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Abstract— In this paper, we propose a method of repairing
compressed Feedforward Neural Networks (FNNs) based on
equivalence evaluation of two neural networks. In the repairing
framework, a novel neural network equivalence evaluation
method is developed to compute the output discrepancy between
two neural networks. The output discrepancy can quantitatively
characterize the output difference produced by compression
procedures. Based on the computed output discrepancy, the
repairing method first initializes a new training set for the
compressed networks to narrow down the discrepancy between
the two neural networks and improve the performance of the
compressed network. Then, we repair the compressed FNN by
re-training based on the training set. We apply our developed
method to the MNIST dataset to demonstrate the effectiveness
and advantages of our proposed repair method.

I. INTRODUCTION

Back in 1943, McCulloch and Pitts [1] brought up an
idea about using logical calculus to simulate nervous ac-
tivity, recognized as the origin of neural networks. Since
then, neural networks have developed over the decades and
become a fundamental tool in modern intelligent society.
It has been applied in many areas, such as pattern recog-
nition [2], [3], image processing [4], [5], computer vision
[6], [7], etc. However, the evolution of neural networks is
accompanied by the exponential growth of the scale and
computation cost. According to the paper [8], [9], training a
large feedforward neural network is power-consuming and
is in high demand for memory usage. In an ACAS Xu
[10] verification problem, 45 Feedforward Neural Networks
(FNNs) have been deployed, with a total of 300 neurons of
each network, which requires huge computational resources
and is time-consuming [11]. Thus, the compression of neural
networks becomes a hot topic in the industrial area, which
can shrink down the scale of FNNs to be deployed in
practical applications. Two main state-of-the-art compression
methods are pruning [12] and quantization [13], where the
former aims to reduce neurons and layers of the model, and
the latter focuses on replacing high-precision parameters with
low-precision parameters.

However, neural network compression always comes at a
cost. In the survey [14], the authors outlined four methods
for compression and acceleration, but the summary also iden-
tified certain potential issues, notably a substantial reduction
in the accuracy of the compressed network. In [15], the
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severness of accuracy loss and importance of safety veri-
fications in Cyber-Physical Systems (CPS) applications has
been addressed; for example, collisions may occur if ACAS
Xu verification fails. Thus, the verification of compressed
FNNs is essential before deploying them. The paper [16]
gives a concrete value to characterize the difference between
two FNNs by performing the reachability analysis between
the networks, which is more intuitive to identify whether the
network meets those criteria. This hybrid zonotopes method
[17] is also based on reachability analysis to verify the
safety robustness of a neural feedback system by providing
a quantitative result.

In this paper, we propose a novel merging method to per-
form reachability analysis between two feedforward neural
networks with the same inputs to evaluate the equivalence
of the compressed network with respect to the original
one. With the given discrepancy result, we can identify
the guaranteed output reachable domain of the compressed
network. Further, we propose a repair framework for the
compressed FNN based on the equivalence result to narrow
down the discrepancy with the original FNN while retaining
its performance in solving specific tasks. To demonstrate the
effectiveness of our repair method, we apply it to classify
the MNIST database and compare the repair outcomes of
the compressed FNN with respect to the original FNN.

The remainder of the paper is organized as follows:
Section II is about Preliminaries. Section III introduces our
merging method and the framework of the repair method.
Section IV is the experiment demonstrating the repair
method. Section V presents the conclusion.

II. PRELIMINARIES

In this paper, an FNN Φ : Rn0 → RnL is defined in the
recursive equations form of{

y{l} = ϕ{l}(y{l−1}), l = 1, . . . , L

y{L} = Φ(x{0}), where x{0} = y{0} (1)

where y{l} is the output of the lth layer, x{0} ∈ Rn{0}

is the input and y{L} ∈ Rn{l}
is the output of the FNN,

respectively. ϕ{l} denotes the operation of the lth layer of
the FNN, which can be fully connected layer ϕfc or ReLU
layer ϕReLU, and y{l} is the output of the lth layer. The fully
connected operation ϕfc is defined as

y{l} = ϕfc(y
{l−1}) = W{l}y{l−1} + b{l} (2)

where W{l} ∈ Rn{l}×n{l−1}
and b{l} ∈ Rn{l}

denote the
weight matrices and the bias vectors for layer l, respectively.
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The ReLU operation ϕReLU is defined as

ϕReLU(y
{l}) = [max(0, y

{l}
1 ), . . . ,max(0, y{l}n )]T (3)

where y
{l}
i is the ith element of the vector y{l} in (2).

To enable sound equivalence evaluation for two FNNs,
which essentially needs to consider all possible outputs of the
networks, the following reachable set of FNNs is introduced.

Definition 1: Given an input set X {0} ∈ Rn{0}
for FNN

(1), we define the following set

Y{L} = {y{L} | y{L} = Φ(x{0}), x{0} ∈ X {0}} (4)

where Y{L} ⊆ Rn{L}
is called the output set of FNN (1).

Remark 1: There are a number of available reachable set
representations used for FNN reachability analysis, such as
zonotope [18], polytope [19], FVIM [20], etc. For instance,
in the MNIST dataset application Section IV, we will use
ImageStar proposed in [21] in our approach. ImageStar Θ is
a tuple ⟨c, V, P ⟩ where c ∈ Rh×w×nc is the anchor image,
V = {v1, v2, · · · , vm} is a set of m images in Rh×w×nc

called generator images, P : Rm ← {⊤,⊥} is a predicate,
and h,w, nc are the height, width, and number of channels of
the images, respectively. The generator images are arranged
to form the ImageStar’s h×w×nc×m basis array. The set
of images represented by the ImageStar is:

Θ = {x|x = c+

m∑
i=1

(αivi), where P (αi, · · · , αm) = ⊤}

in which we restrict the predicates to be a conjunction of
linear constraints, P (α) ≜ Cα ≤ d where, for p linear
constraints, C ∈ Rp×m, α is the vector of m variables, i.e.,
α = [α1, · · · , αm]T , and d ∈ Rp×1. An ImageStar is an
empty set if and only if P (α) is empty.

Based on the output reachable set defined in (4), we can
define the set value representation of an FNN as below{

Y{l} = ϕ{l}(Y{l−1}), l = 1, 2, . . . , L

Y{L} = Φ(X {0}), where X {0} = Y{0} (5)

where Y{l} denotes the output reachable set of lth layer,
and, in particular, Y{0} is the input set X {0} and Y{L} is
the output set of the network.

In this paper, the equivalence evaluation aims to charac-
terize the discrepancy between two FNNs, Φ1 and Φ2 under
the following assumptions.

Assumption 1: The following assumptions hold for two
neural networks Φ1 and Φ2:

(i) The number of inputs of two neural networks are the
same, i.e., n{0}

1 = n
{0}
2 ;

(ii) The number of outputs of two neural networks are the
same, i.e., n{L}

1 = n
{L}
2 ;

(iii) The number of layers of two neural networks is the
same, i.e., L1 = L2 = L;

(iv) For each layer l, two neural networks perform the same
operation.

Remark 2: It has to be pointed out that a typical com-
pressed neural network usually consists of a reduced number

of layers compared to the original network, which fails to
satisfy (iii) and (iv) in Assumption 1. However, we can
always extend the compressed network by incorporating
additional layers as detailed in [16]. These additional layers
equipped with identity weights and zero biases are mandated
to transmit information to subsequent layers without any
alterations, but meet the requirements of (iii) and (iv).

III. MAIN RESULTS

A. Equivalence Evaluation for Two FNNs

Given an input set X {0} for two FFNs Φ1 and Φ2 under
Assumption 1, the equivalence evaluation in this work is
given by quantifying the maximal discrepancy of y

{L}
1 and

y
{L}
2 , where are the outputs of Φ1 and Φ2, respectively. To

enable equivalence evaluation of Φ1 and Φ2, our first goal
is to construct the discrepancy of the outputs of two FNNs
with the same inputs, i.e.,

δ = Φ1(x
{0})− Φ2(x

{0}), x{0} ∈ X {0} (6)

where δ ∈ Rn{L}
is the discrepancy vector.

For fully connected layers ϕfc and ReLU layers ϕReLU,
we can obtain the following two results.

Lemma 1: Consider two FFNs N1 and N2 under Assump-
tion 1, the following result holds for fully connected layers[

y
{l}
1

y
{l}
2

]
= ϕfc

([
y
{l−1}
1

y
{l−1}
2

])
= W̃{l}

[
y
{l−1}
1

y
{l−1}
2

]
+ b̃{l} (7)

where W̃{l} = diag{W{l}
1 ,W

{l}
2 } and b̃{l} =

[(b
{l}
1 )T , (b

{l}
2 )T ]T in which W

{l}
1 , W

{l}
2 , b

{l}
1 , b

{l}
2 are

the weights and biases of N1 and N2 at layer l.
Proof: The result can be obtained straightforwardly by

the definition of the fully connected layer in the form of (2)
such as

ϕfc

([
y
{l−1}
1

y
{l−1}
2

])
=

[
ϕfc(y

{l−1}
1 )

ϕfc(y
{l−1}
2 )

]

=

[
W

{l}
1 (y

{l−1}
1 ) + b

{l}
1

W
{l}
2 (y

{l−1}
2 ) + b

{l}
2

]

= W̃{l}

[
y
{l−1}
1

y
{l−1}
2

]
+ b̃{l}.

The proof is complete.
Lemma 2: Consider two FFNs N1 and N2 under Assump-

tion 1, the following result[
y
{l}
1

y
{l}
2

]
= ϕReLU

([
y
{l−1}
1

y
{l−1}
2

])
=

[
ϕReLU(y

{l−1}
1 )

ϕReLUy
{l−1}
2 )

]
(8)

holds for ReLU layers.
Proof: As the ReLU operation is performed in an

element-wise manner, the result can be obtained straightfor-
wardly. The proof is complete.

Remark 3: It should be noted that the ReLU function may
split the reachable set into multiple ones based on the linear
constraints. The ReLU function is possible to perform in a
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different way for the pixel if its bounded range is across the
zero. To handle the different situations, our method will split
the linear constraints into two groups to force the bounded
range of the pixel to fall into one side, leading to Y = Y1 ∪
Y2 ∪ . . .∪Yn. With the split strategy, the reachable set may
increase exponentially based on the linear constraints, which
increases the computation time.

Besides fully connected and ReLU layers, we introduce a
comparison layer to construct the output discrepancy ycmp =

y
{L}
1 − y

{L}
2 to evaluate the equivalence on two FNNs. The

comparison layer is considered as an extra layer receiving
the output y{L}

1 and y
{L}
2 of FNNs N1 and N2 in the form

of

ycmp = ϕcmp

([
y
{L}
1

y
{L}
2

])
= Wcmp

[
y
{L}
1

y
{L}
2

]
(9)

where Wcmp =
[
I −I

]
.

Theorem 1: Consider two FFNs Φ1 and Φ2 under As-
sumption 1, the following result

ycmp = Φ1(x
{0})− Φ2(x

{0}) (10)

holds for the output ycmp of comparison layer defined in (9).
Proof: By Lemmas 1 and 2, and under Assumption 1,

we have [
y
{l}
1

y
{l}
2

]
= ϕ{l}

([
y
{l−1}
1

y
{l−1}
2

])
l = 1, . . . , L (11)

where ϕ{l} can be either ϕfc or ϕReLU. It is worth noting that
Lemmas 1 and 2 also provide the computation procedures to
compute y

{l}
1 and y

{l}
2 for each layer. Therefore, with the

same input x{0}, it leads to[
y
{L}
1

y
{L}
2

]
=

[
ϕ{L} ◦ · · · ◦ ϕ{1}(x{0})
ϕ{L} ◦ · · · ◦ ϕ{1}(x{0})

]
=

[
Φ1(x

{0})
Φ2(x

{0})

]
(12)

Then, from (9), one can obtain

ycmp =
[
I −I

] [y{L}
1

y
{L}
2

]
= Φ1(x

{0})− Φ2(x
{0}). (13)

The proof is complete.
As shown in Theorem 1, the output of the comparison

layer, i.e., ycmp, is the discrepancy vector measuring the
output difference between two FFNs Φ1 and Φ2. With the
help of this discrepancy vector and reachability analysis, we
can formally characterize the equivalence of two FNNs. A
merged L+1 layer FNN Φ̃ out of Φ1 and Φ2 can constructed
in the form of

ỹ{l} = ϕ{l}(ỹ{l−1}), l = 1, . . . , L

ỹ{L+1} = ϕcmp(ỹ
{L})

ỹ{L+1} = Φ̃(x{0}), where x{0} = y{0}
(14)

in which fully connected and ReLU hidden layers from 1
to L are defined by (7) and (8) and the output layer L + 1
is defined by (9). By performing reachability analysis for
merged FNN (14), i.e., computing the output reachable set
Ỹ{L+1} of merged FNN (14), we can formally characterize

equivalence between two FNNs Φ1 and Φ2. For instance,
we can compute the maximal distance of the outputs of two
FFNs in terms of

δmax = max
ỹ{L+1}∈Ỹ{L+1}

∥∥∥ỹ{L+1}
∥∥∥ (15)

In some scenarios, we might be interested in the discrep-
ancies for each dimension, such as the image recognition
application in Section IV. We can also make use of the
reachable set Ỹ{L+1} to compute the vector of maximal
magnitudes at each dimension of Ỹ{L+1}, i.e.,

δ̃max = max
ỹ{L+1}∈Ỹ{L+1}

∣∣∣ỹ{L+1}
∣∣∣ (16)

where the max operator performs element-wisely on ỹ{L+1}.
Remark 4: To perform the efficient equivalence evalua-

tion, the reachable set computation is essential. There exist
a number of tools available. For instance, as in the NNV
neural network reachability analysis tool, the reachable sets
are in the form of a collection of polyhedral sets [22], and
in the IGNNV tool, the output reachable set is a family of
interval sets [23], [24]. For those types of convex sets, the
equivalence evaluation metrics in the description of maximal
values can be obtained by testing a finite number of vertices
in convex sets.

B. FNN Compression Repair

Given an FNN Φ1 and its compressed version Φ2, the
goal of repairing the compressed Φ2 is that the discrepancy
between Φ1 and Φ2 should satisfy a set of prescribed condi-
tions described by set O, e.g., O = {ỹ{L+1} |

∥∥ỹ{L+1}
∥∥ ≤

d} where d > 0 is a prescribed threshold. The general
compressed FNN repair problem can be stated as follows.

Problem 1: Given an FNN Φ1 and its compressed version
Φ2, an input set X {0}, and a prescribed repairing target set
O, how does one modify the compressed FNN Φ2 such that

Ỹ{L+1} ⊆ O (17)

where Ỹ{L+1} is the output reachable set of merged L + 1
layer FNN Φ̃ in the form of (14) that is constructed out of
Φ1 and Φ2.

To address the FNN compression repair problem, nor-
mally, the goal of the repair is to minimize the discrepancy
between FNNs Φ1 and Φ2. From the optimization perspec-
tive, the repair problem can be described as

min
W

{l}
2 ,b

{l}
2 , l=1,...,L

ℓ(y
{L}
1 ,y

{L}
2 ) (18)

where ℓ(·) is the loss function describing the discrepancy
such as (15) and (16).

To modify W
{l}
2 and b

{l}
2 to repair the compressed FNN,

a new dataset has to be created for retraining the compressed
FNN. A straightforward way is to generate N retraining data
pair {x{0}

i ,y
{L}
i,2 }, i = 1, . . . , N , from FNN Φ2, and replace

the output samples y
{L}
i,2 with the outputs of the original

Φ1 , i.e., {x{0}
i ,y

{L}
i,1 }, i = 1, . . . , N , which completely

eliminates the discrepancy in data set. Furthermore, the cost
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Fig. 1. Framework of compressed feedforward neural network repair.

function ℓ(·) for the retraining data set can be then written
into the mean square loss function in the retraining process
as follows:

ℓ(y
{L}
1 ,y

{L}
2 ) =

1

N

N∑
i=1

∥∥∥y{L}
i,1 − y

{L}
i,2

∥∥∥ . (19)

With the above loss function, the FNN Φ2 training process
can be viewed as a data-driven procedure to search for the
optimal solution.

However, this method intends to cause overfitting issues
and significantly deteriorates network performance, such as
accuracy. In this work, we turn to gradually reduce the
discrepancy by updating the y

{L}
i,2 in the following way

ŷ
{L}
i,2 = y

{L}
i,2 +

1

α
δ̃max (20)

where α ≥ 1 is a tuning parameter to control the step size
to the target output, and δ̃max is defined by (16). Therefore,
the data in retraining data is modified to {x{0}

i , ŷ
{L}
i,2 }, and

the loss function becomes

ℓ(ŷ
{L}
2 ,y

{L}
2 ) =

1

N

N∑
i=1

∥∥∥ŷ{L}
i,2 − y

{L}
i,2

∥∥∥ . (21)

Thus, we can bring up the framework for compressed FNN
repair based on equivalence evaluation as shown in Fig. 1.

• Initialization. Given FNN Φ1 and its compression Φ2,
we compute the output reachable set Ỹ{L+1} out of
merged FNN. If (17) is not satisfied, the compressed
FNN needs to be re-trained. We compute the discrep-
ancy δ̃max based on Ỹ{L+1}.

• Generate re-training data set. Generate N samples of
{x{0}

i ,y
{L}
i,1 ,y

{L}
i,2 }, and build the re-training data set

{x{0}
i , ŷ

{L}
i,2 }, i = 1, . . . , N , based on (20).

• Re-train compressed FNN. Modify the weights and
bias of Φ2 by training Φ2 using data set {x{0}

i , ŷ
{L}
i,2 },

i = 1, . . . , N , under the loss function (21).
• Evaluate re-training outcome. After re-training Φ2,

we compute output reachable set Ỹ{L+1} and compares
it with the target reachable domain. The repair process is
finished only when (17) is satisfied. Otherwise, it repeats
the repairing process.

Algorithm 1 summarizes the repairing process for FNN
compression based on the equivalence evaluation of two
FNNs. It keeps re-training the compressed FNN until the

Algorithm 1: FNN Compression Repair
input : Original FNN Φ1, Compressed FNN Φ2,

repairing target set O
output: Repaired Compressed FNN Φ̂2

1 while True do
2 Compute discrepancy δ̃max

3 Generate {x{0}
i ,y

{L}
i,1 ,y

{L}
i,2 }, i = 1, . . . , N

4 ŷ
{L}
i,2 ← y

{L}
i,2 + 1

α δ̃max

5 Φ2 ← retrain(Φ2,Dataset({x{0}
i , ŷ

{L}
i,2 })

6 Compute reachable set Ỹ{L+1} for Φ2

7 if Ỹ{L+1} ⊆ O or timeout then
8 Φ̂2 ← Φ2

9 break
10 end
11 end
12 return Φ̂2

discrepancy meets the requirement. A timeout counter is set
up to avoid the repair process falling into a dead loop. The
computation of discrepancy follows Theorem 1 to compute
and update the discrepancy between the original FNN and
the updated compressed FNN. After the repair process, the
relationship between reachable set Ỹ{L+1} and repairing
target set O is used to evaluate whether the repair process is
a success.

IV. APPLICATION TO COMPRESSED FEEDFORWARD
NEURAL NETWORKS REPAIRMENT

In this section, to validate the effectiveness of our proposed
approach, we use the MNIST data set to perform our task. We
apply our equivalence evaluation method on the two FNNs
and the repair method to the compressed FNN to narrow
down the discrepancy1.

A. Database

MNIST [25] database contains a large number of hand-
written digits and is famous as an image classification
problem benchmark. The database contains 60,000 training
images and 10,000 testing images. Each image is a 28×28×1
grayscale image, and all images are classified into ten labels,
from 0 to 9.

B. Experiment Set Up

We train an FNN with three layers: the first has 256
neurons, the second has 64 neurons, and the third has 10
neurons. Each hidden layer is followed by a ReLU activation
function. The FNN is trained with the training dataset of
MNIST for five epochs. As for the compressed FNN, we
apply the quantization aware training (QAT) [26] method
to the original FNN, shrinking down the parameter size of
the network. Table I shows the comparison of the original
network and the compressed network. Table II shows the

1The code for the experiment is available at github.com/aicpslab/
FNN-repair
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TABLE I
NETWORKS OVERVIEW

Network Parameters Size (KB) Accuracy (%)
Original Network 218,058 855 98%

Compressed Network 218,058 226 91%
Repaired Network 218,058 226 98%

results with ten randomly picked images. The discrepancy is
the mean of the maximum distance between the output value
of the two FNNs among all label scores.

To repair the compressed FNN, we set up the target
reachable domains O as two-thirds of the original discrep-
ancy domains. Every iteration compares the last discrepancy
domain with the target domains. If it is not within the desired
area, a re-train dataset for compressed FNN is generated
based on the last discrepancy domain to re-retrain for three
epochs. According to (20), we use different α = 2, 5, 10, 20.
The re-train process will time out after ten iterations. Except
for the ten randomly chosen images, we also randomly chose
ten re-train samples from the images where the original FNN
gives the wrong predictions.

C. Results

First, we perform the FNN repair with α = 10 in (20).
Table I is the overview of the three FNNs in the experiment.
The original FNN has a 98% accuracy but drops to 91%
after compression. However, compared to the size of the three
FNNs, the compressed version’s size is only one-fourth of the
original one, which proves that compression helps decrease
the scale of the neural network. Comparing the compressed
FNN before repair and after repair, the performance of the
FNN improves from 91% to 98% and almost achieves the
same level as the original FNN, which our repairing method
is able to improve the capability of the compressed network.
In addition, Table II shows the discrepancy result of our
repair method. The total mean discrepancies after repair are
all lower than our target values for each testing input, and
some are even only one-tenth of the original value, which
demonstrates the effectiveness of our repair method while
keeping the performance. Fig. 2 shows the repairing result
in detail via a randomly chosen image. The input image
is a handwritten digit “9”. The blue dots are the scoring
output of the original network, with the highest score at label
9. The green whisker bar line on each label represents the
guaranteed output range of the compressed network before
repair. Relatively, the red whisker bar line is the guaranteed
output range of the network after repair. It is obvious that
each red whisker line is closer to the blue dot than the green
one, proving that the discrepancy is mitigated after repair.

To demonstrate the repairing process and indicate the
different repair performances with different α = 2, 5, 10, 20,
we show the discrepancy reduction and accuracy increase
along with the repairing process. The repairing process can
reduce the average discrepancy between the two network
outputs, as shown in Fig. 3. A small α has a larger dis-
crepancy result because of the larger step size to the optimal
value. A large α may not lower the discrepancy to a smaller

TABLE II
DISCREPANCY RESULTS BETWEEN BEFORE AND AFTER REPAIR WITH

RANDOM IMAGES

Input Image Mean δ (Before) Mean δ (After)
0 0.4750 0.0625
1 0.4189 0.0969
2 0.6339 0.1034
3 0.4746 0.0870
4 0.8272 0.1217
5 0.6200 0.1189
6 0.6458 0.0701
7 0.5440 0.1505
8 0.5908 0.0953
9 0.8283 0.1053

Fig. 2. Repair results with a handwritten digit “9”. Blue dots are the output
for the original network Φ1. The green whisker line represents the output
range of the compressed network Φ2 before repair. The red whisker line
represents the output range of the compressed network Φ̂2 after repair. The
outcome shows that the repaired network generates a more precise output
range (red whisker lines) closer to the original outputs (blue dots).
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Fig. 3. Repair result with a handwritten digit “9”. Different color lines are
the average discrepancy of input images between the original network Φ1

and compressed network Φ2 with different α settings. The outcome shows
that different α may lead to different repair performance, but the repair
process can always decrease the discrepancy.

value. As for the accuracy part, in Fig. 4, all α values
can repair the compressed network to reach 98% accuracy,
the same as the original network. Thus, our method does
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Fig. 4. Accuracy of the whole test set along with the repair process with
different α settings. All α values can help the compressed network reach
98% accuracy in 3 epochs.

mitigate the discrepancy between the original network Φ1

and the compressed network Φ2. The α is also important to
have a better repair performance, especially for complicated
networks.

V. CONCLUSIONS

This work mainly proposes an approach to repair the com-
pressed FNN based on the equivalence evaluation method. It
formally defines the structure of the merged neural network
with two given networks and develops reachability analysis
methods to compute the reachable set of the discrepancy
with the same input. The repair framework is explained in
detail, such as the construction of the re-train dataset, the
repair result criteria, and the compressed network update.
Then, our approach successfully gives repair results between
the original and compressed networks by showing the mean
discrepancy before and after repair. The repair task is carried
out by applying the discrepancy domain to the compressed
network output to re-train the compressed network with ran-
domly chosen samples, as shown by the MNIST experiment.
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