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Abstract

To enhance real-time data processing, edge computing is
utilized in a wider and wider range of applications. For the
areas that require large bandwidth and low latency, edge
computing even becomes a must. For instance, in the com-
munication area, spectrum sharing within multiple users
requires high accuracy of spectrum using prediction as well
as low latency. For such tasks, neuromorphic computing,
especially spiking neural networks (SNNs), can be a poten-
tial method because of its power and silicon area efficiency.
In this paper, we have discussed various kinds of spiking
neural encoding schemes and their integrated circuit (IC)
implementations. We have also summarized the pair-based
STDP and the triplet-based STDP learning rule, their mathe-
matical models, and the triplet-based reconfigurable circuit
implementation. The Pytorch simulation of different encod-
ing schemes working with two STDP rules for the MNIST
and a dynamic spectrum sensing dataset is also presented.
It shows that multiplexing ISI-phase encoder can achieve at
most 8.9% higher accuracy than other encoders, and TSTDP
provides 2.7% higher accuracy than PSTDP for the MNIST
dataset. What’s more, for the task of spectrum sensing for
edge computing, the multiplexing encoding is also 4.3% more
accurate, and TSTDP is 0.3% more accurate for the spectrum
utilization prediction.
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1 Introduction

Edge computing has revolutionized how data is processed,
enabling real-time processing capabilities closer to the data
source and significantly reducing data transmission times
and energy consumption. Rather than converting data be-
tween sensors and storage or storage and processor, pro-
cessing data closer to the data source will eliminate most
of the latency between them. What’s more, the bandwidth
of the whole system can also be highly improved with the
short route of the data transmission. Last but not least, local
data processing also helps with data security and robustness.
Without the procedure of transmitting and processing data
on the cloud, information can gain more privacy and have
fewer errors [3]. With the abovementioned advantages, a lot
of applications, especially the Internet of Things (IoTs) are
utilizing this concept to improve their performance.

To implement data processing closer to the data source,
the processor’s power and area limitation is relatively more
severe than other computing units in the cloud or data cen-
ter. Thus, compared with the conventional von Neumann
structure, artificial intelligence computing units are more
potential candidates for such situations. Motivated by the
structure of biological neural systems, SNN was introduced
as a substitute for conventional Artificial Neural Networks
(ANN) because they more accurately replicate the function-
ing of biological neural structures [6]. In SNNs, information
is conveyed only when the membrane potential surpasses a
specific threshold, leading to the transmission of information
as spikes. This unique characteristic, energy efficiency, and
parallel processing capabilities make SNNs a viable option
for handling tasks that require extensive data processing,
such as image analysis. For instance, Intel’s SNN processor,
Loihi [5], is capable of categorizing objects in a 3D envi-
ronment while consuming only 0.001 times the energy of a
conventional computer.

In neuromorphic computing systems, analogous to bio-
logical neural systems, signals are shown as spikes. Hence,
a spike encoder is a crucial component of a neuromorphic
computing system. To comprehensively grasp the workings
of spiking information processing, it is imperative to inves-
tigate the neural encoding schemes. Such schemes involve



the transformation of raw sensory data into a series of spike
trains, which downstream processing units can then inter-
pret [11]. Broadly, there are two primary categories of en-
coding schemes: rate encoding and temporal encoding. Rate
encoding is a method that associates input data with the
number of spikes observed within a specified time frame.
Its straightforward implementation makes rate encoding
the preferred choice in software and hardware applications.
However, this approach has a significant limitation - it re-
sults in low data density because it only utilizes the firing
rate to transmit information while disregarding the tempo-
ral patterns of spikes [14]. Conversely, temporal encoding
captures information using the timing patterns of spikes,
thereby leveraging both the firing rate and the timing of
spikes for information representation.

For the effective execution of applications based on neu-
ral networks, it is crucial to have efficient training algo-
rithms and synaptic circuits. Numerous algorithms, such as
surrogate gradients and spike-timing-dependent plasticity
(STDP), have been explored for training SNNs. Beyond the
fundamental STDP rule exists a more sophisticated triplet
STDP (TSTDP) variant [10]. This rule considers a sequence
of spikes instead of just a single pair, enabling a more precise
emulation of intricate biological neural processes. Addition-
ally, even within the pair-based STDP (PSTDP) rules, there
exist variants beyond the asymmetric rule.

In the area of communication, the utilization of spectrum
bands has always been an important topic since the spectrum
bands that can be used for a certain system are limited [4,
8]. The suboptimal spectrum utilization efficiency results
from the presence of unused subcarriers. To address this
problem, it is essential for secondary users to access those
under-utilized subcarriers. This necessitates monitoring the
spectrum utilization of primary users via spectrum sensing,.

The major contributions of this work are summarized as
follows:

e We have investigated and summarized different en-
coding schemes and implemented and discussed their
integrated circuit (IC) schematics.

Both the PSTDP and TSTDP training algorithms and
TSTDP reconfigurable IC implementations are also
introduced

Simulations of different encoding schemes and training
algorithms for the spectrum-sharing communication
application as well as the image classification tasks
are also executed. The multiplexing encoding scheme
has achieved 4.3% of better accuracy in the application
of spectrum prediction compared to other encoding
schemes. What’s more, the triplet STDP learning rule
has been proven to have a 0.3% higher prediction cor-
rect rate.

366

Input

Output

i
I

CLK —||j_M8 M:E:

Figure 1. Circuit schematic of rate encoder.
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Figure 2. Simulation and ideal results of rate encoder.

2 Spiking Neural Encoding Schemes and
Their IC Implementations
2.1 The Rate Encoder Circuit and Simulation Result

Rate encoding, Time to First Spike (TTFS) encoding, and
Interspike Interval (ISI) encoding rank among the top three
prevalent spiking codes. With rate encoding, input data is
translated into a spike rate within a defined sampling win-
dow, meaning that a larger input corresponds to a higher
number of spikes in that window. Owing to its straightfor-
ward nature, rate encoding is the most commonly adopted
code. However, its oversight of the temporal patterns in the
spikes results in a less efficient information transfer [1].
The schematic of the rate encoder is depicted in Fig. 1.
Once the CLK signal resets the voltage over the membrane
capacitor C1 via the switch transistor M8, an encoding win-
dow is initiated. The voltage over the membrane capacitor
C1 rises as the input current is input. If the membrane volt-
age surpasses the reference voltage Vref, a spike is emitted
through the buffer. This emitted spike also activates the
switch transistor M7, resetting the membrane voltage to its
baseline, thereby restarting the integration process. There’s
a linear correlation between the number of spikes in the
sampling window and the input current. Fig. 2 demonstrates
the ideal result of the rate encoding and the simulation result
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Figure 3. Circuit schematic of TTFS encoder.

of the rate encoder circuit. Similar relations have been ob-
served. A higher input current results in more spikes within
the sampling window, whereas a lower input current leads
to fewer spikes.

2.2 The TTFS Encoder Circuit and Simulation Result

As the schematic of the TTFS encoder shown in Fig. 3 [2],
when the CLK signal comes, it resets the membrane volt-
age using the switch transistor M11 and initiates the charge
integration process. As the voltage across the membrane
capacitor C1 increases, the voltage at the transistor M1’s
source also rises, controlled by Vref. Once this voltage sur-
passes the threshold voltage of the inverter made up of M3
and M4, the output transitions to a digitally high state. The
four-transistor clock-controlled inverter immediately sends a
high feedback signal to switch M11, resetting the membrane
voltage to its baseline. Consequently, the encoder’s output
showcases a singular spike rather than a prolonged high dig-
ital square wave. Furthermore, the feedback signal remains
high until the next CLK signal, ensuring only one spike ap-
pears within a given sampling window. Fig. 4 illustrates an
inverse proportion between the time difference and the in-
put current. As the input increases, the spike approaches
the CLK signal more closely. The simulated outcome closely
aligns with the ideal output.

2.3 The ISI Encoder Circuit and Simulation Result

This section discusses the ISI encoder’s parallel structure
[15]. While incorporating more neurons in the ISI encoder
increases spikes within a single encoding window;, it simul-
taneously elevates power usage and expands the design foot-
print. Consequently, we’ll focus on the two-neuron parallel
structure of the ISI encoder circuit here. Fig. 5 depicts the
encoder’s schematic. Both neurons operate under the same
CLK signal and share an identical encoding window. Given
that their input currents are matched, their charge integra-
tion rates align. The distinguishing factor between these
neurons lies in their varied reference voltages, causing them
to generate spikes at distinct moments. Subsequently, an
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Figure 4. Simulation and ideal results of TTFS encoder.
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Figure 5. Circuit schematic of ISI encoder.
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Figure 6. Simulation and ideal results of ISI encoder.

OR gate amalgamates these two spikes, producing a dual-
spike train, thereby translating the input data into time in-
tervals between spikes. As demonstrated in Fig. 6, the ISI
encoder’s simulation outputs match the encoder’s ideal out-
puts, indicating the circuit’s functionality has achieved the
ISI encoder’s requirements.

2.4 The TTFS-phase Encoder Circuit and Simulation
Result

Originally identified in biological neural systems, multiplex-

ing encoding schemes combine various neural codes—particularly
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Figure 8. Simulation and ideal results of TTFS-phase en-
coder.

those operating on distinct time scales—to enhance data ca-
pacity. The multiplexing TTFS-phase encoding technique
adjusts the TTFS-encoded spikes to align with the immediate
local maximum of their respective SMOs. Our design, illus-
trated in Fig. 7 [17], incorporates a single channel, leading
the TTFS-phase encoder to use only one SMO. Firstly, the sig-
nals will be processed by a Neuron block, also known as the
TTEFS encoder, to provide TTFS-coded spikes. To facilitate
the spike-shifting operation, a gamma alignment block is
integrated. Within this block, an upcoming spike is captured
and sustained by a peak detector. The spike voltage remains
maintained across the capacitor through a diode-linked tran-
sistor. Subsequently, as the local maximum of the SMO is
reached, an AND gate releases a spike, which, after stabi-
lization by a buffer, is emitted. Simultaneously, this spike
actuates the switch transistor, resetting the held voltage to
its baseline, where it remains until the arrival of the next
spike.

Fig. 8 displays the ideal and simulated signal flows within
the TTFS-phase encoder. The figure’s upper section portrays
the TTFS encoding function, whereas the lower section out-
lines the gamma alignment procedure. Once processed by
the TTFS neuron, the current signal transitions into spikes.
Within the gamma alignment block, these TTES spikes are
then repositioned to align with the subsequent local peak of
the SMO.
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Figure 10. Simulation and ideal results of ISI-phase encoder.

2.5 The ISI-phase Encoder Circuit and Simulation
Result

Much like the TTFS-phase encoder, the ISI-phase encoder
incorporates both an ISI encoder and a gamma alignment
block [16], as shown in Fig. 9. The gamma alignment block’s
role is to align the expanded spikes with the SMO’s local peak
for the spike train within a single sampling window. The ISI
encoder uses two neurons, producing two spikes within one
encoding window. As a result, the SMO frequency ought to
be increased. If not, there’s a risk that both spikes within
the same encoding window might align with the same local
peak, resulting in a single spike in the sampling window. Fig.
10 depicts that the simulation results are very close to the
ideal ISI-phase encoded spike trains.

3 STDP Training Algorithms of Online
Training for Edge Computing

To meet the demands of edge computing, neuromorphic
computing systems must possess online training capabilities.
By incorporating online training, neural networks can by-
pass the conventional offline training typically conducted on
cloud servers. In SNNs, a range of algorithms are employed
for training purposes. Notably, STDP stands out as a promis-
ing choice. This algorithm adjusts the synaptic weights based
on the relative timing of spikes.



3.1 Pair-based STDP Learning Algorithm

The asymmetric pair-based STDP rule is the most direct
and widely adopted example [13]. In this particular rule,
weights are increased when the spike time aligns with the
direction of spike propagation, a phenomenon known as
long-term potentiation (LTP). Conversely, if the post-neuron
spike occurs before the pre-neuron spike, indicating a weaker
relationship between the two neurons, the synaptic weight is
reduced, a process termed long-term depression (LTD). The
correlation between weight alteration and the time difference
is described as follows:

+,—(tpost —t T
Ate (po.st pre)/ s

AW = _A*e(tpost*tpre)/f’

tpost - tpre >0 (1)
tpost - tpre <0.

Let tpre and tp,s; represent the pre-neuron and post-neuron
firing times, respectively. A* and A~ denote the peak values
of potentiation and depression, with the same magnitude but
opposite signs. The time constant, denoted by 7, determines
the decay rate for both potentiation and depression. Notably,
the potentiation and depression values exhibit an exponen-
tial relationship with the differences in spike timings. This
ensures that closely timed spikes significantly influence the
weight, while those spaced farther apart exert a minimal
impact on the weight.

3.2 Triplet-based STDP Learning Algorithm and
TSTDP Reconfigurable Circuit Implementation

As discussed above, the Pair STDP rule (PSTDP) considers
two spikes and modifies the synaptic weight based on their
time difference. In contrast, the Triplet STDP rule (TSTDP)
factors in three spikes [7]. The spike combinations could be
either pre-post-pre or post-pre-post. These spike combina-
tions illustrate how the timing differences between spikes
are used to adjust synaptic weights. Different from the pair-
based STDP training algorithm, the triplet-based STDP train-
ing algorithm represents a more complicated math model:
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where A; and A; denote the potentiation and depression
parameters, respectively, while Aty signifies the time differ-
ence between the pre-spike and post-spike. As for At,, it
is defined as ty0s¢ (1) tpos: (n — 1), representing the time in-
terval between two consecutive post spikes. Here, n stands
for a specific time step, and n - 1 indicates the immediately
preceding time step. In a similar vein, At; illustrates the time
gap between two pre-spikes. When comparing the TSTDP
mathematical model with the PSTDP equation, it becomes
evident that the TSTDP encompasses higher-order terms in
both its depression and potentiation formulas.

In our quest to harness the strengths of the TSTDP learn-
ing rule across various applications, we have introduced an
innovative STDP learning circuit. This circuit seamlessly
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Figure 12. Circuit schematic of the synapse core.

integrates diverse STDP learning rule shapes into the triplet
STDP framework. By doing so, it capitalizes on the inherent
advantages of TSTDP, such as its frequency effects, making
it adaptable for a range of applications. As demonstrated in
Fig. 11, Our group has designed the triplet reconfigurable
STDP circuit [18]. The reconfigurable triplet STDP circuit is
governed by six digital signals, facilitating a switch among
various learning rule shapes. These signals are classified into
controls for pre-spikes and post-spikes. The circuit design
comprises five distinct sections. Two sections focus on gen-
erating time windows for weight changing caused by two
spikes, while another two are dedicated to weight changing
caused by three spike trains. The circuit’s fifth part termed
the synapse core, leverages voltage signal flows from the
preceding four sections to modify the synapse’s weight.

The time window generators will take account in both the
pre-and post-spikes as well as the control signal and output
OTA inputting signals. While the 1st-order generator uses
the current spikes, the two 2nd-order generators will hold
the pre- and post-spikes for one clock cycle, respectively, and
then utilize the spikes for OTA signal emitting. As depicted
in Fig. 12, the synapse core gets the OTA signals from the
generators and adjusts the weight.

The OTA signals from the window generators come to the
synapse core in pairs. The two signals in the pair will have
voltage differences at the spiking time. With this difference,
the synapse core will be able to either inject or drain charge
from the weight capacitor at the time of spikes. Moreover,
the Vtail and Vtail_T can be used to adjust the charge amount

window generator (LR

window generator [V¥H



Table 1. Accuracy of different encoding schemes training
with both PSTDP and TSTDP learning algorithms for MNIST
and dynamic spectrum sensing datasets

MNIST | Rate | TTFS| ISI | TTFS-phase | ISI-phase
PSTDP | 87.2% | 88.9% | 91.8% 92.5% 93.8%
TSTDP |87.6% | 91.1% | 92.8% 93.2% 96.5%
Spectrum | Rate | TTFS | ISI | TTFS-phase | ISI-phase
PSTDP | 87.4% | 89.4% | 90.2% 90.3% 92.3%
TSTDP | 88.3% | 89.9% | 90.1% 91.0% 92.6%

injected or drained from Cw. Thus, the circuit can achieve
different ways of adjusting weight voltage.

4 Performance of Different Encoding
Schemes Working with Both STDP
Training Algorithms

To utilize the SNN classification in edge computing, espe-
cially in communication applications, it has to be proven
to have high task efficiency and accuracy. To evaluate the
efficacy of various encoding schemes working with both
STDP training algorithms, we implemented spiking neural
networks with distinct encoders and trained by both STDP
rules using PyTorch and the SpykeTorch simulator. Our ex-
periments employed the MNIST dataset along with the spec-
trum sensing dataset. The latter was initially introduced in a
dynamic spectrum-sharing system to address the spectrum
scarcity challenges faced by 5G networks. Although Multiple-
Input, Multiple-Output Orthogonal Frequency-Division Mul-
tiplexing (MIMO-OFDM) technologies enhance spectral effi-
ciency, unused subcarriers still result in less-than-optimal
spectrum utilization. To circumvent this, secondary users
must tap into these under-utilized subcarriers. This demands
monitoring the spectrum consumption of primary users via
spectrum sensing. Studies have confirmed that employing
spiking neural networks to predict under-utilized spectrum
bands is a notably energy-efficient approach [9, 12].

Table II has demonstrated the classification accuracy of
various encoders working with both algorithms for the two
datasets. For the MNIST dataset, the multiplexing ISI-phase
encoding scheme achieves the highest accuracies with pair-
based STDP and triplet-based STDP learning rules. Com-
pared with other encoding schemes, the ISI-phase encoding
yields at most 6.6% and 8.9% accuracy working with PSTDP
and TSTDP, respectively. What’s more, it also shows that
the TSTDP learning can offer 2.7% higher accuracy than the
PSTDP rule.

As for the dynamic spectrum sensing dataset, the ISI-phase
encoder achieves 92.6% accuracy when collaborating with
TSTDP, which is 0.3% higher than PSTDP and 4.3% higher
than other encoders. It proves that the multiplexing encoding
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schemes can achieve better classification performance and
the triplet-based STDP learning is able to provide higher
accuracies than conventional STDP training algorithm for
both image classification and communication applications.
With that, the need to transmit data to the center server and
wait for the processing can be avoided. Since the data are
processed close to its source, the latency of the spectrum
switching is drastically reduced, resulting in a much more
efficiently used spectrum band.

5 Conclusion

In this paper, we have summarized two key features of the
SNN for the application of communication systems for edge
computing. One is the spike neural encoding and the other
is the STDP training algorithm. For the spiking encoding, we
have discussed various kinds of encoding schemes and their
integrated circuit (IC) implementations. The results indicate
that while rate encoding is simple, its data capacity is limited.
In contrast, temporal codes offer increased data capacity but
lack noise robustness. Multiplexing encoding schemes strike
a balance by delivering high data capacity and robustness;
however, their complexity results in significant power and
area expenses. We have also talked about two various STDP
training algorithms. One is the pair-based STDP rule, and the
other is the triplet-based STDP learning rule. The mathemat-
ical models of the algorithms are explained, and the circuit
implementation of the triplet-based STDP circuit with the
reconfigurable feature is also demonstrated in the paper. The
Pytorch simulation of different encoding schemes working
with two STDP rules for the MNIST and a dynamic spectrum
sensing dataset is also presented. It shows that multiplexing
ISI-phase encoder can achieve at most 8.9% higher accuracy
than other encoders and TSTDP provides 2.7% higher accu-
racy than PSTDP for the MNIST dataset. What’s more, for
the task of spectrum sensing for edge computing, the multi-
plexing encoding is also 4.3% more accurate, and TSTDP is
0.3% more accurate for the spectrum utilization prediction.
This result has proved that SNNs can be potential candidates
for communication applications, especially with multiplex-
ing encoding and trained by TSTDP rules. Consequently,
there’s no longer a need to send data to a central server and
await processing. As data is processed closer to its origin, the
latency associated with spectrum switching diminishes sig-
nificantly, leading to a more optimized use of the spectrum
band.
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