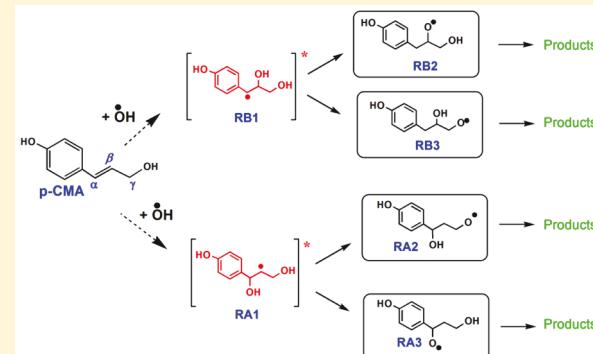


1 OH-Initiated Reactions of *p*-Coumaryl Alcohol Relevant to the Lignin Pyrolysis. Part I. Potential Energy Surface Analysis¹

3 Rubik Asatryan,*[†] Jason M. Hudzik,[‡] Joseph W. Bozzelli,[‡] Lavrent Khachatryan,[§] and Eli Ruckenstein[†]


5 [†]Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York
6 14226, United States

7 [‡]Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United
8 States

9 [§]Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States

10 Supporting Information

11 **ABSTRACT:** Cinnamyl alcohols such as *p*-coumaryl alcohol (*p*-CMA) are lignin models and precursors (monolignols) and the
12 most important primary products of lignin pyrolysis. However, the
13 detection of monomers is not straightforward since they either
14 undergo secondary transformations or repolymerize to contribute
15 to the char formation. Both concerted-molecular and free-radical
16 pathways are involved in these processes. Our recent fundamentally
17 based theoretical and low-temperature matrix-isolation-EPR
18 studies of cinnamyl alcohols highlighted the role of side-chain
19 reactivity in diversity of pyrolysis products and provided a network
20 of the chemically activated H + *p*-CMA reactions (Asatryan et al. *J.*
21 *Phys. Chem. A*, 2017, 121, 3352–3371). The readily available
22 hydroxyl radicals also can trigger a cascade of free-radical processes.
23 Here, we present a comprehensive potential energy surface (PES)
24 analysis of the OH + *p*-CMA reaction using various DFT and *ab initio* protocols. Since the *p*-CMA involves both an alkyl OH-
25 group and a side-chain double bond, the title reaction can also serve as a relevant model for reactions of unsaturated alcohols
26 with hydroxyl radicals to form various oxygenates including polyhydric alcohols which are abundant in nature. The newly
27 identified pathways suggest certain alternatives to the known radical reactions. Of particular interests are the roaming-like low-
28 energy dehydration reactions to generate a variety of O- and C-centered intermediate radicals, which are mostly transformed
29 into the phenolic compounds observed in pyrolysis experiments. Some concerted unimolecular decomposition pathways for *p*-
30 CMA are also revealed, not considered previously, such as the migration of terminal OH-group, and/or it is splitting over the
31 *ipso*-C and *ortho*-C atoms of the benzene ring to form bicyclic oxispiro- and chromene compounds represented in natural lignin.
32

1. INTRODUCTION

33 Lignin is the second most prevalent biopolymer on Earth next
34 to cellulose, and it accounts for almost 30% of the organic
35 carbon in the biosphere.^{1–12} It is an important resource of
36 renewable fuels and their derivative high-value chemicals and is
37 the main renewable feedstock for the industrial production of
38 aromatic compounds.^{2–7} However, the structural diversity and
39 heterogeneity of lignin, along with its hydrophobic nature and
40 insolubility in aqueous systems, pose challenges to controlled
41 destruction of biomass to produce feedstock materials.^{5,8}

42 Lignin is a three-dimensional, highly cross-linked macro-
43 molecule produced by radical polymerization of three
44 phenylpropanoid monomers (monolignols) *cinnamyl alcohol*
45 derivatives: *p*-coumaryl alcohol (*p*-CMA), coniferyl alcohol,
46 and sinapyl alcohol, containing *p*-hydroxyl and *m*-methoxy
47 groups on the rings^{9–11} (Figure 1). The monomeric units in
48 lignin macromolecules are engaged into a complex network

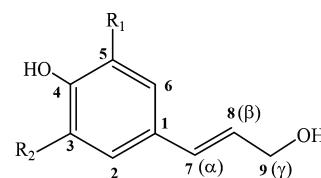


Figure 1. Chemical structure of monolignols: R₁ = R₂ = H for *p*-coumaryl alcohol (*p*-CMA), R₁ = H, R₂ = OCH₃ for coniferyl alcohol, and R₁ = R₂ = OCH₃ for sinapyl alcohol. Cinnamyl alcohol (CnA) contains no ring substituents. Allyl alcohol (AA) contains no ring.

Received: January 8, 2019

Revised: March 5, 2019

Published: March 8, 2019

49 through different types of ether and carbon–carbon bonds: β -
 50 O-4, α -O-4, 4-O-S, S-S, β - β , benzodioxocin, and spirodio-
 51 nene.^{2,6,8,9}

52 Pyrolysis of lignin is a key approach to produce low-
 53 molecular, primarily phenolic compounds.^{7,12–28} A significant
 54 effort has been devoted to the pyrolysis mechanisms of lignin
 55 model compounds.^{12,24–61} Most of the mechanistic informa-
 56 tion is deduced from thermal conversions of dimers comprised
 57 of the most abundant β -O-4 and α -O-4 aryl ether linkages in
 58 lignin (see, e.g., refs 24–27 and 29–43). The pyrolysis of
 59 monolignols, however, only recently became a focus of
 60 attention, even though the monomers have been known to
 61 be the most important primary products of the lignin
 62 pyrolysis.^{22,49–61}

63 Several comprehensive and fundamental theory-based
 64 mechanistic and kinetic studies are also known on pyrolysis
 65 of the contracted, smaller models such as anisole,^{62–66}
 66 catechol,^{67,68} α -quinone methide^{69–74} (α -QM), and chro-
 67 man,^{70,75} which are believed to be the key intermediates in
 68 lignin thermolysis and char formation (see also ref 41.).

69 This work continues our previous fundamentally based
 70 exploration of the pyrolysis mechanisms of lignin and its simple
 71 models—monolignols.^{7,14,55–57} Here, the reactivity of the key
 72 monolignol *p*-CMA is examined toward hydroxyl radicals,
 73 which are produced in a pyrolysis reaction environment^{22,55} in
 74 order to gain insight into the side-chain reactivity of lignin and
 75 its model compounds. A detailed potential energy surface
 76 (PES) analysis of the OH + *p*-CMA reaction is performed and
 77 compared with previous results on the reduction of the double
 78 bond in chemically activated H + *p*-CMA reactions.⁵⁵

79 The *p*-coumaryl alcohol (*p*-CMA, Figure 1) is the simplest
 80 lignin model containing both phenolic hydroxyl group and
 81 hydroxypropenyl side-group (allyl alcohol moiety $-\text{CH}=\text{CHCH}_2\text{OH}$) of the cinnamyl alcohol backbone. The
 82 combination of an alkyl hydroxyl and double bond moieties
 83 separated by a methylene linkage is also a characteristic feature
 84 of the lignols and many lignin streams and renewable lignin
 85 feedstocks. Thus, the OH + *p*-CMA reaction can serve as a
 86 relevant model to examine the mechanistic impacts of side-
 87 chains on lignin thermolysis. Below we present a brief
 88 summary of related work relevant to our current analysis of
 89 *p*-CMA reactivity.

90 **1.1. Lignin Pyrolysis. Dimer Models.** Two general
 91 mechanisms have been proposed to operate during pyrolysis
 92 of lignin and its model compounds: (i) unimolecular concerted
 93 reactions, which primarily involve MacColl and retroene
 94 pericyclic intramolecular type rearrangements, and (ii) radical
 95 processes initiated by homolytic bond cleavage followed by
 96 secondary bimolecular and isomerization reac-
 97 tions.^{12,29,31,55–57,76–82} These mechanisms are dominating at
 98 different pyrolysis conditions. For the pure gas-phase
 99 processes, the two mechanisms are discriminated by temper-
 100 ature. For instance, Jarvis et al. suggested based on the detailed
 101 computational and experimental analysis of rate constants for
 102 pyrolysis of phenethyl phenyl ether model that the concerted
 103 mechanism dominates at typical dimer model pyrolysis
 104 temperatures of 500–600 °C, whereas the C–O aryl ether
 105 bond homolysis occurs at temperatures higher than 1000 °C.²⁹
 106 However, the depolymerization of lignin is highly challenging
 107 due to its heterogeneity. There is also a recondensation
 108 tendency, often to form diverse species with novel function-
 109 alities,^{4,18,72,83} which increases the role of the side groups in
 110 lignin pyrolysis. Moreover, the side groups constitute a

112 considerable portion of the lignols and lignans (with two 112
 113 OH groups separated by two methyl linkages), and other 113
 114 models and derivatives of lignin.

115 It should be emphasized that the presence of the functional 115
 116 groups significantly affects the overall decomposition features 116
 117 and distribution of products in pyrolysis of lignin and model 117
 118 compounds.^{12,17,22,84,85} The etheric bond fission is particularly 118
 119 sensitive to the substituents both in the side-chains and 119
 120 aromatic rings. The enlargement of the alkyl chain or addition 120
 121 of other electron donating groups, such as methylene and 121
 122 methoxy groups, enhances the thermal degradation of the 122
 123 dibenzyl ether (DBE) model, whereas the electron with- 123
 124 drawing groups, like aldehydes, decrease the reactivity of 124
 125 DBE.^{19,84,85}

126 Free radical intermediates have been detected during the 126
 127 pyrolysis of lignin and its model compounds under various 127
 128 conditions: in the gas phase,^{7,15} in bio-oil,^{10,16} and in biochar 128
 129 media.¹¹ Kibet et al.⁷ have particularly identified phenoxy and 129
 130 substituted phenoxy radicals in the gas phase from lignin 130
 131 pyrolysis at 450 °C using an *in situ* technique of low 131
 132 temperature matrix isolation in conjunction with electron 132
 133 paramagnetic resonance spectroscopy (LTMI-EPR).⁸⁶ It is 133
 134 common to consider the low temperatures operation of radical 134
 135 processes during lignin pyrolysis, in spite of the high 135
 136 characteristic bond dissociation energies (BDE) determined 136
 137 in model compounds; BDE for most abundant β -O-4 ether 137
 138 linkages is ca. 60 kcal/mol, and only for α -O-4 linkages they 138
 139 are somewhat lower (40–60 kcal/mol), whereas the reactive 139
 140 O–CH₃ bond cleavage requires 56.3 kcal/mol energy.²² Since 140
 141 the primary lignin pyrolysis ranges from as low as 200–400 141
 142 °C,²² the additional factors such as heterogeneous processes 142
 143 may also well contribute to the initiation of radical processes.⁵⁵ 143
 144 The fractional pyrolysis employed in our recent study,⁵⁵ could 144
 145 serve as a relevant example.

146 **Dehydration** is a key process in pyrolysis; however, there is 146
 147 little knowledge on its diversity. Dehydration can simply occur 147
 148 via direct H-abstraction by OH radicals or OH-abstraction by 148
 149 H atoms; however, such bimolecular reactions can occur at 149
 150 relatively higher temperatures, as shown by Zhang et al. for 150
 151 OH + allyl alcohol reaction based on kinetics calculations⁸⁷ 151
 152 (*vide infra*). However, the low-energy pathways can be 152
 153 provided by the chemically activated processes involving a 153
 154 roaming pathway⁸⁸ (*vide infra*), as well as the heterogeneous 154
 155 catalytic processes mediated by solid residues.¹⁵⁵

156 To explain degradation of macromolecular structures 156
 157 (linkages), the dimer models of lignin are most extensively 157
 158 studied (see, e.g., refs 24–27, 29–40, 42, and 77–82), whereas 158
 159 the mechanisms and kinetics of the monolignols' decom- 159
 160 position are less explored.

161 **1.2. Pyrolysis of Monomers.** Strong interest has been 161
 162 raised in recent years concerning the pyrolysis of mono- 162
 163 lignols.^{43–61} The direct mass-spectrometric analysis of 163
 164 pyrolyzates from wood and isolated lignin suggested that the 164
 165 monomeric cinnamyl alcohols, such as coniferyl alcohol and 165
 166 sinapyl alcohol, are the most important primary products in 166
 167 lignin pyrolysis.^{18,22} However, the higher reactivity of 167
 168 monomers typically prevents detection of significant amounts 168
 169 of monolignols during lignin pyrolysis.¹⁶⁹

170 Quite similar to natural lignin, pyrolyzates have been found 170
 171 in pyrolysis products of coniferyl alcohol, *viz.*, coniferyl 171
 172 aldehyde (an oxidation product), dihydroconiferyl, and 172
 173 isoeugenol (reduction products), as well as *cis*-coniferyl alcohol 173
 174 and 4-vinylguaiacol associated with the side chain conversion 174

175 products.^{22,53} The cinnamyl alcohol end groups in lignin have
176 also been suggested to contribute to the formation of
177 propenylphenols and cinnamyl compounds (dihydrocinnamyl
178 alcohol, cinnamaldehydes, and cinnamyl alcohol (CnA) in
179 lignin pyrolysis.^{49,54}

180 Unlike dimers, the pyrolysis mechanisms of isolated
181 monolignols are not well explored and most of the proposed
182 product-formation channels are postulated based on indirect
183 information.^{22,50–54,59,60} The secondary transformations of
184 monolignols (primarily, the side-chain conversions and
185 repolymerization^{4,18,22,53}) are also believed to involve both
186 concerted-molecular and free-radical mechanisms.^{12,22,53,55–57}

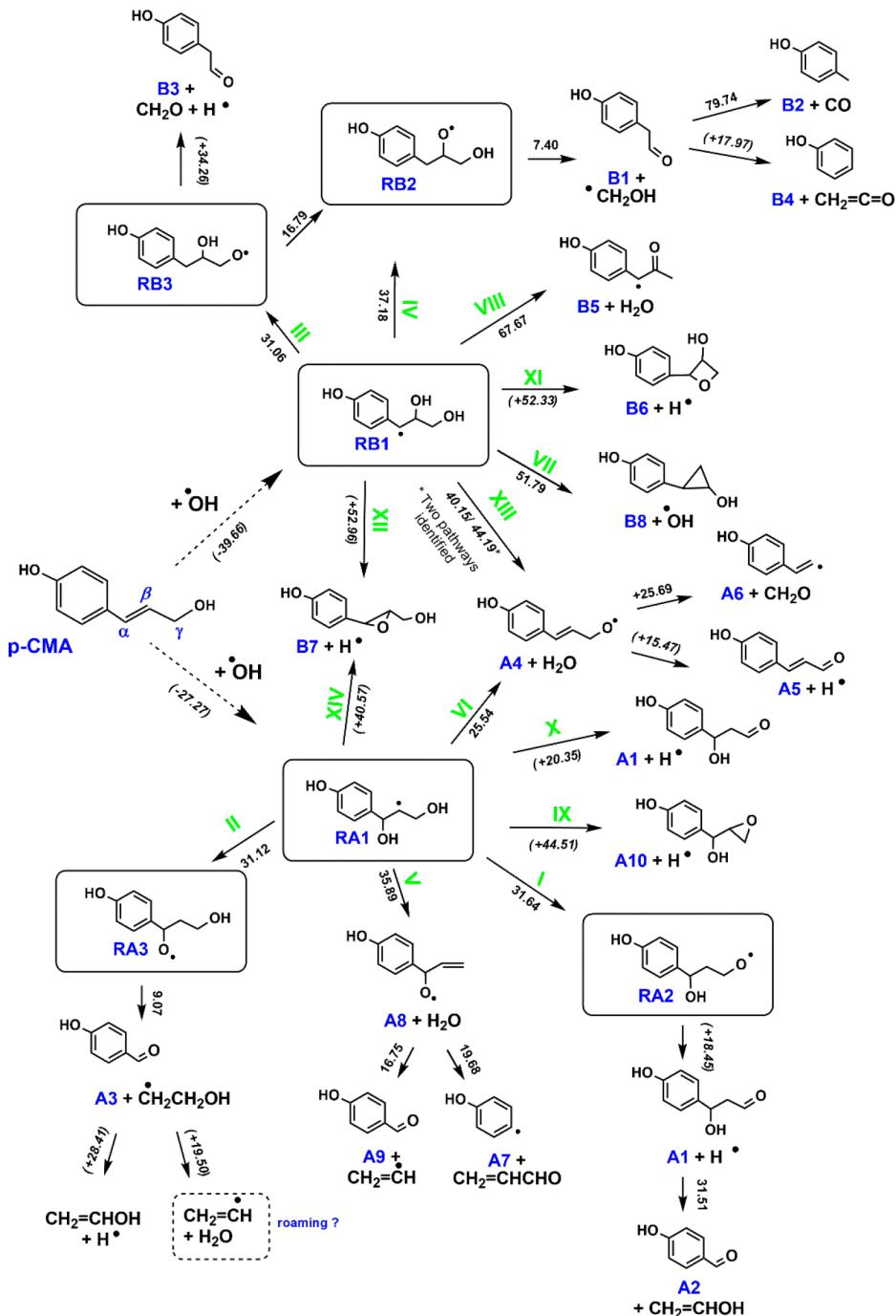
187 Our recent LTMI-EPR experiments combined with detailed
188 PES analysis provided fundamentally based reaction pathways
189 for pyrolysis of cinnamyl alcohols and, in particular, suggested
190 the side-chain reactivity as the key factor in diversity of the
191 pyrolysis products.^{40,42,55–57} A combined radical-molecular
192 mechanism explained the primary products formation during
193 pyrolysis of the *p*-CMA and cinnamyl alcohol (CnA)—the
194 simplest model of lignols, involving no *p*-hydroxyl group.⁵⁶

195 The radical-species have been registered in our *in situ*
196 experiments using cryogenic-EPR detection technique during
197 pyrolysis of CnA^{55,56,86} and *p*-CMA.^{55,57} Based on the
198 comparisons of experimental and theoretical *g*-tensors of the
199 model structures, it was concluded that the complex mixtures
200 of the detected open-shell intermediates mainly consist of *O-*
201 *centered* and *O-linked* conjugated delocalized radicals.⁵⁶

202 A mechanistic analysis has also been performed for medium
203 and high temperature range (400–900 °C) pyrolysis of
204 cinnamyl alcohol. DFT analysis particularly suggested that
205 the major products indene, styrene, benzaldehyde, 1-propynyl
206 benzene, and 2-propenyl benzene are formed via simple bond
207 dissociation, which are dominant at high temperatures, and
208 some other unimolecular decomposition pathways, such as
209 dehydrogenation, dehydration, 1,3-sigmatropic H-migration,
210 1,2-hydrogen shift, C–O and C–C bond cleavage processes.⁵⁶
211 Mainly phenolic compounds (phenol, *p*-cresol, ethyl-,
212 propenyl-, and propylphenols) were identified in molecular
213 products of our recent *fractional* pyrolysis experiments on *p*-
214 CMA, predominantly formed at low temperatures (e.g., ca.
215 74% at 350 °C). DFT-analysis suggested plausible decom-
216 position pathways involving highly conjugated aromatic and
217 simple radicals.⁵⁵ The dominant formation of phenolics is in
218 full accordance with available experimental data by Akazawa et
219 al.,^{12,22,59–61} who also hypothesized a basic reaction me-
220 nism primarily involving the homolytic bond cleavage and H-
221 abstraction reactions that may in principle occur by H atoms
222 and OH radicals.

223 Three primary decomposition pathways of *p*-CMA have
224 been studied by Furutani from DFT-analysis and rate constants
225 evaluation.⁶¹ They involved C(8)–C(9) and O(9)–H bond
226 cleavages, and H-addition to C_β-atom followed by C(8)–C(9)
227 bond fission in the formed adduct. Two H-abstraction
228 reactions from terminal OH-group by H and CH₃[·] radicals
229 have also been evaluated.

230 **1.3. Reactivity of the H-Atoms and OH-Radicals**
231 **toward Monomers.** The H atom and OH radicals are
232 readily formed in the pyrolysis environment which can reduce
233 side-chain double bonds^{22,40,42,55} and abstract H atoms and
234 functional groups. Several reaction channels have been
235 suggested to regenerate the radicals^{22,55} including the ones
236 we identified relevant to the pyrolysis of *p*-CMA and cinnamyl
237 alcohol.^{55–57}

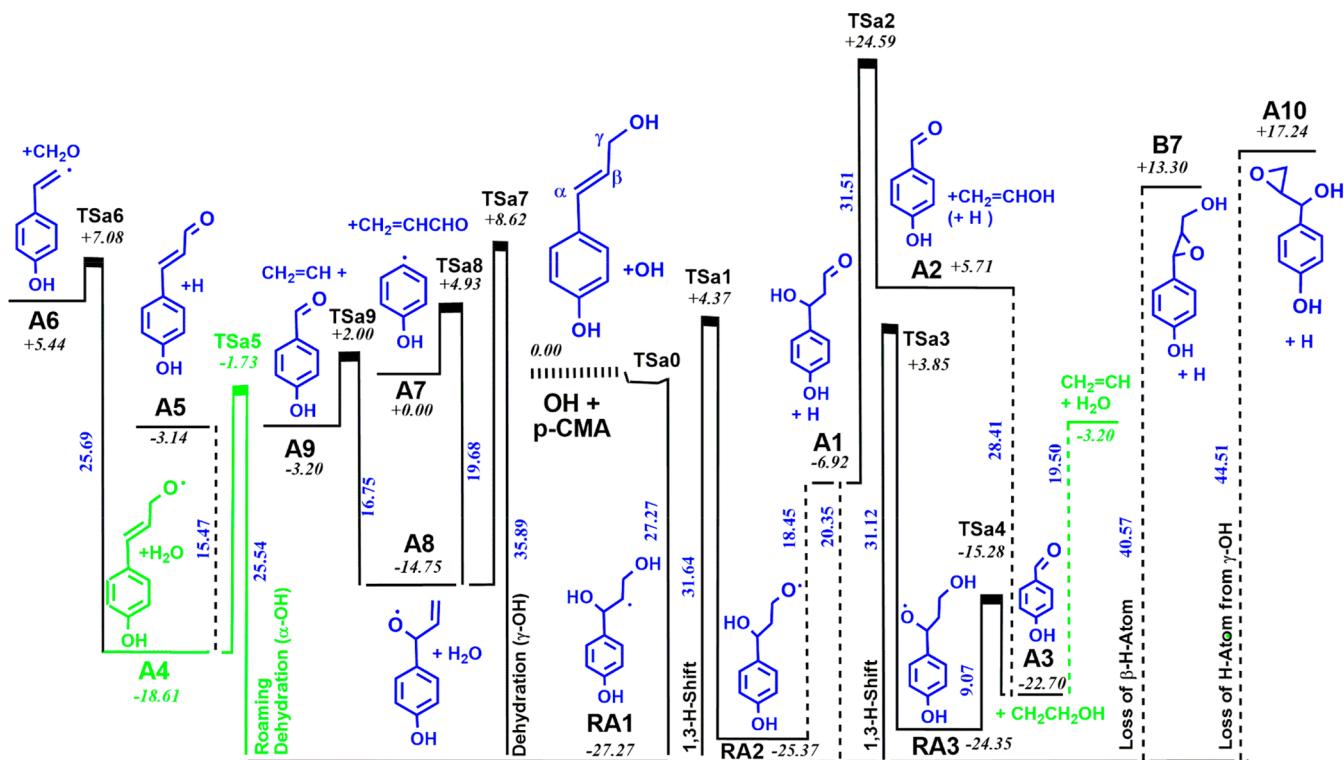

238 One of the identified pathways acting as a source of H atoms
239 and involving β-scission reactions converting •C_γ–OH radical
240 to C_γ=O (in coniferyl aldehyde)⁵⁵ agrees well with what was
241 suggested by Kawamoto based on the chemical intuition.²²
242 The possible H-abstraction reactions have largely been evoked
243 to postulate various mechanisms for decomposition of lignols
244 and other lignin models.^{22,42,60,61} A detailed PES analysis
245 demonstrated an essential role of the chemically activated
246 processes triggered by H-addition to the double bond of *p*-
247 CMA to major molecular products,⁵⁵ including various
248 dihydro- derivatives, such as dihydrocinnamyl and other
249 aldehydes, as well as hydrogenated monolignols.²⁴⁹

250 **1.3.1. OH-Addition.** The smallest relevant model of the OH
251 radical reaction with unsaturated alcohols, such as mono-
252 lignols, is OH + allyl alcohol (AA, CH₂=CHCH₂OH) reaction^{87–92}
253 where AA reproduces the propanoid side-chain of the monolignols.
254 The chemically activated model reaction OH + AA has been studied
255 experimentally extensively^{89–92} as well as a few theoretical studies.^{87,88,92}

256 Various isomerization and unimolecular decomposition
257 channels have been identified in the most recent and
258 comprehensive theoretical study by Zhang et al. at the
259 G2MP2//MP2/6-311++(d,p) level of theory.⁸⁷ It involves
260 formation and decomposition of two chemically activated 1,3-
261 and 1,2-diol radical adducts (**1,3-DR** and **1,2-DR** respectively;
262 the notations come from ref 88). Nevertheless, the simple
263 bond cleavages in intermediate radicals were found to be the
264 most affordable reactions. The water elimination also was
265 simply evaluated via bimolecular (direct) H-abstraction
266 reactions involving four available types of H atoms bound to
267 the C1, C2, C3, and O atoms, respectively, to form CH₂=
268 CHCH₂O[·], CH₂=CHC[·]HOH, CH₂=C[·]CH₂OH, and
269 C[·]H=CHCH₂OH intermediate radicals. However, the
270 possible dehydration reactions of the energized radical-adducts
271 have not been explored. It is important to note that the kinetics
272 analysis by Zhang et al.⁸⁷ predicted that even the most feasible
273 direct (bimolecular) dehydration channel involving H-
274 abstraction at C(1)-position of AA to form the most stable
275 α-hydroxy radical, becomes dominant only at high temper-
276 atures, whereas the radical addition-adduct CH₂[·]CH(OH)-
277 CH₂OH (**1,2-DR**) formed from collisional stabilization
278 prevails at 200–400 K temperatures and atmospheric pressure
279 (being, notably, a typical condition for lignin primary pyrolysis,
280 *vide supra*).²⁸¹

282 On the other hand, a quite recent PES analysis of OH + AA
283 reaction revealed⁸⁸ the low-energy unimolecular dehydration
284 channels for **1,2-** and **1,3-DRs** chemically activated inter-
285 mediates, which can be well interpreted as *roaming* processes.²⁸⁵
286 The roaming features attributed to the OH + AA reaction are
287 (a) “loose” transition state geometries involving an almost
288 dissociated hydroxyl group, (b) the energies very close to the
289 (OH + AA) asymptote, (c) a characteristic low imaginary
290 frequency mode (100–200 cm^{−1}) along the reaction
291 coordinate, and (d) the flatness of the roaming region of the
292 PES which is the most important feature of the roaming
293 phenomenon.^{88,93–96} These are in line with a simpler
294 dehydration^{55–57} reaction of C₂H₄OH radical-adduct where
295 the roaming has been strongly proven to contribute based on a
296 series of comprehensive photochemical and theoretical
297 studies.^{97,98} Closely related roaming phenomena have also
298 been claimed recently to occur in some larger systems⁹⁹ and in
299 the condensed phase.¹⁰⁰

Scheme 1. Reaction Pathways Triggered by OH[−] Addition to the C7(α)- and C8(β)-Atoms of the Double Bond in *p*-CMA, Calculated at the ω B97X-D/def2TZVP Level^a


^aData on arrows represent corresponding barrier heights (ZPE-corrected electronic energies) or dissociation limits (in italic and parentheses) in kcal/mol. Reaction channel (*chN*) notation is given in Roman numerals (for N). Channels VI (via *TSa5*) and XIII (via *TSb8*) represent the roaming pathways along with dissociation of CH₂CH₂OH (see text).

Whereas the rate coefficients of the OH + unsaturated alcohol reactions are only weakly dependent on the chain length of the alcohol,¹⁰¹ the structure of the side chain plays a decisive role. As shown by Bruycker et al.³⁸ based on the reactivity of prenol and isoprenol containing a C=C double bond in the β - and γ -positions to the hydroxyl group in pyrolysis and oxidation processes.

To conclude, despite significant achievements in lignin pyrolysis, the knowledge of elementary reaction mechanisms,

even in case of the simple precursors and model compounds, remains limited. The fundamentally based mechanistic studies are therefore essential in progressing development of the novel pathways and comprehensive kinetic schemes.

The paper at hand provides detailed analysis of the chemically activated reactions of *p*-CMA with OH-radicals. A detailed PES analysis is performed for reaction of OH-radicals with the side-chain double bond of *p*-CMA. A detailed kinetics

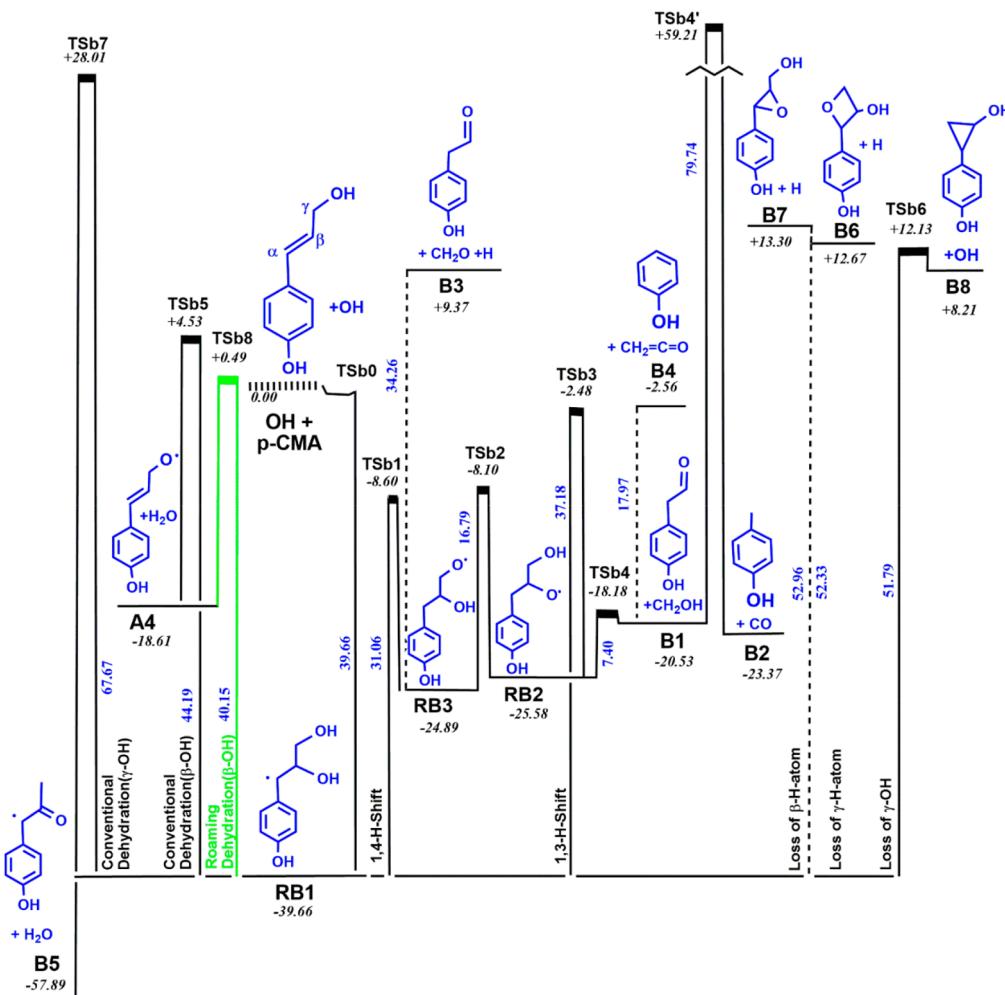
Figure 2. Energy diagram (kcal/mol, ZPE-corrected electronic energies) for OH-addition to the C7(α)-center of the side chain double bond in *p*-CMA (Figure 1). The roaming-related pathways are highlighted in green. Note that species A2, A3, and A9 are identical but are labeled separately in the figure for clarity.

317 analysis will be provided separately as a second part of this
318 study.

319 The *H*-abstraction of phenolic hydroxyl groups typically
320 initiates formation of the quinoidal intermediates and
321 conjugated products^{22,41,55,70,73} as we also recently demon-
322 strated during the pyrolysis of monolignols.^{55–57} Thus, the
323 unique reactivity of the O-bound H atoms in phenolic OH-
324 groups supporting the production of polyaromatics and the
325 solid residues will not be considered further in this paper (see
326 also section 3.2), which is mainly aimed to explain phenolic
327 compounds observed in our experiments.

328 Section 2 provides calculation details. A detailed analysis of
329 the PES for OH + *p*-CMA reaction is described in section 3.
330 Since the various concerted unimolecular decomposition and
331 radical reactions of *p*-CMA (as well as its truncated version
332 CnA) were previously explored,^{55–57} our efforts will be more
333 focused on the exploration of PES for addition–elimination
334 (chemical activation) reactions triggered by OH-addition to
335 the double bond. We examined the possible formation
336 reactions of product-radicals, involving also dehydration of
337 DR-adducts, in particular, the possibility of the roaming-like
338 mechanisms, which we have quite recently suggested to occur
339 with the diol radicals.⁸⁸

2. CALCULATION METHODS


340 Various decomposition pathways of OH + *p*-CMA reactions
341 and relevant intermediates are computed using nonlocal
342 Kohn–Sham density functional theory based on the
343 generalized gradient approximation.¹⁰² A detailed screening
344 of PES is performed at ω B97XD/6-31+G(d,p) level of theory,
345 which involves ω B97XD dispersion- and long-range corrected
346 hybrid method¹⁰³ in conjunction with the moderate Pople-

347 type basis set 6-31+G(d,p) augmented with diffuse and
348 polarization functions.^{104,105} The stationary points are
349 recalculated using the extended def2TZVP basis set¹⁰⁶ with
350 the final optimized geometries reported in the Supporting
351 Information from the ω B97XD/def2TZVP level of theory.³⁵¹

352 In addition, the well depths of the OH-addition to the
353 double bond of *p*-CMA are re-evaluated using other DFT
354 functionals, such as the popular M06-2X¹⁰⁷ and B3LYP^{108,109}
355 methods, for comparison. Notably, the well depths predicted
356 by M06-2X/6-31+G(d,p) method coincides with those
357 obtained at ω B97XD/6-31+G(d,p) level using the same
358 basis set (42.2 and 31.1 kcal/mol vs 42.1 and 30.7 kcal/mol,
359 respectively). The barrier heights calculated at M06-2X and
360 ω B97XD levels are also fairly close to each other (section 3.1).
361 Calculations for unimolecular decomposition of *p*-CMA are
362 performed using B3PW91 hybrid method in conjunction with
363 minimally augmented 6-31+(2d,p) basis set to be comparable
364 with related results from our previous study.⁵⁵

365 All employed methods are well tested in literature in the
366 same domain, including our previous studies on the various
367 open-shell and molecular systems.^{80,104,110–116} The minimally
368 augmented basis set (cf. Karlsruhe def2-SVP or ma-SVP), has
369 been recommended by Truhlar et al. as the best affordable
370 basis set for exploration of reaction barriers in large molecular
371 systems.¹⁰⁴ Notably, the same ω B97XD/6-31+G(d,p) method
372 has been successfully utilized recently for evaluation of the PES
373 for dissociation of C₂H₅ radical to C₂H₃+H₂ products
374 involving the roaming dynamics, in accord with QCISD(T)³⁷⁴
375 data.¹¹⁴

376 Transition states are characterized as having only one
377 negative eigenvalue of Hessian (force constant) matrices. The
378 absence of imaginary frequencies verifies that structures are
379 true minima at their respective levels of theory. The intrinsic
379

Figure 3. Energy diagram (kcal/mol, ZPE-corrected electronic energies) for OH-addition to the C8(β)-center of the side chain double bond in *p*-CMA (Figure 1). The roaming-related pathway is highlighted in green. Note that species *B1* and *B3* are identical but are labeled separately in the figure for clarity.

reaction coordinate (IRC) analysis is performed at ω B97XD/def2TZVP level. All PES calculations are performed using the Gaussian 16 program (Revision A.03).¹¹⁷

3. RESULTS AND DISCUSSION

3.1. Addition of OH-Radicals to the Double Bond. The addition of hydroxyl radical to a double bond is a straightforward process, which generally occurs without any barrier of activation; however, some small decomposition barriers arise when a prereaction complex is formed (see, e.g., ref 88.).

The OH-addition can occur also at the *ipso*-carbon position of the benzene-ring, which as we demonstrated earlier for catechol pyrolysis,^{67,68} would provide options for formation of ring-opening products such as dienones (see also ref 118.). However, we did not consider this option here applied to the *p*-CMA pyrolysis since the aromatic ring is preserved in the major products, phenolics, for our pyrolysis conditions.⁵⁵ The same also occurs for coniferyl alcohol at primary pyrolysis temperatures, reported by Kawamoto et al.,⁵³ as well as other monomers, including *p*-CMA, even at higher 600 °C temperatures.⁵⁹

The addition of OH-radical to a double bond generates chemically activated adduct-radicals which can further isomer-

ize and decompose to form products (see, e.g. refs 38, 88, 112, 402 115, and 119). The stabilization of energized adducts can be a 403 path to the formation of widespread polyhydric alcohols found 404 in nature.⁴⁰⁵

Scheme 1 illustrates a network of reactions triggered by OH- 406 s1 addition to the double bond of the *p*-CMA with corresponding 407 energetic diagrams, which include zero-point vibrational 408 energies (ZPE) corrected electronic energies from ω B97XD/ 409 def2TZVP calculations, in Figures 2 and 3. Structures of the 410 f23 reagents, products, and transition states in this analysis are 411 shown in Figure 4. 412 f4

As seen in Figures 2 and 3, the addition of OH-radical to the C₈ atom (C8 in Figure 1) forms chemically activated *RB1* 413 adduct, which is thermodynamically preferred (more exothermic) 414 by ca. 12 kcal/mol compared to the C_α addition adduct 415 *RA1*. Such a preference correlates with charge distribution in *p*- 416 CMA calculated both at single point CCSD(T)/6-31G(d,p)// 417 ω B97XD/6-31+(2d,p) and optimized MP2/6-31+(d,p) levels. 418 As a strong electrophile, the \bullet OH radical is expected to prefer 419 to add at the electron-rich C8 site of the *p*-CMA molecule 420 (MP2 data in parentheses): $q(C8) = -0.16$ (−0.15) e vs 421 $q(C7) = -0.10$ (−0.11) e. The site-selective OH-addition to 422 the aromatic ring is a classic example of such correlation.¹¹⁸ 423

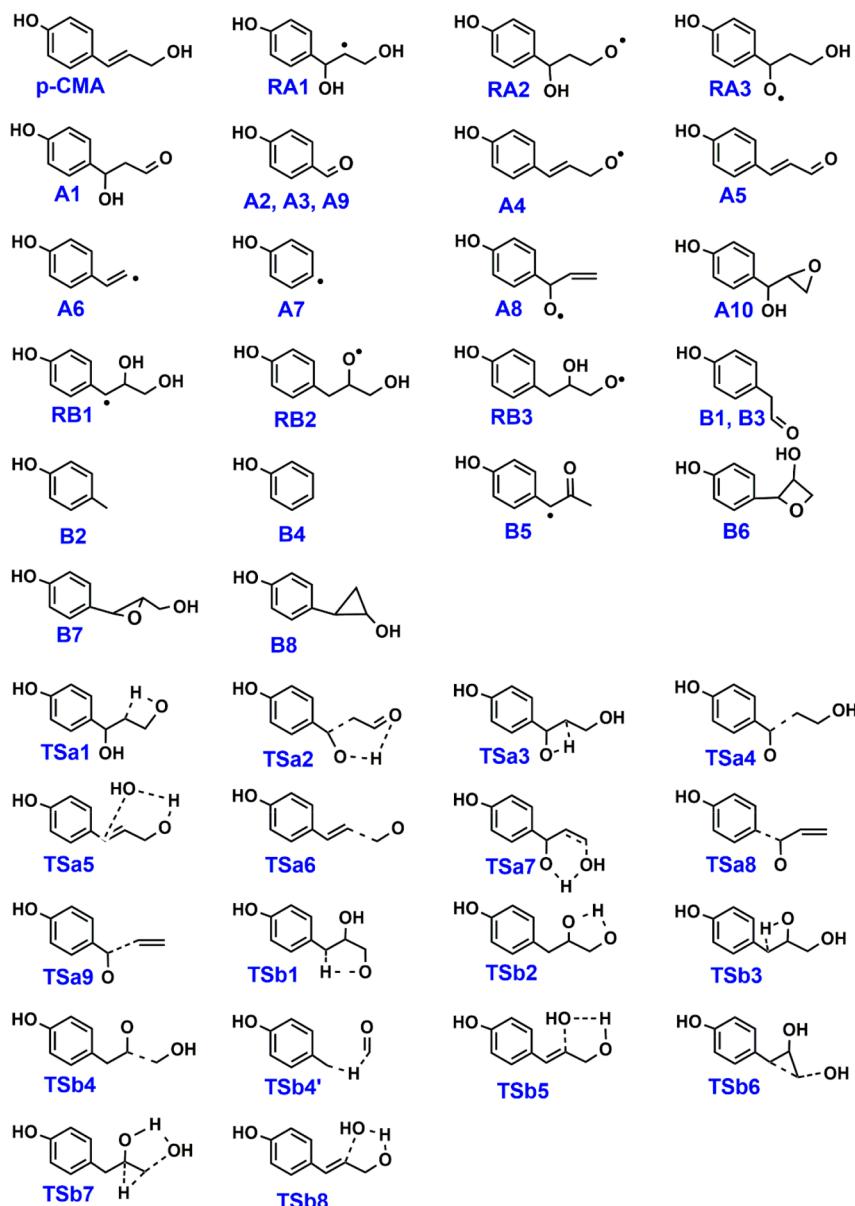


Figure 4. Structures of reagents, products, and transition states.

The preferred C8 addition seems to correlate also with spin distribution in the generated diol radicals (DR). The increased delocalization of the spin density is known to correlate with stability of the intermediate radicals (explaining, particularly, the propagation steps in the radical polymerization process) (more details are provided in ref 56). As expected, in both diol radicals the unpaired electron is mostly localized in the reaction centers: $\rho(C8) = 0.95$ e, $\rho(C7) = 0.73$ e, respectively for 1,2-DR (RB1) and 1,3-DR (RA1) adduct radicals. Considering that more spin is delocalized (less localized) the more stable the formed radical is, the 1,2-DR with lower spin density of 0.73e is predicted to be more stable, as seen in Figures 2 and 3.

The same preferences are also seen for the model reaction $\text{OH} + \text{allyl alcohol} (\text{C}_\beta\text{H}_2=\text{C}_\alpha\text{H}-\text{CH}_2\text{OH})$, where no electron-rich and bulky hydroxy-phenyl substituent is present at C_β position.

The OH radical in the model reaction prefers attacking the less-substituted carbon-center (Markovnikov-like addition)

corresponding to the $\text{C}(8\beta)$ position in *p*-CMA to form the 1,2-diol radical.

The well depths for $\text{OH} + \text{AA}$ reaction are 29.0 kcal/mol vs 30.5 kcal/mol, respectively, for OH-addition to C_γ (to form 1,3-DR) and C_β (to form 1,2-DR) atoms, calculated at CCSD(T) // UB97D3 level of theory, versus 27.3 and 39.7 kcal/mol, respectively, in *p*-CMA (Figures 2 and 3).

Perhaps, the electronical effects and steric interactions are not the only reasons for this, rather it can also be attributed to the formation of the H-bonding between vicinal OH-groups providing additional stabilization of the 1,2-DRs, as opposed to the 1,3-DRs with further separated hydroxyl groups. This is seen in the ω B97XD/defTZVPP optimized geometry bond distances. For RA1, the bond distance is 2.07 Å as measured from the hydrogen atom of the $\text{C}_\gamma-\text{OH}$ to the oxygen atom of the $\text{C}_\alpha-\text{OH}$ group. A longer distance of 2.34 Å is seen in the RB1 bond length between the hydrogen atom of the $\text{C}_\gamma-\text{OH}$ and the oxygen atom of the $\text{C}_\beta-\text{OH}$ group.

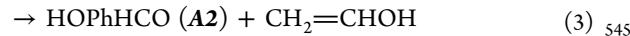
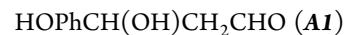
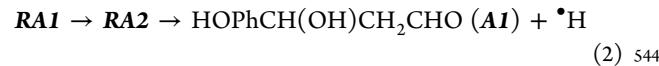
It is interesting also to note that the well depths evaluated with the ω B97XD/6-31+G(d,p) method are almost identical to those calculated with M06-2X using the same minimally augmented basis set (*viz.*, 42.0 and 30.7 kcal/mol (ω B97XD) for **RB1** and **RA1** adducts, respectively, versus 42.2 and 31.1 kcal/mol (M06-2X)). Such a perfect consistency increases the credibility of both methods for such reactions.

It is important to note that the B3LYP/6-31+G(d,p) method also predicts almost the same energy difference of ca. 10 kcal/mol between the **RA1** and **RB1** adducts, albeit the absolute values of well-depths differ significantly (42.0 and 30.7 kcal/mol (ω B97XD) vs 32.8 and 22.3 kcal/mol (B3LYP), respectively) Perhaps this is due to some underestimation of radical-adducts' energy at B3LYP level. The single point CCSD(T) calculations support the energy difference obtained at dispersion-and-long-range-corrected ω B97XD level (not provided here).

As seen from the energetic diagrams illustrated in Figures 2 and 3, further isomerization and decomposition of energized adducts chemically activated by OH-addition are rather affordable and can serve as important product formation channels. The major reaction channels (*chN*) are identified in this work using the Roman numeral notation for N in Scheme 1 for clarity. In the following analysis and discussion, these channels are referenced as well as the relative energy barriers calculated from the ω B97XD/def2TZVP level of theory. It is also important to note that species **A2**, **A3**, and **A9** are identical as seen in Figure 4, but are labeled separately for clarity in Figures 2 and 3. The same holds for species **B1** and **B3** in these figures. Finally, species **A4** is the same as a key radical intermediate, **R(09)**, identified in our previous H + *p*-CMA study.⁵⁵ Only the **A4** notation will be used here for clarity.

3.1.1. Formation of Pre- and Post-Reaction van der Waals (VdW) Complexes. Some results are provided for the model OH + AA reaction reproducing the reactive side chain.⁸⁸ Formation of VdW-complexes are optimal situations for pool radicals, such as OH, to interact with the target species for periods of time allowing for potential H atom abstraction to generate a *p*-CMA radical, and for this analysis, water. Previously we determined that the flatness of the PES regions coupled with these VdW complexes, created situations which facilitated roaming dissociation. For OH + AA, the lowest dissociation pathways employed two interactions: the OH radical oxygen atom to the terminal hydroxyl group of AA along with OH radical hydrogen atom to AA π -bond.

3.1.2. C_α -Addition-Isomerization Reactions. The addition of OH-radical to the C_α atom of the double bond forms an energized adduct **RA1** (Figure 2 and eq 1) with a well depth of 27.27 kcal/mol. The energized **RA1** radical can be further isomerized to **RA2** radical-intermediate (*chI*) via H-transfer from the γ -OH group through the barrier of **TSa1** of 31.64 kcal/mol height, which is only 4.37 kcal/mol higher than the energy of the free reactants (entrance level), which is used as a reference level. The **RA2** radical is approximately at the same well depth of **RA1** at -25.37 kcal/mol.




The loss of a H atom from the $C\gamma$ -position of **RA2** (eq 2) generates an α -hydroxy-isomer of cumaraldehyde (**A1**). This is an affordable channel ($\Delta E^\# = 18.45$ kcal/mol based on the dissociation limit while still below the entrance level) also for regeneration of the reactive H atom. A secondary pathway to generate the products in eq 2 involves the straight dissociation from **RA1** (*chX*). The barrier height of 20.35 kcal/mol, calculated from the dissociation limit, is comparable in

magnitude to 18.45 kcal/mol from **RA2**. The aldehydes are dominant products in pyrolysis of monomers in various conditions.^{22,56,59}

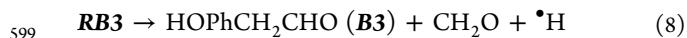
The cinnamyl alcohol was also the major product of the CnA pyrolysis in our experiments in 400–900 °C temperature range conditions.⁵⁶

The barrier height of 20.35 kcal/mol, calculated from the dissociation limit, is comparable in magnitude to 18.45 kcal/mol from **RA2**. The aldehydes are dominant products in pyrolysis of monomers in various conditions.^{22,56,59} The cinnamaldehyde was also the major product of the CnA pyrolysis in our experiments in 400–900 °C temperature range conditions.⁵⁶

Figure 2 also shows a further decomposition pathway for **A1** via H-transfer of α -hydroxy group to the C_β radical center of **RA1** accompanied by C_α – C_β bond fusion. Surpassing the barrier height of 31.51 kcal/mol generates 4-hydroxybenzaldehyde (**HOPhHCO**, **A2**) and vinyl alcohol (eq 3).

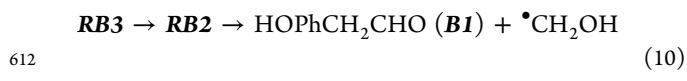
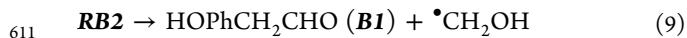
The second isomerization channel (*chII*) for the energized adduct **RA1** involves H-transfer of the α -hydroxy group to C_β to form **RA3** (eq 4) via a barrier of 31.12 kcal/mol. This barrier height is located approximately at the entrance channel level (only 3.85 kcal/mol higher), and thus is energetically accessible for the energized **RA1** adduct.

The newly generated **RA3** radical-intermediate provides a further affordable decomposition option (the **TSa4** structure creates a 9.07 kcal/mol barrier) through C_α – C_β bond fusion to form 4-hydroxybenzaldehyde (**A3**) and hydroxyethyl radical (eq 5). Note that **A2** is equivalent to the **A3** and **A9** structures. Further reaction of the generated $\cdot\text{CH}_2\text{--CH}_2\text{OH}$ radical could also lose a H atom to form vinyl alcohol over a 28.41 kcal/mol barrier (eq 6). The radical could also undergo a roaming dehydration, as suggested by Kamarchik et al.⁹⁷ relevant to the photochemical conditions (eq 7) with a dissociation limit barrier height of 19.50 kcal/mol.

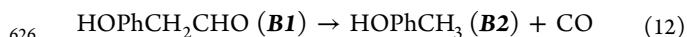
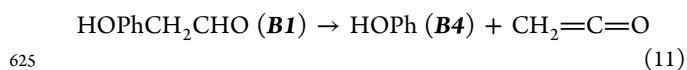


3.1.3. C_β -Addition-Isomerization Reactions. The addition of OH-radical to the C_β -atom of the double bond generates **RB1** energized adduct (Figure 3) with a well depth of 39.66 kcal/mol. This is a larger well depth than that for the C_α -addition due to the formation of intramolecular H-bonding between vicinal OH-groups.

The isomerization of **RB1** radical-adduct (*chIII*) via H-transfer of terminal γ -OH-group to C_α leads to the formation of **RB3** intermediate via a barrier height of 31.06 kcal mol⁻¹ (Figure 3). This barrier energy is significantly lower (by 6.12 kcal/mol) than the 37.18 kcal/mol barrier for the isomerization to **RB2** (*chIV*) via a H-transfer of β -OH group.

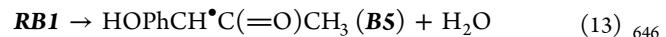


579 The H-transfer from the two OH-groups of the **RA1** to form
 580 **RA2** and **RA3** intermediates (Figure 2) occurs via energy
 581 barriers of similar magnitude (31.64 and 31.12 kcal/mol for
 582 channels I and II, respectively). H-transfer of the **RB1** radical
 583 to form **RB3** also has a similar barrier height of 31.06 kcal/mol
 584 (*chIII*) while transfer to form **RB2** is elevated at 37.18 kcal/
 585 mol (*chIV*). The latter radical formation passes through a
 586 constrained four-member ring **TSb3** species, and although
 587 **TSa1** and **TSa3** both have similar cyclic TSs, the vicinal OH
 588 group provides a more unfavorable pathway. The same is seen
 589 with **TSb1** (for **RB3** formation) where there is a more
 590 favorable five-member ring structure, but still not a significant
 591 drop in the energy barrier compared to the transition states for
 592 **RA1** isomerization.

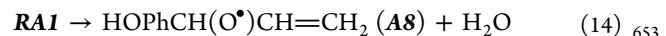
593 The loss of H at O8 to trigger further decomposition of the
 594 **RB3** intermediate via homolysis of the C8–C9 bond requires
 595 34.26 kcal/mol energy and creates **HOPhCH₂CHO** (**B3**). This
 596 **RB3** bond homolysis is favored entropically—it initiates
 597 formation of 4-hydroxyphenylacetaldehyde, formaldehyde,
 598 and spontaneously regenerates an H atom (eq 8).



600 On the other hand, an alternative more affordable pathway
 601 to form **B3** is via isomerization of **RB3** → **RB2** where the H-
 602 transfer faces only a 16.79 kcal/mol barrier.

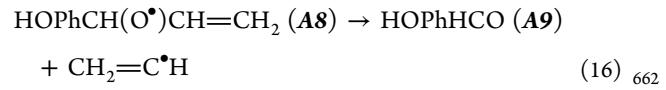
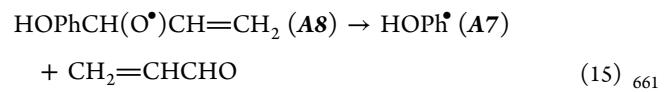
603 A secondary barrier of lower energy at 7.40 kcal/mol for
 604 further elimination of the key $\cdot\text{CH}_2\text{OH}$ radical from **RB2** and
 605 formation of **HOPhCH₂CHO** (**B1**), as seen in eq 9, can
 606 further emphasize the role of this channel. Therefore, a
 607 combined channel of **RB3** → **RB2** → **HOPhCH₂CHO** (**B1**) +
 608 $\cdot\text{CH}_2\text{OH}$ (eq 10) can dominate over direct formation of **B3**
 609 from **RB3** (eq 8) with its 34.26 kcal/mol barrier height (note
 610 that **B1** is an equivalent structure to **B3**).

613 Note the formation of important intermediate radical
 614 $\cdot\text{CH}_2\text{OH}$.

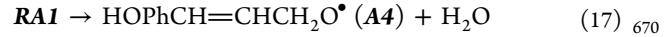

615 The product **B1** can then undergo two further pathways as
 616 seen in Figure 3. One possibility is the loss of ketene leading to
 617 formation of phenol (**B4**) which has a barrier height of 17.97
 618 kcal/mol calculated from the dissociation limit (eq 11). The
 619 secondary pathway for **B1** breakdown involves the terminal
 620 loss of carbon monoxide yielding *o*-cresol (**B2**) as the cyclic
 621 product (eq 12). This barrier is more than four times that of
 622 forming ketene and **B4** with an energy of 79.74 kcal/mol
 623 through **TSb4'** which is 59.21 kcal/mol above the entrance
 624 channel.


627 **3.1.4. Dehydration Channels.** The presence of two OH-
 628 groups in both separated and vicinal **1,3-DR** (**RA1**) and **1,2-DR**
 629 (**RB1**) types of radical-adducts provides opportunity for
 630 intramolecular isomerization reactions via larger TS-rings (and
 631 thus lower energy barriers). An important pathway is
 632 dehydration through interaction of two OH-groups. In general,
 633 four types of reactions can occur in this regard—two for each
 634 adduct: α/β -OH dissociates and abstracts H atom of the γ -OH

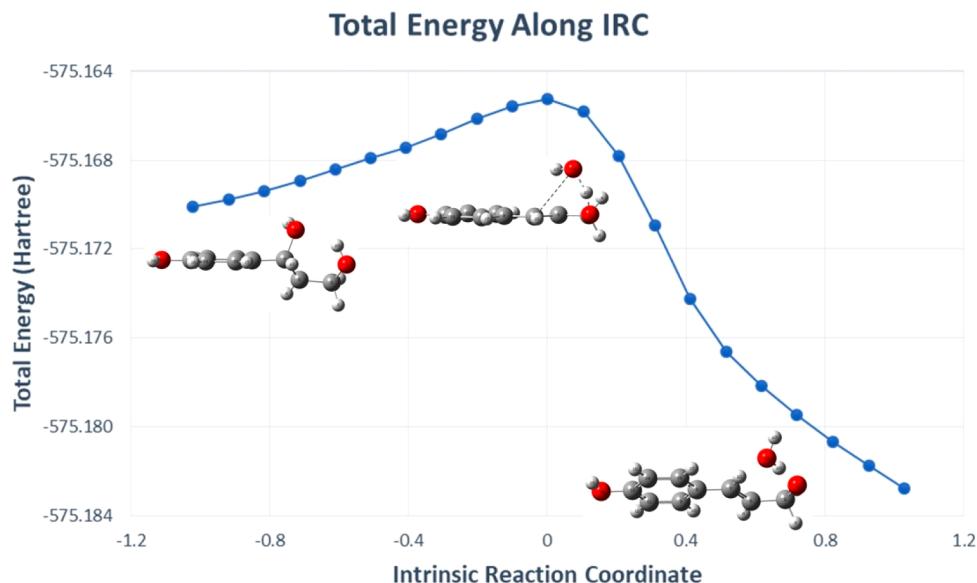
635 group, and *vice versa*, an isolated γ -OH group abstracts an H
 636 atom from the α/β -OH group. In both types of adducts, the
 637 elimination of γ -OH and abstraction of the counterpart O-
 638 bound H atom occurs through a higher energy barrier since it
 639 produces an unstable product-radical. 639



640 In the case of the **RB1**-adduct (*chVIII*, eq 13), such
 641 dehydration is accompanied by a concomitant intramolecular
 642 H-shift to stabilize the product **HOPhCH \bullet C(=O)CH₃** (**B5**),
 643 which creates a prohibitively high barrier (67.67 kcal/mol,
 644 Figure 3). The initial rotation of the CC–CC dihedral angle
 644 and formation of *cis*-isomer increases the barrier by 2 kcal/mol. 645

647 No rearrangement is needed for dehydration of the **RA1**-
 648 adduct (*chV*, eq 14) hence a lower-barrier of 35.89 kcal/mol is
 649 calculated to form an O-centered intermediate radical **A8**: 649
 650 **HOPhCH(O \bullet)CH=CH₂**. The barrier is only 8.62 kcal/mol 650
 651 higher (**TSa7**) than the entrance channel and can likely occur 651
 652 in a medium temperature range. 652



654 Decomposition of the **HOPhCH(O \bullet)CH=CH₂** (**A8**) 654
 655 radical intermediate from eq 14 over a 19.68 kcal/mol energy 655
 656 barrier forms acrolein and generates *para*-hydroxy phenyl 656
 657 radical **HOPh \bullet** (eq 15). A competing decomposition reaction 657
 658 (eq 16) can also occur, forming 4-hydroxyphenylacetaldehyde 658
 659 and vinyl radical over a slightly lower energy barrier of 16.75 659
 660 kcal/mol. 660

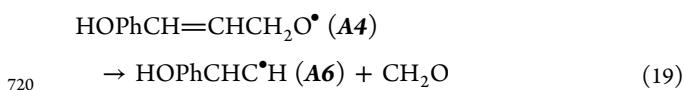
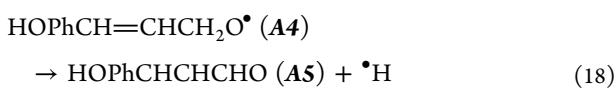

663 The elimination of γ -OH/ β -OH-group and abstraction of 663
 664 terminal O-bound H atom for **RA1** appears to be much more 664
 665 feasible—in both cases leading to the same O-centered radical 665
 666 **A4** product-set (eq 17). 666

667 Direct dehydration of **RA1** adduct (eq 17) can occur via a 667
 668 unique *roaming* channel (*chVI*) initially identified for the 668
 669 model OH + AA reaction.⁸⁸ 669

671 **A4** is a key oxygen-centered radical intermediate also 671
 672 identified in a previous study⁵⁵ derived from the reaction of 672
 673 H + *p*-CMA; thus, the notation is preserved here along with 673
 674 the **A4** notation, for comparisons. Dehydration process (*chVI*) 674
 675 occurs via fairly low-energy transition states **TSa5** (Figure 2). 675
 676 The barrier height of 25.54 kcal/mol for *p*-CMA reaction 676
 677 (*Figure 2*) is below the entrance channel (by 1.73 kcal/mol). 677
 678 These favorable conditions are due to one of the primary 678
 679 roaming TS features of a loose TS structure (cf. Figure S1). 679
 680 The same roaming features attributed to the OH + AA 680
 681 reaction are seen here as well.^{88,93–96} In this case for **TSa5**, the 681
 682 OH bond to the C7-carbon atom is almost broken (distance of 682
 683 3.31 Å). 683

684 Transition states for roaming and direct H-abstraction from 684
 685 OH + *p*-CMA are very similar and located close to each other. 685
 686 While the imaginary frequency at **TSa5** is high (−1525.2 686
 687 cm^{-1}) at the *ω*B97XD-level indicating on the similarity to the 687
 688 direct H-abstraction reaction, IRC analysis clearly demon- 688

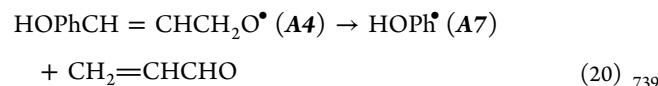
Figure 5. Roaming-like dehydration pathway for 1,3-diol radical-adduct of the chemical activation reaction $\text{OH} + p\text{-CMA}$ via TSa5 (see Scheme 1 and Figure 2).



689 strates that the roaming stationary point connects dehydration
 690 products with 1,3-diol radical adduct (**1,3-DR**) as a reagent—
 691 not the isolated $\text{OH} + p\text{-CMA}$ (Figure 5). This suggests that
 692 the chemically activated **1,3-DR** can easily undergo a low-
 693 energy roaming dehydration to form the key radical-product
 694 **A4** (eq 17).

695 It is important to note that more suitable for exploration of
 696 VdW-regions DFT methods, such as UB97D3(BJ) functional
 697 including D3-version of Grimm's dispersion correction and
 698 Becke-Johnson damping (recommended in ref 88 for roaming
 699 analysis in diol radicals), and even traditional UMP2 *ab initio*
 700 method well reproduce the same saddle point (TSa5) with
 701 even more clear roaming features, *viz.*, the typically low
 702 imaginary frequency along the minimum energy path (see
 703 Figure S1, Supporting Information). See also the supporting
 704 materials in ref 88 for a methodological overview on the
 705 roaming in the model reaction $\text{OH} + \text{AA}$.

706 Note also that reaction 17 is the more affordable channel to
 707 form **A4** radical than from **RB1** through TSb5 or another
 708 roaming-like TSb8 (chXIII). These latter barrier heights are
 709 44.19 and 40.15 kcal/mol, respectively, which are in excess of
 710 14 kcal/mol higher than that through TSa5 .

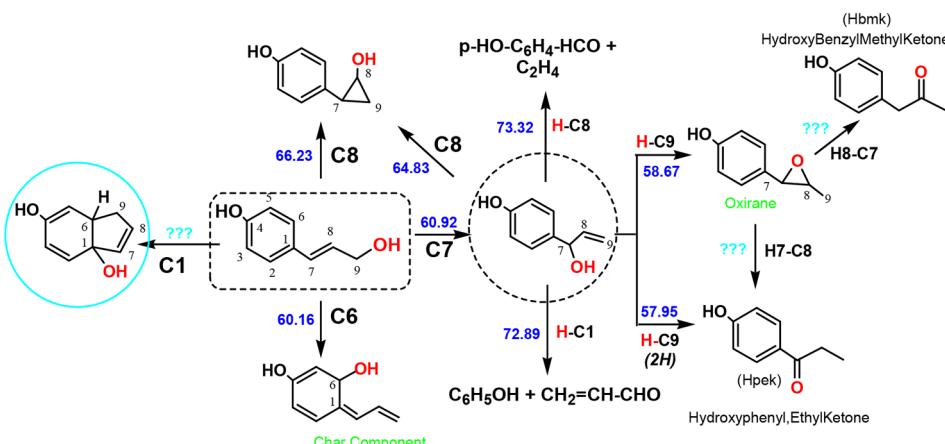
711 Loss of a H atom from C_γ in **A4** radical generates
 712 HOPhCHCHCHO (**A5**) as seen in eq 18. From the
 713 dissociation limit, the energy barrier is 15.47 kcal/mol with a
 714 resulting energy that is 3.14 kcal/mol below the entrance
 715 channel.


716 **A4** could also generate formaldehyde and $\text{HOPhCHC}\bullet\text{H}$
 717 (**A6**) in eq 19, which is 5.44 kcal/mol above the entrance
 718 channel through TSa6 with a 25.69 kcal/mol barrier.

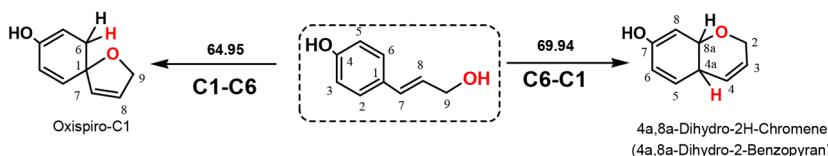
721 The dominant formation of *p*-coumaryl aldehyde and
 722 cinnamaldehyde at low temperatures (for CnA as low as 400

$^\circ\text{C}$ ⁵⁶) observed in our experiments^{56,57} supports low-barrier⁷²³ formation of the **A4** radical and basically the possibility of the⁷²⁴ roaming channel. The monomer-aldehydes have been major⁷²⁵ products also in experiments by Akazawa on pyrolysis of four⁷²⁶ phenylpropanols, including *p*-CMA and CnA at 600 $^\circ\text{C}$,⁵⁹ as⁷²⁷ well as by Kawamoto et al. for coniferyl alcohol, at typical for⁷²⁸ lignin pyrolysis conditions (temperature range 200–400⁷²⁹ $^\circ\text{C}$).²² Channels suggested by us (primarily roaming)⁷³⁰ are⁷³¹ essential for the formation of cinnamaldehyde, since concerted⁷³² dehydrogenation is a high-energy demanding process with an⁷³³ activation barrier as high as 79 kcal/mol.⁵⁶

734 Although not explicitly shown in Figure 2, decomposition of⁷³⁴ the **A4** radical can also form the same **A7** product sets (eq 20)⁷³⁵ as $\text{HOPhCH}(\text{O}^\bullet)\text{CH}=\text{CH}_2$ (**A8**) (eq 15). Cleavage of the⁷³⁶ C1–C7 bond followed by a hydrogen transfer from C9 to C7⁷³⁷ would generate **A7** and acrolein.⁷³⁸



740 As noted above, two dehydration channels (channels V and⁷⁴⁰
 741 VI) are also identified for energized **RA1** radical-adduct⁷⁴¹ involving⁷⁴²
 742 both hydroxy groups and leading to the conventional⁷⁴²
 743 (TSa7) and roaming (TSa5) pathways, respectively. The⁷⁴³
 744 conventional *chV*, with a barrier of 35.89 kcal/mol, forms⁷⁴⁴
 745 $\text{HOPhCH}(\text{O}^\bullet)\text{CH}=\text{CH}_2$ (**A8**) radical. The tight structure of⁷⁴⁵
 746 TSa7 (cf. Figure 4) explains why such a conventional⁷⁴⁶
 747 transition state produces such a high energy barrier of 35.89⁷⁴⁷
 748 kcal/mol, almost 9 kcal/mol above the entrance channel,⁷⁴⁸
 749 compared to the barrier for the roaming transition state in⁷⁴⁹
 750 TSa5 (*chVI*) with a smaller barrier height of 25.54 kcal/mol.⁷⁵⁰
 751 This occurrence is analogous to what is shown in the $\text{OH} + \text{AA}$ ⁸⁸
 752 reaction. **RA1** dehydration through *chV* forming **A7** can also⁷⁵²
 753 explain the high phenol content in the low-temperature⁷⁵³
 754 products of the *p*-CMA pyrolysis.⁵⁵


755 Dehydration of **RB1** involving two vicinal OH-groups⁷⁵⁵
 756 (channels VIII and XIII) is not straightforward, which is in⁷⁵⁶
 756 accordance with AA.⁸⁸ The roaming transition state for⁷⁵⁷
 757 dehydration can be difficult to optimize due to the small TS-⁷⁵⁸

Scheme 2. Migration of the Terminal γ -OH Group (a) and Migration Followed by Splitting of the γ -OH Group over the *ortho*- and *ipso*-Ring-Centers (b)^a

a) OH-migration

b) OH-splitting

^aThe split atoms of the γ -OH moiety are highlighted in red for clarity.

759 ring involving vicinal (two neighboring C atoms) OH-groups
760 such as with **RB1**. The distance of the OH groups in the **RB1**
761 adduct allows for transition states such as **TSa5** easier to
762 locate.

763 It was possible to determine both a conventional (**TSb5**)
764 and roaming (**TSb8**) transition state for the formation of the
765 **A4** radical and water from the **RB1** radical (*chXIII* and *eq 21*).
766 As seen in the *Figure 3* energy diagram and the structures in
767 *Figure 4*, the conventional **TSb5** has a five-member cyclic ring
768 created from the β -OH group attachment at C_{β} and the
769 simultaneous initiation of hydrogen atom transfer from the γ -
770 OH group. This TS produces an energy 4.53 kcal/mol above
771 the entrance channel and a corresponding energy barrier of
772 44.19 kcal/mol for **RB1** dehydration. In comparison, the
773 roaming **TSb8** structure has a lower energy barrier of 40.15
774 kcal/mol, 0.49 kcal/mol above the entrance channel, from a
775 linear H atom abstraction by the OH radical.

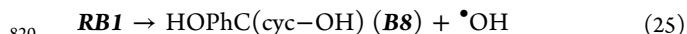
777 **3.1.5. Dehydration Involving Skeletal H-Atoms.** Generally,
778 the formation of various isomers of $\text{HOPhCH}^{\bullet}\text{C}(\text{=O})\text{CH}_3$
779 (**B5**) allylic radical could be expected bearing an OH-group
780 located in different side-chain sites depending on the types of
781 OH- and H-moieties are involved. However, the 5-membered
782 ring TS reactions could not be located since the planar allylic
783 moiety prevents such H-transfers (see also ref 42).

784 As also expected, the barriers for reactions involving smaller
785 four-membered TS-rings are high. Water elimination mediated
786 by the terminal OH-group in **RB1** radical (**1,2-DR**) and β -
787 skeletal H atom, indeed, requires 67.67 kcal/mol to form

HOPhCH $^{\bullet}\text{C}(\text{=O})\text{CH}_3$ (**B5**) allylic radical, which is 28.0 kcal/mol higher than the entrance channel (*chVIII*).
789

3.1.6. Formation of Bicyclic Products through Loss of OH-Groups and H-Atoms. These reactions involve generating bicyclic products including highly reactive epoxide or oxetane. The reactive oxygen radical created can then react with a radical center on a nearby carbon atom to form a cyclic structure. The calculated barriers for these reactions are all above 40 kcal/mol.
795

As seen in *eqs 22* and *23*, a strained epoxide, **B7**, can be formed from both **RA1** (*chXIV*) and **RB1** (*chXII*) through β -H atom dissociation from the α/β -OH group over barriers of 40.57 and 52.96 kcal/mol respectively. The difference is due to the difference in the **RA1** and **RB1** relative energies where formation of **B7** is 13.30 kcal/mol above the entrance channel.
803



806 A second strained epoxide can also be formed from **RA1** over a slightly higher barrier energy of 44.51 kcal/mol (*chIX*).
807 The products formed, *eq 24*, are $\text{HOPhCH}(\text{OH})\text{CH}(\text{cycO})$ (**A10**) and H atom where the H atom from the γ -OH of **RA1** is lost leading to ring formation of the oxygen radical bonding with the C_{β} .
811

813 Isomerization and dehydration of **RB1** has previously been discussed. This radical can also undergo γ -OH radical removal,
814 *chVII*, which involves a larger energy barrier of 51.79 kcal/mol
815

816 (eq 25). The lengthening of the C_{γ} –OH bond creates
 817 instability for C_{γ} , which can simultaneous be stabilized through
 818 cyclization of this carbon atom with the C_{α} atom. Additional
 819 cyclic products can be created through similar stabilizations.

821 As seen in Figure 4, the $TSb6$ structure is cyclic and more of
 822 the “conventional” type of transition state (similar to $TSa7$
 823 previously described). The products formed, $HOPhC(cyc-$
 824 OH) (**B8**) and OH radical, are 8.21 kcal/mol above the energy
 825 of the free reagents. A roaming type TS, as seen with $TSa5$,

826 was difficult to converge on due to the proximity of the OH-
 827 groups and formation of the strained small-size structure of TS.
 828 In the **RB1** radical, removal of the H atom on the γ -OH
 829 group with subsequent bonding to the C_{α} generates a larger
 830 $HOPhCH(cycOC)OH$ (**B6**) oxetane four-member cyclic
 831 structure (eq 26). Although **B6** has a larger cyclic ring
 832 compared to the epoxide formed in from loss of the same γ -H
 833 atom, **A10** (eq 24) above, the energy barrier is significantly
 834 higher at 52.33 kcal/mol compared to 44.51 kcal/mol.

836 **3.2. Some Unimolecular Decomposition Channels for**
 837 ***p*-CMA. Formation of the Bicyclic Products.** The OH-
 838 migration and OH-splitting can serve as the unimolecular
 839 decomposition channels for *p*-CMA, with interesting out-
 840 comes. Previously, we have theoretically identified several
 841 unimolecular decomposition pathways on the ground state
 842 PES of the *p*-CMA and its simpler model CnA (with no
 843 phenolic OH present) leading to the experimentally detected
 844 set of products in different pyrolysis conditions (conventional
 845 pyrolysis for CnA, and fractional pyrolysis for *p*-CMA).^{55–57}
 846 Here we provide results on two addition types of unimolecular
 847 decomposition pathways starting from OH-migration and its
 848 splitting over the carbon backbone. For consistency, these
 849 channels were also calculated at the same B3PW91/6-
 850 31+G(2d,p) DFT level of theory as in ref 55.

851 For the CnA, it was established that the calculated molecular
 852 pathways are mostly higher-energy demanding processes and
 853 can be afforded only at elevated temperatures. However, due to
 854 the significant entropy gains from the fragmentation of
 855 molecules, such unimolecular decomposition channels can
 856 principally account for the formation of some experimentally
 857 observed primary products at higher temperatures.

858 Some reaction channels were unique and are being
 859 suggested for the first time. They were relevant not only to
 860 the biomass degradation processes, but also can represent a
 861 more general model, such as for the pathway via a biradical
 862 intermediate (Scheme 2).

863 Now we have identified some new reaction pathways
 864 triggered by migration of the terminal OH-group, which are
 865 also interesting.

866 **3.2.1. γ -OH-Migration.** The migration of OH-group in free
 867 radicals is a known mechanism relevant to the enzymatic¹²¹
 868 and atmospheric processes,¹²² as well as for combustion of
 869 hydrocarbons.^{123,124} Such a mechanism was identified in
 870 current work relevant to the lignin pyrolysis and thermal
 871 decomposition of its models. We have identified four realistic
 872 channels (for molecular *p*-CMA) involving γ -OH migration
 873 pathways, illustrated in Scheme 2. Some of these pathways
 874 have been identified previously for CnA pyrolysis.⁵⁶

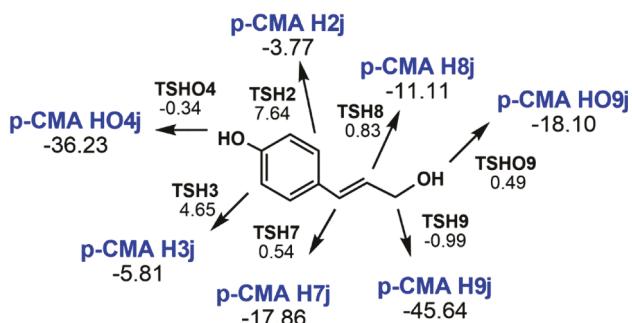
875 The migration of γ -OH to C_{α} faces ca. 61 kcal/mol barrier of
 876 activation to form 2-HPPh (encircled for clarity). Even though

877 these isomerization pathways have similar energy requirements
 878 when compared to the molecular decomposition and
 879 homolytic bond cleavage channels, they are less competitive
 880 due to the significant entropy gain in the latter processes.
 881

882 **3.2.2. 1,2- and 1,3-Sigmatropic OH-shift.** An epoxidation
 883 occurs after an H-transfer to C9 to form 1-methyl-2-
 884 hydroxyphenyl-oxirane (Scheme 2). This is in line with the
 885 hypothesized (particularly, by Brežný et al.²⁵) formation of the
 886 *oxirane* and *oxetane* units (3- and 4-membered epoxides)
 887 during the experiments on lignin pyrolysis (see also refs 55 and
 888 56).

889 **3.2.3. γ -O–H Bond Splitting over the Ring and Formation**
 890 **of Bicyclic Products.** These reactions start from the attack
 891 (more precisely, the migration since they are far from each
 892 other) of the γ -OH (*viz.*, γ -oxygen atom) group of the side-
 893 chain either to *ipso*-C1 or *ortho*-C2 ring centers followed by
 894 splitting of the γ -O–H bond over the ring, which results in the
 895 formation of the bicyclic compounds (second ring-closure via
 896 splitting of the O–H bond over these two adjacent ring
 897 centers). The transition state structures are depicted in Scheme
 898 2b. The barrier for activation for chromene formation is
 899 substantially higher than that for *spiro*-cyclization (69.94 kcal/
 900 mol vs 64.95 kcal/mol, respectively). Such a splitting can be a
 901 straightforward mechanism for formation of intermediates
 902 identified in lignin pyrolysis, such as chromene derivatives and
 903 *oxi-spirocyclic* compounds.¹²⁵ Importantly, the *oxi-spirocyclic*
 904 moieties have been identified also as lignin structural units.
 905 Perhaps, those identified on PES *p*-CMA intermediates can
 906 also be involved in biocatalytic generation of lignins, to be
 907 responsible also for various environmental transformations.
 908 The terminal OH-splitting can serve as a molecular mechanism
 909 for enzymatic generation of the significant spirocyclic linkages
 910 in lignin.¹²⁵ We are not aware of any reports in literature on
 911 identification of such a mechanism. We confirm it here as of a
 912 new one with important outcomes.
 913

914 Note that formation of the *oxiranes* and *oxetanes* has been
 915 hypothesized for lignin pyrolysis experiments (in particular, by
 916 Brežný et al.²⁵)


917 In our fractional pyrolysis experiments reported in ref 55, we
 918 have observed also noticeable amounts of benzofuran (BF)
 919 derivatives as well as some bis-compounds as stable products.
 920 Formation of BF can be attributed to the processes initiated by
 921 H-transfer reactions, if they are to be formed via molecular
 922 (concerted or bridged by intermediates) mechanisms.
 923

924 **3.3. Formation of van der Waals (VdW) Complexes.** Formation of VdW-complexes are optimal situations for OH
 925 radicals to interact with target species for periods of time
 926 allowing for H atom abstraction creating a *p*-CMA radical and
 927 water. Previously, for OH + AA, we determined that the
 928 flatness of the PES regions, coupled with these VdW
 929 complexes, created situations that facilitated roaming dissoci-
 930 ation.
 931

932 Transition states involving hydrogen abstraction from OH
 933 radical were calculated with relative barrier heights shown in
 934 Scheme 3.

935 Pathways involving abstractions from the OH phenolic
 936 group and the C_{γ} atom have negative barriers characteristic of
 937 scenarios where prereaction complexes are formed. These
 938 prereaction complexes involve VdW forces which stabilize and
 939 lower the energies before the reaction takes place. This is
 940 similar to what was observed in the model AA + OH reaction.
 941 These two locations also provide the greatest stabilization
 942 upon H atom abstraction and radical formation seen in –36.23
 943

Scheme 3. Hydrogen Abstraction via OH Radical Pathways in *p*-CMA, Calculated at the ω B97XD/def2TZVP Level^a

^aData on arrows represent corresponding relative barrier heights (ZPE-corrected electronic energies) in kcal/mol.

940 and -45.64 kcal/mol energy level decreases. These decreases
941 are lower than the well depths seen for *RA1* and *RB1* radical
942 formation of -27.27 and -39.66 kcal/mol in Figures 2 and 3.
943 Additional abstraction sites at C_{α} , C_{β} , and γ -OH have energy
944 barriers below 1 kcal/mol with energy decreases ranging from
945 12 to 18 kcal/mol upon radical formation. Abstraction directly
946 from the phenol ring at position C3 (or C5) has a 4.65 kcal/
947 mol energy barrier while position C2 (or C6) is 7.64 kcal/mol
948 showing radical formation in the conjugated ring is extremely
949 unfavorable.

4. CONCLUSIONS

950 The hydroxyl-radical-initiated processes are important in
951 pyrolysis of lignin and its fractionated intermediates. *p*-
952 Coumaryl alcohol (*p*-CMA) is the simplest lignin precursor
953 and structural model of the lignin end-groups containing a
954 propanoid side-chain and phenolic OH-group, and its thermal
955 decomposition including reactions with OH-radicals can shed
956 a light into the thermolysis mechanisms of the intricate lignin
957 macromolecules; to explain, in particular, the alkylation of
958 monophenols produced during lignin pyrolysis.

959 A detailed PES analysis of the PES for OH + *p*-CMA
960 reaction system is provided in this paper to study the
961 mechanisms of the OH + *p*-CMA reactions using various
962 DFT and *ab initio* protocols.

963 Several OH-addition–elimination (isomerization) channels
964 are explored involving chemically activated (energized)
965 adducts. In particular, various dehydration pathways are
966 identified including the ones via high energy conventional
967 (tight) TS (*chV*), and its counterpart via the low-energy
968 roaming-like saddle point (*chVI*) with typical roaming features
969 (loose structures, the energies below the reagents asymptote,
970 etc.). Similarly, two different transition states, roaming and
971 conventional for *chXIII* were also determined for water
972 elimination from *RB1*. This allows suggesting a new
973 mechanism for thermal dehydration of energized adduct-
974 radicals during reaction of OH radicals with *p*-CMA, as it
975 occurs with allyl alcohol as a simplest relevant model of the
976 unsaturated alcohols. These results particularly involve
977 dehydration to aldehydes for certain diols and support the
978 possibility of the roaming-like mechanism in reactions of OH +
979 unsaturated alcohols, similar to what occurs in OH + C_2H_4
980 and OH + AA⁸⁸ reactions, as well as some larger
981 molecules.^{99,100} Intriguingly, the 1,3-diol radicals containing
982 separated OH-groups mostly undergo roaming dehydration,
983 which contrasts with the vicinal and geminal diols, which are

known to be dehydrated also enzymatically¹²¹ and in the
984 processes in liquids.¹²⁶

985 A number of unimolecular degradation pathways are
986 identified for the *p*-CMA molecule involving the primary
987 products formation from bonds homolysis, followed by
988 secondary decomposition of products. An intriguing pathway
989 is the formation of bicyclic compounds ubiquitous in lignin
990 chemistry via attack of the terminal OH-group “*all the way*
991 down” along the carbon backbone to the benzene ring through
992 splitting over the *ipso*- and *ortho*-carbon atoms of the ring.

■ ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the
996 ACS Publications website at DOI: 10.1021/acs.jpca.9b00185.

Optimized structures, vibrational frequencies, moments
998 of inertia, complete references, and roaming transition
999 state (TS₅) geometry (PDF)

■ AUTHOR INFORMATION

Corresponding Author

*(R.A.) E-mail: rubikasa@buffalo.edu.

ORCID

Rubik Asatryan: 0000-0003-1200-2727

Joseph W. Bozzelli: 0000-0003-4822-150X

Lavrent Khachatryan: 0000-0002-8067-7964

Eli Ruckenstein: 0000-0001-5192-4922

Notes

The authors declare no competing financial interest.

[†]Part II of this paper will include a detailed kinetics analysis.

■ ACKNOWLEDGMENTS

This work is partly funded by National Science Foundation
1013 under Grant CBET 1330311. R.A. acknowledges the
1014 Ruckenstein Fund at the University at Buffalo (UB) for
1015 continuous support. Computing time on the high-performance
1016 computing infrastructure “rush” was provided by the UB
1017 Center for Computational Research and the NJIT Advanced
1018 Research Computing (ARC) center.

■ REFERENCES

- Huber, G. W.; Iborra, S.; Corma, A. Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering. *Chem. Rev.* **2006**, *106*, 4044–4098.
- Sluiter, J. B.; Ruiz, R. O.; Scarlata, C. J.; Sluiter, A. D.; Templeton, D. W. Compositional Analysis of Lignocellulosic Feedstocks. 1. Review and Description of Methods. *J. Agric. Food Chem.* **2010**, *58*, 9043–9053.
- Zakzeski, J.; Bruijnincx, P. C. A.; Jongerius, A. L.; Weckhuysen, B. M. The Catalytic Valorization of Lignin for the Production of Renewable Chemicals. *Chem. Rev.* **2010**, *110*, 3552–3599.
- Davin, L. B.; Patten, A. M.; Jourdes, M.; Lewis, N. G. Lignins: A Twenty-First Century Challenge. *Biomass Recalcitrance: Deconstructing the Plant Cell Wall for Bioenergy* **2008**, 213–305.
- Azadi, P.; Inderwildi, O. R.; Farnood, R.; King, D. A. Liquid Fuels, Hydrogen and Chemicals from Lignin: A Critical Review. *Renewable Sustainable Energy Rev.* **2013**, *21*, 506–523.
- Ragauskas, A. J.; Beckham, G. T.; Biddy, M. J.; Chandra, R.; Chen, F.; Davis, M. F.; Davison, B. H.; Dixon, R. A.; Gilna, P.; Keller, M. Lignin Valorization: Improving Lignin Processing in the Biorefinery. *Science* **2014**, *344*, 1246843.

1041 (7) Kibet, J.; Khachatryan, L.; Dellinger, B. Molecular Products and
1042 Radicals from Pyrolysis of Lignin. *Environ. Sci. Technol.* **2012**, *46*,
1043 12994–13001.

1044 (8) Heitner, C.; Dimmel, D. R.; Schmidt, J. A. *Lignin and Lignans: Advances in Chemistry*; 2010.

1046 (9) Jung, H.-J. G.; Ralph, J. Phenolic–carbohydrate complexes in
1047 plant cell walls and their effect on lignocellulose utilization. In
1048 *Microbial and Plant Opportunities to Improve Lignocellulose Utilization by Ruminants*; Akin, D. E., Ed.; Elsevier Sciences: New York, 1990; pp
1049 173–182.

1051 (10) Kim, K. H.; Bai, X.; Cady, S.; Gable, P.; Brown, R. C.
1052 Quantitative Investigation of Free Radicals in Bio-Oil and their
1053 Potential Role in Condensed-Phase Polymerization. *ChemSusChem*
1054 **2015**, *8*, 894–900.

1055 (11) Liao, S.; Pan, B.; Li, H.; Zhang, D.; Xing, B. Detecting Free
1056 Radicals in Biochars and Determining Their Ability to Inhibit the
1057 Germination and Growth of Corn, Wheat and Rice Seedlings. *Environ. Sci. Technol.* **2014**, *48*, 8581–8587.

1059 (12) SriBala, G.; Carstensen, H. H.; Van Geem, K. M.; Marin, G. B.
1060 Measuring Biomass Fast Pyrolysis Kinetics: State of the Art. *Wiley Interdiscip. Rev. Energy Environ.* **2019**, *8*, e326.

1062 (13) Joffres, B.; Laurenti, D.; Charon, N.; Daudin, A.; Quignard, A.;
1063 Geantet, C. Thermochemical Conversion of Lignin for Fuels and
1064 Chemicals: A Review. *Oil Gas Sci. Technol.* **2013**, *68*, 753–763.

1065 (14) Khachatryan, L.; Barekati-Goudarzi, M.; Kekejian, D.; Aguilar,
1066 G.; Asatryan, R.; Stanley, G. G.; Boldor, D. Pyrolysis of Lignin in Gas-
1067 Phase Isothermal and cw-CO₂ Laser Powered Non-Isothermal
1068 Reactors. *Energy Fuels* **2018**, *32*, 12597–12606.

1069 (15) Bährle, C.; Custodis, V.; Jeschke, G.; Van Bokhoven, J. A.;
1070 Vogel, F. In Situ Observation of Radicals and Molecular Products
1071 During Lignin Pyrolysis. *ChemSusChem* **2014**, *7*, 2022–2029.

1072 (16) Kim, K. H.; Bai, X.; Brown, R. C. Pyrolysis Mechanisms of
1073 Methoxy Substituted α -O-4 Lignin Dimeric Model Compounds and
1074 Detection of Free Radicals Using Electron Paramagnetic Resonance
1075 Analysis. *J. Anal. Appl. Pyrolysis* **2014**, *110*, 254–263.

1076 (17) Pandey, M. P.; Kim, C. S. Lignin Depolymerization and
1077 Conversion: A Review of Thermochemical Methods. *Chem. Eng. Technol.* **2011**, *34*, 29–41.

1079 (18) Evans, R. J.; Milne, T. A. Molecular Characterization of the
1080 Pyrolysis of Biomass. *Energy Fuels* **1987**, *1*, 123–137.

1081 (19) Amen-Chen, C.; Pakdel, H.; Roy, C. Production of Monomeric
1082 Phenols by Thermochemical Conversion of Biomass: A Review.
1083 *Bioresour. Technol.* **2001**, *79*, 277–299.

1084 (20) Simon, J. P.; Eriksson, K.-E. L. The Significance of
1085 Intramolecular Hydrogen Bonding in the β -O-4 Linkage of Lignin.
1086 *J. Mol. Struct.* **1996**, *384*, 1–7.

1087 (21) Sazanov, Y. N.; Gribanov, A. V. Thermochemistry of Lignin.
1088 *Russ. J. Appl. Chem.* **2010**, *83*, 175–194.

1089 (22) Kawamoto, H. Lignin Pyrolysis Reactions. *J. Wood Sci.* **2017**,
1090 *63*, 117–132.

1091 (23) Saiz-Jimenez, C.; De Leeuw, J. W. Lignin Pyrolysis Products:
1092 Their Structures and Their Significance as Biomarkers. *Org. Geochem.*
1093 **1986**, *10*, 869–876.

1094 (24) Domburg, G.; Rossinskaya, G.; Sergseva, V. Study of Thermal
1095 Stability of β -Ether Bonds in Lignin and its Models. *Therm. Anal. Proc. Int. Conf.*, 4th, Budapest 1974; Vol. 2.

1097 (25) Brežný, R.; Mihalov, V.; Kováčik, V. Low Temperature
1098 Thermolysis of Lignins. I. Reactions of β -O-4 Model Compounds.
1099 *Holzforschung* **1983**, *37*, 199–204.

1100 (26) Klein, M. T.; Virk, P. S. Model Pathways in Lignin Thermolysis.
1101 1. Phenethyl Phenyl Ether. *Ind. Eng. Chem. Fundam.* **1983**, *22*, 35–45.

1102 (27) Elder, T.; Beste, A. Density Functional Theory Study of the
1103 Concerted Pyrolysis Mechanism for Lignin Models. *Energy Fuels*
1104 **2014**, *28*, 5229–5235.

1105 (28) Kleinert, M.; Barth, T. Phenols from Lignin. *Chem. Eng. Technol.* **2008**, *31*, 736–745.

1107 (29) Jarvis, M. W.; Daily, J. W.; Carstensen, H. H.; Dean, A. M.;
1108 Sharma, S.; Dayton, D. C.; Robichaud, D. J.; Nimlos, M. R. Direct
Detection of Products from the Pyrolysis of 2-Phenethyl Phenyl Ether. *J. Phys. Chem. A* **2011**, *115*, 428–438.

(30) Beste, A.; Buchanan, A. C., III Computational Investigation of the Pyrolysis Product Selectivity for α -Hydroxy Phenethyl Phenyl Ether and Phenethyl Phenyl Ether: Analysis of Substituent Effects and Reactant Conformer Selection. *J. Phys. Chem. A* **2013**, *117*, 3235–3242.

(31) Beste, A.; Buchanan, A. C. Challenges in the Computation of Rate Constants for Lignin Model Compounds. *Rate Constant Calculation for Thermal Reactions: Methods and Applications* **2011**, 191–238.

(32) Beste, A.; Buchanan, A. C. Role of Carbon-Carbon Phenyl Migration in the Pyrolysis Mechanism of β -O-4 Lignin Model Compounds: Phenethyl Phenyl Ether and α -Hydroxy Phenethyl Phenyl Ether. *J. Phys. Chem. A* **2012**, *116*, 12242–12248.

(33) Beste, A.; Buchanan, A. C., III Kinetic Simulation of the Thermal Degradation of Phenethyl Phenyl Ether, A Model Compound for the β -O-4 Linkage in Lignin. *Chem. Phys. Lett.* **2012**, *550*, 19–24.

(34) Younker, J. M.; Beste, A.; Buchanan, A. C., III Computational Study of Bond Dissociation Enthalpies for Substituted β -O-4 Lignin Model Compounds. *ChemPhysChem* **2011**, *12*, 3556–3565.

(35) Choi, Y. S.; Singh, R.; Zhang, J.; Balasubramanian, G.; Sturgeon, M. R.; Katahira, R.; Chupka, G.; Beckham, G. T.; Shanks, B. H. Pyrolysis Reaction Networks for Lignin Model Compounds: Unraveling Thermal Deconstruction of β -O-4 and α -O-4 Compounds. *Green Chem.* **2016**, *18*, 1762–1773.

(36) Watanabe, T.; Kawamoto, H.; Saka, S. Pyrolytic Reactivities of Deuterated β -Ether-Type Lignin Model Dimers. *J. Anal. Appl. Pyrolysis* **2015**, *112*, 23–28.

(37) Kawamoto, H.; Nakamura, T.; Saka, S. Pyrolytic Cleavage Mechanisms of Lignin-Ether Linkages: A Study on p-Substituted Dimers and Trimers. *Holzforschung* **2008**, *62*, 50–56.

(38) De Bruycker, R.; Herbinet, O.; Carstensen, H. H.; Battin-Leclerc, F.; Van Geem, K. M. Understanding the Reactivity of Unsaturated Alcohols: Experimental and Kinetic Modeling Study of the Pyrolysis and Oxidation of 3-Methyl-2-Butenol and 3-Methyl-3-Butenol. *Combust. Flame* **2016**, *171*, 237–251.

(39) Jiang, X.; Lu, Q.; Hu, B.; Liu, J.; Dong, C.; Yang, Y. A Comprehensive Study on Pyrolysis Mechanism of Substituted β -O-4 Type Lignin Dimers. *Int. J. Mol. Sci.* **2017**, *18*, 2364.

(40) Kawamoto, H.; Ryoritani, M.; Saka, S. Different Pyrolytic Cleavage Mechanisms of β -Ether Bond Depending on the Side-Chain Structure of Lignin Dimers. *J. Anal. Appl. Pyrolysis* **2008**, *81*, 88–94.

(41) Hosoya, T.; Kawamoto, H.; Saka, S. Role of Methoxyl Group in Char Formation from Lignin-Related Compounds. *J. Anal. Appl. Pyrolysis* **2009**, *84*, 79–83.

(42) Kawamoto, H.; Horigoshi, S.; Saka, S. Effects of Side-Chain Hydroxyl Groups on Pyrolytic β -Ether Cleavage of Phenolic Lignin Model Dimer. *J. Wood Sci.* **2007**, *53*, 268–271.

(43) He, T.; Zhang, Y.; Zhu, Y.; Wen, W.; Pan, Y.; Wu, J.; Wu, J. Pyrolysis Mechanism Study of Lignin Model Compounds by Synchrotron Vacuum Ultraviolet Photoionization Mass Spectrometry. *Energy Fuels* **2016**, *30*, 2204–2208.

(44) Liu, C.; Deng, Y.; Wu, S.; Mou, H.; Liang, J.; Lei, M. Study on the Pyrolysis Mechanism of Three Guaiacyl-Type Lignin Monomeric Model Compounds. *J. Anal. Appl. Pyrolysis* **2016**, *118*, 123–129.

(45) Asmadi, M.; Kawamoto, H.; Saka, S. Thermal Reactions of Guaiacol and Syringol as Lignin Model Aromatic Nuclei. *J. Anal. Appl. Pyrolysis* **2011**, *92*, 88–98.

(46) Huang, J. B.; Liu, C.; Ren, L. R.; Tong, H.; Li, W. M.; Wu, D. Studies on Pyrolysis Mechanism of Syringol as Lignin Model Compound by Quantum Chemistry. *Ranliao Huaxue Xuebao J. Fuel Chem. Technol.* **2013**, *41*, 657–666.

(47) Huang, J.; Li, X.; Wu, D.; Tong, H.; Li, W. Theoretical Studies on Pyrolysis Mechanism of Guaiacol as Lignin Model Compound. *J. Renewable Sustainable Energy* **2013**, *5*, 043112.

1176 (48) Liu, C.; Zhang, Y.; Huang, X. Study of Guaiacol Pyrolysis
1177 Mechanism Based on Density Function Theory. *Fuel Process. Technol.*
1178 **2014**, *123*, 159–165.

1179 (49) Kuroda, K. i. Pyrolysis of Arylglycol- β -Propylphenyl Ether
1180 Lignin Model in the Presence of Borosilicate Glass Fibers. I. Pyrolysis
1181 Reactions of β -Ether Compounds. *J. Anal. Appl. Pyrolysis* **1994**, *30*,
1182 173–182.

1183 (50) Harman-Ware, A. E.; Crocker, M.; Kaur, A. P.; Meier, M. S.;
1184 Kato, D.; Lynn, B. Pyrolysis-GC/MS of Sinapyl and Coniferyl
1185 Alcohol. *J. Anal. Appl. Pyrolysis* **2013**, *99*, 161–169.

1186 (51) Elder, T. J.; Worley, S. D. The Application of Molecular Orbital
1187 Calculations to Wood Chemistry - The Dehydrogenation of Coniferyl
1188 Alcohol. *Wood Sci. Technol.* **1984**, *18*, 307–315.

1189 (52) Elder, T. Coupling of Coniferyl Alcohol in the Formation of
1190 Dilignols. A Molecular Orbital Study. *Proceedings of the 8th*
1191 *International Conference on Wood and Pulping Chemistry, Helsinki;*
1192 *1995*; Vol. 1, pp 115–122.

1193 (53) Kotake, T.; Kawamoto, H.; Saka, S. Pyrolysis Reactions of
1194 Coniferyl Alcohol as a Model of the Primary Structure Formed
1195 During Lignin Pyrolysis. *J. Anal. Appl. Pyrolysis* **2013**, *104*, 573–584.

1196 (54) Kuroda, K. I. Analytical Pyrolysis Products Derived from
1197 Cinnamyl Alcohol-End Groups in Lignins. *J. Anal. Appl. Pyrolysis*
1198 **2000**, *53*, 123–134.

1199 (55) Asatryan, R.; Bennadji, H.; Bozzelli, J. W.; Ruckenstein, E.;
1200 Khachatryan, L. Molecular Products and Fundamentally Based
1201 Reaction Pathways in the Gas-Phase Pyrolysis of the Lignin Model
1202 Compound p-Coumaryl Alcohol. *J. Phys. Chem. A* **2017**, *121*, 3352–
1203 3371.

1204 (56) Khachatryan, L.; Xu, M. X.; Wu, A. J.; Pechagin, M.; Asatryan,
1205 R. Radicals and Molecular Products from the Gas-Phase Pyrolysis of
1206 Lignin Model Compounds. Cinnamyl Alcohol. *J. Anal. Appl. Pyrolysis*
1207 **2016**, *121*, 75–83.

1208 (57) Xu, M. X.; Khachatryan, L.; Baev, A.; Asatryan, R. Radicals
1209 from the Gas-Phase Pyrolysis of a Lignin Model Compound: p-
1210 Coumaryl Alcohol. *RSC Adv.* **2016**, *6*, 62399–62405.

1211 (58) Elder, T. Application of Computational Chemistry to Lignin
1212 Pyrolysis. *Abstracts of Papers of the American Chemical Society* **2010**,
1213 239.

1214 (59) Akazawa, M.; Kojima, Y.; Kato, Y. Pyrolysis Formation from
1215 Four Different Phenyl Propanols and Classification of the Initial
1216 Reaction Pathways. *Int. J. Renewable Energy Technology* **2015**, *4*, 1–14.

1217 (60) Akazawa, M.; Kojima, Y.; Kato, Y. Reaction Mechanisms of
1218 Pyrolysis of Four Different Phenylpropanoids. *Pyrolysis Technol. J.*
1219 **2015**, *1*, 1–12.

1220 (61) Furutani, Y.; Dohara, Y.; Kudo, S.; Hayashi, J. I.; Norinaga, K.
1221 Computational Study on the Thermal Decomposition of Phenol-Type
1222 Monolignols. *Int. J. Chem. Kinet.* **2018**, *50*, 304–316.

1223 (62) Platonov, V. V.; Proskuryakov, V. A.; Ryl'tsova, S. V.; Popova,
1224 Y. N. *Russ. J. Appl. Chem.* **2001**, *74*, 1047–1052.

1225 (63) Pecullan, M.; Brezinsky, K.; Glassman, I. Pyrolysis and
1226 Oxidation of Anisole Near 1000 K. *J. Phys. Chem. A* **1997**, *101*,
1227 3305–3316.

1228 (64) International Congress on Energy 2014, ICE 2014 - Topical
1229 Conference at the 2014 AIChE Annual Meeting.

1230 (65) Arends, I. W. C. E.; Louw, R.; Mulder, P. Kinetic Study of the
1231 Thermolysis of Anisole in a Hydrogen Atmosphere. *J. Phys. Chem.*
1232 **1993**, *97*, 7914–7925.

1233 (66) Nowakowska, M.; Herbinet, O.; Dufour, A.; Glaude, P. A.
1234 Detailed Kinetic Study of Anisole Pyrolysis and Oxidation to
1235 Understand Tar Formation During Biomass Combustion and
1236 Gasification. *Combust. Flame* **2014**, *161*, 1474–1488.

1237 (67) Khachatryan, L.; Adounkpe, J.; Asatryan, R.; Dellinger, B.
1238 Radicals from the Gas-Phase Pyrolysis of Catechol: 1. o-Semiquinone
1239 and *ipso*-Catechol Radicals. *J. Phys. Chem. A* **2010**, *114*, 2306–2312.

1240 (68) Khachatryan, L.; Asatryan, R.; McFerrin, C.; Adounkpe, J.;
1241 Dellinger, B. Radicals from the Gas-Phase Pyrolysis of Catechol. 2.
1242 Comparison of the Pyrolysis of Catechol and Hydroquinone. *J. Phys.*
1243 *Chem. A* **2010**, *114*, 10110–10116.

1244 (69) Da Silva, G.; Bozzelli, J. W. Quantum Chemical Study of the
1245 Thermal Decomposition of o-Quinone Methide (6-Methylene-2,4-
1246 cyclohexadien-1-one). *J. Phys. Chem. A* **2007**, *111*, 7987–7994.

1247 (70) Dorrestijn, E.; Epema, O. J.; Van Scheppingen, W. B.; Mulder,
1248 P. o-Quinone Methide as a Common Intermediate in the Pyrolysis of
1249 o-Hydroxybenzyl Alcohol, Chroman and 1,4-Benzodioxin. *J. Chem. Soc., Perkin Trans. 2* **1998**, 1173–1178.

1250 (71) Eider, T. J.; McKee, M. L.; Worley, S. D. The Application of
1251 Molecular Orbital Calculations to Wood Chemistry. V. The
1252 Formation and Reactivity of Quinone Methide Intermediates.
1253 *Holzforschung* **1988**, *42*, 233–240.

1254 (72) Kim, K. H.; Dutta, T.; Walter, E. D.; Isern, N. G.; Cort, J. R.;
1255 Simmons, B. A.; Singh, S. Chemoselective Methylation of Phenolic
1256 Hydroxyl Group Prevents Quinone Methide Formation and
1257 Repolymerization During Lignin Depolymerization. *ACS Sustainable
1258 Chem. Eng.* **2017**, *5*, 3913–3919.

1259 (73) Ponomarev, D. A. Formation of Quinone Methides: An
1260 Alternative Pathway of Thermal Degradation of Some β -O-4-Ethers
1261 as Compounds Modeling Lignin. *Russ. J. Appl. Chem.* **1997**, *70*, 824–
1262 826.

1263 (74) Shigematsu, M.; Kobayashi, T.; Taguchi, H.; Tanahashi, M.
1264 Transition State Leading to β -O' Quinonemethide Intermediate of p-
1265 Coumaryl Alcohol Analyzed by Semi-Empirical Molecular Orbital
1266 Calculation. *J. Wood Sci.* **2006**, *52*, 128–133.

1267 (75) Bland, J.; Da Silva, G. A Detailed Chemical Kinetic Model for
1268 Pyrolysis of the Lignin Model Compound Chroman. *AIMS Environ. Sci.*
1269 **2013**, *1*, 12–25.

1270 (76) Asatryan, R.; Davtyan, A.; Khachatryan, L.; Dellinger, B.
1271 Theoretical Study of Open-Shell *ipso*-Addition and bis-Keto Dimer
1272 Interconversion Reactions Related to Gas-Phase Formation of
1273 PCDD/FS from Chlorinated Phenols. *Organohalogen Compd.* **2002**,
1274 *56*, 277–280.

1275 (77) Britt, P. F.; Buchanan, A. C., III; Malcolm, E. A. Thermolysis of
1276 Phenethyl Phenyl Ether: A Model for Ether Linkages in Lignin and
1277 Low Rank Coal. *J. Org. Chem.* **1995**, *60*, 6523–6536.

1278 (78) Britt, P. F.; Buchanan, A. C., III; Cooney, M. J.; Martineau, D.
1279 R. Flash Vacuum Pyrolysis of Methoxy-Substituted Lignin Model
1280 Compounds. *J. Org. Chem.* **2000**, *65*, 1376–1389.

1281 (79) Chu, S.; Subrahmanyam, A. V.; Huber, G. W. The Pyrolysis
1282 Chemistry of a β -O-4 Type Oligomeric Lignin Model Compound.
1283 *Green Chem.* **2013**, *15*, 125–136.

1284 (80) Kohl, I. E.; Asatryan, R.; Bao, H. No Oxygen Isotope Exchange
1285 Between Water and APS-Sulfate at Surface Temperature: Evidence
1286 from Quantum Chemical Modeling and Triple-Oxygen Isotope
1287 Experiments. *Geochim. Cosmochim. Acta* **2012**, *95*, 106–118.

1288 (81) Schlosberg, R. H.; Ashe, T. R.; Pancirov, R. J.; Donaldson, M.
1289 Pyrolysis of Benzyl Ether Under Hydrogen Starvation Conditions.
1290 *Fuel* **1981**, *60*, 155–157.

1291 (82) Schlosberg, R. H.; Davis Jr, W. H.; Ashe, T. R. Pyrolysis Studies
1292 of Organic Oxygenates. 2. Benzyl Phenyl Ether Pyrolysis Under Batch
1293 Autoclave Conditions. *Fuel* **1981**, *60*, 201–204.

1294 (83) Pu, Y.; Hu, F.; Huang, F.; Ragauskas, A. J. Lignin Structural
1295 Alterations in Thermochemical Pretreatments with Limited Deligni-
1296 fication. *BioEnergy Res.* **2015**, *8*, 992–1003.

1297 (84) Korobkov, V. Y.; Grigorieva, E. N.; Bykov, V. I.; Kalechitz, I. V.
1298 Effect of the Structure of Coal-Related Model Ethers on the Rate and
1299 Mechanism of Their Thermolysis. 2. Effect of Substituents in the
1300 $C_6H_5CH_2OC_6H_4X$ structure. *Fuel* **1988**, *67*, 663–665.

1301 (85) Korobkov, V. Y.; Grigorieva, E. N.; Bykov, V. I.; Senko, O. V.;
1302 Kalechitz, I. V. Effect of the Structure of Coal-Related Model Ethers
1303 on the Rate and Mechanism of Their Thermolysis. 1. Effect of the
1304 Number of Methylene Groups in the $R(CH_2)_nO(CH_2)_mR$ Structure.
1305 *Fuel* **1988**, *67*, 657–662.

1306 (86) Khachatryan, L.; Adounkpe, J.; Maskos, Z.; Dellinger, B.
1307 Formation of Cyclopentadienyl Radical from the Gas-Phase Pyrolysis
1308 of Hydroquinone, Catechol, and Phenol. *Environ. Sci. Technol.* **2006**,
1309 *40*, 5071–5076.

1310

1311 (87) Zhang, Y.; Chao, K.; Sun, J.; Su, Z.; Pan, X.; Zhang, J.; Wang, 1312 R. Theoretical Study on the Gas Phase Reaction of Allyl Alcohol with 1313 Hydroxyl Radical. *J. Phys. Chem. A* **2013**, *117*, 6629–6640.

1314 (88) Asatryan, R.; Pal, Y.; Hachmann, J.; Ruckenstein, E. Roaming- 1315 Like Mechanism for Dehydration of Diol Radicals. *J. Phys. Chem. A* 1316 **2018**, *122*, 9738–9754.

1317 (89) Le Person, A.; Solignac, G.; Oussar, F.; Daële, V.; Mellouki, A.; 1318 Winterhalter, R.; Moortgat, G. K. Gas Phase Reaction of Allyl Alcohol 1319 (2-Propen-1-ol) with OH Radicals and Ozone. *Phys. Chem. Chem. 1320 Phys.* **2009**, *11*, 7619–7628.

1321 (90) Orlando, J. J.; Tyndall, G. S.; Ceazan, N. Rate Coefficients and 1322 Product Yields from Reaction of OH with 1-Penten-3-ol, (Z)-2- 1323 Penten-1-ol, and Allyl Alcohol (2-Propen-1-ol). *J. Phys. Chem. A* **2001**, 1324 *105*, 3564–3569.

1325 (91) Papagni, C.; Arey, J.; Atkinson, R. Rate Constants for the Gas- 1326 Phase Reactions of OH Radicals with a Series of Unsaturated 1327 Alcohols. *Int. J. Chem. Kinet.* **2001**, *33*, 142–147.

1328 (92) Upadhyaya, H. P.; Kumar, A.; Naik, P. D.; Sapre, A. V.; Mittal, 1329 J. P. Kinetics of OH Radical Reaction with Allyl Alcohol ($\text{H}_2\text{C}=\text{CHCH}_2\text{OH}$) and Propargyl Alcohol (HCCCH_2OH) Studied by LIF. 1330 *Chem. Phys. Lett.* **2001**, *349*, 279–285.

1331 (93) Houston, P. L.; Conte, R.; Bowman, J. M. Roaming under the 1332 Microscope: Trajectory Study of Formaldehyde Dissociation. *J. Phys. 1333 Chem. A* **2016**, *120*, 5103–5114.

1334 (94) Bowman, J. M. Roaming. *Mol. Phys.* **2014**, *112*, 2516–2528.

1335 (95) Bowman, J. M.; Suits, A. G. Roaming Reactions: The Third 1336 Way. *Phys. Today* **2011**, *64*, 33–37.

1337 (96) Herath, N.; Suits, A. G. Roaming Radical Reactions. *J. Phys. 1338 Chem. Lett.* **2011**, *2*, 642–647.

1339 (97) Kamarchik, E.; Kozoli, L.; Reisler, H.; Bowman, J. M.; Krylov, 1340 A. I. Roaming Pathway Leading to Unexpected Water + Vinyl 1341 Products in $\text{C}_2\text{H}_4\text{OH}$ Dissociation. *J. Phys. Chem. Lett.* **2010**, *1*, 1342 3058–3065.

1343 (98) McKown, B. G.; Ceriotti, M.; Womack, C. C.; Kamarchik, E.; 1344 Butler, L. J.; Bowman, J. M. Effects of High Angular Momentum on 1345 the Unimolecular Dissociation of $\text{CD}_2\text{CD}_2\text{OH}$: Theory and 1346 Comparisons with Experiment. *J. Phys. Chem. A* **2013**, *117*, 10951– 1347 10963.

1348 (99) Tsai, P. Y.; Li, H. K.; Kasai, T.; Lin, K. C. Roaming as the 1349 Dominant Mechanism for Molecular Products in the Photo- 1350 dissociation of Large Aliphatic Aldehydes. *Phys. Chem. Chem. Phys.* 1351 **2015**, *17*, 23112–23120.

1352 (100) Mereshchenko, A. S.; Butaeva, E. V.; Borin, V. A.; Eyzips, A.; 1353 Tarnovsky, A. N. Roaming-Mediated Ultrafast Isomerization of 1354 Geminal Tri-Bromides in the Gas and Liquid Phases. *Nat. Chem.* 1355 **2015**, *7*, 562.

1356 (101) Davis, M. E.; Burkholder, J. B. Rate Coefficients for the Gas- 1357 Phase Reaction of OH with (Z)-3-Hexen-1-ol, 1-Penten-3-ol, (E)-2- 1358 Penten-1-ol, and (E)-2-Hexen-1-ol Between 243 and 404 K. *Atmos. 1359 Chem. Phys.* **2011**, *11*, 3347–3358.

1360 (102) Cramer, C. J. *Essentials of Computational Chemistry: Theories 1361 and Models*; Wiley: New York, 2002.

1362 (103) Chai, J. D.; Head-Gordon, M. Long-Range Corrected Hybrid 1363 Density Functionals with Damped Atom-Atom Dispersion Correc- 1364 tions. *Phys. Chem. Chem. Phys.* **2008**, *10*, 6615–6620.

1365 (104) Zheng, J.; Xu, X.; Truhlar, D. G. Minimally Augmented 1366 Karlsruhe Basis Sets. *Theor. Chem. Acc.* **2011**, *128*, 295–305.

1367 (105) Binkley, J. S.; Pople, J. A.; Hehre, W. J. Self-Consistent 1368 Molecular Orbital Methods. 21. Small Split-Valence Basis Sets for 1369 First-Row Elements. *J. Am. Chem. Soc.* **1980**, *102*, 939–947.

1370 (106) Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, 1371 Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: 1372 Design and Assessment of Accuracy. *Phys. Chem. Chem. Phys.* **2005**, *7*, 1373 3297–3305.

1374 (107) Zhao, Y.; Truhlar, D. G. The M06 Suite of Density 1375 Functionals for Main Group Thermochemistry, Thermochemical 1376 Kinetics, Noncovalent Interactions, Excited States, and Transition 1377 Elements: Two New Functionals and Systematic Testing of Four 1378

M06-Class Functionals and 12 Other Functionals. *Theor. Chem. Acc.* **2008**, *120*, 215–241.

(108) Becke, A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. *J. Chem. Phys.* **1993**, *98*, 5648–5652.

(109) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. *Phys. Rev. B: Condens. Matter Mater. Phys.* **1988**, *37*, 785–789.

(110) Asatryan, R.; Bozzelli, J. W. Chain Branching and Termination in the Low-Temperature Combustion of *n*-Alkanes: 2-Pentyl Radical + O_2 , Isomerization and Association of the Second O_2 . *J. Phys. Chem. A* **2010**, *114*, 7693–7708.

(111) Asatryan, R.; Bozzelli, J. W.; Ruckenstein, E. Dihydrogen Catalysis: A Degradation Mechanism for N_2 -Fixation Intermediates. *J. Phys. Chem. A* **2012**, *116*, 11618–11642.

(112) Asatryan, R.; Ruckenstein, E. Mechanism of Iron Carbonyl-Catalyzed Hydrogenation of Ethylene. 1. Theoretical Exploration of Molecular Pathways. *J. Phys. Chem. A* **2013**, *117*, 10912–10932.

(113) Da Silva, G.; Bozzelli, J. W.; Asatryan, R. Hydroxyl Radical Initiated Oxidation of *s*-Triazine: Hydrogen Abstraction is Faster than Hydroxyl Addition. *J. Phys. Chem. A* **2009**, *113*, 8596–8606.

(114) Matsugi, A. Roaming Dissociation of Ethyl Radicals. *J. Phys. Chem. Lett.* **2013**, *4*, 4237–4240.

(115) Asatryan, R.; Da Silva, G.; Bozzelli, J. W. Quantum Chemical Study of the Acrolein (CH_2CHCHO) + OH + O_2 Reactions. *J. Phys. Chem. A* **2010**, *114*, 8302–8311.

(116) Asatryan, R.; Ruckenstein, E. Dihydrogen Catalysis: A Remarkable Avenue in the Reactivity of Molecular Hydrogen. *Catal. Rev.: Sci. Eng.* **2014**, *56*, 403–475.

(117) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H. et al. *Gaussian 16, Revision A.03*; Gaussian, Inc.: Wallingford, CT, 2016.

(118) Albaran, G.; Schuler, R. H. Concerted Effects of Substituents in the Reaction of $\bullet\text{OH}$ Radicals with Aromatics: The Cresols. *J. Phys. Chem. A* **2005**, *109*, 9363–9370.

(119) Yamada, T.; Bozzelli, J. W.; Lay, T. Kinetic and Thermodynamic Analysis on OH Addition to Ethylene: Adduct Formation, Isomerization, and Isomer Dissociations. *J. Phys. Chem. A* **1999**, *103*, 7646–7655.

(120) Asatryan, R. S.; Grigoryan, S. G.; Arzumanyan, A. M.; Matnishyan, A. A. Quantum Chemical Study of the Mechanism of Radical Polymerization of Substituted Vinylacetylenes. *Polym. Sci. U.S.S.R.* **1985**, *27*, 2831–2836.

(121) Smith, D. M.; Golding, B. T.; Radom, L. Understanding the Mechanism of B_{12} -Dependent Diol Dehydratase: A Synergistic Retro-Push-Pull Proposal. *J. Am. Chem. Soc.* **2001**, *123*, 1664–1675.

(122) Asatryan, R.; Bozzelli, J. W. Formation of a Criegee Intermediate in the Low-Temperature Oxidation of Dimethyl Sulfoxide. *Phys. Chem. Chem. Phys.* **2008**, *10*, 1769–1780.

(123) Asatryan, R.; Raman, S.; Bielenberg, P. A.; Peterson, B.; Bozzelli, J. W.; Weissman, W. Fundamentally Based Mechanism for Oxidation of Iso-Octane. *Proceedings, 7th US National Combustion Meeting* **2011**, *1*, 382–395.

(124) Green, W. H.; Wijaya, C. D.; Yelvington, P. E.; Sumathi, R. Predicting Chemical Kinetics with Computational Chemistry: Is $\text{QOOH} \rightarrow \text{HOQO}$ Important in Fuel Ignition? *Mol. Phys.* **2004**, *102*, 371–380.

(125) Pemba, A. G.; Rostagno, M.; Lee, T. A.; Miller, S. A. Cyclic and Spirocyclic Polyacetal Ethers from Lignin-Based Aromatics. *Polym. Chem.* **2014**, *5*, 3214–3221.

(126) Jiang, D.; Barata-Vallejo, S.; Golding, B. T.; Ferreri, C.; Chatgilialoglu, C. Revisiting the Reaction of Hydroxyl Radicals with Vicinal Diols in Water. *Org. Biomol. Chem.* **2012**, *10*, 1102–1107.