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Abstract

To enhance real-time data processing, edge computing is

utilized in a wider and wider range of applications. For the

areas that require large bandwidth and low latency, edge

computing even becomes a must. For instance, in the com-

munication area, spectrum sharing within multiple users

requires high accuracy of spectrum using prediction as well

as low latency. For such tasks, neuromorphic computing,

especially spiking neural networks (SNNs), can be a poten-

tial method because of its power and silicon area e�ciency.

In this paper, we have discussed various kinds of spiking

neural encoding schemes and their integrated circuit (IC)

implementations. We have also summarized the pair-based

STDP and the triplet-based STDP learning rule, their mathe-

matical models, and the triplet-based recon�gurable circuit

implementation. The Pytorch simulation of di�erent encod-

ing schemes working with two STDP rules for the MNIST

and a dynamic spectrum sensing dataset is also presented.

It shows that multiplexing ISI-phase encoder can achieve at

most 8.9% higher accuracy than other encoders, and TSTDP

provides 2.7% higher accuracy than PSTDP for the MNIST

dataset. What’s more, for the task of spectrum sensing for

edge computing, the multiplexing encoding is also 4.3% more

accurate, and TSTDP is 0.3% more accurate for the spectrum

utilization prediction.

Keywords: spiking neural encoding, STDP training, spec-

trum sensing, integrated circuit
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1 Introduction

Edge computing has revolutionized how data is processed,

enabling real-time processing capabilities closer to the data

source and signi�cantly reducing data transmission times

and energy consumption. Rather than converting data be-

tween sensors and storage or storage and processor, pro-

cessing data closer to the data source will eliminate most

of the latency between them. What’s more, the bandwidth

of the whole system can also be highly improved with the

short route of the data transmission. Last but not least, local

data processing also helps with data security and robustness.

Without the procedure of transmitting and processing data

on the cloud, information can gain more privacy and have

fewer errors [3]. With the abovementioned advantages, a lot

of applications, especially the Internet of Things (IoTs) are

utilizing this concept to improve their performance.

To implement data processing closer to the data source,

the processor’s power and area limitation is relatively more

severe than other computing units in the cloud or data cen-

ter. Thus, compared with the conventional von Neumann

structure, arti�cial intelligence computing units are more

potential candidates for such situations. Motivated by the

structure of biological neural systems, SNN was introduced

as a substitute for conventional Arti�cial Neural Networks

(ANN) because they more accurately replicate the function-

ing of biological neural structures [6]. In SNNs, information

is conveyed only when the membrane potential surpasses a

speci�c threshold, leading to the transmission of information

as spikes. This unique characteristic, energy e�ciency, and

parallel processing capabilities make SNNs a viable option

for handling tasks that require extensive data processing,

such as image analysis. For instance, Intel’s SNN processor,

���ℎ� [5], is capable of categorizing objects in a 3D envi-

ronment while consuming only 0.001 times the energy of a

conventional computer.

In neuromorphic computing systems, analogous to bio-

logical neural systems, signals are shown as spikes. Hence,

a spike encoder is a crucial component of a neuromorphic

computing system. To comprehensively grasp the workings

of spiking information processing, it is imperative to inves-

tigate the neural encoding schemes. Such schemes involve
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the transformation of raw sensory data into a series of spike

trains, which downstream processing units can then inter-

pret [11]. Broadly, there are two primary categories of en-

coding schemes: rate encoding and temporal encoding. Rate

encoding is a method that associates input data with the

number of spikes observed within a speci�ed time frame.

Its straightforward implementation makes rate encoding

the preferred choice in software and hardware applications.

However, this approach has a signi�cant limitation - it re-

sults in low data density because it only utilizes the �ring

rate to transmit information while disregarding the tempo-

ral patterns of spikes [14]. Conversely, temporal encoding

captures information using the timing patterns of spikes,

thereby leveraging both the �ring rate and the timing of

spikes for information representation.

For the e�ective execution of applications based on neu-

ral networks, it is crucial to have e�cient training algo-

rithms and synaptic circuits. Numerous algorithms, such as

surrogate gradients and spike-timing-dependent plasticity

(STDP), have been explored for training SNNs. Beyond the

fundamental STDP rule exists a more sophisticated triplet

STDP (TSTDP) variant [10]. This rule considers a sequence

of spikes instead of just a single pair, enabling a more precise

emulation of intricate biological neural processes. Addition-

ally, even within the pair-based STDP (PSTDP) rules, there

exist variants beyond the asymmetric rule.

In the area of communication, the utilization of spectrum

bands has always been an important topic since the spectrum

bands that can be used for a certain system are limited [4,

8]. The suboptimal spectrum utilization e�ciency results

from the presence of unused subcarriers. To address this

problem, it is essential for secondary users to access those

under-utilized subcarriers. This necessitates monitoring the

spectrum utilization of primary users via spectrum sensing.

The major contributions of this work are summarized as

follows:

• We have investigated and summarized di�erent en-

coding schemes and implemented and discussed their

integrated circuit (IC) schematics.

• Both the PSTDP and TSTDP training algorithms and

TSTDP recon�gurable IC implementations are also

introduced

• Simulations of di�erent encoding schemes and training

algorithms for the spectrum-sharing communication

application as well as the image classi�cation tasks

are also executed. The multiplexing encoding scheme

has achieved 4.3% of better accuracy in the application

of spectrum prediction compared to other encoding

schemes. What’s more, the triplet STDP learning rule

has been proven to have a 0.3% higher prediction cor-

rect rate.
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Figure 1. Circuit schematic of rate encoder.
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Figure 2. Simulation and ideal results of rate encoder.

2 Spiking Neural Encoding Schemes and
Their IC Implementations

2.1 The Rate Encoder Circuit and Simulation Result

Rate encoding, Time to First Spike (TTFS) encoding, and

Interspike Interval (ISI) encoding rank among the top three

prevalent spiking codes. With rate encoding, input data is

translated into a spike rate within a de�ned sampling win-

dow, meaning that a larger input corresponds to a higher

number of spikes in that window. Owing to its straightfor-

ward nature, rate encoding is the most commonly adopted

code. However, its oversight of the temporal patterns in the

spikes results in a less e�cient information transfer [1].

The schematic of the rate encoder is depicted in Fig. 1.

Once the CLK signal resets the voltage over the membrane

capacitor C1 via the switch transistor M8, an encoding win-

dow is initiated. The voltage over the membrane capacitor

C1 rises as the input current is input. If the membrane volt-

age surpasses the reference voltage Vref, a spike is emitted

through the bu�er. This emitted spike also activates the

switch transistor M7, resetting the membrane voltage to its

baseline, thereby restarting the integration process. There’s

a linear correlation between the number of spikes in the

sampling window and the input current. Fig. 2 demonstrates

the ideal result of the rate encoding and the simulation result
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Figure 3. Circuit schematic of TTFS encoder.

of the rate encoder circuit. Similar relations have been ob-

served. A higher input current results in more spikes within

the sampling window, whereas a lower input current leads

to fewer spikes.

2.2 The TTFS Encoder Circuit and Simulation Result

As the schematic of the TTFS encoder shown in Fig. 3 [2],

when the CLK signal comes, it resets the membrane volt-

age using the switch transistor M11 and initiates the charge

integration process. As the voltage across the membrane

capacitor C1 increases, the voltage at the transistor M1’s

source also rises, controlled by Vref. Once this voltage sur-

passes the threshold voltage of the inverter made up of M3

and M4, the output transitions to a digitally high state. The

four-transistor clock-controlled inverter immediately sends a

high feedback signal to switch M11, resetting the membrane

voltage to its baseline. Consequently, the encoder’s output

showcases a singular spike rather than a prolonged high dig-

ital square wave. Furthermore, the feedback signal remains

high until the next CLK signal, ensuring only one spike ap-

pears within a given sampling window. Fig. 4 illustrates an

inverse proportion between the time di�erence and the in-

put current. As the input increases, the spike approaches

the CLK signal more closely. The simulated outcome closely

aligns with the ideal output.

2.3 The ISI Encoder Circuit and Simulation Result

This section discusses the ISI encoder’s parallel structure

[15]. While incorporating more neurons in the ISI encoder

increases spikes within a single encoding window, it simul-

taneously elevates power usage and expands the design foot-

print. Consequently, we’ll focus on the two-neuron parallel

structure of the ISI encoder circuit here. Fig. 5 depicts the

encoder’s schematic. Both neurons operate under the same

CLK signal and share an identical encoding window. Given

that their input currents are matched, their charge integra-

tion rates align. The distinguishing factor between these

neurons lies in their varied reference voltages, causing them

to generate spikes at distinct moments. Subsequently, an
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Figure 4. Simulation and ideal results of TTFS encoder.
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Figure 5. Circuit schematic of ISI encoder.
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Figure 6. Simulation and ideal results of ISI encoder.

OR gate amalgamates these two spikes, producing a dual-

spike train, thereby translating the input data into time in-

tervals between spikes. As demonstrated in Fig. 6, the ISI

encoder’s simulation outputs match the encoder’s ideal out-

puts, indicating the circuit’s functionality has achieved the

ISI encoder’s requirements.

2.4 The TTFS-phase Encoder Circuit and Simulation

Result

Originally identi�ed in biological neural systems, multiplex-

ing encoding schemes combine various neural codes—particularly
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Figure 7. Circuit schematic of TTFS-phase encoder.
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Figure 8. Simulation and ideal results of TTFS-phase en-

coder.

those operating on distinct time scales—to enhance data ca-

pacity. The multiplexing TTFS-phase encoding technique

adjusts the TTFS-encoded spikes to align with the immediate

local maximum of their respective SMOs. Our design, illus-

trated in Fig. 7 [17], incorporates a single channel, leading

the TTFS-phase encoder to use only one SMO. Firstly, the sig-

nals will be processed by a Neuron block, also known as the

TTFS encoder, to provide TTFS-coded spikes. To facilitate

the spike-shifting operation, a gamma alignment block is

integrated. Within this block, an upcoming spike is captured

and sustained by a peak detector. The spike voltage remains

maintained across the capacitor through a diode-linked tran-

sistor. Subsequently, as the local maximum of the SMO is

reached, an AND gate releases a spike, which, after stabi-

lization by a bu�er, is emitted. Simultaneously, this spike

actuates the switch transistor, resetting the held voltage to

its baseline, where it remains until the arrival of the next

spike.

Fig. 8 displays the ideal and simulated signal �ows within

the TTFS-phase encoder. The �gure’s upper section portrays

the TTFS encoding function, whereas the lower section out-

lines the gamma alignment procedure. Once processed by

the TTFS neuron, the current signal transitions into spikes.

Within the gamma alignment block, these TTFS spikes are

then repositioned to align with the subsequent local peak of

the SMO.
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Figure 9. Circuit schematic of ISI-phase encoder.
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Figure 10. Simulation and ideal results of ISI-phase encoder.

2.5 The ISI-phase Encoder Circuit and Simulation

Result

Much like the TTFS-phase encoder, the ISI-phase encoder

incorporates both an ISI encoder and a gamma alignment

block [16], as shown in Fig. 9. The gamma alignment block’s

role is to align the expanded spikes with the SMO’s local peak

for the spike train within a single sampling window. The ISI

encoder uses two neurons, producing two spikes within one

encoding window. As a result, the SMO frequency ought to

be increased. If not, there’s a risk that both spikes within

the same encoding window might align with the same local

peak, resulting in a single spike in the sampling window. Fig.

10 depicts that the simulation results are very close to the

ideal ISI-phase encoded spike trains.

3 STDP Training Algorithms of Online
Training for Edge Computing

To meet the demands of edge computing, neuromorphic

computing systems must possess online training capabilities.

By incorporating online training, neural networks can by-

pass the conventional o�ine training typically conducted on

cloud servers. In SNNs, a range of algorithms are employed

for training purposes. Notably, STDP stands out as a promis-

ing choice. This algorithm adjusts the synaptic weights based

on the relative timing of spikes.
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3.1 Pair-based STDP Learning Algorithm

The asymmetric pair-based STDP rule is the most direct

and widely adopted example [13]. In this particular rule,

weights are increased when the spike time aligns with the

direction of spike propagation, a phenomenon known as

long-term potentiation (LTP). Conversely, if the post-neuron

spike occurs before the pre-neuron spike, indicating aweaker

relationship between the two neurons, the synaptic weight is

reduced, a process termed long-term depression (LTD). The

correlation betweenweight alteration and the time di�erence

is described as follows:

Δ� =

{
�+�−(����� −���� )/� , 	���� − 	��� > 0

−�−� (�����−���� )/� , 	���� − 	��� < 0.
(1)

Let 	��� and 	���� represent the pre-neuron and post-neuron

�ring times, respectively. �+ and �− denote the peak values

of potentiation and depression, with the same magnitude but

opposite signs. The time constant, denoted by 
 , determines

the decay rate for both potentiation and depression. Notably,

the potentiation and depression values exhibit an exponen-

tial relationship with the di�erences in spike timings. This

ensures that closely timed spikes signi�cantly in�uence the

weight, while those spaced farther apart exert a minimal

impact on the weight.

3.2 Triplet-based STDP Learning Algorithm and

TSTDP Recon�gurable Circuit Implementation

As discussed above, the Pair STDP rule (PSTDP) considers

two spikes and modi�es the synaptic weight based on their

time di�erence. In contrast, the Triplet STDP rule (TSTDP)

factors in three spikes [7]. The spike combinations could be

either pre-post-pre or post-pre-post. These spike combina-

tions illustrate how the timing di�erences between spikes

are used to adjust synaptic weights. Di�erent from the pair-

based STDP training algorithm, the triplet-based STDP train-

ing algorithm represents a more complicated math model:

Δ� =

⎧⎪⎪⎨
⎪⎪⎩

�+
1�

(
−Δ�1
�+
1

)
+�+

2�
(
−Δ�2
�+
2

)
�
(
−Δ�1
�+
1

)

−�−
1 �

(
Δ�1
�−
1
)
−�−

2 �
(
−Δ�3
�−
2

)
�
(
Δ�1
�−
1
)

(2)

where �1 and �2 denote the potentiation and depression

parameters, respectively, while Δ	1 signi�es the time di�er-

ence between the pre-spike and post-spike. As for Δ	2, it

is de�ned as 	���� (�)˘	���� (� − 1), representing the time in-

terval between two consecutive post spikes. Here, n stands

for a speci�c time step, and n – 1 indicates the immediately

preceding time step. In a similar vein, Δ	3 illustrates the time

gap between two pre-spikes. When comparing the TSTDP

mathematical model with the PSTDP equation, it becomes

evident that the TSTDP encompasses higher-order terms in

both its depression and potentiation formulas.

In our quest to harness the strengths of the TSTDP learn-

ing rule across various applications, we have introduced an

innovative STDP learning circuit. This circuit seamlessly

Figure 11. Triplet recon�gurable STDP circuit structure.

Figure 12. Circuit schematic of the synapse core.

integrates diverse STDP learning rule shapes into the triplet

STDP framework. By doing so, it capitalizes on the inherent

advantages of TSTDP, such as its frequency e�ects, making

it adaptable for a range of applications. As demonstrated in

Fig. 11, Our group has designed the triplet recon�gurable

STDP circuit [18]. The recon�gurable triplet STDP circuit is

governed by six digital signals, facilitating a switch among

various learning rule shapes. These signals are classi�ed into

controls for pre-spikes and post-spikes. The circuit design

comprises �ve distinct sections. Two sections focus on gen-

erating time windows for weight changing caused by two

spikes, while another two are dedicated to weight changing

caused by three spike trains. The circuit’s �fth part termed

the synapse core, leverages voltage signal �ows from the

preceding four sections to modify the synapse’s weight.

The time window generators will take account in both the

pre-and post-spikes as well as the control signal and output

OTA inputting signals. While the 1st-order generator uses

the current spikes, the two 2nd-order generators will hold

the pre- and post-spikes for one clock cycle, respectively, and

then utilize the spikes for OTA signal emitting. As depicted

in Fig. 12, the synapse core gets the OTA signals from the

generators and adjusts the weight.

The OTA signals from the window generators come to the

synapse core in pairs. The two signals in the pair will have

voltage di�erences at the spiking time. With this di�erence,

the synapse core will be able to either inject or drain charge

from the weight capacitor at the time of spikes. Moreover,

the Vtail and Vtail_T can be used to adjust the charge amount
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Table 1. Accuracy of di�erent encoding schemes training

with both PSTDP and TSTDP learning algorithms for MNIST

and dynamic spectrum sensing datasets

MNIST Rate TTFS ISI TTFS-phase ISI-phase

PSTDP 87.2% 88.9% 91.8% 92.5% 93.8%

TSTDP 87.6% 91.1% 92.8% 93.2% 96.5%

Spectrum Rate TTFS ISI TTFS-phase ISI-phase

PSTDP 87.4% 89.4% 90.2% 90.3% 92.3%

TSTDP 88.3% 89.9% 90.1% 91.0% 92.6%

injected or drained from Cw. Thus, the circuit can achieve

di�erent ways of adjusting weight voltage.

4 Performance of Di�erent Encoding
Schemes Working with Both STDP
Training Algorithms

To utilize the SNN classi�cation in edge computing, espe-

cially in communication applications, it has to be proven

to have high task e�ciency and accuracy. To evaluate the

e�cacy of various encoding schemes working with both

STDP training algorithms, we implemented spiking neural

networks with distinct encoders and trained by both STDP

rules using PyTorch and the SpykeTorch simulator. Our ex-

periments employed the MNIST dataset along with the spec-

trum sensing dataset. The latter was initially introduced in a

dynamic spectrum-sharing system to address the spectrum

scarcity challenges faced by 5G networks. AlthoughMultiple-

Input, Multiple-Output Orthogonal Frequency-Division Mul-

tiplexing (MIMO-OFDM) technologies enhance spectral e�-

ciency, unused subcarriers still result in less-than-optimal

spectrum utilization. To circumvent this, secondary users

must tap into these under-utilized subcarriers. This demands

monitoring the spectrum consumption of primary users via

spectrum sensing. Studies have con�rmed that employing

spiking neural networks to predict under-utilized spectrum

bands is a notably energy-e�cient approach [9, 12].

Table II has demonstrated the classi�cation accuracy of

various encoders working with both algorithms for the two

datasets. For the MNIST dataset, the multiplexing ISI-phase

encoding scheme achieves the highest accuracies with pair-

based STDP and triplet-based STDP learning rules. Com-

pared with other encoding schemes, the ISI-phase encoding

yields at most 6.6% and 8.9% accuracy working with PSTDP

and TSTDP, respectively. What’s more, it also shows that

the TSTDP learning can o�er 2.7% higher accuracy than the

PSTDP rule.

As for the dynamic spectrum sensing dataset, the ISI-phase

encoder achieves 92.6% accuracy when collaborating with

TSTDP, which is 0.3% higher than PSTDP and 4.3% higher

than other encoders. It proves that the multiplexing encoding

schemes can achieve better classi�cation performance and

the triplet-based STDP learning is able to provide higher

accuracies than conventional STDP training algorithm for

both image classi�cation and communication applications.

With that, the need to transmit data to the center server and

wait for the processing can be avoided. Since the data are

processed close to its source, the latency of the spectrum

switching is drastically reduced, resulting in a much more

e�ciently used spectrum band.

5 Conclusion

In this paper, we have summarized two key features of the

SNN for the application of communication systems for edge

computing. One is the spike neural encoding and the other

is the STDP training algorithm. For the spiking encoding, we

have discussed various kinds of encoding schemes and their

integrated circuit (IC) implementations. The results indicate

that while rate encoding is simple, its data capacity is limited.

In contrast, temporal codes o�er increased data capacity but

lack noise robustness. Multiplexing encoding schemes strike

a balance by delivering high data capacity and robustness;

however, their complexity results in signi�cant power and

area expenses. We have also talked about two various STDP

training algorithms. One is the pair-based STDP rule, and the

other is the triplet-based STDP learning rule. The mathemat-

ical models of the algorithms are explained, and the circuit

implementation of the triplet-based STDP circuit with the

recon�gurable feature is also demonstrated in the paper. The

Pytorch simulation of di�erent encoding schemes working

with two STDP rules for the MNIST and a dynamic spectrum

sensing dataset is also presented. It shows that multiplexing

ISI-phase encoder can achieve at most 8.9% higher accuracy

than other encoders and TSTDP provides 2.7% higher accu-

racy than PSTDP for the MNIST dataset. What’s more, for

the task of spectrum sensing for edge computing, the multi-

plexing encoding is also 4.3% more accurate, and TSTDP is

0.3% more accurate for the spectrum utilization prediction.

This result has proved that SNNs can be potential candidates

for communication applications, especially with multiplex-

ing encoding and trained by TSTDP rules. Consequently,

there’s no longer a need to send data to a central server and

await processing. As data is processed closer to its origin, the

latency associated with spectrum switching diminishes sig-

ni�cantly, leading to a more optimized use of the spectrum

band.
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