
Unleashing Energy-Efficiency: Neural Architecture

Search without Training for Spiking Neural

Networks on Loihi Chip

Shiya Liu, Yang Yi

Bradley Department of Electrical and Computing Engineering,

Virginia Tech, Blacksburg, Virginia, 24061, USA

E-mail: {shiyal, yangyi8}@vt.edu

Abstract—Spiking neural networks (SNNs) offer energy-
efficient computation due to their high-sparsity activation and
event-driven nature. However, existing SNN designs often utilize
suboptimal artificial neural network (ANN)-like architectures for
binary sequence processing. Moreover, improving accuracy often
leads to higher computational complexity, making it difficult
to deploy SNNs on resource-constrained devices. Furthermore,
SNN architectures tailored for GPUs may not fully exploit the
energy-efficient capabilities of SNN models. To address these
limitations, we present a novel neural architecture search (NAS)
algorithm that merges recent advancements in ANNs and focuses
on enhancing SNN architectures specifically for the Loihi chip.
The Loihi chip is a neuromorphic computing chip designed to
emulate the brain’s neural networks, with particular strength in
event-driven SNNs, making it an energy-efficient alternative to
GPUs. Our algorithm efficiently selects an optimal architecture
by leveraging gradients induced at initialization across diverse
data samples, eliminating the requirement for training. We
propose to design a search space that aligns with the chip’s
capabilities, taking into account its support for integer-only
inference and the lack of advanced operators such as backward
and shortcut connections. Experimental results on two image
classification benchmarks demonstrate the superiority of our
SNN models, which achieve comparable accuracy to state-of-the-
art architectures while significantly reducing energy consumption
per image and minimizing model size. Our approach paves the
way for energy-efficient SNN designs on the Loihi chip, unlocking
the full potential of SNNs for real-world applications.

Index Terms—Artificial Neural Networks, Neural Architecture
Search, Spiking Neural Networks

I. INTRODUCTION

Spiking neural networks (SNNs) have emerged as a promis-

ing approach for achieving low-power intelligence [1]. SNNs

employ sparse and asynchronous discrete events for com-

munication between neurons, allowing for efficient hardware

implementation. The event-based computation enables SNNs

to perform energy-efficient inference on resource-constrained

devices. Among the available hardware implementations, Loihi

is a neuromorphic computing chip that stands out due to its

ability to leverage asynchronous event-driven parallel compu-

tations to improve the speed and power efficiency of SNN

This work was supported in part by the U.S. National Science Founda-
tion (NSF) under Grant CCF-1750450, Grant ECCS-1731928, Grant ECCS-
2128594, Grant ECCS-2314813, and Grant CCF-1937487.

models [2]. This innovative architecture of Loihi can benefit

future applications that require real-time processing and energy

efficiency. Therefore, the objective of this paper is to design

accurate and efficient SNNs on the Loihi platform.

In numerous applications, a better neural architecture design

tends to result in a considerable improvement in accuracy

[3, 4, 5, 6, 7, 8, 9, 10]. However, it is observed that such

enhancement in accuracy usually comes at the expense of

increased computational complexity, which makes it more

challenging to implement SNNs on devices with limited

computational resources. The process of designing an accurate

and efficient neural architecture for such resource-constrained

devices is challenging due to the vast design space involved.

To elaborate, let’s take a 10-layer spiking convolutional neural

network (CNN) as an example. Assume each layer of the

network, can choose a different kernel size and a filter number

from a set of {1, 3, 5} and {32, 64, 128}, respectively.

Even with these simplified design choices and shallow layers,

the design space for this network contains approximately

(3× 3)10 ≈ 3.5× 109 possible architectures.

Neural architecture search (NAS) [11, 12, 13, 14, 15]

is a technique to automate the design of neural networks.

In recent years, NAS outperforms manually designed neural

architectures in several tasks [11, 12, 13, 14, 15, 16]. How-

ever, standard NAS algorithms are computation-intensive and

require training a supernet, which includes all architecture

candidates [11, 12, 13, 14]. Due to the considerably slower

training process of SNNs compared to ANNs, the aforemen-

tioned NAS approaches are not directly applicable to SNNs.

Nonetheless, recent studies [17, 18, 19] have proposed efficient

NAS approaches for ANNs that search for the best architecture

from initialized networks without the need for any training.

Inspired by the findings of [18], which suggest that network

architectures with high representation power at initialization

tend to achieve higher validation accuracy, researchers in [10]

introduce a NAS approach for SNNs. This approach selects

the SNN architecture capable of representing diverse spike

activation patterns across various data samples. However, the

method employs a complicated search space, large layer size,

and utilizes advanced operators such as backward and shortcut

connections [20, 21], rendering the architectures unsuitable

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:15:19 UTC from IEEE Xplore. Restrictions apply.

for resource-constrained devices. Additionally, the algorithm

discovers optimal architectures for Graphics Processing Unit

(GPU) hardware platforms, which may not be well-suited for

efficiently executing SNNs.

In this paper, we propose a novel NAS algorithm for SNNs

on the Loihi chip, without the need for training. We address the

challenges of finding optimal SNN architectures on the Loihi

chip by combining recent NAS approaches for ANNs [19]. Our

algorithm selects an optimal architecture based on gradients

induced by the architecture at initialization across different

data samples without the need for training the architecture.

Gradients are widely recognized as crucial for optimization in

neural networks [22, 23, 24]. The authors in [19, 25] present

a theoretical analysis to demonstrate that the gram matrix

of gradients, which quantifies the dot product between any

two gradient vectors, plays a crucial role in determining the

convergence outcome of neural architectures. In our work, we

conduct comprehensive experiments and exploit the gram ma-

trix of gradients to evaluate randomly initialized architectures

in place of downstream training. The larger the gram matrix,

the higher the convergence rate of an SNN. According to our

experimental results, the gram matrix of gradients exhibits a

strong correlation with the model’s validation accuracy, with

a Spearman coefficient of 0.59 (P ≪ 0.001). In terms of

design space, we create a layer-wise search space and exclude

advanced operators such as backward and short connections,

as they are not supported by the Loihi chip. In our approach,

we randomly sample 1000 architectures from the search space

and pick the top 20 architectures with the largest mean gram

matrix of gradients as candidates. Then, we train these 20

architectures to select the best one. Our experimental results

on two image classification benchmarks demonstrate that our

SNN models achieve comparable accuracy to state-of-the-art

architectures with significantly lower energy consumption per

image and a much smaller model size. The significance of

our work is in the development of a novel NAS algorithm

for finding accurate and efficient SNN architectures on the

Loihi chip, without the need for training to evaluate candidate

architectures. Our contributions are summarized below.

• This paper presents a novel NAS algorithm for SNNs

on the Loihi chip, which selects an optimal architecture

using gradients induced by the architecture at initial-

ization across various data samples without training the

architecture. Our work is significant because the proposed

NAS algorithm enables us to identify accurate and effi-

cient SNN architectures without the need for training to

evaluate candidate architectures.

• To accommodate the capabilities of the Loihi chip, a

layer-wise search space is created that excludes advanced

operators, such as backward and short connections.

• The results of our experiments on two image clas-

sification benchmarks indicate that our searched SNN

models achieve comparable accuracy to state-of-the-art

architectures while exhibiting significantly lower energy

consumption per image and a much smaller model size.

II. BACKGROUND

A. Spiking Neural Networks

Both ANNs and SNNs draw inspiration from the brain’s

structure and functioning. However, ANNs diverge from the

brain in their neural computations. One of the most prominent

differences lies in the communication mechanism between

neurons. In the brain, neurons communicate with each other

through a series of spike trains, which are action potentials

that are sparsely distributed in time and have uniform am-

plitude [1]. On the other hand, ANNs employ continuous

real numbers to convey information between neurons. This

fundamental distinction has led to the emergence of SNNs. In

SNNs, information is transmitted through event-driven firing

activities, where information is represented using 1-bit spikes.

Despite the potential for energy efficiency improvements

in ANNs, SNNs offer a unique opportunity in this regard,

as spike events are temporally sparse. Additionally, SNNs

have the inherent ability to detect temporal properties of

information transmission that are observed in biological neural

systems. Previous research has demonstrated the reliability of

the precise timing of each spike for multiple regions of the

brain, indicating its significance in neural coding [26].

B. Neural Architecture Search

The primary objective of NAS is to replace neural networks

that are manually designed with architectures that are learned

through automated methods. In the early stages of NAS

algorithms, reinforcement learning [12, 13] or evolutionary

algorithms [27] were used. However, these approaches ne-

cessitated training the searched architecture from scratch for

every search iteration, resulting in significant computational

demands. To tackle this issue, weight-sharing techniques have

been proposed [11, 14, 15]. These techniques train the su-

pernet, which encompasses all architecture candidates, only

once. For instance, Darts [15] simultaneously optimizes the

network parameters and the significance of each architecture

candidate. Also, ENAS is an efficient NAS algorithm and it

reduces search cost by sharing parameters among child models

[11]. The idea of sharing parameters among child models

is inspired by transfer learning and multi-task learning that

parameters learned by a model in a task can be exploited by

another model on another task. The weight-sharing methods

obviate the need for training the architecture from scratch

at each search iteration, leading to significantly improved

efficiency in contrast to earlier NAS algorithms. In the current

research, considerable attention has been paid to improving the

efficiency of the NAS technique [28, 29, 30]. This is due to the

increasing size of datasets and network architectures. An ap-

proach involves the implementation of NAS without training,

where the networks are not trained during the search phase [18,

19]. Such an approach can markedly reduce the computational

burden involved in searching for optimal architecture.

III. METHODOLOGY

This section begins with an introduction to the gram matrix

of gradients approach for assessing randomly generated neural

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:15:19 UTC from IEEE Xplore. Restrictions apply.

architectures. Subsequently, we outline our proposed NAS

algorithm for SNNs. Finally, we present the search space

utilized in our NAS algorithm.

A. Gram Matrix of Gradients

This section presents the gram matrix of gradients (GMG)

as a way of evaluating the effectiveness of neural network

architectures without training. The significance of gradients

induced by neural networks is well-established in determining

both convergence and generalization outcomes [22, 23, 24,

31].

we examine a multi-layer fully-connected neural network

comprised of N layers. Specifically, we make the assumption

that the i-th layer of the network produces an output defined

as follows:

y(i) = σ(w(i)y(i−1)), (1)

where w(i) is the weight matrix and σ represents the activation

function. The gradient of the i-th layer with respect to w(i) is

defined as [19],

∂L

∂w(i)
= ⟨

∂L

∂y(N)
, y(i−1)

(

N
∏

k=i+1

J (k)w(k)

)

J (i)⟩, (2)

where L and ∂L
∂y(N) denotes the loss function and the derivative

of the last layer’s output, respectively. J (k) is the diagonal

matrix where the main diagonal consists of the derivatives of

the activation with respect to the inputs in the k-th layer. J (k)

can be represented as [19],

J (k) = diag
(

σ′(w
(k)
1 y(k−1)), ..., σ′(w

(k)
d y(k−1))

)

, (3)

where d is defined as the dimension of the activation, and

wk
d as the d-th row in matrix wk. The equation highlights

that the gradients are dependent on the design of the neural

network, which includes various factors such as network depth,

activation function, initialization, among others. It is worth

noting that the gradients can vary significantly based on the

different architectures, leading to varying outcomes.

The authors in [19, 25] present a theoretical analysis that

demonstrates the connection between the architecture of a

neural network and its convergence behavior. According to

their findings, the GMG, which quantifies the dot product

between any two gradient vectors, plays a crucial role in

determining the convergence outcome. As such, the GMG

of a given neural network architecture can serve as a useful

indicator for evaluating its downstream performance. Denoting

the GMG as H(t) and t as the t-th iteration, the following

inequation holds [19]:

||y∗ − y(N)(t)||22 ≤ e−λmin(H(t))t||y∗ − y(N)(0)||22. (4)

The upper bound of the loss is determined by λmin(H(t)) and

a higher λmin(H(t)) corresponds to lower training losses. Ad-

ditionally, since H(t) is a symmetrical matrix, the Frobenius

norm of H(t) can be used to bounds λmin(H(t)) as,

λmin(H(t)) ≤

√

∑

i

|λi|2 = ||H(t)||F , (5)

Fig. 1. Relationship between GMG rank and validation accuracy on the
CIFAR-10 dataset. We generate 100 architectures and rank them by GMG
values in descending order.

where λi is the eigenvalue of H(t).

This theoretical analysis [19, 25] highlights that the Frobe-

nius norm of a GMG provides an upper bound for the

convergence rate. Each element in a GMG represents the dot

product of two gradient vectors. This dot product is influenced

by the gradient values observed across various data samples.

The gradient values determine the optimization step size. If

the gradient values become exceedingly small, it can lead to

premature termination of training and reduce the convergence

rate. A higher Frobenius norm value indicates a faster conver-

gence rate. To summarize, the theoretical results emphasize

that the GMG is a crucial and all-encompassing metric for

evaluating the quality of a neural network’s architecture.

According to our experimental results on the CIFAR-10 dataset

[32], a strong correlation was observed between the GMG

metric and the validation accuracy of the model, as evidenced

by a Spearman coefficient of 0.59 (P ≪ 0.001). Fig. 1 shows

the relationship between GMG metric and validation accuracy.

B. Neural Architecture Search without Training

In this study, we propose to employ the GMG to assess

randomly-initialized SNNs. The approach involves utilizing

the mean value of GMG of a given neural architecture as

a useful indicator for evaluating its downstream performance.

Specifically, we define GMG as an H matrix, where each entry

(i, j) in the matrix represents the dot-product of two gradient

vectors. We further obtain the gradient score g by computing

the mean value of the elements in the H matrix.

g =
1

M2

M
∑

i=1

M
∑

j=1

(

∂y
(N)
i

∂w

)(

∂y
(N)
j

∂w

)T

, (6)

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:15:19 UTC from IEEE Xplore. Restrictions apply.

where N is the number of layers and M is the number of

input samples.

For the implementation, we calculate the gradient score

for every layer and aggregate them. To handle the issue of

excessively long gradient vectors, we only select 100 weight

parameters from each layer. The complete process can be

represented as follows:

g =
1

NM2

N
∑

n=1

M
∑

i=1

M
∑

j=1

(

∂y
(N)
i

∂wn

)(

∂y
(N)
j

∂wn

)T

, (7)

where wn is the weight parameters from the n-th layer.

The proposed NAS without training algorithm is presented

in Algorithm 1. The algorithm begins by generating a total of

I possible architectures at random from the search space S.

For each architecture, we compute the gradient score based on

Eq. 7. Then we choose the top-k architectures with the highest

scores as potential candidates. Subsequently, these candidates

are trained from scratch, and their performance is evaluated

on a validation set, with a focus on the validation accuracy

achieved at 30 epochs to minimize computational costs. To

compute Eq. 7, we adopt the following algorithmic procedure.

We start by dividing the n gradients for each parameter

into two vectors, each containing n/2 items. Subsequently,

we compute the dot-product between these two vectors. Ul-

timately, we select m parameters from each layer’s GMG

and compute the mean dot-product, which serves as the final

gradient score.

Algorithm 1: Proposed NAS algorithm for SNN

Input: A training set {(x1, y1), (x2, y2), . . . , (xn, yn)};
A validation set {(x1, y1), (x2, y2), . . . , (xn, yn)};
A search space S
Output: The best SNN architecture Abest

specify max number of architectures I;

initialize candidates set C;

for iteration← 0 to I do
Sample an architecture A from search space S;

Compute gradient score g using Eq. 7;

C.add(A, g);
end

Sort candidates in C by gradient score in descending

order;

Pick the top-k architectures from the sorted list;

Train the top-k architectures;

Evaluate these architectures on validation dataset;

Return the best architecture Abest;

C. The Search Space

Loihi is a neuromorphic computing chip that stands out due

to its ability to leverage asynchronous event-driven parallel

computations to improve the speed and power efficiency of

SNN models [2]. This innovative architecture of Loihi can

benefit future applications that require real-time processing

and energy efficiency. Nonetheless, the chip is constrained by

its limited support for advanced operators, such as attention,

backward, and shortcut connections, and only permits integer-

only inference. Consequently, we formulated a search space

that aligns with the chip’s capabilities. To reduce the search

computation cost of the proposed NAS, the layer-wise search

space is adopted. Each cell in the search space is a spiking

convolution with different kernel sizes and groups. Each

convolution can choose a kernel size from the set {3, 5, 7}.
Also, each convolution can pick a group from the set{1, 2, 4}.
Large group sizes can reduce the number of parameters and

increase hardware efficiency. The neuron we used is the sigma-

delta neuron [33, 34].

There are 9 cells in the search space. Table I shows the

list of cells in the search space. In Table I, the Neuron Type

TABLE I
LIST OF CELLS IN THE SEARCH SPACE (NEURON TYPE REPRESENTS THE

TYPE OF NEURON USED IN CONVOLUTIONS. SIGMA-DELTA REPRESENTS

THE SIGMA-DELTA NEURON

Cell Kernel Groups Neuron Type

1 3 1 Sigma-delta

2 3 2 Sigma-delta

3 3 4 Sigma-delta

4 5 1 Sigma-delta

5 5 2 Sigma-delta

6 5 4 Sigma-delta

7 7 1 Sigma-delta

8 7 2 Sigma-delta

9 7 4 Sigma-delta

represents the type of neuron used in convolutions. Sigma-

delta represents the sigma-delta neuron.

The macro architecture is shown in Table II. We do not

use any advanced operators such as backward and shortcut

connections in our neural architectures. The first layer is the

spike encoding layer, responsible for the direct conversion of a

floating-point image into spikes [3, 35]. We employ the direct

encoding technique [3, 35], wherein the input image is passed

through the first layer for a duration of T time steps. There are

9 layers that need to be searched and each layer has 9 options.

Therefore, there are 99 ≈ 3.9 × 108 possible architectures. It

is very time-consuming if an exhaustive search algorithm is

adopted to find the optimal architecture.

TABLE II
MACRO-ARCHITECTURE

Input

Dimension
Layer Type

Output

Channel

Kernel

Stride

32× 32× 3 3x3 Conv 96 1

16× 16× 96 To be Searched 96 2

16× 16× 96 To be Searched 96 1

16× 16× 96 To be Searched 96 1

8× 8× 96 To be Searched 192 2

8× 8× 192 To be Searched 192 1

8× 8× 192 To be Searched 192 1

4× 4× 192 To be Searched 256 2

4× 4× 256 To be Searched 256 1

4× 4× 256 To be Searched 256 1

4096 Dense 128 1

128 Dense 10 N/A

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:15:19 UTC from IEEE Xplore. Restrictions apply.

TABLE III
ACCURACY, ENERGY CONSUMPTION PER IMAGE, AND MODEL SIZE COMPARISON ON THE CIFAR-10 DATASET BETWEEN DIFFERENT MODELS (M IN THE

NUMBER OF PARAMS MEANS MILLION.)

Network Training Method Number of Params Energy/Image(J) Energy Consumption Accuracy(%)

Wu et al. [3] Surrogate Gradient 44.5M 16.97 94.22X 90.53

Rathi et al. [4] Hybrid 39.9M 18.32 101.78X 90.50

Deng et al. [6] ANN-SNN Conversion 35.6M 6.98 38.78X 92.42

Li et al. [7] ANN-SNN Conversion 14.7M 6.69 37.16X 92.98

Fang et al. [8] Surrogate Gradient 36.7M 13.66 75.89X 93.50

Wu et al. [9] Tandem Learning 44.5M 16.97 94.22X 89.04

Kim et al. [10] Surrogate Gradient 19.5M 4.43 24.61X 93.12

Model-A (Our on GPU) Surrogate Gradient 5.5M 0.82 4.56X 91.81

Model-A (Our on Loihi) Surrogate Gradient 5.5M 0.18 1.00X 91.42

Fig. 2. The Loihi 2 board [37]

IV. EXPERIMENTAL RESULTS

We implement the proposed NAS using python and PyTorch

[36]. All the GPU experiments are conducted on the NVIDIA

GeForce RTX 2080 hardware platform. All Loihi experiments

are conducted on Loihi 2. The Loihi 2 board is shown in Fig.

2 [37]. Loihi is a neuromorphic research test chip designed

by Intel Labs. It uses asynchronous event-driven fine-grained

parallel computations to improve the speed and the power

efficiency of SNN models [2]. It consists of 128 ”neurocores”

and each ”neurocore” has 1M neurons. The chip is fabricated

on Intel 4 EUV process [38]. The details of the chip are

summarized in Fig. 3.

In our experiments, the CIFAR-10 [32] and Fashion-MNIST

[39] datasets are used. An image in the CIFAR10 dataset has a

shape of 32×32×3. The CIFAR-10 dataset consists of 60000

32x32 colour images in 10 classes, with 6000 images per class.

There are 50000 training images and 10000 test images. The

Fashion-MNIST dataset consists of a training set of 60,000

examples and a test set of 10,000 examples. Each example

is a 28x28 grayscale image, associated with a label from 10

classes. The accuracy, energy consumption per image, and the

number of model parameters are compared. The delta unit

threshold and the surrogate gradient relaxation in the sigma-

delta neuron are set to 0.1 and 0.5, respectively.

We use the following abbreviations to represent different

models in our experiments.

Fig. 3. The Loihi 2 chip [38]

• ”Model-A”: Model-A is the model that was searched,

trained, and tested on the CIFAR-10 dataset.

• ”Model-B”: Model-B is the model that was searched,

trained, and tested on the Fashion-MNIST dataset.

• ”Model-C”: Model-C is the model that was searched

on the CIFAR-10 dataset but trained and tested on the

Fashion-MNIST dataset. It is used to evaluate if the

architecture can be transferred to other tasks.

TABLE IV
ACCURACY COMPARISON ON THE FASHION-MNIST DATASET BETWEEN

DIFFERENT MODELS

Network Training Method Accuracy(%)

Wu et al. [3] Surrogate Gradient 91.97

Rathi et al. [4] Hybrid 92.11

Deng et al. [6] ANN-SNN Conversion 93.95

Li et al. [7] ANN-SNN Conversion 94.12

Fang et al. [8] Surrogate Gradient 94.38

Kim et al. [10] Surrogate Gradient 94.46

Chen et al. [40] Surrogate Gradient 92.07

Model-B (Ours) Surrogate Gradient 93.77

Model-C (Ours) Surrogate Gradient 93.52

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:15:19 UTC from IEEE Xplore. Restrictions apply.

A. Training Setup

We generate 1000 neural architectures and pick the top

20 architectures with the highest GMG scores. Then, we

train these 20 neural architectures with the following learn-

ing algorithm. We use Adam learning algorithm [41], and

the optimizer parameters are learning rate=0.005, beta1=0.9,

beta2=0.999, epsilon=1e-07. We add two learning scheduler.

The first scheduler is a warmup scheduler, the learning rate

increases linearly from 0.001 to 0.005 in 5 epochs. Then, it is

followed by a step scheduler and the learning rate is multiplied

by 0.1 every 100 epochs. The training epoch is 150.

B. Performance Comparison

1) CIFAR-10 Dataset: Table III presents a comparison of

accuracy, energy consumption per image, and model size

among various implementations. We set the batch size of

inference for both GPU and Loihi at 1 since Loihi only

supports a batch size of 1.

Table III reveals that our searched model on Loihi yields

comparable accuracy to state-of-the-art architectures, such as

Wu et al. [3], Rathi et al. [4], Deng et al. [6], Li et al. [7],

Fang et al. [8], Wu et al. [9], and Kim et al. [10]. However, our

model surpasses the others in terms of energy consumption per

image and model size. Specifically, the energy consumption

per image of our SNN model on Loihi is significantly lower

than the other models, with energy reductions of 94.22X,

101.78X, 38.78X, 37.16X, 75.89X, 94.22X, and 24.61X com-

pared to models in Wu et al. [3], Rathi et al. [4], Deng et al.

[6], Li et al. [7], Fang et al. [8], Wu et al. [9], and Kim et

al. [10], respectively. Also, the energy consumption per image

of our SNN model on GPU is approximately 20.5X, 22.1X,

8.5X, 8.1X, 16.6X, 20.5X, and 5.4X lower than these models,

respectively. Furthermore, our model’s number of parameters

is considerably smaller than these models, with reductions of

8.1X, 7.3X, 6.5X, 2.7X, 6.7X, 8.1X, and 3.5X, respectively.

2) Fashion-MNIST Dataset: To investigate the dependency

of our NAS algorithm on the dataset, we conducted an addi-

tional experiment on the Fashion-MNIST dataset. Specifically,

we searched for the optimal architecture on the CIFAR-10

dataset and trained and tested the searched architecture on the

Fashion-MNIST dataset. The obtained results are presented in

Table IV, which includes the accuracy of Model-B, searched

on the Fashion-MNIST dataset, and Model-C, searched on

the CIFAR-10 dataset. Our results demonstrate that both

models achieve accuracy that is comparable to state-of-the-art

architectures, including Wu et al. [3], Rathi et al. [4], Deng

et al. [6], Li et al. [7], Fang et al. [8], Kim et al. [10], and

Chen et al. [40]. Moreover, the negligible accuracy difference

between Model-B and Model-C confirms the transferability of

the searched architectures across diverse datasets.

V. CONCLUSION

This paper proposes a NAS algorithm that aims to design

efficient and accurate SNN models running on the Loihi chip.

Our proposed NAS algorithm employs the GMG metric to

evaluate randomly-initialized architectures, obviating the need

for downstream training. Given that the Loihi chip supports

only integer-only inference and lacks support for advanced

operators like backward and shortcut connections, we designed

a layer-wise search space that aligns with the chip’s capabil-

ities. On two image classification benchmarks, our searched

SNN models achieve comparable accuracy to state-of-the-art

architectures while consuming significantly lower energy per

image and having a much smaller model size.

REFERENCES

[1] Samanwoy Ghosh-Dastidar and Hojjat Adeli. “Spiking

neural networks”. In: International journal of neural

systems 19.04 (2009), pp. 295–308.

[2] Mike Davies et al. “Loihi: A neuromorphic manycore

processor with on-chip learning”. In: IEEE Micro 38.1

(2018), pp. 82–99.

[3] Yujie Wu et al. “Direct training for spiking neural

networks: Faster, larger, better”. In: Proceedings of the

AAAI conference on artificial intelligence. Vol. 33. 01.

2019, pp. 1311–1318.

[4] Nitin Rathi et al. “Enabling deep spiking neural

networks with hybrid conversion and spike tim-

ing dependent backpropagation”. In: arXiv preprint

arXiv:2005.01807 (2020).

[5] Hanle Zheng et al. “Going deeper with directly-trained

larger spiking neural networks”. In: Proceedings of the

AAAI Conference on Artificial Intelligence. Vol. 35. 12.

2021, pp. 11062–11070.

[6] Shikuang Deng and Shi Gu. “Optimal conversion of

conventional artificial neural networks to spiking neural

networks”. In: arXiv preprint arXiv:2103.00476 (2021).

[7] Yuhang Li et al. “Converting Artificial Neural Networks

to Spiking Neural Networks via Parameter Calibration”.

In: arXiv preprint arXiv:2205.10121 (2022).

[8] Wei Fang et al. “Incorporating learnable membrane time

constant to enhance learning of spiking neural net-

works”. In: Proceedings of the IEEE/CVF International

Conference on Computer Vision. 2021, pp. 2661–2671.

[9] Jibin Wu et al. “A tandem learning rule for effective

training and rapid inference of deep spiking neural

networks”. In: IEEE Transactions on Neural Networks

and Learning Systems (2021).

[10] Youngeun Kim et al. “Neural architecture search for

spiking neural networks”. In: Computer Vision–ECCV

2022: 17th European Conference, Tel Aviv, Israel, Oc-

tober 23–27, 2022, Proceedings, Part XXIV. Springer.

2022, pp. 36–56.

[11] Hieu Pham et al. “Efficient neural architecture search

via parameters sharing”. In: International Conference

on Machine Learning. PMLR. 2018, pp. 4095–4104.

[12] Barret Zoph and Quoc V Le. “Neural architecture

search with reinforcement learning”. In: arXiv preprint

arXiv:1611.01578 (2016).

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:15:19 UTC from IEEE Xplore. Restrictions apply.

[13] Dimitrios Stamoulis et al. “Single-path nas: Designing

hardware-efficient convnets in less than 4 hours”. In:

Joint European Conference on Machine Learning and

Knowledge Discovery in Databases. Springer. 2019,

pp. 481–497.

[14] Bichen Wu et al. “Fbnet: Hardware-aware efficient

convnet design via differentiable neural architecture

search”. In: Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition. 2019,

pp. 10734–10742.

[15] Hanxiao Liu, Karen Simonyan, and Yiming Yang.

“DARTS: Differentiable Architecture Search”. In: In-

ternational Conference on Learning Representations.

2018.

[16] Mingxing Tan and Quoc Le. “Efficientnetv2: Smaller

models and faster training”. In: International conference

on machine learning. PMLR. 2021, pp. 10096–10106.

[17] Wuyang Chen, Xinyu Gong, and Zhangyang Wang.

“Neural architecture search on imagenet in four gpu

hours: A theoretically inspired perspective”. In: arXiv

preprint arXiv:2102.11535 (2021).

[18] Joe Mellor et al. “Neural architecture search without

training”. In: International Conference on Machine

Learning. PMLR. 2021, pp. 7588–7598.

[19] Jingjing Xu et al. “KNAS: green neural architec-

ture search”. In: International Conference on Machine

Learning. PMLR. 2021, pp. 11613–11625.

[20] Guillaume Bellec et al. “A solution to the learning

dilemma for recurrent networks of spiking neurons”.

In: Nature communications 11.1 (2020), p. 3625.

[21] Wenrui Zhang and Peng Li. “Spike-train level back-

propagation for training deep recurrent spiking neural

networks”. In: Advances in neural information process-

ing systems 32 (2019).

[22] Razvan Pascanu, Tomas Mikolov, and Yoshua Ben-

gio. “On the difficulty of training recurrent neural

networks”. In: International conference on machine

learning. Pmlr. 2013, pp. 1310–1318.

[23] Yoshua Bengio, Patrice Simard, and Paolo Frasconi.

“Learning long-term dependencies with gradient de-

scent is difficult”. In: IEEE transactions on neural

networks 5.2 (1994), pp. 157–166.

[24] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-

term memory”. In: Neural computation 9.8 (1997),

pp. 1735–1780.

[25] Arthur Jacot, Franck Gabriel, and Clément Hongler.

“Neural tangent kernel: Convergence and generalization

in neural networks”. In: Advances in neural information

processing systems 31 (2018).

[26] Wyeth Bair and Christof Koch. “Temporal precision

of spike trains in extrastriate cortex of the behaving

macaque monkey”. In: Neural computation 8.6 (1996),

pp. 1185–1202.

[27] Yuqiao Liu et al. “A survey on evolutionary neural

architecture search”. In: IEEE transactions on neural

networks and learning systems (2021).

[28] Mohamed S Abdelfattah et al. “Zero-cost proxies for

lightweight nas”. In: arXiv preprint arXiv:2101.08134

(2021).

[29] Zhicheng Yan et al. “Fp-nas: Fast probabilistic neural

architecture search”. In: Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recogni-

tion. 2021, pp. 15139–15148.

[30] Tien-Ju Yang, Yi-Lun Liao, and Vivienne Sze. “Ne-

tadaptv2: Efficient neural architecture search with fast

super-network training and architecture optimization”.

In: Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition. 2021, pp. 2402–

2411.

[31] Kun Yuan, Qing Ling, and Wotao Yin. “On the con-

vergence of decentralized gradient descent”. In: SIAM

Journal on Optimization 26.3 (2016), pp. 1835–1854.

[32] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton.

“The cifar-10 dataset”. In: online: http://www. cs.

toronto. edu/kriz/cifar. html 55 (2014), p. 5.

[33] Davide Zambrano and Sander M Bohte. “Fast and

efficient asynchronous neural computation with adapt-

ing spiking neural networks”. In: arXiv preprint

arXiv:1609.02053 (2016).

[34] Manu V Nair and Giacomo Indiveri. “An ultra-low

power sigma-delta neuron circuit”. In: 2019 IEEE Inter-

national Symposium on Circuits and Systems (ISCAS).

IEEE. 2019, pp. 1–5.

[35] Wenrui Zhang and Peng Li. “Temporal spike sequence

learning via backpropagation for deep spiking neural

networks”. In: Advances in Neural Information Process-

ing Systems 33 (2020), pp. 12022–12033.

[36] Adam Paszke et al. “Pytorch: An imperative style, high-

performance deep learning library”. In: arXiv preprint

arXiv:1912.01703 (2019).

[37] Garrick Orchard et al. “Efficient neuromorphic signal

processing with loihi 2”. In: 2021 IEEE Workshop on

Signal Processing Systems (SiPS). IEEE. 2021, pp. 254–

259.

[38] Intel Introduces 2nd Gen Neuromorphic Research Chip:

Loihi 2 on Intel 4 EUV Process. https : / / fuse .

wikichip . org / news / 6383 / intel - introduces - 2nd - gen -

neuromorphic- research- chip- loihi- 2- on- intel- 4- euv-

process/. Accessed: 2023-01-30.

[39] Han Xiao, Kashif Rasul, and Roland Vollgraf. “Fashion-

mnist: a novel image dataset for benchmarking

machine learning algorithms”. In: arXiv preprint

arXiv:1708.07747 (2017).

[40] Xiang Cheng et al. “LISNN: Improving spiking neural

networks with lateral interactions for robust object

recognition.” In: IJCAI. 2020, pp. 1519–1525.

[41] Diederik P Kingma and Jimmy Ba. “Adam: A

method for stochastic optimization”. In: arXiv preprint

arXiv:1412.6980 (2014).

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:15:19 UTC from IEEE Xplore. Restrictions apply.

