2024 25th International Symposium on Quality Electronic Design (ISQED) | 979-8-3503-0927-0/24/$31.00 ©2024 IEEE | DOI: 10.1109/ISQED60706.2024.10528706

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:15:19 UTC from IEEE Xplore. Restrictions apply.

Unleashing Energy-Efficiency: Neural Architecture
Search without Training for Spiking Neural
Networks on Loihi Chip

Shiya Liu, Yang Yi
Bradley Department of Electrical and Computing Engineering,
Virginia Tech, Blacksburg, Virginia, 24061, USA
E-mail: {shiyal, yangyi8} @vt.edu

Abstract—Spiking neural networks (SNNs) offer energy-
efficient computation due to their high-sparsity activation and
event-driven nature. However, existing SNN designs often utilize
suboptimal artificial neural network (ANN)-like architectures for
binary sequence processing. Moreover, improving accuracy often
leads to higher computational complexity, making it difficult
to deploy SNNs on resource-constrained devices. Furthermore,
SNN architectures tailored for GPUs may not fully exploit the
energy-efficient capabilities of SNN models. To address these
limitations, we present a novel neural architecture search (NAS)
algorithm that merges recent advancements in ANNs and focuses
on enhancing SNN architectures specifically for the Loihi chip.
The Loihi chip is a neuromorphic computing chip designed to
emulate the brain’s neural networks, with particular strength in
event-driven SNNs, making it an energy-efficient alternative to
GPUs. Our algorithm efficiently selects an optimal architecture
by leveraging gradients induced at initialization across diverse
data samples, eliminating the requirement for training. We
propose to design a search space that aligns with the chip’s
capabilities, taking into account its support for integer-only
inference and the lack of advanced operators such as backward
and shortcut connections. Experimental results on two image
classification benchmarks demonstrate the superiority of our
SNN models, which achieve comparable accuracy to state-of-the-
art architectures while significantly reducing energy consumption
per image and minimizing model size. Our approach paves the
way for energy-efficient SNN designs on the Loihi chip, unlocking
the full potential of SNNs for real-world applications.

Index Terms—Artificial Neural Networks, Neural Architecture
Search, Spiking Neural Networks

I. INTRODUCTION

Spiking neural networks (SNNs) have emerged as a promis-
ing approach for achieving low-power intelligence [1]. SNNs
employ sparse and asynchronous discrete events for com-
munication between neurons, allowing for efficient hardware
implementation. The event-based computation enables SNNs
to perform energy-efficient inference on resource-constrained
devices. Among the available hardware implementations, Loihi
is a neuromorphic computing chip that stands out due to its
ability to leverage asynchronous event-driven parallel compu-
tations to improve the speed and power efficiency of SNN

This work was supported in part by the U.S. National Science Founda-
tion (NSF) under Grant CCF-1750450, Grant ECCS-1731928, Grant ECCS-
2128594, Grant ECCS-2314813, and Grant CCF-1937487.

models [2]. This innovative architecture of Loihi can benefit
future applications that require real-time processing and energy
efficiency. Therefore, the objective of this paper is to design
accurate and efficient SNNs on the Loihi platform.

In numerous applications, a better neural architecture design
tends to result in a considerable improvement in accuracy
[3, 4, 5, 6, 7, 8, 9, 10]. However, it is observed that such
enhancement in accuracy usually comes at the expense of
increased computational complexity, which makes it more
challenging to implement SNNs on devices with limited
computational resources. The process of designing an accurate
and efficient neural architecture for such resource-constrained
devices is challenging due to the vast design space involved.
To elaborate, let’s take a 10-layer spiking convolutional neural
network (CNN) as an example. Assume each layer of the
network, can choose a different kernel size and a filter number
from a set of {1, 3, 5} and {32, 64, 128}, respectively.
Even with these simplified design choices and shallow layers,
the design space for this network contains approximately
(3 x 3)10 ~ 3.5 x 10% possible architectures.

Neural architecture search (NAS) [11, 12, 13, 14, 15]
is a technique to automate the design of neural networks.
In recent years, NAS outperforms manually designed neural
architectures in several tasks [11, 12, 13, 14, 15, 16]. How-
ever, standard NAS algorithms are computation-intensive and
require training a supernet, which includes all architecture
candidates [11, 12, 13, 14]. Due to the considerably slower
training process of SNNs compared to ANNs, the aforemen-
tioned NAS approaches are not directly applicable to SNNs.
Nonetheless, recent studies [17, 18, 19] have proposed efficient
NAS approaches for ANNSs that search for the best architecture
from initialized networks without the need for any training.
Inspired by the findings of [18], which suggest that network
architectures with high representation power at initialization
tend to achieve higher validation accuracy, researchers in [10]
introduce a NAS approach for SNNs. This approach selects
the SNN architecture capable of representing diverse spike
activation patterns across various data samples. However, the
method employs a complicated search space, large layer size,
and utilizes advanced operators such as backward and shortcut
connections [20, 21], rendering the architectures unsuitable

for resource-constrained devices. Additionally, the algorithm
discovers optimal architectures for Graphics Processing Unit
(GPU) hardware platforms, which may not be well-suited for
efficiently executing SNNs.

In this paper, we propose a novel NAS algorithm for SNNs
on the Loihi chip, without the need for training. We address the
challenges of finding optimal SNN architectures on the Loihi
chip by combining recent NAS approaches for ANNs [19]. Our
algorithm selects an optimal architecture based on gradients
induced by the architecture at initialization across different
data samples without the need for training the architecture.
Gradients are widely recognized as crucial for optimization in
neural networks [22, 23, 24]. The authors in [19, 25] present
a theoretical analysis to demonstrate that the gram matrix
of gradients, which quantifies the dot product between any
two gradient vectors, plays a crucial role in determining the
convergence outcome of neural architectures. In our work, we
conduct comprehensive experiments and exploit the gram ma-
trix of gradients to evaluate randomly initialized architectures
in place of downstream training. The larger the gram matrix,
the higher the convergence rate of an SNN. According to our
experimental results, the gram matrix of gradients exhibits a
strong correlation with the model’s validation accuracy, with
a Spearman coefficient of 0.59 (P < 0.001). In terms of
design space, we create a layer-wise search space and exclude
advanced operators such as backward and short connections,
as they are not supported by the Loihi chip. In our approach,
we randomly sample 1000 architectures from the search space
and pick the top 20 architectures with the largest mean gram
matrix of gradients as candidates. Then, we train these 20
architectures to select the best one. Our experimental results
on two image classification benchmarks demonstrate that our
SNN models achieve comparable accuracy to state-of-the-art
architectures with significantly lower energy consumption per
image and a much smaller model size. The significance of
our work is in the development of a novel NAS algorithm
for finding accurate and efficient SNN architectures on the
Loihi chip, without the need for training to evaluate candidate
architectures. Our contributions are summarized below.

e This paper presents a novel NAS algorithm for SNNs
on the Loihi chip, which selects an optimal architecture
using gradients induced by the architecture at initial-
ization across various data samples without training the
architecture. Our work is significant because the proposed
NAS algorithm enables us to identify accurate and effi-
cient SNN architectures without the need for training to
evaluate candidate architectures.

e To accommodate the capabilities of the Loihi chip, a
layer-wise search space is created that excludes advanced
operators, such as backward and short connections.

o The results of our experiments on two image clas-
sification benchmarks indicate that our searched SNN
models achieve comparable accuracy to state-of-the-art
architectures while exhibiting significantly lower energy
consumption per image and a much smaller model size.

II. BACKGROUND
A. Spiking Neural Networks

Both ANNs and SNNs draw inspiration from the brain’s
structure and functioning. However, ANNs diverge from the
brain in their neural computations. One of the most prominent
differences lies in the communication mechanism between
neurons. In the brain, neurons communicate with each other
through a series of spike trains, which are action potentials
that are sparsely distributed in time and have uniform am-
plitude [1]. On the other hand, ANNs employ continuous
real numbers to convey information between neurons. This
fundamental distinction has led to the emergence of SNNs. In
SNNs, information is transmitted through event-driven firing
activities, where information is represented using 1-bit spikes.

Despite the potential for energy efficiency improvements
in ANNs, SNNs offer a unique opportunity in this regard,
as spike events are temporally sparse. Additionally, SNNs
have the inherent ability to detect temporal properties of
information transmission that are observed in biological neural
systems. Previous research has demonstrated the reliability of
the precise timing of each spike for multiple regions of the
brain, indicating its significance in neural coding [26].

B. Neural Architecture Search

The primary objective of NAS is to replace neural networks
that are manually designed with architectures that are learned
through automated methods. In the early stages of NAS
algorithms, reinforcement learning [12, 13] or evolutionary
algorithms [27] were used. However, these approaches ne-
cessitated training the searched architecture from scratch for
every search iteration, resulting in significant computational
demands. To tackle this issue, weight-sharing techniques have
been proposed [11, 14, 15]. These techniques train the su-
pernet, which encompasses all architecture candidates, only
once. For instance, Darts [15] simultaneously optimizes the
network parameters and the significance of each architecture
candidate. Also, ENAS is an efficient NAS algorithm and it
reduces search cost by sharing parameters among child models
[11]. The idea of sharing parameters among child models
is inspired by transfer learning and multi-task learning that
parameters learned by a model in a task can be exploited by
another model on another task. The weight-sharing methods
obviate the need for training the architecture from scratch
at each search iteration, leading to significantly improved
efficiency in contrast to earlier NAS algorithms. In the current
research, considerable attention has been paid to improving the
efficiency of the NAS technique [28, 29, 30]. This is due to the
increasing size of datasets and network architectures. An ap-
proach involves the implementation of NAS without training,
where the networks are not trained during the search phase [18,
19]. Such an approach can markedly reduce the computational
burden involved in searching for optimal architecture.

III. METHODOLOGY

This section begins with an introduction to the gram matrix
of gradients approach for assessing randomly generated neural

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:15:19 UTC from IEEE Xplore. Restrictions apply.

architectures. Subsequently, we outline our proposed NAS
algorithm for SNNs. Finally, we present the search space
utilized in our NAS algorithm.

A. Gram Matrix of Gradients

This section presents the gram matrix of gradients (GMG)
as a way of evaluating the effectiveness of neural network
architectures without training. The significance of gradients
induced by neural networks is well-established in determining
both convergence and generalization outcomes [22, 23, 24,
31].

we examine a multi-layer fully-connected neural network
comprised of N layers. Specifically, we make the assumption
that the i-th layer of the network produces an output defined
as follows:

y = U(w(i)y(ifl)), (1)

where w(®) is the weight matrix and o represents the activation
function. The gradient of the i-th layer with respect to w® is

defined as [19],
oL oL i i
= (z,m¥' ”(’”) T @

Ow®
where L and By (Ijv) denotes the loss function and the derivative

N
I 7®w

k=i+1

of the last layer’s output, respectively. J(*) is the diagonal
matrix where the main diagonal consists of the derivatives of
the activation with respect to the inputs in the k-th layer. J(*)
can be represented as [19],

J® = diag (o' (wPy*0), o wPyE D)), G)

where d is defined as the dimension of the activation, and
ws as the d-th row in matrix w”. The equation highlights
that the gradients are dependent on the design of the neural
network, which includes various factors such as network depth,
activation function, initialization, among others. It is worth
noting that the gradients can vary significantly based on the
different architectures, leading to varying outcomes.

The authors in [19, 25] present a theoretical analysis that
demonstrates the connection between the architecture of a
neural network and its convergence behavior. According to
their findings, the GMG, which quantifies the dot product
between any two gradient vectors, plays a crucial role in
determining the convergence outcome. As such, the GMG
of a given neural network architecture can serve as a useful
indicator for evaluating its downstream performance. Denoting
the GMG as H(t) and t as the ¢-th iteration, the following
inequation holds [19]:

ly* —y™M@)])3 < e Hly* —

The upper bound of the loss is determined by A, (H (t)) and
a higher \,,,;, (H (t)) corresponds to lower training losses. Ad-
ditionally, since H (t) is a symmetrical matrix, the Frobenius
norm of H(t) can be used to bounds A, (H (t)) as,

9) < ﬁ IHBe)

i O ly* =y O)[F. 4

>\mi71,(H

L]
60)
] L]
® ® b
° s o
50
L 40
>
O
©
—
>
O 30
O
<
20
10
0 20 40 60 80 100
GMG Rank
Fig. 1. Relationship between GMG rank and validation accuracy on the

CIFAR-10 dataset. We generate 100 architectures and rank them by GMG
values in descending order.

where)\; is the eigenvalue of H(t).

This theoretical analysis [19, 25] highlights that the Frobe-
nius norm of a GMG provides an upper bound for the
convergence rate. Each element in a GMG represents the dot
product of two gradient vectors. This dot product is influenced
by the gradient values observed across various data samples.
The gradient values determine the optimization step size. If
the gradient values become exceedingly small, it can lead to
premature termination of training and reduce the convergence
rate. A higher Frobenius norm value indicates a faster conver-
gence rate. To summarize, the theoretical results emphasize
that the GMG is a crucial and all-encompassing metric for
evaluating the quality of a neural network’s architecture.
According to our experimental results on the CIFAR-10 dataset
[32], a strong correlation was observed between the GMG
metric and the validation accuracy of the model, as evidenced
by a Spearman coefficient of 0.59 (P < 0.001). Fig. 1 shows
the relationship between GMG metric and validation accuracy.

B. Neural Architecture Search without Training

In this study, we propose to employ the GMG to assess
randomly-initialized SNNs. The approach involves utilizing
the mean value of GMG of a given neural architecture as
a useful indicator for evaluating its downstream performance.
Specifically, we define GMG as an H matrix, where each entry
(i,7) in the matrix represents the dot-product of two gradient
vectors. We further obtain the gradient score g by computing
the mean value of the elements in the H matrix.

8y ay(N) T
SHESCE)(E) . -

i=1 j=1

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:15:19 UTC from IEEE Xplore. Restrictions apply.

where N is the number of layers and M is the number of
input samples.

For the implementation, we calculate the gradient score
for every layer and aggregate them. To handle the issue of
excessively long gradient vectors, we only select 100 weight
parameters from each layer. The complete process can be
represented as follows:

T

, (D

N M M

I= >

n=1i=1 j=1

dy™

own

5‘y§»N)

ow™

where w” is the weight parameters from the n-th layer.

The proposed NAS without training algorithm is presented
in Algorithm 1. The algorithm begins by generating a total of
I possible architectures at random from the search space S.
For each architecture, we compute the gradient score based on
Eq. 7. Then we choose the top-k architectures with the highest
scores as potential candidates. Subsequently, these candidates
are trained from scratch, and their performance is evaluated
on a validation set, with a focus on the validation accuracy
achieved at 30 epochs to minimize computational costs. To
compute Eq. 7, we adopt the following algorithmic procedure.
We start by dividing the n gradients for each parameter
into two vectors, each containing n/2 items. Subsequently,
we compute the dot-product between these two vectors. Ul-
timately, we select m parameters from each layer’s GMG
and compute the mean dot-product, which serves as the final
gradient score.

Algorithm 1: Proposed NAS algorithm for SNN

Input: A training set {(z1,y1), (Z2,42), -+, (Tn,Yn)};
A validation set {(z1,y1), (z2,y2)s .-, (TnyYn)};

A search space S

Output: The best SNN architecture Apes;

specify max number of architectures I;

initialize candidates set C;

for iteration <— 0 to I do
Sample an architecture A from search space S

Compute gradient score g using Eq. 7;

C.add(A, g);
end
Sort candidates in C' by gradient score in descending

order;

Pick the top-k architectures from the sorted list;
Train the top-k architectures;
Evaluate these architectures on validation dataset;
Return the best architecture Apeq;;

its limited support for advanced operators, such as attention,
backward, and shortcut connections, and only permits integer-
only inference. Consequently, we formulated a search space
that aligns with the chip’s capabilities. To reduce the search
computation cost of the proposed NAS, the layer-wise search
space is adopted. Each cell in the search space is a spiking
convolution with different kernel sizes and groups. Each
convolution can choose a kernel size from the set {3,5,7}.
Also, each convolution can pick a group from the set{1, 2, 4}.
Large group sizes can reduce the number of parameters and
increase hardware efficiency. The neuron we used is the sigma-
delta neuron [33, 34].

There are 9 cells in the search space. Table I shows the
list of cells in the search space. In Table I, the Neuron Type

TABLE I
L1ST OF CELLS IN THE SEARCH SPACE (NEURON TYPE REPRESENTS THE
TYPE OF NEURON USED IN CONVOLUTIONS. SIGMA-DELTA REPRESENTS
THE SIGMA-DELTA NEURON

Cell Kernel Groups Neuron Type
1 3 1 Sigma-delta
2 3 2 Sigma-delta
3 3 4 Sigma-delta
4 5 1 Sigma-delta
5 5 2 Sigma-delta
6 5 4 Sigma-delta
7 7 1 Sigma-delta
8 7 2 Sigma-delta
9 7 4 Sigma-delta

represents the type of neuron used in convolutions. Sigma-
delta represents the sigma-delta neuron.

The macro architecture is shown in Table II. We do not
use any advanced operators such as backward and shortcut
connections in our neural architectures. The first layer is the
spike encoding layer, responsible for the direct conversion of a
floating-point image into spikes [3, 35]. We employ the direct
encoding technique [3, 35], wherein the input image is passed
through the first layer for a duration of 7' time steps. There are
9 layers that need to be searched and each layer has 9 options.
Therefore, there are 97 ~ 3.9 x 108 possible architectures. It
is very time-consuming if an exhaustive search algorithm is
adopted to find the optimal architecture.

C. The Search Space

Loihi is a neuromorphic computing chip that stands out due
to its ability to leverage asynchronous event-driven parallel
computations to improve the speed and power efficiency of
SNN models [2]. This innovative architecture of Loihi can
benefit future applications that require real-time processing
and energy efficiency. Nonetheless, the chip is constrained by

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech

TABLE II
MACRO-ARCHITECTURE
Input Output Kernel
Dimegsion Layer Type Chanpnel Stride
32x32x3 3x3 Conv 96 1
16 X 16 x 96 | To be Searched 96 2
16 x 16 x 96 To be Searched 96 1
16 X 16 Xx 96 | To be Searched 96 1
8 X 8 X 96 To be Searched 192 2
8 X 8 x 192 To be Searched 192 1
8 X 8 x 192 To be Searched 192 1
4 x4 x 192 To be Searched 256 2
4 X 4 x 256 To be Searched 256 1
4 x 4 x 256 To be Searched 256 1
4096 Dense 128 1
128 Dense 10 N/A

. Downloaded on October 06,2024 at 22:15:19 UTC from IEEE Xplore. Restrictions apply.

TABLE III
ACCURACY, ENERGY CONSUMPTION PER IMAGE, AND MODEL SIZE COMPARISON ON THE CIFAR-10 DATASET BETWEEN DIFFERENT MODELS (M IN THE
NUMBER OF PARAMS MEANS MILLION.)

([Network Training Method Number of Params Energy/Image (J) Energy Consumption Accuracy (%) [|

Wu et al. [3] Surrogate Gradient 44 . 5M 16.97 94 .22X 90.53

Rathi et al. [4] Hybrid 39.9M 18.32 101.78X 90.50
Deng et al. [6] ANN-SNN Conversion 35.6M 6.98 38.78X 92.42

Li et al. [7] ANN-SNN Conversion 14.7M 6.69 37.16X 92.98

Fang et al. [8] Surrogate Gradient 36.7M 13.66 75.89X 93.50

Wu et al. [9] Tandem Learning 44 . 5M 16.97 94 .22X 89.04

Kim et al. [10] Surrogate Gradient 19.5M 4.43 24.61X 93.12
Model-A (Our on GPU) Surrogate Gradient 5.5M 0.82 4.56X 91.81
Model-A (Our on Loihi) Surrogate Gradient 5.5M 0.18 1.00X 91.42

Fig. 2. The Loihi 2 board [37]

IV. EXPERIMENTAL RESULTS

We implement the proposed NAS using python and PyTorch
[36]. All the GPU experiments are conducted on the NVIDIA
GeForce RTX 2080 hardware platform. All Loihi experiments
are conducted on Loihi 2. The Loihi 2 board is shown in Fig.
2 [37]. Loihi is a neuromorphic research test chip designed
by Intel Labs. It uses asynchronous event-driven fine-grained
parallel computations to improve the speed and the power
efficiency of SNN models [2]. It consists of 128 “neurocores”
and each “neurocore” has 1M neurons. The chip is fabricated
on Intel 4 EUV process [38]. The details of the chip are
summarized in Fig. 3.

In our experiments, the CIFAR-10 [32] and Fashion-MNIST
[39] datasets are used. An image in the CIFAR10 dataset has a
shape of 32 x 32 x 3. The CIFAR-10 dataset consists of 60000
32x32 colour images in 10 classes, with 6000 images per class.
There are 50000 training images and 10000 test images. The
Fashion-MNIST dataset consists of a training set of 60,000
examples and a test set of 10,000 examples. Each example
is a 28x28 grayscale image, associated with a label from 10
classes. The accuracy, energy consumption per image, and the
number of model parameters are compared. The delta unit
threshold and the surrogate gradient relaxation in the sigma-
delta neuron are set to 0.1 and 0.5, respectively.

We use the following abbreviations to represent different
models in our experiments.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:15:19 UTC from IEEE Xplore.

Parallel 10

[
1
[®
L

l's

n. 1
Lojhil2
C e -
31mm?

Neuromorphic Mesh

Parallel IO

Fig. 3. The Loihi 2 chip [38]

o ”Model-A”’: Model-A is the model that was searched,
trained, and tested on the CIFAR-10 dataset.

o ”Model-B”: Model-B is the model that was searched,
trained, and tested on the Fashion-MNIST dataset.

e ”Model-C’: Model-C is the model that was searched
on the CIFAR-10 dataset but trained and tested on the
Fashion-MNIST dataset. It is used to evaluate if the
architecture can be transferred to other tasks.

TABLE IV
ACCURACY COMPARISON ON THE FASHION-MNIST DATASET BETWEEN
DIFFERENT MODELS

I Network Training Method Accuracy (%) ||

Wu et al. [3] Surrogate Gradient 91.97
Rathi et al. [4] Hybrid 92.11

Deng et al. [6] ANN-SNN Conversion 93.95

Li et al. [7] ANN-SNN Conversion 94.12

Fang et al. [8] Surrogate Gradient 94 .38

Kim et al. [10] Surrogate Gradient 94 .46
Chen et al. [40] Surrogate Gradient 92.07
Model-B (Ours) Surrogate Gradient 93.77
Model-C (Ours) Surrogate Gradient 93.52

MaE EE\EIENEE E
i ol & : il b
" - . 7 pARS

. { o

—

$itd s g s i Sl o

— —— Wt 3 o

e I A BAF Eae) AR Ny E

I f ©

I ; a
3 " 4 " s > e " e e
" 21 1Y v‘\~ 1Y 2N

1 -IEI

Restrictions apply.

A. Training Setup

We generate 1000 neural architectures and pick the top
20 architectures with the highest GMG scores. Then, we
train these 20 neural architectures with the following learn-
ing algorithm. We use Adam learning algorithm [41], and
the optimizer parameters are learning rate=0.005, betal=0.9,
beta2=0.999, epsilon=1e-07. We add two learning scheduler.
The first scheduler is a warmup scheduler, the learning rate
increases linearly from 0.001 to 0.005 in 5 epochs. Then, it is
followed by a step scheduler and the learning rate is multiplied
by 0.1 every 100 epochs. The training epoch is 150.

B. Performance Comparison

1) CIFAR-10 Dataset: Table III presents a comparison of
accuracy, energy consumption per image, and model size
among various implementations. We set the batch size of
inference for both GPU and Loihi at 1 since Loihi only
supports a batch size of 1.

Table III reveals that our searched model on Loihi yields
comparable accuracy to state-of-the-art architectures, such as
Wu et al. [3], Rathi et al. [4], Deng et al. [6], Li et al. [7],
Fang et al. [8], Wu et al. [9], and Kim et al. [10]. However, our
model surpasses the others in terms of energy consumption per
image and model size. Specifically, the energy consumption
per image of our SNN model on Loihi is significantly lower
than the other models, with energy reductions of 94.22X,
101.78X, 38.78X, 37.16X, 75.89X, 94.22X, and 24.61X com-
pared to models in Wu et al. [3], Rathi et al. [4], Deng et al.
[6], Li et al. [7], Fang et al. [8], Wu et al. [9], and Kim et
al. [10], respectively. Also, the energy consumption per image
of our SNN model on GPU is approximately 20.5X, 22.1X,
8.5X, 8.1X, 16.6X, 20.5X, and 5.4X lower than these models,
respectively. Furthermore, our model’s number of parameters
is considerably smaller than these models, with reductions of
8.1X, 7.3X, 6.5X, 2.7X, 6.7X, 8.1X, and 3.5X, respectively.

2) Fashion-MNIST Dataset: To investigate the dependency
of our NAS algorithm on the dataset, we conducted an addi-
tional experiment on the Fashion-MNIST dataset. Specifically,
we searched for the optimal architecture on the CIFAR-10
dataset and trained and tested the searched architecture on the
Fashion-MNIST dataset. The obtained results are presented in
Table IV, which includes the accuracy of Model-B, searched
on the Fashion-MNIST dataset, and Model-C, searched on
the CIFAR-10 dataset. Our results demonstrate that both
models achieve accuracy that is comparable to state-of-the-art
architectures, including Wu ef al. [3], Rathi et al. [4], Deng
et al. [6], Li et al. [7], Fang et al. [8], Kim et al. [10], and
Chen et al. [40]. Moreover, the negligible accuracy difference
between Model-B and Model-C confirms the transferability of
the searched architectures across diverse datasets.

V. CONCLUSION

This paper proposes a NAS algorithm that aims to design
efficient and accurate SNN models running on the Loihi chip.
Our proposed NAS algorithm employs the GMG metric to
evaluate randomly-initialized architectures, obviating the need

for downstream training. Given that the Loihi chip supports
only integer-only inference and lacks support for advanced
operators like backward and shortcut connections, we designed
a layer-wise search space that aligns with the chip’s capabil-
ities. On two image classification benchmarks, our searched
SNN models achieve comparable accuracy to state-of-the-art
architectures while consuming significantly lower energy per
image and having a much smaller model size.

REFERENCES

[1] Samanwoy Ghosh-Dastidar and Hojjat Adeli. “Spiking
neural networks”. In: International journal of neural
systems 19.04 (2009), pp. 295-308.

[2] Mike Davies et al. “Loihi: A neuromorphic manycore
processor with on-chip learning”. In: IEEE Micro 38.1
(2018), pp. 82-99.

[3] Yujie Wu et al. “Direct training for spiking neural
networks: Faster, larger, better”. In: Proceedings of the
AAAI conference on artificial intelligence. Vol. 33. 0O1.
2019, pp. 1311-1318.

[4] Nitin Rathi et al. “Enabling deep spiking neural
networks with hybrid conversion and spike tim-
ing dependent backpropagation”. In: arXiv preprint
arXiv:2005.01807 (2020).

[5] Hanle Zheng et al. “Going deeper with directly-trained
larger spiking neural networks”. In: Proceedings of the
AAAI Conference on Artificial Intelligence. Vol. 35. 12.
2021, pp. 11062-11070.

[6] Shikuang Deng and Shi Gu. “Optimal conversion of
conventional artificial neural networks to spiking neural
networks”. In: arXiv preprint arXiv:2103.00476 (2021).

[71 Yuhang Li et al. “Converting Artificial Neural Networks
to Spiking Neural Networks via Parameter Calibration”.
In: arXiv preprint arXiv:2205.10121 (2022).

[8] Wei Fang et al. “Incorporating learnable membrane time
constant to enhance learning of spiking neural net-
works”. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. 2021, pp. 2661-2671.

[9] Jibin Wu et al. “A tandem learning rule for effective

training and rapid inference of deep spiking neural

networks”. In: IEEE Transactions on Neural Networks

and Learning Systems (2021).

Youngeun Kim et al. “Neural architecture search for

spiking neural networks”. In: Computer Vision-ECCV

2022: 17th European Conference, Tel Aviv, Israel, Oc-

tober 23-27, 2022, Proceedings, Part XXIV. Springer.

2022, pp. 36-56.

Hieu Pham et al. “Efficient neural architecture search

via parameters sharing”. In: International Conference

on Machine Learning. PMLR. 2018, pp. 4095-4104.

Barret Zoph and Quoc V Le. “Neural architecture

search with reinforcement learning”. In: arXiv preprint

arXiv:1611.01578 (2016).

[11]

[12]

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:15:19 UTC from IEEE Xplore. Restrictions apply.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:15:19 UTC from IEEE Xplore. Restrictions apply.

Dimitrios Stamoulis et al. “Single-path nas: Designing
hardware-efficient convnets in less than 4 hours”. In:
Joint European Conference on Machine Learning and
Knowledge Discovery in Databases. Springer. 2019,
pp- 481-497.

Bichen Wu et al. “Fbnet: Hardware-aware efficient
convnet design via differentiable neural architecture
search”. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2019,
pp- 10734-10742.

Hanxiao Liu, Karen Simonyan, and Yiming Yang.
“DARTS: Differentiable Architecture Search”. In: In-
ternational Conference on Learning Representations.
2018.

Mingxing Tan and Quoc Le. “Efficientnetv2: Smaller
models and faster training”. In: International conference
on machine learning. PMLR. 2021, pp. 10096-10106.
Wuyang Chen, Xinyu Gong, and Zhangyang Wang.
“Neural architecture search on imagenet in four gpu
hours: A theoretically inspired perspective”. In: arXiv
preprint arXiv:2102.11535 (2021).

Joe Mellor et al. “Neural architecture search without
training”. In: International Conference on Machine
Learning. PMLR. 2021, pp. 7588-7598.

Jingjing Xu et al. “KNAS: green neural architec-
ture search”. In: International Conference on Machine
Learning. PMLR. 2021, pp. 11613-11625.

Guillaume Bellec et al. “A solution to the learning
dilemma for recurrent networks of spiking neurons”.
In: Nature communications 11.1 (2020), p. 3625.
Wenrui Zhang and Peng Li. “Spike-train level back-
propagation for training deep recurrent spiking neural
networks”. In: Advances in neural information process-
ing systems 32 (2019).

Razvan Pascanu, Tomas Mikolov, and Yoshua Ben-
gio. “On the difficulty of training recurrent neural
networks”. In: International conference on machine
learning. Pmlr. 2013, pp. 1310-1318.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi.
“Learning long-term dependencies with gradient de-
scent is difficult”. In: IEEE transactions on neural
networks 5.2 (1994), pp. 157-166.

Sepp Hochreiter and Jiirgen Schmidhuber. “Long short-
term memory”. In: Neural computation 9.8 (1997),
pp. 1735-1780.

Arthur Jacot, Franck Gabriel, and Clément Hongler.
“Neural tangent kernel: Convergence and generalization
in neural networks”. In: Advances in neural information
processing systems 31 (2018).

Wyeth Bair and Christof Koch. “Temporal precision
of spike trains in extrastriate cortex of the behaving
macaque monkey”. In: Neural computation 8.6 (1996),
pp- 1185-1202.

Yugiao Liu et al. “A survey on evolutionary neural
architecture search”. In: IEEE transactions on neural
networks and learning systems (2021).

[38]

[39]

Mohamed S Abdelfattah et al. “Zero-cost proxies for
lightweight nas”. In: arXiv preprint arXiv:2101.08134
(2021).

Zhicheng Yan et al. “Fp-nas: Fast probabilistic neural
architecture search”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion. 2021, pp. 15139-15148.

Tien-Ju Yang, Yi-Lun Liao, and Vivienne Sze. “Ne-
tadaptv2: Efficient neural architecture search with fast
super-network training and architecture optimization”.
In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. 2021, pp. 2402—
2411.

Kun Yuan, Qing Ling, and Wotao Yin. “On the con-
vergence of decentralized gradient descent”. In: SIAM
Journal on Optimization 26.3 (2016), pp. 1835-1854.
Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton.
“The cifar-10 dataset”. In: online: http://www. cs.
toronto. edu/kriz/cifar. html 55 (2014), p. 5.

Davide Zambrano and Sander M Bohte. “Fast and
efficient asynchronous neural computation with adapt-
ing spiking neural networks”. In: arXiv preprint
arXiv:1609.02053 (2016).

Manu V Nair and Giacomo Indiveri. “An ultra-low
power sigma-delta neuron circuit”. In: 2019 IEEE Inter-
national Symposium on Circuits and Systems (ISCAS).
IEEE. 2019, pp. 1-5.

Wenrui Zhang and Peng Li. “Temporal spike sequence
learning via backpropagation for deep spiking neural
networks”. In: Advances in Neural Information Process-
ing Systems 33 (2020), pp. 12022-12033.

Adam Paszke et al. “Pytorch: An imperative style, high-
performance deep learning library”. In: arXiv preprint
arXiv:1912.01703 (2019).

Garrick Orchard et al. “Efficient neuromorphic signal
processing with loihi 2. In: 2021 IEEE Workshop on
Signal Processing Systems (SiPS). IEEE. 2021, pp. 254—
259.

Intel Introduces 2nd Gen Neuromorphic Research Chip:
Loihi 2 on Intel 4 EUV Process. https : / / fuse .
wikichip . org/news /6383 /intel - introduces - 2nd - gen -
neuromorphic-research- chip-loihi- 2- on-intel-4-euv-
process/. Accessed: 2023-01-30.

Han Xiao, Kashif Rasul, and Roland Vollgraf. “Fashion-
mnist: a novel image dataset for benchmarking
machine learning algorithms”. In: arXiv preprint
arXiv:1708.07747 (2017).

Xiang Cheng et al. “LISNN: Improving spiking neural
networks with lateral interactions for robust object
recognition.” In: IJCAI 2020, pp. 1519-1525.
Diederik P Kingma and Jimmy Ba. “Adam: A
method for stochastic optimization”. In: arXiv preprint
arXiv:1412.6980 (2014).

