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Abstract

We present what we call a “motivated proof™ of the Bressoud-Gollnitz-Gordon iden-
tities. Similar “motivated proofs” have been given by Andrews and Baxter for the
Rogers—Ramanujan identities and by Lepowsky and Zhu for Gordon’s identities.
Additionally, “motivated proofs” have also been given for the Andrews-Bressoud
identities by Kanade, Lepowsky, Russell, and Sills and for the Gollnitz—Gordon—
Andrews identities by Coulson, Kanade, Lepowsky, McRae, Qi, Russell, and the third
author. Our proof borrows both the use of “ghost series” from the “motivated proof”
of the Andrews—Bressoud identities and uses recursions similar to those found in the
“motivated proof” of the Gollnitz—Gordon—Andrews identities. We anticipate that this
“motivated proof” of the Bressoud—Gollnitz—Gordon identities will illuminate certain
twisted vertex-algebraic constructions.
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1 Introduction

The Rogers—Ramanujan identities are the pair of partition identities which we write
as

I1 — > pi(mg” (1.1)

1—g" B
n>1,n#0,£2 mod 5 m=>0

and

[1 ; _1 = pam)g™, (1.2)

q"
n>1,n#£0,£1 mod 5 m=>0

where pj(m) enumerates the number of partitions of m where adjacent parts have
difference at least 2 and p;(m) enumerates the number of partitions of m where
adjacent parts have difference at least 2 and in which no 1 appears. We shall refer to the
right-hand side of identities such as (1.1) and (1.2) as “sum sides.” We note thatin (1.1)
and (1.2), the left-hand sides count the number of partitions into parts 1 mod 5 and
the number of partitions into parts 2 mod 5, respectively. We refer to left-hand sides
such as these as “product sides.” In [4], related to work by Baxter in [6], Andrews and
Baxter gave what they called a “motivated proof™ of the Rogers—Ramanujan identities.
The initial motivation was a question posed by Leon Ehrenpreis: By definition, it is
clear that py(m) > pa(m) for all m > 0. Can one see this fact from the product
sides of the identities without knowledge of the Rogers—Ramanujan identities? That
is, without knowledge of (1.1) and (1.2), and starting only with the product sides of
these identities, can one show that

I - TI =Y,

1—qg" 1—qg" -
n>1,n#0,£2 mod 5 n>1,n#0,£1 mod 5 m=>0

where a,,, > 0 for all m > 0? In [4], Andrews and Baxter answer this question in the
affirmative and, in doing so, also prove the Rogers—Ramanujan identities.

The product sides of many partition identities arise naturally in the representation
theory of vertex operator algebras (as in [26]). It is therefore natural to ask whether
one can exhibit sum sides to these identities using vertex-algebraic techniques. In
[27]- [30], Lepowsky and Wilson exhibited these sum sides using monomials in prin-
cipally twisted Z-operators. In their work, they gave a vertex-algebraic interpretation
of the Gordon—Andrews—Bressoud identities and a purely vertex-algebraic proof of
the Rogers—Ramanujan identities. Their proof, however, does not compare different
product sides by taking various linear combinations of their product sides, but rather,
considers the relevant representations (and thus the relevant products) individually. A
related proof of the Gordon—Andrews—Bressoud identities was given in [32]. We refer
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the reader to the survey articles [25] and [23] for further reading about these approaches
and recent advances. We also refer the reader to [11], where new partition identities
arising from representations of the affine Lie algebra C ,51) have been found (these
identities have been proved for the level 1 case in [15] and [36]). Another approach for
obtaining such a sum side is to construct exact sequences among relevant representa-
tions of a given vertex operator algebra (for examples, see [9]- [10], [8], [33], [5], and
many others). Namely, such an exact sequence gives a recursion satisfied by the graded
dimensions of various representations, whose solution readily leads to a sum side. In
the context of exact sequences among representations, expressions in which the prod-
uct sides are subtracted from one another with division by pure powers of the formal
variable ¢ have a natural interpretation in terms of maps among the graded spaces
of these representations. In particular, it is expected that the ideas in the motivated
proofs in [4], [31], [13], [24], and the present work will lead to a “categorification”
of these identities in terms of certain twisted representations for certain generalized
vertex operator algebras and exact sequences among these representations involving
twisted intertwining operators (see [14], [22]). The program of finding “motivated
proofs” of partition identities is thus motivated by the desire to better understand these
underlying vertex-algebraic structures. Such a program is underway. Thus, we shall
use “motivated proof” as a technical term and drop the quotations. For a much more
detailed exposition of these ideas, we refer the reader to the introductions of [31], [13],
and [24].

We now give a brief explanation of Andrews’s and Baxter’s motivated proof, which
is related to Baxter’s proof in [6] and Rogers’ and Ramanujan’s proof in [34]. Let
G1 and G, denote the left-hand sides of (1.1) and (1.2). Empirically, Andrews and

Baxter noticed that G3 := =52 is an element of 1 + ¢>Cl[¢]1]. More generally, they
observed and proved that
Gi—Gijn ,
G = —L— e 14+ ¢/F2Cliqll (13)

q./

for j > 1 and called (1.3) the Empirical Hypothesis. One important consequence to
the Empirical Hypothesis, which is key in Andrews’s and Baxter’s proof, is the fact
that

lim Gj =1

Jj—o00
(here we say the limit exists if the coefficient of each power of ¢ stabilizes as j — 00).

To answer Ehrenpreis’s question, using the recursive definition of G ;, Andrews and
Baxter expressed G3 as

G3:=A;G;+B;jGj;1,

where j > 3and A}, B; € C[q]. They then give combinatorial interpretations for A ;
and B; and showed that lim; o Bj = 0 and A := lim;_, A; exists and counts
partitions of positive integers into parts which differ by at least 2 and in which 1 and
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2 do not appear. This, in turn, gives

G3 = lim (A;G;+ B;jGj41) = lim (4;) lim (G))
J—> 0 Jj—>00 Jj— oo
+ lim (B;) lim (Gj41) = Ao, (1.4)
J—>00 J—>00

thus answering Ehrenpreis’s question. Repeating this procedure for G; and G, leads
to a proof of the Rogers—Ramanujan identities. It is now natural to ask: given the
product sides of a family of partition identities, and without knowledge of the sum
sides of these identities, can one deduce the sum sides of these identities using similar
techniques?

Andrews’s and Baxter’s motivated proof has since been extended to several other
partition identities. In general, much of the structure of these proofs is similar. Of
particular importance in these proofs are recursions generalizing and extending the
recursive definition in (1.3). We briefly review the recursive definitions which extend
(1.3). In [31], Lepowsky and Zhu generalized Andrews’s and Baxter’s proof to Gor-
don’s identities (cf. [17]), the odd-modulus generalization of the Rogers—Ramanujan
identities. In their proof, Lepowsky and Zhu introduced what they call “shelves.” In
particular, let G; for 1 < i < k be the product sides of Gordon’s identities mod 2k + 1
(when k = 2, these are just the product sides of (1.1) and (1.2)). These expressions
live on what is called “shelf 0.” Next, given a series on “shelf j,” denoted by G (x—1)+i
for some j > 0and 1 < i < k, Lepowsky and Zhu then define the series on “shelf
J + 17 by the tautological expression G (x—1)(j+1)+1 = Gk-1)j+k and by

G—1)jrh—i+1 — G—1)j+k—i+2
G(k—l)(j+1)+i = q(j+1)(i_1) (15)

for 2 < i < k. The Empirical Hypothesis in [31] states that

1+¢/TICllgN ifl<i<k—1

1+¢/T2Cllql] ifi =k. (0

Gu—1yj+i €

In [13], a motivated proof of the Go6llnitz—Gordon—Andrews identity is given (cf.
[16], [1], and Chapter 7 of [2]). As in [31], the authors define G; for 1 < i <
k to be the product sides of the Gollnitz—Gordon—Andrews identities mod 4k. For
these identities, a more complicated-looking recursion is needed in place of (1.5). In
particular, the series on shelf j + 1 for j > 0 are defined by

Ga-i+n+1 = G—1)j+k
and

G—1)jrhk—i+t1 — G—1)j+k—i+2 _1
Gh-D(j+D+i = 200D —q Gu-nG+n+i-1 (1.7
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for2 < i < k. A key difference between (1.5) and (1.7) is the use of the (i — 1) series
on shelf j + 1 to define the i series on shelf j + 1. Lastly, in [24], a motivated proof
of the Andrews—Bressoud mod 2k partition identities is given. As before, let G; for
1 < i < k denote the product sides of the Andrews—Bressoud identities mod 2k (in
[24], they are denoted B;). The recursion needed to define the higher shelves in [24]
is quite different than (1.5) and (1.7). In particular, due to parity conditions arising in
the sum side of these identities (see condition (2) in the introduction to [24]), division
by a pure power of ¢ is replaced by division by a sum of two powers of g. This type
of division has no obvious interpretation in the vertex-algebraic framework discussed
above and is thus not “motivated.” In order to define the series G —1)(j+1)+i on the
higher shelves using division by pure powers of g, the authors introduce what they
call “ghost series.” They denote these series by G(k_l)(j_i,_l)_ﬂ' for2 <i < k on each
shelf and define the higher shelves as follows:

Gu-n(j+D+1 = G—1)j+k>

Gu—1)j+k—1 — G—1)j+k =
s = G-1)j+k (1.8)

Gu-n(j+D+2 =

and

Gy jh—i+1 — G k—1)j+k—i42
Gu-1)(+D+i = 0FDG=D

_ G(kfl)j+k7i+2 - -G(kfl)j+k7i+3. (1.9)

qUhi=2)
We note here that (1.8) and (1.9) also serve as definitions for the ghost series. In all of
these works, once the series on the higher shelves have been established and a general
formula for them has been proved, it is straightforward to show that a variant of the
Empirical Hypothesis (1.6) holds.

We now discuss the identities that are the focus of the present work and compare
the approach we use to the approaches in [31], [13], and [24]. The Bressoud—Gollnitz—
Gordon identities, proved by Bressoud ( [7]), are an extension of the Gollnitz—Gordon—
Andrews identities to moduli of the form 4k — 2. In particular, we use the statement
of these identities as presented in Corollary 1.3 of [12], with i replaced by k — i + 1
in the statement of the theorem. For 2 < i < k, these identities state

[T

n>0

= 2:6”(}1)4]'17 (1.10)

n>0

(1 + q2n+])(1 _ q2k72i+1+(4k72)n)(1 _ q2k+2i73+(4k72)n)(1 _ q(4k72)(n+]))

1 — q2n+2

where a; (n) enumerates partitions A of n such that:
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1. Each odd part appears at most once,

2. i+ o) =k -1,

3. far) + far+1 () + far42(A) <k —1forallt >0,
4. If for(M) + far41(R) + far42(1) =k — 1, then

tf2r () + (t + D(f2r41(0) + farp2(M) =k —i 4+ V() mod 2, (1.11)

where f; (1) denotes the number of occurrences of # in A and V,’(¢) denotes the number
of odd parts in A which do not exceed 2¢. We note here that the left-hand side of (1.10)
enumerates partitions where:

1. Even parts are multiples of 4 not divisible by 8k — 4,
2. Odd parts are not congruent to £(2k — 2i + 1) mod 4k — 2 with parts congruent
to 2k — 1 mod 4k — 2 appearing at most once.

(For some interesting recent work related to these identities, we refer the reader to
[20], [18], [19], and [21].)

In the motivated proof in the present work, we define our series G; for 1 <i <k
on shelf j = 0 using the left-hand side of (1.10), extending the definition to i = 1.
As in [24], condition 4 prevents us from defining the higher shelves using solely the
series G; and division by pure powers of g. In order to define the series on the higher
shelves, we use a mix of ideas from [13] and [24]. In particular, for j > 0, we have,
tautologically, that G(kfl)(j+1)+1 = G(kfl)ijk, and we introduce the series é(kfl)j+i
for 2 < i < k, which we call “ghost series.” We define both the ghost series and the
series on shelf j + 1 by the recursions

Ge—1yj+k—1 — Ge—1)j4k 1 ~
Go—ni+n+2 = : g2G+D = =47 Gt = Ga-njivk

and

Gk—1)j+k—i+1 — é(k—l)j+k—i+2 .
G -1y +1)+i 2267061 =4 Go-n(+1)+i-1

~ Gnyjk—ivr — Gu—1)j+k—i+3 g
B 22G+DG-2) — 47 G-+ +i-1

for 3 < i < k. We note that these recursions use ideas from (1.7) - (1.9). In particular,
we will also show that the ghost series, G,- for 2 < i < k, are generating functions
which enumerate partitions satisfying the same conditions as a; (n) but the right-hand
side of (1.11) is replaced by k — i + 1 + V(¢) mod 2.

We also note one more important difference between the proof in the present work
and the proofs in [4], [31], [13], and [24]. In these works, the recursions used to define
the higher shelves are “reversed” in order to write the series G; as polynomial linear
combinations of series on higher shelves:

Gi = ihgj)G(k—l)jH + ihéj)G(k—l)jH +oot ih](cj)G(k—l)ch,
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where the polynomials ,'hl(zj ) ,for 1 < £ < k, are generalizations of A; and B; above.

The authors then take the limit as j — oo to obtain an argument similar to (1.4):

G; = lim (ih(l'/)G(k—l)j+l +ih§")G(k—1)j+2 + - +ih,(f)G(k—1)j+k>

J—>00

= <_lim ihﬁf')) <}lim G(k_l)j+1> oot <‘lim ,-h,ﬁ”) <}lim G(k_l)j+k>
j—o0 j—o00 j—00 j—o00

=i\ 14014401
ihﬁ"o)

to complete their motivated proof, where it is clear from a matrix interpretation of
their recursions that each of the limits, lim;_ ihéj ), exist for 1 < £ < k. In the
present work, it may not be the case that lim;_, o ,-héj ) in general exists, so we need

to consider a more intricate argument. Indeed, we show that lim;;_ o, (ihgj )+ ,-hgj ))
exists and require a slightly more intricate argument to conclude that

Gi = lim (i} +:ng")
j—o00
forl <i <k.

The present work is structured as follows: In Sect. 2, we recall certain standard nota-
tion regarding g-series and introduce the official series G and the ghost series G
which are the main objects of our study. In Sect. 3, we derive closed-form expressions
for G, and G. In Sect. 4, these closed-form expressions are used to prove an Empirical
Hypothesis for both the official series and the ghost series. In Sect. 5, we use the recur-
sive definitions of the official series and ghost series to provide a matrix interpretation
and write our series G;, for 1 <i < k, as polynomial linear combinations of series on
higher shelves. In Sect. 6, we provide combinatorial interpretations for the polynomi-
als from Sect. 5 and use them to complete our proof of the Bressoud—Gollnitz—Gordon
identities. We also provide a combinatorial interpretation of the ghost series. In Sect. 7,
we provide a dictionary between our closed-form expressions and specialization of
the series J (a; x; g) in [12]. We also give (a; x; g)-expressions governing the ghost
series. In addition, we give combinatorial interpretations for these series and explore
their properties.

2 The formal series G; and éz

In this section, we establish notation that we will use throughout the paper. Throughout
this work, let k > 2 be an integer and a, x, and g be formal variables. All power series
in this work are formal power series in a, x, and q.

Suppose n is a nonnegative integer and A = (b1, ba, . . ., by) is a partition of n, with
b1 > ... > bs.Fort € N, use f;(1) to denote the number of occurrences of ¢ in A and
V2 (t) to denote the number of odd parts in A which do not exceed 2¢. We also use the
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following standard g-Pochhammer notation throughout this work:
@ @)y =1 ~a)l—aq)---(1—ag"™"

and

(@ @)oo =] [ —ag"™").

n>1

We also will use

(@n = (g5 D

and

(@D oo = (q; Q) oo-

Finally, we define

(a1, a2, ...,ar;q)n = (a1; @n(a2; @)n -+ - (@ @n

and similarly define

(ar,az, ..., a1; @)oo = (a1; 9)oo(@2; @)oo -+ - (Ak; §)oo-

Our main object of study will be the formal power series we denote by G, for
integers £ > 1. When 2 < ¢ < k, the G, denote the product sides of the Bressound-
Gollnitz-Gordon identities. In particular, for 1 < i < k, we define the series G; as
presented in Corollary 1.3 of [12]. In particular, let

(=4 4P oo(@®H T g

2k+4+2i—-3 4k-2. q4k—2)oo
(4% 4P oo

»q ;

G;:

When?2 < i <k, thisis the generating function for partitions satisfying the conditions:

1. Even parts are multiples of 4 not divisible by 8k — 4,
2. Odd parts are not congruent to £(2k — 2i + 1) mod 4k — 2 with parts congruent
to 2k — 1 mod 4k — 2 appearing at most once.

Note that we have replaced i with k — i + 1 and have also defined G; fori = 1, as

this will be necessary in our work. We note that

(=4:9%)o0 _ Bl 1
(4% 4% oo 1—qgm

m#2 mod 4
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and write

Fio= ] a-¢m.

m=#2 mod 4

We note that, using Ramanujan’s notation, we may write F (g) as ¥ (—q), where

V(@) = fq,q°)

and
f(a,b) = (—a, —b, ab; ab)s.

We recall Jacobi’s Triple Product identity
2 -
D =D = (429,774 4 P)oo. @2.1)
nez
We rewrite the left-hand side of (2.1) as
Z(_l)nznqnz — Z(_l)nznqnz (1 _ Z—2n—1q2n+l>
nez n>0
and consequently rewrite Jacobi’s Triple Product Identity as

Z(_l)nznqnz (1 _ Z—Zn—1q2ﬂ+l) — (q2’ Zq, Z_lq; qZ)OO (22)

n>0
Making the substitution g — ¢*~! and z — ¢%~2, (2.2) becomes

Z( 1)"q (4k=2)(5)+Qi+2k—3)n (1 _q(2k—2i+1)(2n+1)>
n>0

— (g2, KL 2kADI-3, dk=Dy (2.3)

3

Now, using (2.3), we write

Z( 1)"q (4k—2) (3)+Qi+2k=3)n (1 _q(2k—2i+l)(2n+1)) (2.4)

n>0

Gi= F( )
forl <i <k. _
As in [24], we define what we call ghost series G;, where 2 < i < k, as well as the

series Gg4+p, for 1 < h < k — 1. In particular, define

Gr—1 — Gy - ~
Giep1 = —— 57— 4 G = Gy (2.5)
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and

Gi—nt1 — Gr—ns2 -1
2(h—1) —q k+h—1

(2.6)

Gr—n — Gr_n+1 _
Gitn = — q 'Gipnor = p

for2<h<k-1.

Remark 2.1 As in [24], we have not defined the series él as it is not necessary in our
proofs. We will, however, attach a combinatorial meaning to this series in Remark 6.6
and explore this series in more generality in Sect.7.

We note that (2.5) and (2.6) give us

G — Gi-1 +4¢*Giq

) 2.7
for2 <i <k—1and
~ Gr-1—qGi
Gy = — 2.8)
14+g¢

Remark 2.2 Later in our work, we will prove that the ghost series, Gi for2 <i <k,
enumerate partitions A which satisfy all the same conditions as those enumerated by
G; for 2 < i < k with a change in a parity condition. Namely, we will show that G;
enumerates partitions A satisfying:

1. Each odd part appears at most once,

2. i)+ L) =k —1,

3. fa) + far1) + frur2(d) =k —Tforallz >0,
4. If for(0) + fars1 (M) + farp2(X) =k — 1, then

1f2r M) + @ + D(f2r41 (M) + fas2(M) =k —i + V() mod 2, (2.9)

and G,- enumerates partitions satisfying all the same conditions as G; with (2.9)
replaced by

tf2r (M) + (t + D(far41 (M) + fa42(M) # k —i + V{(t) mod 2.

Next, we use (2.4), (2.7), and (2.8) to derive closed-form expressions for Gi , where
2<ic<k.

Proposition 2.3 For2 <i <k, we have

1 1

Gi=———
Flg) 1+q° =

(—1)"q =2 ’Zl)-l-(2k+2i—5)n(1+q2(2n+l))(1 _ gDy
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Proof First, for2 <i < k — 1, we have that

Gi- 1+612Gi+1
— Z( 1)1’! (4k— 2)(;)-{-(2](-&-2! 5)}’1(1 (2k—2i+3)(2n+1))
F( )n>0
+ ( l)n (4k— 2)(2)+(2k+2! 1)n+2(1 (2k—2i—l)(2n+l))
F(q )HZ(:)
— Z( l)nq(4k 2)(n)+(2k+21 S)n
F( D=

(1 _q(2k72i+3)(2n+1) +q2(2n+1)(1 _ (2k72i71)(2n+1)))

— TG )Z( l)n (4k— 2)(2)+(2k+21 S)n(1+q2(2n+1))(l (2k72i+1)(2n+1))’

n>0

which gives our result for 2 <i < k — 1. We also have that

Gik-1—qGk
_ o );)( 1y = 2 )+(4k75)n(1 _ A0t
F( )Z( 1)1 g @ 2)(5)+(@k— Il _ g2+
_ F( ) Z( g (4k—2)(5)+(4k—5)n (1 _q3(2n+1) _q2n+1(1 _q2n+l))
_ a )ng(:)( N (4k—2)(5)+(4k— 5)n(1 2(2n+l))(1 _q2n+1)’
which gives the desired result for Gy. O

Note that we defined the series G, . .., Gy and G, . . ., Gy, which, as in [31], [24],
and [13], we say are on shelf j = 0. We now recursively define the series G 1)+
for j > land 1 <i < k. Asin [24], we also recursively define G(k_l)j+,~ forj >0
and 2 < i < k. Following [24] and [13], for j > 0, we define

Gu-1(i+D)+1 = G—1)j+k> (2.10)
G k—1)j+k—1 — G e—1)j+k

Gr-nG+n+2 = 307D

=47 ' Gu—ny(j+n+1 = G144 (2.11)
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and

Gk—1)jtk—i+1 — Gk—1)j+k—i+2

Go-n(+1+i = 220D

—1
—q  Gu—n)(j+D+i—1

~ Gnyjrk—itr — Gu-1)j+k—it3 g
N q2(j+1)(i—2) -9 k=1)(j+D+i—1

for3 <i <k.

Remark 2.4 The definition given by (2.10) is immediate from the fact that

G-=DG+D+1=0k-1)j+k.

(2.12)

(2.13)

We make note of this here, however, since in the next section we will give different
expressions for G (x—1)(j+1)+1 and G —_1)j+« and will need to show that they are, in

fact, equal. As in [31], [24], and [13], we will call this “edge-matching.”

We note here that, using (2.10) - (2.13), for j > 0, the ghosts may be explicitly

defined by

Ga—njtri-1 + 429V Gunjrin
1+ q2G+D

G(k—l)j+i =
for2 <i <k-—1and

G—1)j+k—1 — 4G g1y jk
1+ q2G+D :

G(k—l)j+k =

3 Closed form of G; and ég

In this section, we provide a closed-form expression for the official series G¢ and the

ghost series Gy.

Theorem 3.1 For j > 0and 1 < i <k, we have that

Gu-nj+i € Cllgll

and, in fact,

G—1)j+i
o (1)1 g W=D G FnCRGHDF2=1)=3) (L 242, 12), (20D, ),
F(g) = (=45 ¢Pn(—=¢*" 15 g%) 11
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. (1 _ q2(2n+j+1)(k—i+1) _|_q2n+2j+1(1 _ q2(2n+j+1)(k—i)))_ (3.1)

Moreover, for j > 0and 2 <i <k, we have

G-1)j+i € Cligll

and, in fact,

Ga—n)jsi
_ 1 1 (=1)"qWH=DG)+n QD2 =] =D=3) (_ 4242, 42) (g2+D); ),
F(q) 1+q%+2 — (=% P (="t ¢?) j 11

(1 4 g2@n+i+D) (1 _ QRO DR=HD 2 2)4 (g _q2(2n+j+l)(k—i))>.
(3.2)

Proof Throughout our proof, we will use the notation G j,i for the right-hand side of
(3.1)and Gj,,- for the right-hand side of (3.2). We will first show that G x 1) j +; = Ej,,'
for j > 0and 1 <i < k by induction on j and i. We note that the j = 0 case is given
by (2.4) for G; with 1 < i < k and that Proposition 2.3 gives us the j = 0 case of
(3.2) for G; with2 <i <k. .

Suppose, for some j > 0, that Gg—1)j4; = Gj; for 1 < i < k and that
é(kfl)]uri = éj)i for 2 < i < k. We first show that G—1)(j+1)+1 = Ejur],].
Since G-1)j+k = Gx-1)(j+1)+1, we must show that “edge-matching” holds, i.e.
that G—1)j4+x = 5,41,1 Indeed, we have

G(k—1)j+k

1
~F@ 2

n>0

(_1)ﬂq(4k—2)(2)+ﬂ(2k(j+1)+2(k—j)—3)(_q2j+2; Gn (gD, qz)j

(=42 42 (—¢**1 g2) 1
) (1 _ q2(2n+j+l)(k—k+l) 4_(]2n+2_/+1(1 _ q2(2n+_/+1)(k—k)))

B 1 (_l)nq(4k—2) 2)+n(2k(_i+2)—2_/—3)(_q2j+2; q2)n (qZ(n-H); qZ)j

~ F(g) (=% g (—q?" 15 ¢%) 41

1+q2j+2

1+ q2j+2
(_l)nq(4k72)(2)+n(2k(j+2)72j73)(_42j+2; qz)n(qm“); qz)

n>0

(1 = g2Cr+i+hy

J

1
= F@) % (—q2; gD)n(—q2t1; qz)Hl
1 : q4(n+j+l) + q2j+2(1 _ q4”)
1+ q2j+2
(_1)nq(4k—2)(’;)+n(2k(j+2)—2j—3)(_q2j+2; qz)n(q2(n+1); qz)j(l _ q2(n+j+l))

(=42 42 (—g* 15 g2) 41

1
T F( 2

n>0
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1 4 g20+i+h

1 +q2j+2
n 1 Z (_1)ﬂq(4k—2)(z)+"(2k(j+2)—2j—3)(_q2j+2; 4@ g2) (1 — g*)
F(q) — (=% qMn(=¢*"": g% 11
. g2i+?
1+q2j+2

(_l)nq(41(72)(;)+n(2k(j+2)72j73)(_q2j+2; q2)n(q2(n+l); q
(=47 qMn(=g*" 11 g%) 41

)41

-3
F(q) o
1 + g2+i+D

1+q2j+2
B 1 Z (_l)nq(4k72)(2)+n(2k(j+2)72j73)(_q2j+2; qz)n+l(q2(n+2); qZ)J(l _ q4(n+l))
F(g) = (=% q)n1 (=q> DT g2) 4
2j+2
4 ’:_ . . W=Dk +2)-2j-3
1+ g%+
_ 1 Z (,1)nq(4k—2)(2)+n(2k(j+2)—2j—3>(,qz(j+1>+z; (@D g2 1
F(q) = (4% qMn(=¢*"+: %) 1
B (—1)"qH-2DFCKG+2-2-3) (L2042, g2y (204D; g2)
F(o) = (=% g (=g*" D F1 g2) 1
. q(4k—2)n+2k(j+2)—1
_ 1 Z (_])"q(4k—2)(2)+n(2k(j+2)—2j—3)(_q2(j+1)+2; qZ)n(qZ(n+l); q2)j+1
F(q) (4% M) (—g* 1 %) j1a

n>0

(1 4 g2 iDL

1
- F() §

. q(4k—2)n+2k(j+2)—1(1 +q2n+l)

(,1)nq(4k—2) 2)+n(2k(j+2)—2j—3)(,qZ(j+1)+2; q2)n(q2(n+l); qz)j+l

(=q% ¢Pn(—q*"*1; %) j12

1 (_l)nq(4k—2)(2)+n(2k(j+2)—2j—3)(_qZ(j+1)+2; q2)n(q2(n+l); qz)j+l

T F@ 2

n>0

(4% ) (=q*" 1 q?) 12
) (1 +q2(n+j+1)+1 _q(4k—2)n+2k(j+2)—1(1 +q2n+l)>

1
T F@ 2

n>0

. (1 _ q2k(2n+j+2) +q2(n+j+1)+l(1 _ q2(2n+j+2)(k—l)))

(_l)nq(4k*2)(2)+n(2k(j+2)72j73)(_q2(_/’+1)+2; qz)n(qZ("“); qz)Hl

(=42 4 (—q*" 1 g%) ja

=Gj11-

Now, suppose G (x—1)(j+1)+s = EJ_HJ forall 1 < s < i — 1, where i satisfies
1<i—1<k-—1.We will show that

o G tyint it — Gy iap
-1 (k—=1)j+k—i+1 (k—1) j+k—i+2
Gjt1i +q  Geu—n(j+D+i-1 = pElEY .
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We have

G(k—1)j+k—i+1 — G(kfl)j+k7i+2
q2G+DGE-D

_ 1 1 Z (=1)"qW =D Q) +nC(+D=2+)=1) (_g2i+2; g2) (420 +D; );
q*Uthi=b F(q) — (=% qMn(=¢>""5 ¢%) j11

.<1 _qzi(2n+j+1) +q2n+2j+1(1 _qZ(ifl)(2n+j+1)))
1
T (1 + g2+ g2GAn =D
1 Z (_])nq(4k—2)(2)+n(2k(j+2)—2(i+j)—1)(_q2j+2; qZ)n(qZ(n+1); qz)j
Flg) (=4% qHn(=q*"+1: ¢?) j11

a +q2(2n+/+1))< GAI=D@nHj+D | om2j4 2(172)(211+j+1))>

_ 1 1 Z (_1)nq(4k*2)(’2)+n(2k(j+2>72(i+j)fl)(_q2j+2; (@D g%
(1+¢%%2) F(q) & (=% qPn (=" g% j 11

q—2(/+l)(l ”((1+q2’+2)< 21(2n+j+l) +q2n+2/+l(1 2(!—1)(2n+j+l)))

—a +q2(2n+]+l))( GH=D@uj+D) | 2n2)4 (20 2)(2n+;+1))>

3.3)
Notice that the term in the last two lines of (3.3) can be rewritten as
q—2(1+1)(z—1) <(1 + q2/+2)( 21(2n+/+1) + 2n+2j+1(1 2(i—1)(2n+j+1))>

—a +q2(2n+j+l))(1 _ GADCE D | 2n42) 4 _q2(i—2)(2n+j+1)))
“2=DGHD (] — g4y 4 gHi=Dn(] _ gAn+itDy

+ g2 (qu(i73)(j+1)(] — g™ 4 g4 _q4(n+j+l))).

=q

So, we have

Gk—1)j+k—i+1 — G—1)j+h—i+2
q2(j+1)(i—1)

B 1 1
 (1+4¢%*2) F(q)
(—1)nq W=D () +n@kG+D=2+ )= (L2742, ¢2) (204D,

2 (—49%; g*)n(—g>+1,

n>0

. (q—z(i—Z)(j+1)(1 _ gty 4 gMiDn(q _ gAoniEDy

q%);

q%)j+1
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+q2n—1(q—2(i—3)(j+l)(1 _q4n) +q4(i—2)n(1 . q4(n+j+1))))
1 1
T+ ¢ ) F(g
Z (_l)nq(4k—2)(g)+n(2k(j+2)—2(i+j)—1)(_q2j+2; q2)n(q2(n+l); qz)j
(4% P (—q* 1 ) 11

n>0

. (q—Z(i—Z)(j+1)(1 _q4n) +q4(i—l)n(1 _ q4(n+j+1)))

P S
(1+¢2%+2) F(g)
Z (_l)nq(4k—2) ’21)+n(2k(j+2)—2(l+j—1)—1)(_q2]+2; q2)n(q2(n+l); qZ)J
= (4% ¢*)n (="' ¢?) 41

. (q—Z(i—3)(,j+1)(1 _ q4n) + q4(i—2)n(1 _ q4(”+.1'+1))). (3.4)

Since the second sum of (3.4) is the same as the first sum, except i is replaced with
i — 1, we only need to consider the first sum, as a similar computation will hold for
the second sum. Taking the first sum on the right-hand side of (3.4), we have

1 1 3 (1)U E RG24 (_g2i+2; 42), (g2 FD); 42
(1 +4%/*2) F(q) (=% q)n(=g*"1: q%) j11

n=0

. =2@-2)(j+1) _ L 4n 4(i—1n _ Am+j+1)
(q 1=¢")+q 1-g¢q ))

R (= 1)@= G nQRGHD=2G+D=D (L2742, g2) (20D 42) (1 — o)
Flg) = (1 + g% +2)(—¢2; ¢)n(—q? 15 %) j 11
L q20=DG+D
1 (=1)1gH=D )+ CRGFD=2+)=1) (_g2j42; g2y (424D, @) (1 — g*o+i+D)y
Flg) = (4 g2*2)(=q% gPa (=" %) j1
L gMi=bn
1 (_1)nq(4k—2)('2')+n(2k(j+2)+2(i—j)—5)(_q2j+2; @@ D; g2 (1 — g*n)
Flg) 7 A+ g% ) (=g qM)n(—q>"+ 47) 41
_q—Z(i—])(2n+j+l)+2j+2
n 1 Z (= 1) q =D ) HrkGHDF2I=D=5) (_ g 2G+D+2; g2y (20+D); g (1 — g2+t
Flg) & A+ g%+ (=¢% g2 (=¢>"*"5 ¢%) j42
-1 +l]2j+2)(1 +q2(n+j+l)+l)
_ 1 Z (71)nq(4/<—2)(2)+n(2k(j+2)+2(i7j)75)(7q2j+2; q2)n+l(q2(n+l); q2)j+1
Flo) = A+ g2 +2)(=q% gD (=3 %) j1
. q—Z(i—1)(2n+j+3)+2j+2q(4k—2)r1+2k(.f+2)+2(i7.1’)75
n 1 Z (_1)nq(4k—2)(§)+n<2k(j+2>+2<i—j)—5>(_42(j+1)+2; g2 (gD qz)ﬁl
Fl@) & (1 +¢22)(—q% g (=11 g7) j12
¢! +q2j+2)(1 +q2(n+j+l)+l)
o 1 (_1)nq(4k—2)('21)+n(2k(j+2)+2(i—j)—5)(_q2(_f+l)+2; qZ)n(qZ(rHr]); qz)_f+|
Flg) = A+ g% (=q% q)n (=>4 j12

@ Springer



Ghost series and a motivated proof...

QRN+ (4 g 2542y (] 4 g2+
1 (71)nq(4k—2)(2)+n(2k(j+2)+2(i—j)—5)(7q2(j+1)+2; GV (g2, q2)1+1
Flq) = (I +g**2)(=q% gPa (=" 4% j42

(14 g¥H)(1 4 20D

_ 1 (_l)nq(4k—2) 2)+n(2k(j+2)+2(i—j)—5)(_42(_/+l)+2; qZ)n(q2(n+1); 42)_,'+1
F(q) & (=% gD (=" 4% 42

. ((1 QRO 2k @nt 4D 4204243 +q2n+1))

3 1 (_l)nq(4k—2)(2)+n(2k(j+2)+2(i—j)—5)(_q2(j+|)+2; qz)n(qz(nﬂ); q2)j+l
Flo) = (=42 ¢*)n(—q?"*1: q%) j12

. (1 — RN @IHHD) g 20D qZ(k—i)(2;z+i+2))) )

which is exactly Ej+l,i- Substituting 7 for i — 1 yields G —1)(j+1)+i—1. Therefore,

G (k—1)j+k—i+1 — G(k—l)j+k—i+2

— —1
Gjt1i+9 Gr-n(j+n+i-1 = ¢2GTDG—1)

S0,Gj; = G—1)jtiforall j >0and 1 <i <k.
Lastly, we use our formula for G —1)(j+1)+i to prove (3.2). For2 <i <k—1, we
have

G 1) (j+1)ti-1 + 2D G 1y 1)+i41

Go—(j++i =

1+ q20+2
_ 1 1 (_l)nq(4k—2)(2)+n(2k(j+2)+2(i7j*2)73)(_qz(j+1)+2; G2)n (g2, qz)j+1
F(g) 1+¢°0%» & (=4% qMn(=¢*" 11 %) 42
. (1 _ q2(2n+_i+2)(k—i+2) +q2n+2j+3(1 _ 42(2n+j+2)(k—i+1))>
1 qz(j+2) (_l)nq(4k—2)(2)+n(2k(_f+2)+2(i7j)73)(_qZ(j+1)+2; qz)n(qz("“); qz)jH
F(g) 1 4¢*0 = (=425 g (=q*"*15 ) 12
. (1 7q2(2n+j+2)(k—[) +qzn+2_/+3(1 _ q2(2n+j+2)(k—i—l)))
_ 1 1 (,l)nq(4k—2)(2)+n(2k(j+2)+2(i—j—2)—3)(,q2(j+1)+2; q2)n(q2<n+1); ‘12)/+1

F(gq) 14 ¢20 & (=q% q*)n(=g>"11q%) 12

. ((1 _ q2(2n+j+2)(k—i+2) +q2n+2j+3( 2(2n+j+2)(k—i+l))>

l—gq
+qz(2n+j+2)(1 — ROnHADE—D) g 243 () 7q2(2n+j+2)(k—i—1)))>
1 1 (_1)nq(4/{*2)(2)+n(Zk(j+2)+2(f*j*2)*3)(_qZ(j+1)+2; qZ)n(qZ(nJrl); qz)j-H

~ F(g) 1+¢20D Z (=% gD (=g*" 11 %) j12

>0

. ((1 + q2n+2j+3 _ q2(2n+j+2)(k—i+l)(q2n+2j+3 +q2(2n+j+2))>

n qz(2n+j+2)(1 J g2 20 A ki) (204243 +q2(2n+j+2>))>
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1 1 (,1)nq(4k—2)(5)+n(2k(j+2)+2(i—j—2)—3)(,q2(j+1)+2; q2)n(q2(n+l); 42)j+1
F(g) 14¢20 = (=q% @) (=q>"11q%) j12

. ((1 +q2(2n+j+2))(l +q2n+2j+3)

2mjH2)K=) (] J o200+ 4D (20+2)+3 +q2(2n+j+2)))

-4q
1 1 Z (_1)nq(4k—2)(2)+n(2k(j+2)+2(i—j—2)—3)(_qZ(j+1)+2; @ g2) 14
F(q) 1+ q*0+2) £ (=% @*)n(=g>"1: q%) j12

a +q2(2n+j+2))<1 4 g _ 20D i) (214243 +q2(2n+j+2))>

1 1 Z (_1)nq(4k72)(;)+n(2k(j+2)+2(i7j72)73)(_qZ(j+1)+2; qZ)n(qZ(nJrl); qz)j_H
F(g) 14 ¢?0+2 (=4% ¢®)n(=g*"*15¢2) j2

n>0

a +q2(2n+j+2))<1 _ P DG 204243 q2(2n+j+2)(k—i))>
=Gji1i

and that

2(j+D+

Gu—n(+h+k—1 — 4 "Gty 414k

G-D(j+D)+k =

1+ ¢20G+2)
1 1 (_l)nq(4k72)(g)+n(2k(_/'+2)+2(k7j72)73)(_q2(j+l)+2; PPN q2)j+l
= 7F(q) 1 +q2(j+2) = (_qZ; qZ)”(_an-H; q2)j+2
S(1 = g* @D 20D (] 20442y
1 q2<.i+l)+l (,1)nq(4k72)(§)+n(2k(j+2)+2(k—jfl)—3)(,q2(j+1)+2; qZ)n(qZ(n+l); qz)j+1
F(q) 14420+ (=4% @ (=¢**15 ) j12
n=0
. (1 _ q2(2n+j+2))
1 1 (_1)nq(4k—2)(;)+n(2k(j+2)+2(k—j—2)—3)(_qQ(_i+l)+2; ql)n(qZ(rHrl); 42)/+1
- F(@) 1+¢20 g (=4%1 g (=q*" 11 q7) 12
. ((1 _ q4(2n+_/+2) +q2(n+_/+1)+1(1 _ q2(2n+j+2)) _ qz(n+j+1)+1(1 _ q2(2n+j+2)))
1 1 (_1)nq(41\'72)('7_’)+n(2k(./‘+2)+2(k—j—2)73)(_q2(_i+l)+2; qz)n (qZ(nJrl); q2)j+|

F(gq) 14 g0+ (=% 4 (=g 15 %) 42

1>0

(1 gRCTIRDY (| _ 200+

=Gjt1ks

thus proving (3.2) for j > O0and 2 <i <«k. O

4 The Empirical Hypothesis

We now formulate and prove the Empirical Hypothesis, which is a consequence of
Theorem 3.1.

Theorem 4.1 (Empirical Hypothesis) For all j > 0 and 1 < i < k, we have
G—nj+i =1+ y (@)
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for some y(q) € C[[q]].

Proof This proof is similar to the proof of the Empirical Hypothesis (Theorem 4.1) in
[13]. We first note that when n > 1, we have

(4k—2)(r2l> +Qk(G+D+20—-j) -3 =2k(j+1)+20—-j)—3

>4+ D) +2G—j)-3
=2j+2i+1
>2j43.

So, when n > 1, the powers of g in (3.1) are all at least 2j 4 3. Thus, it suffices to
examine the n = 0 term in (3.1). The n = 0 term in (3.1) is

a- q2)(1 _ q4) co (1= q2])(1 _ q2(j+l)(k—i+l) +q2j+1(1 _ qZ(j+1)(k—i)))
(1+q9) +q3) (14 qz”]) Hm¢2 m0d4(1 —q™)

’

which is identical to the n = 0 term in Theorem 4.1 of [13], where it was proved that
it is of the form

1+¢%g(q)

for some g(g) € C[[g]]. Thus, we have that

Ge-nj+i =1+ My @)

for some y (¢q) € C[[q]]. O

Remark 4.2 We note that our use of the word “empirical” in the Empirical Hypoth-
esis is purely technical, and, unlike in [4], our Empirical Hypothesis was not found
empirically. In retrospect, by examining the combinatorial conditions in the sum sides
of the Bressoud—Gollnitz—Gordon identities, one can obtain, by experimentation, the
appropriate recursions defining shelf j 4+ 1 (which imply the Empirical Hypothesis)
by taking appropriate linear combinations of elements on shelf j and shelf j + 1.

Remark 4.3 Just as in [13], we have that

G-1)j+k = Gr-1)(j+D+1

2j+3

and 50, G (k—1)j+k = 1 + g~/ y(q) for some y (q) € Cllg]].

We now also provide an Empirical Hypothesis for the ghost series.

Theorem 4.4 Forall j > 0and?2 < i < k, we have
Gu-nj+i =1+ "y (g
Jfor some y(q) € Cllq]].
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Proof We proceed as in the proof of Theorem 4.1. When n > 1, we have

(4k—2)<;)+(2k(j-|—1)+2(i—j—1)—3)nsz(j+1)+2(i—j—1)—3

>4+ 1) 4260 —j—1) -3
=2j+2i—1
>2j+3,

where the last step follows from the fact that 2 < i < k. So, when n > 1, the powers
of g in (3.2) are all at least 2 j + 3, and thus, we only need to consider the n = 0 term.
When n = 0, we have

a- qZ)(l _ q4) s (1= q2j)(1 _ qz(j+1)(k—i+l) +q2j+l(1 _ q2(_i+1)(k—i)))
A+ g A +A 4¢3 -1+ g% ) [0 moa a1 — ¢™)

(1+47FD),

which is the same as the n = 0 term of (3.1). The result now follows. O

5 Matrix interpretation and consequences

Using (2.10) - (2.13), we have the following recursions satisfied by G, for £ > 1:

Gk-(j+D+1 = G—1)j+k> (5.1

Ga—1)jtki—1 — 7 Ganyj4k

1 +q2j+2 (5.2)

Gk-n(j+Dh+2 =

and

Gk—1)j+k—i+1 — Gk—1)j+k—i+3

-1
G-+ = =Gy agrna-a 4 Ge-niri-l (5.3)

for 3 <i < k. We note that, using (5.1), (5.2) can be rewritten as

q2j+lG(k—l)(j+l)+1 + 0+ q2j+2)G(k—1)(j+l)+2 = G(—1)j+k—1> 5.4

and that (5.3) can be rewritten as

g A+ g ™Gy anriot + L+ gD G141+

= g 20+Di- 2D Gy

(5.5)

2
)G(k—l)j+k—i+1 —q
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Define the vector
G|
Go=|: |-
Gy

and more generally, for each j > 0, define the vector

Gu-1j+1
G = :
G—1)j+k
For each j > 1, set
0 0 0 0 0 0 1]
0 0 0 0 0 1 0
0 0 0 0 g% 0 —¢g%
0 0 0 g4 0 —qg% 0
By =
v L
| g72/&=2 ¢ —g2k=2 0 0 0 |
and set
! 0 0o .- 0 0 ]
gul 14 ¢% 0 .- 0 0
0 ¢ 'd+¢*)1+4¢% .- 0 0
Co = : : : : :
: : AN D :
0 0 0 - l14g% 0
L0 0 0 g 'U4+¢*)1+4%

We now write (5.1), (5.4), and (5.5) as
CiHGi) =BG

for j > 1.
Following [13], we define

-1
Ay =B
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and note that when k is even we have

(01 0 g% ...q%0k4 0
10g% 0 .- 0 g¥&d
01 0 q4j...q2j(k74) 0
An=|::1 1 1/ : :
D701 0 g9 0 0
10g% 0 -~ 0 0
01 0 O 0 0
10 0 0 0 0

and when & is odd we have

[10g% 0 -..q% k" 0
01 0 g% -.. 0 g%k
10g% 0 -..q% 0k 0
Ap= |l s E
77010 g4 0 0
104% 0 0 0
010 O 0 0
110 0 O 0 0

Next, we define
Al =A(HC()).

For k odd we have.
Al =0 +g%)

(14+g%)"" g1 g% gbi=l... g2it=9
qu—l (1+q2j)_1 1 q4j—l q4j _Hqu(k—S)—l
(1+q%)"" g2l g2 gbi-t ... gRit=4

g¥ (14 q2/)_1 1 ghl g4
(1 +q2j)—1 PRI T
T 1+¢2) 1 0 0
1+¢¥)™ 0o 0o o0

and for k even we have
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Azj) =1+ qzj)'

— 1 -

T (1 +g%)7h 1 gHTl g 2 206D 250D
(1+4%) 1 L e T B B S R B () 0

g%! (1 + 42/)_ 1 g4t g4 .. gPItkd 0 0

: 1 : : D/ :

q2/—1 (1 +q21)_ 1 q4/—l q4/ 0 0 0
(1+¢¥)"" %=1 g% 0 0 0 0

N (1+¢) 1 0 0 0 0 0
(1+¢*)"" 0 o o0 0 0 0o |

In particular, we now have

G- = A6 (5.6)

forall j > 1.
Now, we fix an integer J > 0, which, as in [13], will denote a “starting shelf.” Now,
if j > J + 1, we repeatedly apply (5.6) to obtain
T
Gy = Al Aly) A GG = ThY G, 5.7

where we define

JhG) — A/ ’ A
W = A Ay A

and take “h) to be the identity matrix. Writing out (5.7) in component form, we
have

Ga—nyisi = {1 Guoryjar + -+ 10 G ji

where / h,(/ ) is the (i, ¢)-entry of the matrix 7h/),
Now, using the definition of h(/), we have for j > J + 1 that
VANG) ARG ES VIV
h? ="h7" A,

which we now write component-wise. First, we consider the case when k is even.
When £ = 1 we have

J (D) 2j=1(J,G=1 | J,(=1D Jp(G=1)
hy =q" (ihlj +ih T )

+ (PR R0 ), (5:8)
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when £ > 1 is even we have
) ) v - - -
IhY =1+ ¢¥)q =2 (ijhﬁj "+ 7hy )+"'+i1hl(cj—£—:l)
+(1+q2j)q(672)(2j)+2j71 (ghéj_l)+;']hé(tj_l)+“'+2]hl(cj—_ll)>’
and when £ > 1 is odd we have
. . _ . . i—1 i—1 j—1
lfhéf) =(1+q2/)q(f 2)(2j)+2j l(;’hgj )+1th(5] ))++;’h](<]_( ))
27\, (6=2)2)) (J13,G—D | J, (=D J3 (=D
+ (14 ¢*)q )(j)<ih2 +ihy +"'+ihk—£+1>'
Next, we consider the case when k is odd. When ¢ = 1 we have
I = (0 + (Y e )
2j—1(J,G=D | J, (=D J (=1
+qJ (lh2 +lh4 +"'+l'hk_1 )’
when £ > 1 is even we have
. . _ . . i—1 i—1 j—1
;’lhéj) —(1 4 ¢%)gt-D@i+2] l(ijhgj )+,~1th )+"'+ijh1(<er ))
2jy, (0=2)2)) (T, (G=D | T, (G=1) J (G—=1)
+ (1 + g¥)gt =2t J)(l.h2 + 7 hy +-~~+,-hk_[+l),
and when £ > 1 is odd we have
i i —2)2i i—1 i—1 i—1
TR —(1 4 g2)g e (,]h(lj UL )+"'+ijhl(<£e+)l)
(142 P (LD 4 TR0 e ) 5.9)

We summarize the recursions (5.8)-(5.9) as:

k—t k—(t—1)
J1 G 2j—1 2j—1 J (-1 Jp (=1
I = g2 | g2 oo lniTV+ > ey
m=1 m=1
m={+k mod 2 m#l+k mod 2
k—t k—(t—1)
o . i—1 j—1
ULl A S TR DI
m={+k mod 2 m#0+k mod 2

where §; ; is the Kronecker delta and 1 < £ < k. Moreover, we note that lj hgj) =iy
and that

Ty _
i hl -

@ Springer



Ghost series and a motivated proof...

g DRI+ 4 fUE=DCRI+D (1 — 5, ) if £<k—i+1 and £+k—1=imod?2
gH 1 (D@D 4 DRI (1 — 5y 1)) if €<k—i and £+k—1%imod2
0 if €>k—i+1.

(5.10)

We now have the following proposition, which follows immediately.

Proposition 5.1 The polynomials
tions

ijhéj)are uniquely determined by the initial condi-

J . (J)
ihy =di
and the recursions

k—¢ k—(—1)
j 2j(t—1 2j—1 —1 j—1
Ihi) = g2 | g2 oo i+ > g

m=1 m=1
m={+k mod 2 m#{+k mod 2

k—t k—(¢—1)
c - i—1 j—1
+ (1= 8¢,1)g% 2 | g2 ! Z l’hﬁ,{ )+ Z ljhfr{ )

m=1 m=1
m={+k mod 2 m=#£{+k mod 2
(5.11)

forj>=J+1.

6 Combinatorial interpretation of the G; and ég

In this section, we finish our motivated proof and give a combinatorial interpretation
for the series G (x—1)s4; with 1 < i < k. We also give combinatorial interpretations
for the ghost series G(k,l) J+i wWith 2 < i < k. In order to obtain combinatorial
interpretations for our series G (x—1)s+; and G(k,l) J+i, we first give a combinatorial
/n.

interpretation of the polynomials ;

Proposition 6.1 Forj > J+1landl <i,l <k, thepolynomialijhéj) is the generating
function for partitions . = (by, ..., bs), withby > ... > b, satisfying the conditions:

1. No odd parts are repeated,
2. far1 W) + far42(0) <k —1,
3. fu) + far1(M) + frug2(X) <k — 1 forallt >0,
4.0 for (W) + far+1(A) + for42(X) =k — 1, then
tha )+ @+ D) (fas1 ) + far2(R) = k= 1) J +k —i+ V() mod 2,

5. the smallest part by > 2J,
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Omod2 if £+ (k—1)(j—J)=imod?2

6. VY(j) = Imod2 if £+ (k—1)(j—J) #imod?2,

7. the largest part by < 2j,
8 fojM)eft—1,£-2}NN.

Proof Let ll ﬁy ) denote the generating function for partitions A satisfying conditions

1-8 of the proposition. We verify thatijfzéjﬁ) = iJhEJH) and that, for j > J 42, ijfzgj)
satisfies the recursion (5.11). In the case j = J + 1, we have fo;40(X) e {£ — 2,4 —
13NN, and fo541(A) = 0 or foy54+1(A) = 1. First, consider when f2511(A) = O.
If fo742(A) = £ — 1, then, by condition 2, we have £ < k — i + 1. Similarly, if
frj42(A) =€ —2,then £ < k —i + 2. However, if £ = k — i + 2, then

(k—i+2)+k—1=—i+1%imod?2,

which implies f>74+1(A) = 1 by condition 6, a contradiction. So, we must have £ <
k — i + 1.In the case when £ = k and i = 1, condition 4 is satisfied because

+DEk=-D)=*k-DJ+k—-1+V()=Ck-DJ+k—=-14+V (J+1)

since V) (J) = V(J 4+ 1) = 0. Thus, if A satisfies conditions 1-8 and f>741(1) = 0,
then A is counted by

q(Z—l)(21+2) + q(l—z)(2J+2). 6.1)

We note that in the case £ = 1 there is no case where f>;42(A) = £ — 2 and so in this
case A is counted by the first term in (6.1). Conversely, we can see immediately that if
A is counted by (6.1), then it is also counted by ijfzéjﬁ).

Now, consider when fo541(A) = 1. If fo540(X) =€ — 1,then £ < k — i, and if
fri42(A) =€ —2,then £ < k — i+ 1. However, if foy42(A) =k —i + 1, then we
arrive at a contradiction since

k—i+1)+k—1=imod?2

implies f74+1(X) = 0 by condition 6. Thus, £ < k — i. As before, if £ = k — 1
and i = 1, then condition 4 is satisfied. Therefore, if A satisfies conditions 1-8 and if
f2741(A) = 1, then A is counted by

g¥H (gD | ((=2)2T+2)) 6.2)

(q

We note that in the case £ = 1 there is no case where f>;2(A) = £ — 2 and so in this
case A is counted by the first term in (6.2). Conversely, if A is counted by (6.2), then
it is also counted by lJ fzéjﬂ). We conclude that

JpU+D) _
ihy -
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qtDCI+2) 4 DRI (] — 8, 1) if ¢<k—i+1 and {+k—1=imod2
gH 1 (D@D 4 EDQIHD (1 — 5y 1)) if €<k—i and £+k—1%imod2
0 if £>k—i+1,

which agrees with lj hyﬂ) by inspection of (5.10).
Now, consider j > J + 2. The partitions A satisfying conditions 1-8 of the propo-
sition can be divided into two sets: those where f; 1(A) = 0 and those where

i) =1
First, we consider when f>;_1(A) = 0. In this case, the partitions in question have
either the form

((2]')5*‘,19@,...,195) or ((2]')‘*2,19[_1,...,193),

where Ay = (by, ..., by) and Ay = (by—1, ..., by) are partitions satisfying the first 6
conditions of the proposition having largest part at most 2 j — 2. By condition 3 of the
proposition, when f>;(A) = £ — 2, itis clear that f>; 2(A) < k — (£ — 1). Notice that
if f2j2(4) =k — (£ — 1), then, by condition 4, we have

G =Df2j2)+j(f2j-1(M) + ;A =G =Dk —L+1) + j(£—-2)
=0+ k—-1j—k—1
=k—1J+k—i+V(—1) mod2,

and thus,
b4+ k=1 —J)=1—i+V2(—1)mod 2.

However, condition 6 now implies i = i — 1 mod 2, since V?(j — 1) = V(j), a
contradiction. Thus, we have f>;_2(A) < k — £. Therefore, for r = 1, 2, we can see

that X, is counted by some i]ﬁf;{_l) forl <m <k — (£ —1). Since it is always the
case that V?(j) = Vfr(j — 1), we have V/(j) = Vfr(j — 1) mod 2, which is, by
condition 6, equivalent to

b4+ k=1 —J)=m+ (k—1)(j —1—J) mod 2.

However, this can be rewritten as m #% ¢ + k mod 2, and so we have that A; and A;

are counted by lj fzi,{ _1), where m # £ 4+ k mod 2. Hence, if A satisfies conditions 1-8
with f>;_1(A) = 0, then A is counted by

k—(e~1) k—(e=1)
sop ~(ji—1 sop_ ~(i—1
A D 4 A A B S 4 AP ()

m=1 m=1
m=#£L+k mod 2 m=#£{+k mod 2

Note that if £ = 1, then there is no case where f2; 2(A) = £ — 2. Thus,if £ =1, A
is counted by the first sum in (6.3). Conversely, assume A is counted by lJ fz,(,{ = for
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some 1 <m <k — (£ —1) that satisfies m # £ +kmod 2. If fo; >(A) =m — 2,
then it follows immediately that ((2;)¢~!, A) and ((2)¢~2, A) are counted by ijﬁéj).
Similarly, if f>;_2(A) = m —1, then ((2/)2, 1) is counted by i’fzéj). We can also see
that ((2)¢~1, 1) is counted by / '/’ because whenm = k—(¢—1)and fo;(A) = £—1,
we notice that, since f>;_2(A) =k — £, we have

G=Df2j2)+j(f2j-1M)+ ;M) =G —Dk =0+ jl—-1)
=0+ k—1j—k
=(k—1J+k—i+V(—1) mod2,

where the last congruence follows from condition 6, and thus condition 4 holds since
Ve = 1) = V2().

Next, consider partitions where f>;1(A) = 1.Inthis case, the partitions in question
have either the form

((2]')“,21'—1,b£+1,...,bs) or ((2]')‘*2,2]'—1,bg,...,bs),

where ] = (bg41, ..., by) and A = (by, ..., by) are partitions satisfying the first 6
conditions of the proposition with largest part atmost 2 j —2. When f;(A) = £—2, we
have, from condition 3, that f2;_»(A) < k—{; however, as before, if fo; _2(X) = k—£,
then condition 4 is violated, and thus, we have f>; >(A) < k — £ — 1. Furthermore,
by condition 3, we have that if f,;(A) = £ — 1, then f2; 2(1) < k — £ — 1, and,
as above, we have that condition 4 is satisfied when f>; 2(A) = k — £ — 1. Thus,
f2j—2(A) < k — £ — 1. Therefore, forr = 1,2, A; is counted by some i’fzﬁ,{_l) for
I <m < k— . Since it is always the case that V)(j) = V) (j — 1) + 1, we have that
V() = Vf;‘ (j — 1) + 1 mod 2, which is, by condition 6, équivalent to

C+k-DG-DN=m+ k-1 —-1—J)+ 1 mod?2

for1 < m < k—£. However, this can be rewritten as m = £ +k mod 2, and so, )Jl and
)‘/2 are counted by lJ ﬁ,(,{ 71), where m = £ + k mod 2. Hence, if A satisfies conditions
1-8 with f>;1(A) = 1, then A is counted by

k—¢ k—¢
s . ~(i—1 sy i ~(j—1
q2](£ H42j—1 Z ,Jhirz/ )+q2](ﬁ 2)+2j—1 Z ,Jhgr{ ). (6.4)
m=1 m=1
m={+k mod 2 m={+k mod 2

Again, note that if £ = 1, there is no case where f2; _2(A) = £ — 2. Thus, if £ =1,

X is counted by the first sum in (6.4). Conversely, assume A is counted by IJ fzf,{ D for
some 1 < m < k — £ that satisfiesm = £ +kmod 2. If f>; >(A) = m — 2, then it
follows immediately that ((27)¢~",2j — 1, ) and ((2j)¢"%,2j — 1, 1) are counted
by /i Similarly, if f2;_2(A) = m — 1, then ((2j)¢~2,2j — 1, 1) is counted by
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i’fz,(zj). We can also see that ((2j)£_1, 2j — 1, ) is counted by ijfzy) because when
m = k — £, condition 4 is satisfied.
Thus, we conclude that the partitions satisfying conditions 1-8 are counted by

k—t k—(¢—1)
J7 () 2j—1 2j—1 2 : J7(j—D 2 : J7 (=D
ihij =q]( ) qJ lh”{ + l]’ln{
m=1 m=1
m={+k mod 2 m#{l+k mod 2
k—t k—(¢—1)
(06— i— ~(j—1 ~(j—1
U N il P SEL T NS S Tl B
m=1 m=1
m={+k mod 2 m#{+k mod 2

which is the recursion (5.11). This proves the proposition.
O

Next, as an important step in our motivated proof of the Bressoud—Gollnitz—Gordon
identities, we will need the following result:

Corollary6.2 For j > J + 1 and 1 < i < k, the polynomial ijh(lj) + ijh;j) is the
generating function for partitions A = (b1, ..., by), with by > ... > by, satisfying
the conditions:

1. No odd parts are repeated,

2. far+1) + fag42(1) <k — 1,

3. fa) + farp1 () + far2(A) <k — 1 forallt >0,
4. if for (M) + farr1 W) + farg2(X) =k — 1, then

tfa () + (t + D) (farr1 V) + farr2(W) = (k=D J +k —i + V() mod 2,

5. the smallest part by > 2J,
6. the largest part by < 2j,
7. fj(A) € {0, 1}.

Proof Consider the partitions counted by
Proposition 6.1 becomes

iJ hgj ). We can see that condition 6 in

Omod2 if 1+*k—1)(j—J)=1imod?2

Vi) =
1mod2 if 1+ (k—1)(j —J) #i mod 2.

Ifl1+4+(k—1)( —J)=imod 2, then ijhﬁj) counts partitions of even integers. This
implies 2+ (k — 1)(j — J) # i mod 2, and so lj hé" ) counts partitions of odd integers.

Similarly, if 1 + (k — 1)(j — J) # i mod 2, then lJ hgj ) counts partitions of odd

integers and lj h;j ) counts partitions of even integers. Thus, we can see immediately

from Proposition 6.1 that lj hﬁj ) 4+ lj hgj ) counts the partitions A satisfying conditions

1-7 of the Corollary. O
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Now, we complete our motivated proof of the Bressoud—GolInitz—Gordon identities
by giving a combinatorial interpretation for the series G (,—1)+;. The identities follow
when we set J = 0. In this proof, we use the definition of the limit of a sequence
of series in C[[gq]], which we now recall from [13]. Let {A (q)}?o=0 be a sequence of
elements of C[[¢]]. We say that

lim Aj(g)
j—0o

exists if, for each m > 0, there is some J;,, > 0 such that the coefficients of g™ in each
series A j(g) are equal for j > Jy,. In other words, the limit exists if the coefficients
of each power of ¢ stabilize as j — 0o. We now have the following result:

Theorem 6.3 For 1 < i < k, the power series G —1yj+i is the generating function
for partitions . = (by, ..., bs), withby > ... > by, satisfying the conditions:

1. No odd parts are repeated,

2. fr+1 ) + fag42(1) <k — 14,

30 fu) + far1(N) + faut2(X) <k — 1 forallt >0,
4. if for() + for1(XN) + for42(0) =k — 1, then

tfa () + (t + D) (farr1 V) + farr2(W) = (k= 1) J +k —i + V(1) mod 2,
5. the smallest part by > 2J.

Proof Foreach1 <i <kand j > J + 1, we have

k
G—1)J+i = Zijhgil)G(k—l)j-ﬁ—n-

n=1

First, we show that

jli)n;o Iy =0 (6.5)

for all £ > 2. For m > 0, consider the coefficient of g™ in IJ hy ). Taking J,, > %

we can see that if j > J,, then the coefficient of ¢ in lJ hgj ) is 0, thus proving (6.5).
Since the coefficients of G(x—1)s4; are stable as j — oo, the following limit exists:

k
G-1yJ+i = lim Zijh;j)G(k—Uﬂrn-
j—o00

n=1
Furthermore, by (6.5) and the Empirical Hypothesis, we can see that
k . k ' k
fim 3 G = 3 Jim {1 Fm Gijon =300-1=0
n=3 n=3

J—>00 n:3
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because
'lim G(k—l)j+i =1
Jj—>00

for 1 <i < k. So, we have
k . k .
Gk-1ys+i = lim Zijhgl])G(kfl)jJrn — lim Zijhlgj)c(kfl)ﬁrn
]A)OOn_l ]‘)OOn:?’

= lim (ijhij)G(k—l)j-H +ijh(2j)G(k—l)j+2)
—00

J
_ jllf{lo (;']hij) + i’hé” +q2j+1y(q)>
for some y (q) € C[[g]] by the Empirical Hypothesis. We can see that
lim ¢!y () =0
J—>0o0

because, for any m > 0, taking J,,, > ’"T_l, j = J, implies that the coefficient of g™

in g2ty (¢) is 0. Thus, we have
Gunsi = lim (I + /Y + g1y ()
/—)OO
— lim ¢**'y(g) = lim (,.fh§ﬂ+ghgf'>).
j—>00 j—00

Finally, let lj héj; be the generating function for the partitions A with generating

function ijhgj) satisfying f2;(A) = o, where @ = 0, 1. Then we may write

J1p () _T(G) T ()
Phy” = hslo+; hy) (6.6)
We note that
Jim /s =o0. 6.7)

Thus, using (6.6) and (6.7), we have

Gu-1)J+i = lim (ijhgj) + i]h(zj)>
j—o00

~ tim (V40 + 760+ 1)
j—0o0 ’ ’

= 1im (7n{" +/n$)

Jj—00
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where we note that lJ hgj ) 4 ZJ hé’ ()) is the generating functions for partitions satisfying

conditions 1-6 of Corollary 6.2 and whose largest part is less than 2 j. We conclude
that as j — oo, conditions 6 and 7 of Corollary 6.2 vanish, thus proving the theorem.
]

Finally, we give a combinatorial interpretation of the ghost series, G.

Theorem 6.4 For2 < i < k, the power series G(k_l) J+i IS the generating function
for partitions A = (by, ..., bg), with by > ... > by, satisfying the conditions:

1. No odd parts are repeated,

2. farr1 V) + fay42(0) <k —1,

3. fu) + far1(M) + faug2(R) <k — 1 forallt =0,
410 fu(A) + fa1 (M) + fori2(A) =k — 1, then

M)+ @+ 1D (1) + frr2A) =k — 1D J +k
—i 4+ 14 V2(r) mod 2, (6.8)

5. the smallest part by > 2J.

Proof Using (2.11) - (2.13), we have for / > 0 and 2 < i < k that

G —1ys+k = G- (+1)+2 (6.9)

2J+2)(k QJI+2)(k—i—1)+2J+1

Gu-1ys+i =4 DG -1+ th—it2 + 4

G-+ +k—i+1 + Gl—1)s+i+1- (6.10)
We first consider the case of G(k_l) J+k- Let A be a partition counted by

G (k—1)(J+1)+2-

It is immediate from Theorem 6.3 that A satisfies conditions 1,2, 3, and 5 of our
theorem. Moreover, we note that the parity condition (6.8) of our theorem is the same
as that which A has from Theorem 6.3 since, for all r > 0,

k+DJ+k—k+1+VO) =Gk —-DJ +1)+k—24V(t) mod 2.

Hence, A satisfies the conditions of the theorem and (6.9) holds.

Now, we consider the case of G(k_l) J+i- Let A be a partition counted by the right-
hand side of (6.10). It is immediate from Theorem 6.3 that A satisfies conditions 1, 2,
and 5 of our theorem. We verify that A satisfies conditions 3 and 4 of our theorem for
each of the cases.

First, we consider partitions A counted by

q(2j+2)(k_i)G(k7])(J+1)+k7i+2~

By condition 2 of Theorem 6.3, we have f2;4+3(1) + fay4a(A) < i — 2. Since
f2742(0) = k—i,wehave f2712() + f2713(A) + f274+4(1) < k—2.Thus, condition
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3 of our theorem is satisfied. Additionally, we note that G (x—1)(J+1)+k—i+2 has the
same parity condition as that of our theorem since, for all # > 0, we have

(k—1)]—|—k—i+1+Vf(t)E(k—1)(J+1)+k—(k—i+2)—|—Vfl(t)mod2,

where Ay is a partition counted by G —1)(s+1)+k—i+2. Further, Vfl (t) remains
unchanged by the addition of the k — i parts 2J + 2. Hence, A satisfies the conditions
of our theorem.

Next, consider partitions A counted by

q(2]+2)(k—i—1)+21+1G(kfl)(j+1)+k7i+1 .

By condition 2 of Theorem 6.3, we have f>;43(A) + f2744(A) < i — 1, and since
S242(0) = k —i — 1, it follows that f;42(A) + f25+3(X) + f25+4(A) <k —2s0
that condition 3 in our theorem is satisfied. Here, we note that partitions counted by
G (k—1)(J+1)+k—i+1 do not initially have the same the parity condition as our theorem
since, for all ¢ > 0,

(k=1J +k—i+1+ V2O # k=D +D+k—k—i+1)+ V() mod 2,

where A, is a partition counted by G (x—1)(s+1)+k—i+1. However, this is corrected with
the addition of the part 2J + 1. So, A satisfies the conditions of our theorem.

Finally, assume X is counted by G (x—1)/+i+1. Condition 3 of our theorem is imme-
diate. Further, we have that G (¢_1)/4;+1 has the same parity condition as that of our
theorem since, for all t > 0,

k=1DJ+k—i+14+VE) =(k—DJ+k—G+1)+ V2(t) mod 2,

Hence, A satisfies the conditions of our theorem.
The converse follows similarly by removing the parts 2/ + 1 and 2J + 2 from a
partition counted by G (k1) 4. O

Remark 6.5 (cf. Remark 2.1 in [31], Remark 7.6 in [24], Remark 6.6 in [13]) We note
that as discussed in [4], [35], and [3], an alternate proof of Theorem 6.3 and Theorem
6.4 which uses only the Empirical Hypothesis and does not use the combinatorial
Jp, ()
J

l

interpretation of the polynomials may be given as follows: Let Hy, H,, ... and

Hy, H,, ... be sequences of formal power series satisfying (2.10) - (2.13) and the
Empirical Hypothesis (with H, in place of G, and Hy in place of G, for £ > 1).
It follows that the H; and H, are uniquely determined by these recursions and the
Empirical Hypothesis. It is easy to see that the generating functions counting the
conditions in Theorem 6.3 and Theorem 6.4 satisfy the recursions and Empirical
Hypothesis as well. We also have proved that the G4 and Gy satisfy these recursions
and Empirical Hypothesis as well. Therefore, by uniqueness, we have Theorem 6.3
and Theorem 6.4.
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Remark 6.6 Although it is not necessary in our proof, we note that, as in Remark 7.5
in [24], we can define the ghost by

G = G». 6.11)

Indeed, extending Theorem 6.4, we see that conditions 1-5 in Theorem 6.4 with J = 0
and i = 1 agree precisely with conditions 1-5 in Theorem 6.3 with / = 0 and i = 2.
Additionally, (6.11) can also be understood using the left-hand and right-hand sides
of (2.11) with j = —1. We explore this phenomenon in more generality in the next
section.

7 An (a; x; q)-dictionary for the Bressound-Goéllnitz-Gordon
identities and the ghost series

In this section, we establish a dictionary between our series on various shelves with
the series jk,,-(a; x; q) defined in [12] with variables specialized appropriately. We
also give “ghost series” corresponding to fk,,-(a; x; q) and explore their properties.
Recall from [12] the series

(may'q" B (L — 2T (—x: (=1 /@ @)n (axq" s @)

Hii(as x5 q) =
' 2 (G2 ¢ (xq"; @)oo

n>0

7.1)
and
Jei(a: x;q) = Hei(a: xq: q) + axqHy i1 (a: xq: q). (7.2)
Using (7.1), we write (7.2) as

(—ay'q"r -~ =ing 6=Dn(—xg: g, (—1/a; @n(—axq"™*?; @)oo
(@ gPn(xq" ! @)oo

Jitasx;q) ="

n>0

. (1 _xiq(2n+l)i +aan+1(1 _xi—lq(2n+1)(i—l))) ) (7.3)

~ Our dictionary between the series G¢ for £ > 1 in the current work and the series
Ji,i(a; x; g) in [12] is thus given by the following result:

Proposition 7.1 For 1 <i <k, we have
G—tyj+i = Jik—i+1(1/q; g% ¢). (7.4)
Proof This follows immediately from (7.3). Indeed, we have
Jer—i+1(1/q: 4% 5 q%)
(_1/q)ankn272('2’)+2kn72(k7i+l)anj(kfl)n(_q2j+2; qZ)n(_q; q2)n (_q2”+2j+3; qz)oo

=2 (g% gn(@? 272 %) o0

n>0

(1 = gROmHFD Gt L 24201 (20D k=D
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Noticing that

2j+2. 2)n(_q2n+2j+3.

a2 (—q5 q ;4% oo
(6] ’q4) (q2n+2j+2.q2)oo
(4¢P (= qz”“,qz) 11 (=g ) oo (=g 22 qP) (g™ )
(@ qDn(=q% gD (—q? 5 g2 j1(@P 2 ) oo (q2 2 42)
(=4 4D (=42 g7 (g7 D)
(=% gD (=¥ ) 1102 4P oo
1 (=g gD )
(@) (=% gD (=g gD

where we recall that - = EL4)x
F(4> (4@%:9M)

(—q

now gives us precisely (7.4). O

Before we proceed, we recall some important properties of Hk i(a; x;q) and
Jk i(a; x; q). In[12], the following fundamental properties of Hk,(a X; q) are proved:

Lemma?7.2 ([12], Lemma 2.1)

Hiola; x;q) = 0 (7.5)
Hi—i(a;x;q) = —x " Hyi(a; x;q) (7.6)
Hii(a; x;q) — Heio(a; x5 q) = x' 721+ x)Jrk—it1(a; x; q). (1.7)

They also prove the following fundamental properties of fk’i (a; x; q):

Theorem 7.3 ( [12], Theorem 2.2)

i@ xiq) = Jek(a;xq; q) (7.8)
Jea(asx;q) = (L4+xq)Jki—1a; xq; @) + axqJi k(@ xq; q)
(7.9)

Jeilas x;q) — Jii—a(@; x;q) = (xq) (1 + xq) Je k—i+1(a; xq; q)

+ a(xq) 21+ xq) Jex—iva(ai xqi q).  (7.10)
We note that, using (7.8), we can rewrite (7.9) as

- Jio(a; x5 q) — axqJi 1(a; x; q)
Jik—1(a; xq; q) = T+ xq (7.11)

and that (7.10) can be written as

Jri(a; x; q) — Jri-a2(a; x; q)
(xq)'~2(1 + xq)

— aJy k—i+2(a; xq; q).

(7.12)

Jik—iv1(a; xq; q) =
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In fact, after specializing (a; x; ¢) to (1/q; g*/; ¢%) in (7.8), (7.11), and (7.12), we
obtain (5.1) - (5.3). The necessity of our ghost series may then be motivated as a way
of introducing new series into (5.1) - (5.3) so that division by only a pure power of g
is necessary (that is, we wish to obtain a recursion that does not involve dividing by
1+ q2j *2). In our current setting, we wish to rewrite (7.11) and (7.12) so that division
by 1 + xq is not necessary.

With the discussion above in mind, we now define an (a; x; g) version of our ghost

series. We will use fk,,-(a; x; q) to denote the ghost series in this section. Motivated
by (2.11) - (2.13), we define the series jk,,-(a; x;q)forl <i <k —1 as follows:

Je2(as x5 q) — Je1(as; x5 )

Jek—1(a; xq; q) = —aJii(a, xq,q) = Ji1(a; x; q)

Xq
(7.13)
and
. Joiaxiq) — i@ xq) -
Jek—it1(a; xq; q) = == — — aJik-i+2(a; Xq; q)
(xq)!
Jei-1(a; x:q) — Jria(a; x5 q) = L
= — —aJyj-i+2(a; xq; q).
(xq)’
(7.14)
Using (7.13) and (7.14), the ghosts can be expressed as
z i ;X3 Jri1(a; x;
Joitas x q) = et @0 O H X0 Nin @555 0) (7.15)
14+ xq
for2 <i <k-—1and
2 Jeo(a; x; q) — axq i (a; x; q)
Jri(a; x5 q) = . (7.16)
1+ xq
We note, using (7.5) and (7.6), that (7.16) is just
= Jea(a; x5 q) — axqJi 1 (a; x5 q)
Jea(as x; q) =
1+ xq
Hi2(a; xq; q) + axq Hi 1 (a; xq; 9) — axq(Hi 1 (a; xq; 9) + axq Hy 0(a; xq; 9))

1+ xq
_ Hio(a;xq; 9)
l+xqg
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In fact, again using (7.5) and (7.6) and setting i = 1 in (7.15), we have that

Ji2(a; x: q) + xqJo(a; x; q)

14 xq
 Hio(aixq: q) + axqHy1(a; xq: q) + xq(Hio(a; xq; q) + axq He —1(a; xq: 9))
1+ xq
_ Hiolas xq; q) + axqHy 1(a; xq; q) + xq(0 — axq(xq) ™" He 1 (a; xq; )
B 1+ xq

_ Hiolas xq; q)
1+ xq

so that we may use equation (7.15) to define fk,l (a; x; q) as well.
We also extend (7.15) to the case i = k. Before doing so, we prove

Lemma 7.4

Tek41(a; x; @) = Jxk—1(a; x; q).

Proof We use (7.5) - (7.7). Indeed, we have

- o Hyo(a; x; @) — Hi,—2(a; x; q)
Jikr1(as x; q) = P e

_ Hrolaixiq) = (—x) Hio(@ xiq)
x2(1 +x)
_ Hy2(a; x; q)
(14 x)
_ Hia(a; x; q) — Hiolas x; q)
14+x)
= Jrk—1(a; x; q).

Extending (7.15) to the case i = k gives us

Jek1(@; X5 @) + (xq) T k—1(a; x; q)
1+ xq

Jek—1(a; x; @) + (xq) Jek—1(a; x; q)
1+ xq

Jix(a; x; q)

= Jik—1(a; x; q), (7.17)

which, as we’ll see below, corresponds exactly to the identification made in Remark
6.6.
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We are now ready to provide a dictionary between the ghost series Gy and

Jkl(a x; q). We have the following formula for Jkl(a x;q), where 1 < i < k.
Proposition7.5 For1 <i <k,
Jri(a x; q)

2 n .
! Z(—a)"qk" @D 6N (2 g (—1/a5 @n(—axg" o
1 +xq —~ (@%: qHn(xg" ' @)oo

. (1 +xq2n+l) (1 _xiq(Zl’l"rl)i +aan+l(1 _ xi—lq(2n+l)(i—l))) .
Proof Using (7.3), we have

Jeiv1(a; x5 q) + xqJxi—1(a; x; q) =
Z (_a)nqknl—(g)+kn—(i+1)n

n>0

(1= xitl (2n+1)(l+1)+aan+l(1 xiq(2n+1)i))

n, kn?
+qu (—a)"q

n>0

(1= xiTg@rDE=D gyt — xi=24CrDG-2)y

=2

n>0

. (1 _ yiFgCnEDGED | gy gntl (] i gCntDi))

x®=D(—xg; @)p(—1/a; @)n(—axq™ )

(g% ¢Pn(xq" ! @)oo

—(5)+kn—(@i—Dn n+2)C><J

x®&=Dn(—xq; @)n(—1/a; @)n(—axq
(4% ¢2)n(xq"; @)oo

(_a)nqknz—(g)+kn—(i+1)n 2y

x®&=Dn(—xq; @)n(—1/a; @)n(—axq
(4% ¢2)n(xq™ 1 @)oo

+xqzn+1(1 _xiflq(2n+1)(i71) +aan+1(1 _xi2 (2n+1)(i72))>

q
_ Z (_a)nqkn
n>0

) (1 — xiHlg@ADGHD gl g il Gt Didnatd

2—(3)+kn—(@i+Dn n+2)oo

x®&=Dn(—xq; @)n(—1/a; @)n(—axq
(q% ¢Pn(xq" ! @)oo

q

+ 2n+1 _ z (2n+1)t+ax2 3n+2 i (2n+1)(i- 1)+n+1)

xq x'q —ax'q
=2

(—a)'q kn?—(5)+kn—(i+1)n
n>0

. (1 + xq2n+1 q(2n+1)z i+1q(2n+l)(i+])

x &= (—xg; @)n(—1/a; @In(—axg™ )

(@% ¢ (xg™"; @)oo

+aan+1 2 3n42 i @nADG—=Dn+1l _ o it] (2n+1)i+n+1)

+ax“q —ax q q
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2_(n —(i _
_Z(—a)"qk" Q) Hkn=(+Dn k=D (—xg; g), (=1 /a; On(—axq"+?)oo
(@2 ¢*)n(xq" ™ @)oo

n>0

e +xq2n+1) (1 _ xiq(2n+l)i _qurm(1 _xi—lq(Zn-H)(i—]))) )

The claim now follows from (7.15). ]

Using a proof similar to Proposition 7.4, and in light of Remark 6.6, we now
immediately have:

Proposition7.6 When j =0and 1 <i <k orwhen j > 0and?2 <i <k, we have

Gu—1yj+i = Jkk—i+1(1/q, 4%, ¢*).

We note here that this proposition can now serve as a definition for G(k,l) j+1, which
has only been defined for j = 0 in Remark 6.6.

We nowNexplore the series JNk,,' (a; x; g) in more detail, and note its similarities to
the series J(a; x; q). Using (7.15), we have, for | <i <k — 1, that

Jriv1(a; x5 q) + xqJxi—1(a; x; q)

Jeilas x;q) = T+ 7q

Hy i1 (a; xq; @) + axqHy i (a: xq; @) + xq (ﬁk,H (a:xq; q) + axqHy,i—>(a; xq; q))
I +xq

Hiiv1(a; xq; q) + xq Hy i—1(a; xq; q) Hyi(a; xq: q) + xq Hy j—2(a; Xq; q)
+axq . (7.18)
1+xq 1 +xq

Let

Hiiv1(a; x; q) + xHyi—1(a; x; q)

Hii(a,x,q) == T x

so that (7.18) can be written as

jk,i(“? x;q) = f}k,i(a; xq:q) +aquf1k,i71(a; xq;q).
We propose the following definition for J:k,,- (a; x; q),inplace of (7.15),for 1 <i <k:
Definition 7.7 For k > 2, we define

Jri(a; x; q) = Hei(a; xq; q) + axqHy i—1(a; xq; q).

We also note that we have the following properties, which follow immediately from
(7.5) and (7.6).
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Lemma 7.8

I":Ik,0(61§ x;q)=0 (7.19)
Hy—i(a;x;q) = —x "' Hyi(a; x; q). (7.20)

Proof We first show (7.20). We have

Hi _iv1(a; x;q) + xHy_i_1(a; x; q)

k, ia; x C]) T~
_ —x T H G (as xs q) — x T He iy (as X3 q)
14+x
_ —iHkiv1 +xHio1(a:x; q)
1+x
= —x_"I:Ik,,-(a;x; q).
Now, (7.19) follows from (7.20) with i = 0. O

Lastly, we conclude with a combinatorial interpretation of the jk,i(a; x; q). The
proof is nearly identical to the proof of Theorem 6.4 and follows from Theorem 1.1 in
[12]. For an overpartition A of a nonnegative integer, n, let V; (£) denote the number
of overlined parts in A which do not exceed £.

Theorem 7.9 For 1 <i <k, let ¢x,i(j, m, n) denote the number of overpartitions i
of n with m parts and j overlined parts satisfying the conditions:

I i)+ ) =i—1,
2. o)+ for1 ) + fr) <k -1,
30 feO) + fer1tW) + frm (W) =k — 1, then

Efe) + €+ D(fer1W) + frr() =i 4 Vi(€) mod 2.

Then

Jeitaixiq)= Y &i(j.m.nalx"q".

j.m,n>0
Proof From Theorem 1.1 in [12], we have that
Jeiax;q) =Y ci(j,m malx"q".
j,m,n>0

where ¢ ;(j, m, n) denotes the number of overpartitions A of n with m parts and j
overlined parts satisfying the conditions

L i)+ fr0) <i— 1,
2. feO) + ferO) + frp) <k — 1,
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3.0f foW) + fer1W) + fp(0) =k — 1, then
Lfe) + L+ D(fe41(A) + frr(r) =i+ 1+ Vi(€) mod 2.

From this, we have that ]Nk,,- (a; xq; q) is the generating function for overpartitions A
into m parts with j overlined parts satisfying

L AW+ 00 <i—1,
20 fe) + fer1 W) + frm) <k =1,
3.0f for1 () + fer2 (M) + frz(A) = k — 1, then

C o1 ) + €+ D(fes2W) + frz) =i+ 1+ Vi(€ + 1) mod 2.
(7.21)

Making the substitution £ — ¢ — 1 and using fe(A) + fe41(A) + frx() =k — 1,
equation (7.21) can be rewritten as

Lfe) + L+ D(fe+1(M) + frr(R) =k +i + Vi(€) mod 2.

Thus we have that jk, i(a; xq; q) is the generating function for overpartitions A into m
parts with j overlined parts satisfying

L AW+ (0 <i—1,
2. fi) + fer10) + frrO) <k — 1,
3.0 fe() + fer1 V) + frr(h) =k — 1, then

Cfe) + €+ D(fea1 (W) + frm(W) =k +i + Vi (€) mod 2.

Now, using this fact along with (7.13), (7.14), (7.17) and an argument similar to
Theorem 6.4 gives the desired result. O

Remark 7.10 Using the ideas in this section, it is now clear how to set up a similar
motivated proof for any partition or overpartition identity arising from the study of
the series fk,i(a; x; q). For example, as in Corollaries 1.2—1.4 of [12]. Although
the vertex-algebraic interpretation of the ghost series is not clear, we expect that the

ghost series fk,,- (a; x; ) will have interesting combinatorial properties related to the
properties of the series Ji ; (a; x; g), which are the subject of [12].
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