0 0

0 0 −W[2] · · · 0 0 W
[2] · · · 0 0

...
...

...
. . .

...
...

...
. . .

...
...

0 0 0 · · · −W[L] 0 0 · · · W
[L]

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

satisfied. As shown in Figure 1(b), functionψ(v) = tanh(v) sat-
isfies the offset local sector bound around the point (0,ψ(0))
with [α,β] = [0.48, 1], where v ∈ [−2, 2].

We can then convert the expression (20) of the local offset
sector into the following form

α ≤ ψ(v) − ψ(v∗)
v − v∗ ≤ β , ∀v ∈ [v̂, v̂]. (21)

According to (21), we can further interpret Definition 3.1 as
follows. For a function ψ satisfying a local offset sector [α,β]
around the point (v∗,ψ(v∗)), considering ∀v ∈ [v̂, v̂], the slope
of the line connecting any point on the functionψ to the centre
point (v∗,ψ(v∗)) is between [α,β]. The local sector constraint
for a single activation functionψ : R → R is given above. Next,
we consider the local sector constraint problem for a function
formed by concatenating multiple activation functions. Con-
sidering the activation function of a series connection φn� :
R
n� → R

n� , given α�,β�, v̂�, v̂�, v∗
� ∈ R

n� , satisfying α� ≤
β�, v̂� ≤ v∗

� ≤ v̂�, for the ith input v�,i ∈ [v̂�,i, v̂�,i], i =
1, . . . , n� of the function φn� , we can obtain the offset sec-
tor [α�,i,β�,i] either analytically or numerically. α�,β� can be
obtained by stacking these local sectors, and the quadratic con-
straints considering the concatenation of activation functions
φn� is given below.

Lemma 3.2 (Yin et al., 2022): Given α�,β�, v̂�, v̂�, v∗
� ∈ R

n� ,
satisfying α� ≤ β�, v̂� ≤ v∗

� ≤ v̂� and ω∗
� = φ(v∗

�). Suppose
that the functionφn� : R

n� → R
n� satisfies the offset local sector

[α�,β�] around the point (v∗
�,ψ(v∗

�)). Given λ ≥ 0 where λ ∈
R
n� , we have[

v� − v∗
�

ω� − ω∗
�

]T

̃T

�M̃�(λ)
̃�

[
v� − v∗

�

ω� − ω∗
�

]
≥ 0, (22)

where ω� = φn�(v) and


̃� =
[
diag(β�) −In�

−diag(α�) In�

]
,

M̃�(λ) =
[

0n� diag(λ)

diag(λ) 0n�

]
.

Lemma 3.2 considers the problem of quadratic constraints
on the local offset sector at the level of the activation func-
tion of the entire neural network. Since our interval observers
need to work properly for any input, it is necessary to con-
sider quadratic constraints on the activation function for the
global sector. Let v̂ → −∞, v̂ → ∞, considering the activa-
tion function ψ(v) = tanh(v), then (22) holds if α = 0,β = 1.
According to Definition 3.1, v∗ ∈ R in this case, it is feasible
that v∗ = v[l]i or v∗ = v[l]i , l = 1, . . . , L, i = 1, . . . , nl. Thus, we
can get

α ≤ ψ [l](v[l]i ) − ψ [l](v[l]i )

v[l]i − v[l]i
≤ β , (23)

α ≤ ψ [l](v[l]i ) − ψ [l](v[l]i )

v[l]i − v[l]i
≤ β . (24)

Similarly, considering the case for the global sector, we can
obtain the global sector quadratic constraints on the activation
function applied to the neural network (5) and the auxiliary
neural networks (16) and (17) in the error dynamical system (9)
as follows.

Theorem 3.1: Given α�,β� ∈ R
n� and existing v�, v�, v� ∈

R
n� , satisfying α� ≤ β�, v� ≤ v� ≤ v� and ω� = φn�(v�).

Consider the definition of the neural network (5) and auxiliary
neural networks (16) and (17), for exactly the same activation
function of the concatenation φn� = [ψ , . . . ,ψ] : R

n� → R
n� .

Given λ ≥ 0 where λ ∈ R
n� , we have

� =

⎡
⎢⎢⎣
v� − v�

v� − v�

ω� − ω�

ω� − ω�

⎤
⎥⎥⎦
T


T
�M�(λ)
�

⎡
⎢⎢⎣
v� − v�

v� − v�

ω� − ω�

ω� − ω�

⎤
⎥⎥⎦ ≥ 0, (25)

where


� =

⎡
⎢⎢⎣

diag(β�) 0n� −In� 0n�

0n� diag(β�) 0n� −In�

−diag(α�) 0n� In� 0n�

0n� −diag(α�) 0n� In�

⎤
⎥⎥⎦ ,
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Figure 1. Two types of quadratic constraints. (a) Global sector constraint on functionψ(v) = tanh(v) and (b) Offset local sector constraint on functionψ(v) = tanh(v).

M�(λ) =

⎡
⎢⎢⎣

0n� 0n� diag(λ) 0n�

0n� 0n� 0n� diag(λ)

diag(λ) 0n� 0n� 0n�

0n� diag(λ) 0n� 0n�

⎤
⎥⎥⎦ ,

and α� = [α, . . . ,α]T ,β� = [β , . . . ,β]T ∈ R
n� , which can be

obtained by analysing the global sector constraints on a single
activation function.

Proof: According to (25), for any v� ≤ v� ≤ v�, one can
obtain⎡

⎢⎢⎣
v� − v�

v� − v�

ω� − ω�

ω� − ω�

⎤
⎥⎥⎦
T


T
�M�(λ)
�

⎡
⎢⎢⎣
v� − v�

v� − v�

ω� − ω�

ω� − ω�

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣


v�


v�


ω�


ω�

⎤
⎥⎥⎦
T


T
�M�(λ)
�

⎡
⎢⎢⎣


v�


v�


ω�


ω�

⎤
⎥⎥⎦

=
L∑
l=1

nl∑
i=1

λ
[l]
i (
ω

[l]
i − α
v[l]i )(β
v[l]i − 
ω

[l]
i )

+
L∑
l=1

nl∑
i=1

λ
[l]
i (
ω

[l]
i − α
v[l]i )(β
v[l]i − 
ω

[l]
i ),

where 
v[l]i = v[l]i − v[l]i , 
v[l]i = v[l]i − v[l]i ,
ω
[l]
i = ω

[l]
i − ω

[l]
i ,


ω
[l]
i = ω

[l]
i − ω

[l]
i . Using (23) and (24), it is easy to see that

each term in the equation is non-negative in the case of λ[l]i ≥ 0.
Thus the proof is complete. �

Remark 3.1: For the description of the quadratic constraints
on activation functions, our approach uses an extension based
on the description of the local constraint in Definition 3.1 to
obtain the global constraint needed for the subsequent proof.
For example, for the activation function ψ(v) = tanh(v) men-
tioned in Figure 1(a), we have α = 0, β = 1. Therefore, we can
obtain α� = [0, . . . , 0]T ,β� = [1, . . . , 1]T . Definition 3.1 can
be generalised from local constraint to global constraint, and
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a more detailed discussion on the quadratic constraints can be
found in the paper (Yin et al., 2022).

3.2 Design of interval observer

This section uses the Lyapunov stability theory and the global
sector constraint of the activation function given inTheorem3.1
to obtain the tractable linear matrix inequality (LMI) and con-
ditions that ensure the error dynamical system (9) a positive
system and practically stable.

Theorem 3.2: Considering the error dynamical system (9) with
the definition of neural network (5) and the definition of auxil-
iary neural networks (16) and (17), and nonlinear function under
Assumptions 2.2, 2.3, if there exist diagonal matrix Q � 0, diag-
onal matrix S and block diagonal matrix M, real number k1 > 0,
such that ⎡

⎢⎢⎢⎢⎣
Γ1 Γ2 QB̃� QB̃u Q
Γ T
2 Γ3 0 0 0

B̃T�Q 0 −I 0 0
B̃TuQ 0 0 −I 0
Q 0 0 0 −I

⎤
⎥⎥⎥⎥⎦ ≺ 0, (26)

QÃ − MC̃ + S ≥ 0, (27)

where Γ1 = QÃ − MC̃ + ÃTQ − C̃TMT + k1I + ÑT
�xÑ�x +

ÑT
vxFαβÑvx, Γ2 = ÑT

�xÑ�ω + ÑT
vxFαβÑvω + ÑT

vxFα+β , and
Γ3 = ÑT

�ωÑ�ω + ÑT
vωFαβÑvω + Fα+βÑvω + ÑT

vωFα+β + Fλ in
which

Ã =
[
A 0
0 A

]
, B̃� =

[
B� 0
0 B�

]
, B̃u =

[
Bu 0
0 Bu

]
,

C̃ =
[
C 0
0 C

]
, L̃ =

[
L 0
0 L

]
, M =

[
M1 0
0 M2

]
,

[
Ñ�x Ñ�ω

Ñvx Ñvω

]
=

⎡
⎢⎢⎣

N�x N�x N�ω N�ω

N�x N�x N�ω N�ω

Nvx Nvx Nvω Nvω
Nvx Nvx Nvω Nvω

⎤
⎥⎥⎦ ,


T
�M�(λ)
� =

[
Fαβ Fα+β

Fα+β Fλ

]

=

⎡
⎢⎢⎣

λ1 0n� λ2 0n�

0n� λ1 0n� λ2
λ2 0n� λ3 0n�

0n� λ2 0n� λ3

⎤
⎥⎥⎦ ,

λ1 = −2αβdiag(λ), λ2 = (α + β)diag(λ), λ3 = −2diag(λ),

and α,β ∈ R are the exact values determined by the chosen acti-
vation function, and k1 = 3max{(a21 + a21), (a22 + a22)}, which
can be calculated by Assumption 2.3, then the error dynami-
cal system (9) is a practically stable and positive system. The
system (8) is an interval observer of the nonlinear system (2)
and the observer gains matrices L and L can be obtained by
L̃ = Q−1M.

Proof: Since (26) holds, let E = Ã − L̃C̃ and according to the
relation L̃ = Q−1M, (26) can be rewritten as

⎡
⎢⎢⎢⎢⎣

Γ4 Γ2 QB̃� QB̃u Q
Γ T
2 Γ3 0 0 0

B̃T�Q 0 −I 0 0
B̃TuQ 0 0 −I 0
Q 0 0 0 −I

⎤
⎥⎥⎥⎥⎦ ≺ 0, (28)

where Γ4 = QE + ETQ + k1I + ÑT
�xÑ�x + ÑT

vxFαβÑvx.
Using the Schur complement equivalence, (28) can be equiv-

alent to be [
Γ5 Γ2
Γ T
2 Γ3

]
≺ 0, (29)

where Γ5 = QE + ETQ + k1I + QB̃�B̃T�Q + QB̃uB̃TuQ +
QQ + ÑT

�xÑ�x + ÑT
vxFαβÑvx.

Split (29) into two matrices J1 and J2 such that

J1 =
[
Γ6 + ÑT

�xÑ�x ÑT
�xÑ�ω

ÑT
�ωÑ�x ÑT

�ωÑ�ω

]
,

J2 =
[

ÑT
vxFαβÑvx Γ7

ÑT
vωFαβÑvx + Fα+βÑvx Γ8

]
,

(30)

where Γ6 = QE + ETQ + k1I + QB̃�B̃T�Q + QB̃uB̃TuQ + QQ,
Γ7 = ÑT

vxFαβÑvω + ÑT
vxFα+β ,Γ8 = ÑT

vωFαβÑvω + Fα+βÑvω +
ÑT
vωFα+β + Fλ.
Clearly, J1 + J2 ≺ 0 and the following relation holds

J1 =
[

I 0
Ñ�x Ñ�ω

]T [
Γ6 0
0 I

] [
I 0

Ñ�x Ñ�ω

]
,

J2 =
[
Ñvx Ñvω
0 I

]T [
Fαβ Fα+β

Fα+β Fλ

] [
Ñvx Ñvω
0 I

]
.

(31)

From (19), multiplying of the matrix inequality J1 + J2 ≺ 0 left
and right by [(x − x)T , (x − x)T , (ω� − ω�)T , (ω� − ω�)T]
and its transpose, we have

⎡
⎢⎢⎣

x − x
x − x
� − �

� − �

⎤
⎥⎥⎦
T [

Γ6 0
0 I

] ⎡
⎢⎢⎣

x − x
x − x
� − �

� − �

⎤
⎥⎥⎦ + � < 0. (32)

Combining (25) in Theorem 3.1, we can conclude that

⎡
⎢⎢⎣

x − x
x − x
� − �

� − �

⎤
⎥⎥⎦
T [

Γ6 0
0 I

] ⎡
⎢⎢⎣

x − x
x − x
� − �

� − �

⎤
⎥⎥⎦ < 0. (33)

Then we consider the error dynamical system (9) and rewrite it
as

˙̃e =
[
A − LC 0

0 A − LC

] [
e
e

]
+

[
B� 0
0 B�

] [
� − �

� − �

]

+
[
Bu 0
0 Bu

] [
u − u
u − u

]
+

[
f (x) − f (x, x)
f (x, x) − f (x)

]

= Eẽ + B̃�
� + B̃u
u + f̃ . (34)
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To prove the stability of error dynamical system (9), let us con-
sider a Lyapunov function V(t) = ẽTQẽ, whose time derivative
takes the form:

V̇(t) = (˙̃eTQẽ + ẽTQ˙̃e)
= (Eẽ + B̃�
� + B̃u
u + f̃ )TQẽ + ẽTQ(Eẽ + B̃�
�

+ B̃u
u + f̃ )

= ẽT(QE + ETQ)ẽ + 2ẽTQB̃�
� + 2ẽTQB̃u
u

+ 2f̃ TQẽ. (35)

The following inequalities are introduced

2ẽTQB̃�
� ≤ ẽTQB̃�B̃T�Qẽ + 
�T
�,

2ẽTQB̃u
u ≤ ẽTQB̃uB̃TuQẽ + 
uT
u,

2f̃ TQẽ ≤ ẽTQQẽ + f̃ T f̃ .

Under Assumption 2.3, it implies that

f̃ T f̃ = (a1e + a2e + ρ)T(a1e + a2e + ρ)

+ (a1e + a2e + ρ)T(a1e + a2e + ρ)

= ‖a1e + a2e + ρ‖2 + ‖a1e + a2e + ρ‖2

≤ 3(a21‖e‖2 + a22‖e‖2 + ‖ρ‖2)
+ 3(a21‖e‖2 + a22‖e‖2 + ‖ρ‖2)

=
[
e
e

]T [
3(a21 + a21) 0

0 3(a22 + a22)

] [
e
e

]
+ 3(‖ρ‖2 + ‖ρ‖2)

≤ ẽTk1Iẽ + 3k2,

where k1 = 3max{(a21 + a21), (a22 + a22)}, k2 = ‖ρ‖2 + ‖ρ‖2.
Therefore, (35) implies that

V̇(t) ≤ ẽTΓ7ẽ + 
�T
� + 
uT
u + f̃ T f̃

≤ ẽTΓ7ẽ + 
�T
� + ẽTk1Iẽ + 
uT
u + 3k2

= ẽT(Γ7 + k1I)ẽ + 
�T
� + 
uT
u + 3k2

= ẽTΓ6ẽ + 
�T
� + 
uT
u + 3k2,

where Γ7 = QE + ETQ + QB̃�B̃T�Q + QB̃uB̃TuQ + QQ.
According to (33), we can get the following condition[

ẽ

�

]T [
Γ6 0
0 I

] [
ẽ


�

]
< 0, (36)

from which it can be inferred that

ẽTΓ6ẽ + 
�T
� < 0. (37)

According to the conditions (37) derived above, in any case,
there must be a real number ε > 0, such that the following
equation holds

ẽT(Γ6 + εQ)ẽ + 
�T
� < 0. (38)

which can be rewritten to

ẽTΓ6ẽ + 
�T
� < −εẽTQẽ. (39)

Moreover, based on (36), we can conclude that

V̇(t) ≤ −εV + c2, (40)

where c2 ∈ R+ and c2 ≥ 
uT
u + 3k2. According to
Lemma 2.3, the error dynamical system (9) is practically stable.

Adding or subtracting S does not affect the Metzler property
of the expression because S is a diagonalmatrix. ThusQÃ − MC̃
is Metzler considering matrix inequality (27). Based on M =
QL̃, thenQÃ − QL̃C̃ isMetzler.Multiplying the diagonalmatrix
Q will not change the Metzler features based on Lemma 2.1, so
Ã − L̃C̃ is Metzler. Thus the proof is complete. �

Remark 3.2: It is worth noting that considering the setting
x(0) ≤ x(0) ≤ x(0) mentioned in Assumption 2.2, it is possible
the left side of (32) is equal to 0 when t= 0. Since u < u < u,
according to the theory of positive systems, the state variable
e = e = 0 in system (9) when and only when t= 0. This means
that the case x = x = x exists only when t= 0. Here we consider
the fact that (32) does not hold only at this moment t= 0 and
does not have an impact on the correctness of Theorem 3.2. The
main reason why the case x(0) = x(0) = x(0) is retained in the
assumption on the initial value of the system state is tominimise
the usage restrictions of the proposed method.

4. Application to lateral vehicle control systems

In this section, the developed run-time safety monitor design
methodology is applied to the lateral vehicle control system
to evaluate the correctness and applicability of the proposed
methodology. The National Highway Transportation Safety
Administration (NHTSA) has identified lane departures as the
leading cause of rollovers in sport utility vehicles (SUVs) and
light trucks (http://www.nhtsa.gov). Lateral vehicle control is an
important approach to resolving lane departure accidents and
has been heavily researched in industry and academia. Lateral
vehicle control means that the vehicle collects road and envi-
ronmental information via sensors such as magnetic materials,
vision systems, or GPS to obtain the vehicle’s position relative
to the desired path. Control commands are then issued to the
vehicle based on a control strategy. The control process can be
summarised into two parts: detection and reaction. The detec-
tion device evaluates the position of the vehicle relative to the
road in real time and determines whether a road deviation has
occurred. Once a deviation is detected, the controller issues a
warning to the driver and/or intervenes in the vehicle.

In the following example, we consider a ‘bicycle’ model of a
vehicle with two degrees of freedom, the lateral positionY of the
vehicle, and the yaw angle θ of the vehicle, as shown in Figure 2.
This system is under the control of a neural network controller,
which serves to provide intervention when the vehicle leaves
the road centre line. Consider the lateral vehicle control system
from Rajamani (2011):

Leg :

{
ẋ = Ax + B��(x) + Buu

y = Cx
, (41)

where system matrices A, B�, Bu, C, and input u are defined by

A =

⎡
⎢⎢⎢⎢⎣
0 1 0 0
0 − 2Caf +2Car

mVx

2Caf +2Car
m

−2Caf lf +2Carlr
mVx

0 0 0 1

0 − 2Caf lf −2Carlr
IzVx

2Caf lf −2Carlr
Iz − 2Caf l2f +2Carl2r

IzVx

⎤
⎥⎥⎥⎥⎦ ,
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Figure 2. Illustration of Lateral Vehicle Control System.

B� =

⎡
⎢⎢⎢⎣

0
2Caf
m
0

2Caf lf
Iz

⎤
⎥⎥⎥⎦ ,

Bu =

⎡
⎢⎢⎣
1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , C =

⎡
⎢⎢⎣
0 1 0 0
1 0 0 0
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦ ,

u =

⎡
⎢⎢⎢⎢⎣

0
− 2Caf lf −2Carlr

mVx
− Vx

0

− 2Caf l2f +2Carl2r
IzVx

⎤
⎥⎥⎥⎥⎦ θ̇des.

Let x = [e1, ė1, e2, ė2]T denote the state of the system (41). e1 is
the distance of the c.g. (centre of gravity) of the vehicle from
the centreline of the lane (m). e2 is the orientation error of the
vehicle with respect to the road (rad), which can be obtained by
the equation e2 = θ − θdes. θ is called the heading angle of the
vehicle, and θdes is the desired orientation of the vehicle, with
respect to the global X-axis (rad). θ̇des = Vx

R is defined as the
rate of change of the desired orientation of the vehicle(rad/s).
�(x) is the neural network controller, and its output is the
front wheel steering angle (rad). System parameters are given in
Table 2. By calculation to u, we set u = [−1,−3,−1,−1]T , u =
[1,−1, 1, 0]T .

The lateral vehicle control system we are discussing does
not contain nonlinear functions, which means f (x) = f (x, x) =
f (x, x) = 0, so the corresponding interval observer system is as
follows

Meg :

{
ẋ = (A − LC)x + Ly + B��(x, x) + u

ẋ = (A − LC)x + Ly + B��(x, x) + u
.

Table 2. System Parameters for Lateral Vehicle Control System.

Total mass of vehicle m = 1573 kg
Yawmoment of inertia of vehicle Iz = 2873 kg � m2

Longitudinal distance from c.g. to front tires lf = 1.1m
Longitudinal distance from c.g. to rear tires lr = 1.58m
Front tire cornering stiffness Caf = 80000 N/rad
Rear tire cornering stiffness Car = 80000 N/rad
Longitudinal velocity of the c.g. of the vehicle Vx = 30m/s
Constant road radius R = 400m

The following describes how the auxiliary neural networks,
�(x, x) and �(x, x), and the interval observer gains, L and L,
are obtained in this example. According to the feedback gain K
given in paper (Alleyne, 1997), the system (41) can operate nor-
mally. Based on this operating data, we train the neural network
controller �(x), which is parameterised by a 3-layer feedfor-
ward neural network with n1 = 5, n2 = 5, and n3 = 1, and
ψ(v) = tanh(v) as the activation function of the first two layers.
The third layer does not use the activation function accord-
ing to the settings in our paper. The auxiliary neural networks
�(x, x) and �(x, x) are designed based on �(x) according
to (14) and (15). Considering the physical limitations of vehi-
cle dynamics, the range of front wheel steering angles is limited
to [−π/6,π/6], which means that the output of neural network
�(x) and auxiliary neural networks, �(x, x) and �(x, x), are
limited to [−π/6,π/6]. The observer gains, L and L, can be
obtained by solving linear matrix inequalities (26) and (27) in
Theorem 3.2.

The run-time boundary estimations of state trajectories of
lateral position error {e1, ė1} and yaw angle error {e2, ė2} during
the lateral vehicle control system evolves in time interval [0, 10]
are shown in Figures 3 and 4. The lateral position error and
yaw angle error decrease significantly after the system reaches
a steady state, indicating that the original system operates nor-
mally under the action of the neural network controller �(x).
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Figure 3. Safety monitoring of lateral position error e1 and its derivative ė1.

Figure 4. Safety monitoring of yaw angle error e2 and its derivative ė2.

It is worth noting that the steady-state values of e1 and e2 are not
zero because the input due to road curvature θ̇des is non-zero.
The specific physical explanation of these steady-state errors can
be found in Sections 3.2 and 3.3 of Rajamani (2011). As shown in

the results, the state trajectories (solid line) always run between
the upper and lower bounds of the interval observer (dashed
line), indicating that the interval observer we have designed can
be used for state safety monitoring.
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5. Conclusions

This paper presents a possible solution to the problem of run-
time safety monitoring of dynamical systems embedded with
neural network components. A design approach for a safety
monitor is proposed for the system characteristics. The safety
monitor works as a Luenberger-type interval observer, which
estimates the upper and lower bounds of the state run-time tra-
jectory in real time. The design process of the interval observer
consists of two main components: the two auxiliary neural net-
works and the observer gain. The two auxiliary neural networks
can be obtained from the neural network embedded in the
original system. The presence of nonlinear activation functions
in neural networks makes it difficult to apply traditional con-
trol theory to calculate observer gains L and L. To solve this
problem, we use quadratic constraints (QCs) to abstract the
nonlinear activation functions in neural networks. The com-
putational problem of observer gain is expressed in a series
of convex optimisation problems. The interval observer design
method is applied to the lateral vehicle control system to ver-
ify the correctness of the proposed solutions. The correction
of neural network operation in the event of security problems
needs to be considered in future work. Further applications
to dynamical systems with more complex behaviours such as
switched or hybrid systems (Li et al., 2020; Xiang et al., 2017a;
Zhu et al., 2019) will be also considered in the future.
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