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Spiking Neural Networks (SNNs) are energy-e�cient arti�cial neural network models that can carry out 

data-intensive applications. Energy consumption, latency, and memory bottleneck are some of the major 

issues that arise in machine learning applications due to their data-demanding nature. Memristor-enabled 

Computing-In-Memory (CIM) architectures have been able to tackle the memory wall issue, eliminating the 

energy and time-consuming movement of data. In this work we develop a scalable CIM-based SNN architec- 

ture with our fabricated two-layer memristor crossbar array. In addition to having an enhanced heat dissi- 

pation capability, our memristor exhibits substantial enhancement of 10% to 66% in design area, power and 

latency compared to state-of-the-art memristors. This design incorporates an inter-spike interval (ISI) encod- 

ing scheme due to its high information density to convert the incoming input signals into spikes. Furthermore, 

we include a time-to-�rst-spike (TTFS) based output processing stage for its energy-e�ciency to carry out 

the �nal classi�cation. With the combination of ISI, CIM and TTFS, this network has a competitive inference 

speed of 2 μs/image and can successfully classify handwritten digits with 2.9mW of power and 2.51pJ energy 

per spike. The proposed architecture with the ISI encoding scheme can achieve ∼10% higher accuracy than 

those of other encoding schemes in the MNIST dataset. 
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1 INTRODUCTION 

In recent years, machine learning has shown successful results in arti�cial intelligence applications 
such as computer vision, natural language processing, pattern classi�cation and speech recogni- 
tion [ 1 ]. The rapid expansion of data volume and neural network training durations over the past 
decade has posed signi�cant challenges for CPUs and GPUs in terms of energy e�ciency [ 2 ]. In 
response, specialized arti�cial intelligence (AI) accelerators such as Eyeriss and Google TPUs 
have been devised to address these concerns [ 3 ]. However, the constant shuttling of data back and 
forth from the accelerator and memory is often limited by the memory bandwidth and contributes 
to signi�cant power and energy consumption. 

Computing-in-memory (CIM) emerged as a promising paradigm for AI accelerators where 
the computations are done inside the memory [ 4 ]. The conventional CMOS memory technolo- 
gies encompass dynamic random access memory (DRAM), static random access memory 

(SRAM) and �ash that rely on the charge storage phenomenon. However, compared to these tra- 
ditional technologies, the emerging non-volatile memory technologies (eNVMs) are more 
suited to CIM operations in the �eld of neuromorphic hardware because of their capability in 
closely imitating the neurons and synapses in biological systems [ 5 ]. The memristor, a speci�c 
eNVM, has several advantageous properties of low power consumption, scalability, compatibility 
with CMOS technology, and analog conductance modulation making it a viable replacement for 
traditional CMOS memory technologies [ 5 ]. These characteristics of the memristor allows it to 
be used in building CIM architectures, supplanting the usage of analog-to-digital and digital-to- 
analog converters, resulting in substantial reductions in area and power consumption. Previously 
there have been several memristor-based AI accelerators built on Convolutional Neural Net- 
works (CNNs) , including PRIME, ISAAC, PipeLayer and AtomLayer that have achieved signi�- 
cant improvements in energy and power compared to CMOS-based accelerators [ 6 –9 ]. 

The integration of Spiking Neural Networks (SNNs) in memristor-based machine learning 
can be further bene�cial in improving the e�ciency of these neural networks. SNNs have the abil- 
ity to emulate biological neurons more closely via the transmission of spiking signals. The infor- 
mation in SNNs is encoded in both the timing and the ordering of the spikes, allowing them to have 
a spatiotemporal information processing capability [ 10 ]. While the spatial aspect arises from the 
neurons localized to each other, the temporal aspect stems from the timing characteristics of SNNs 
[ 11 ]. Once a threshold is exceeded, a spike is �red, capturing the information in a binary format, 
which further aids in the energy and power e�ciency of these neural networks in hardware imple- 
mentations. This makes SNNs superior to ANNs and is therefore depicted as the third generation 
of neural networks [ 12 ]. In memristor-based neural networks, the integration of SNNs also ensures 
improvements in noise margins and increased tolerance in the variation of the devices [ 13 ]. There 
have been several implementations of memristor-based SNNs over the past years. An energy- 
e�cient and recon�gurable architecture built with Memristor Crossbar on deep SNNs, RESPARC, 
was developed that uses a hierarchical recon�gurable design to add data-�ow patterns on SNNs 
[ 14 ]. Zhao et al. [ 15 ] fabricated a memristor-based SNN made with Leaky-integrate and �re (LIF) 

neurons capable of performing spike timing dependent plasticity (STDP) learning. However, 
there is no evaluation of the network against any image or pattern recognition tasks. In 2021, a 
multilayer memristor-based SNN was developed with a temporal order information encoding and 
STDP for weight updating [ 16 ]. Although this work can achieve a relatively high accuracy with 
the MNIST dataset, the LIF neurons used in [ 16 ] incorporate multiple operational ampli�ers, con- 
suming signi�cant area and power. A fully hardware implementation of memristor-based SNN was 
also developed in [ 17 ] that realizes the LIF neuron functions with threshold switching. However, 
the utilization of digital circuitry in this work leads to a notable increase in the hardware overhead. 
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In our work, we aim to build a low power, area and energy-e�cient CIM-based SNN architec- 
ture. To achieve our goal, we combine the SNN with our fabricated robust two-layer memristor 
crossbar array that has an enhanced heat dissipation capability [ 18 ]. Two major problems with 
memristor devices are resistance variation and leakage currents [ 19 ]. With the added heat dissipa- 
tion layer, our device is able to reduce the resistance variation and increase the inference accuracy 
by ∼30% [ 20 ]. The issue of the leakage current is minimized by the high on and o� ratio of our 
device, making it reach stable high and low states [ 20 ]. One concern with the one-layer cross- 
bar is that the entire structure su�ers from high latency, large area, and a substantial amount of 
power consumption [ 21 ]. By combining the monolithic three-dimensional integration technology, 
two crossbars are stacked on top of each other that can reduce the area, power consumption and 
latency by 2 ×, 1.48 × and 1.58 ×, respectively [ 18 ]. In addition to the improvements mentioned, 
the enhanced heat dissipation capability of our memristor crossbar array improves the robust- 
ness of the architecture. By e�ectively dissipating heat, the impact of temperature �uctuations is 
minimized, ensuring the reliability and stability of the device during prolonged operation. This 
robustness is crucial in maintaining the accuracy and performance of SNN. 
To convert our data into spikes, we investigate and implement a type of temporal encoding 

scheme known as the inter-spike interval (ISI) encoding scheme. Rate and temporal encoding 
schemes stand out as the two prominent neural coding schemes in literature. While data is encoded 
in the frequency of the spikes in rate encoding, temporal encoding utilizes the timing aspect of 
the signal and encodes information at precise times of the spikes [ 22 , 23 ]. Due to the fewer spike 
generation in temporal encoding, it is superior to its rate encoding counterpart in terms of power 
and energy e�ciency, especially in hardware implementations [ 23 ]. Among the temporal encoding 
schemes, the widely known ones are phase, burst and time-to-�rst-spike (TTFS) encoding [ 24 –
26 ]. But the major advantage of our developed ISI encoding scheme lies in its high information 
density property which stems from the fact that information is encoded in both the distance and 
the timing of the spikes, in�uenced by the strength of the incoming signal. 
We propose an energy-e�cient SNN by combining the merits of our ISI encoding scheme and 

the two layer memristor. The input and output processing units of the memristor crossbar are 
discussed in detail in our work as well as the construction of the hidden units demonstrating the 
scalability of the network. A small-scale hardware model is proposed using a three-layer SNN 

architecture and the accuracy is shown using pixelated handwritten images of digits as inputs. To 
demonstrate the potential of our design, a large-scale three-layer CIM-based SNN model is then 
developed in PyTorch to test this network with the MNIST dataset which has shown to have a very 
high accuracy compared to its TTFS and rate counterpart. 
The key contributions of our work are listed below: 

(1) We design and optimize our SNN with an ISI encoding scheme for high information den- 
sity and spatiotemporal information capability, memristor crossbars for CIM operations 
and TTFS-based classi�cation scheme in the output layer for energy e�ciency. 

(2) Both positive and negative weight matrices are implemented using our two-layer mem- 
ristor crossbar for improvements in latency, area and power consumption. 

(3) We successfully fabricated our robust memristor crossbar array with an enhanced heat 
dissipation capability and high on/o� ratio to be used for CIM-based vector-matrix mul- 
tiplication operations. 

(4) We demonstrate the classi�cation of handwritten digits using a TTFS classi�cation scheme 
on hardware with pixelated images of digits 0–9 while consuming merely 2.9mW of power 
with an inference speed of 2 μs/image. 
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Fig. 1. Overview of di�erent encoding schemes. 

(5) We evaluate our large-scale CIM-based SNN through the MNIST dataset on PyTorch and 
our results provide a ∼10% increase in accuracy with the ISI encoding scheme, compared 
to the rate and TTFS encoding schemes. 

2 BACKGROUND AND RELATED WORK 

2.1 Encoding Schemes 

SNNs operate using spikes which are discrete events at certain times rather than continuous values. 
SNNs emulate biological neurons more closely where the input spikes are applied to the neurons, 
and once they exceed a threshold, a spike is �red [ 27 ]. Some commonly used spiking neuron mod- 
els are Izhikevich [ 28 ], Hodgkin-Huxley [ 29 ] and LIF [ 30 ]. The LIF neuron demonstrates a closer 
resemblance to biological neurons by emitting a spike when a certain threshold is surpassed and 
subsequently resetting [ 30 ]. This neuron remains active only during the spike emission and recep- 
tion process, leading to a signi�cant reduction in energy and power consumption within SNNs. 
To apply the data to the SNNs, the information needs to be encoded into a spike train. The per- 
formance of the neural network greatly depends on the type of encoding scheme which justi�es 
the attention neural encoding receives in literature. Figure 1 shows the overview of the encoding 
schemes. 

The two more popular encoding schemes are rate and temporal encoding schemes [ 31 –33 ]. In 
rate encoding the information is encoded in the frequency of the spikes over a time window T 

[ 34 ]. From Figure 1 , the �ring rate of the neuron is given by Equation ( 1 ) 

n = 
N 

T 
, (1) 

where N is the number of spikes. Latency issues as well as signi�cant energy consumption arising 
from the large number of spike generation from rate encoding overrides its robustness and sim- 
ple implementation characteristics [ 35 , 36 ]. In contrast, temporal encoding schemes have shown 
superior characteristics over rate encoding schemes by not only solving the energy consumption 
issue by reducing the number of generated spikes but also capturing the temporal nature of the 
information [ 32 , 33 ]. Furthermore, temporal encoding schemes like burst and phase encoding have 
shown much higher e�ciency than Deep Neural Networks (DNNs) when used in deep SNNs 
[ 25 , 26 ]. However, despite their greater performance, the temporal encoding schemes in [ 25 , 26 , 
32 ] and [ 33 ] still su�er from the problem of a large amount of spike generation. 

The TTFS encoding scheme is a good �t to address this issue of spike generation. As portrayed 
in Figure 1 , the TTFS encoding scheme is the most power and energy-e�cient scheme since it 
generates only one spike for the entire time period [ 24 ]. However, this scheme is less robust since 
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it is heavily reliant on the onset of the sampling window, resulting in the need for an external 
reference. Therefore, to encode our input information into spikes, we adopt a type of temporal 
encoding scheme, the ISI encoding scheme, in our design, depicted in Figure 1 . Information is 
encoded in both the timing of the spikes as well as the time between the spikes, giving it the 
characteristic of two-dimensional information storage [ 22 , 37 , 38 ]. From the ISI encoding scheme 
developed in [ 22 ], our design is a unique version that reduces the number of spikes signi�cantly by 
generating only two spikes per sample. Our ISI module is modi�ed to include input preprocessing 
as well as capturing the distance between the spikes in form of pulses to be applied to the memristor 
crossbar. In the output layer, we integrate the TTFS encoding scheme for classi�cation purposes, 
leveraging its power and energy e�cient characteristics. 

2.2 In-Memory Computing 

The implementations in neuromorphic hardware require the use of a device or circuit that is ca- 
pable of imitating the synaptic behavior. The property of the memristor device enables it to be 
implemented in neuromorphic computing. A key operation in deep learning applications is vector- 
matrix multiplication, which requires frequent storage and retrieval of weights to and from mem- 
ory. Due to the large amount of data shuttling, it is challenging for machine learning applications 
to run on Von Neumann computing architectures [ 39 ]. Moreover, the performance of the system 

degrades due to this constant transfer of data. As technology scales down further, the performance 
will also be a�ected by higher energy consumption stemming from the interconnect parasitics [ 40 ]. 
This issue can be resolved by using memristor crossbars to build a CIM structure that has the 

capability of computing large amounts of vector-matrix multiplications inside the memory while 
reducing the power and area signi�cantly [ 39 ]. A memristor or a “memory resistor” is a two- 
terminal eNVM technology that has been immensely studied in recent years and has shown to 
have the capability to emulate neurons and synapses to build neuromorphic hardware [ 19 ]. The 
traditional memory technologies include SRAM, DRAM and Flash that rely on the charge storage 
phenomenon [ 41 ]. However, as technology scales further, these stored charges tend to be lost, 
exacerbating the performance and introducing noise and reliability issues. On the other hand, 
memristors have a metal-insulator-metal structure, and one of the ways they can change their 
resistance state is through the formation and rupture of a conductive �lament between the two 
metal electrodes [ 19 ]. They typically have two states, a high resistance state (HRS) and a low 

resistance state (LRS) . The switch from HRS to LRS is known as the set process and the switch 
from LRS to HRS is the reset process. Memristors can be used to build large crossbar structures 
where each device is located at the crosspoint of the two nanowires [ 42 ]. In the memristor crossbar, 
the horizontal rows are the wordlines while the vertical columns are the bitlines. If an input voltage 
vector of V is applied to the i th row of a crossbar, the accumulated current from j th column of the 
crossbar can be calculated as: 

I j = 

n ∑ 

i= 0 

G i j V i , (2) 

where G is the conductance stored in the memristor located at the i th row and j th column. Due 
to their nanoscale structures, memristor crossbars can be used to employ neural networks in a 
large-scale, consuming signi�cantly less power while operating under a low voltage [ 42 ]. 

3 CIM-BASED SNN ARCHITECTURE 

We design the SNN architecture by combining the advantages of the spatiotemporal nature of 
SNNs and the energy-e�ciency of CIMs. As demonstrated in Figure 2 , the designed architecture 
is assembled with four key modules, an ISI encoded input layer, our fabricated memristor crossbar 
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Fig. 2. Architecture of the designed CIM-based SNN. 

Fig. 3. Input processing unit. 

array for the CIM operations, a hidden layer for e�cient signal transmission and as a post- 
processing stage from the crossbar, and a TTFS-based output decoder for the �nal classi�cation 
layer. The ISI encoded input layer realizes the spatiotemporal aspect of SNNs by e�ciently 
converting the input signals into spikes while maintaining a high input information density 
through the generation of only two spikes. The crossbar layer on the other hand can e�ectively 
implement positive and negative weight storage mechanism to carry out the vector-matrix 
multiplication operations and its added heat dissipation layer contributes to reduced resistance 
variation and robustness. The �nal TTFS decoder further contributes to energy and power 
e�ciency by generating only one spike per clock cycle since it is only used for classi�cation. The 
detailed circuit design of each module is discussed in detail in this section. 

3.1 Input Layer 

Although the ISI encoding scheme has a higher information density, it su�ers from the major issues 
of temporal encoding scheme, latency, and increased spike generation [ 43 ]. To overcome these two 
issues, we develop a novel ISI encoding scheme where only two spikes are generated in the same 
time frame and the time between them is captured to be applied to the next stage. The circuit 
design of one input processing unit to produce the ISI output is depicted in Figure 3 . The three 
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key stages used to design the input unit are the input processing stage, LIF neuron stage and the 
extractor stage. A conventional transconductance ampli�er is used to develop our precise current- 
to-current conversion method in the input preprocessing stage. When an analog input current I in 
is applied to this unit, the high input impedance of the ampli�er routes the signal to the drain 
of the transistor M 1 . With the help of the matched transistors M 2 and M 3 , the reference current 
I REF is generated, e�ectively matching the input current. The variation of I in linearly produces the 
two scaled current outputs using the corresponding current mirror stage. We exploit the use of a 
diode-connected pMOS load using the transistors ( M 5 , M 7 , and M 9 ) in our current mirror stage to 
counteract the e�ects of channel length modulation which would otherwise cause the variation of 
load voltage to a�ect the load current. This would prevent the linear generation of scaled current 
values. 
Once the current values are scaled, I out1 and I out2 are applied to the subsequent stage consisting 

of two LIF neurons. At this stage we develop the spatiotemporal nature of our design by utilizing 
the LIF neuron to generate the spikes [ 38 , 44 ]. V leak represents the leakage voltage, emulating the 
behavior of biological neurons. This particular LIF neuron uses a capacitor-sensing methodology 
to monitor the incoming current signal. When the capacitor acquires su�cient charge to surpass 
the threshold voltage set by the CTRL signal, the cascaded inverters ( M 13, 14 and M 18, 19 ) and ( M 23, 24 

and M 28, 29 ) are used to �re the two output spikes. In the meantime, the frequency of the spikes 
generated is regulated by an external clock signal to our system, CLK . Following the generation 
of the spikes, the positive feedback loop from the transistors ( M 16, 17 and M 26, 27 ) resets the switch 
and allows the capacitor to discharge. 
With the generation of two spikes per clock cycle, the values are applied to the extractor unit 

in the following stage. The spike associated with I out1 from the LIF neuron is generated �rst, 
enabling the capacitor to charge up to its maximum potential when the signal is applied to it. 
Upon the arrival of the second spike, the capacitor is reset and the cascaded inverters ( M 30, 31 and 
M 32, 33 ) generate a pulse signal, capturing the time between the spikes e�ectively. The equation for 
the time di�erence between the spikes can be expressed as: 

τ1 − τ2 = 

∫ 
C · dV 

[ 
1 

m · I in − I leak 
−

1 

n · I in − I leak 

] 

(3) 

where C and V are the membrane capacitance and voltage and I leak is the leakage current arising 
from the leakage voltage while m and n are scaling factors for the current. The pulse signal can 
then be applied to the CIM stage built with the memristor crossbars. Using our ISI approach, only 
two spikes are generated per clock cycle, which is able to address the issue of latency and energy 
consumption through signi�cantly reduced spike generations, su�ered by other temporal encod- 
ing schemes [ 45 ]. Our ISI encoding schemes captures information in higher dimensions based on 
the duration of the pulse and the timing of the spikes, where a shorter pulse corresponds to a 
higher intensity input. Although the relationship between ( τ1 − τ2 ) and the input current is in- 
versely proportional, in the preceding layers of our network of the memristor crossbars, we adjust 
the weight values to achieve high accuracy and re�ect the higher intensity of the training data. 
This ensures that the network learns and adapts e�ectively to input signal intensity variations, 
resulting in improved performance and accuracy in classi�cation tasks. 

3.2 Memristor Crossbar Layer 

We use our fabricated memristor device and crossbar array to carry out the vector-matrix 
multiplications for the CIM operations. Memristors su�er from low reliability and accuracy which 
stems from the resistance variations inside the devices. During the switching of memristors, the 
completion of conductive �laments is facilitated by the electromigration of active metal ions. 
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Table 1. Variation Comparison of Memristors with Di�erent Materials 

Memristive Device R on Thermal conductivity 

Cu/TaOx/Rh/Cr 500 ± 5 Ω Rh: 150; Cr: 94 
Cu/TaOx/Rh/Ti 225 – 750 Ω Rh: 150; Ti: 22 
Cu/TaOx/Pt/Cr 331 – 1000 Ω Pt: 72; Cr: 94 
Cu/TaOx/Pt/Ti 230 – 1000 Ω Pt: 72: Ti: 22 

However, due to the stochastic nature of ion migration and atom di�usion, the on-resistance 
variation (R on ) is relatively high, particularly at high temperatures. As the switching process 
progresses, the temperature gradually increases as a result of the movement of oxygen atoms and 
ions within the metal oxide, leading to heat accumulation within the memristor. This elevated 
temperature further ampli�es the metal di�usion e�ect. From a thorough analysis in [ 18 ] and [ 46 ] 
it has been concluded that the heat dispersed during the formation and rupture of the conductive 
�lament is an essential factor in in�uencing the resistance variation of memristors. A signi�cant 
amount of current �ows during the set and reset process of the memristors which results in a 
substantial amount of heat dissipation. The higher the thermal conductivity of the electrodes 
and the oxide, the faster is the heat removal process from the conductive �lament and the lesser 
the on-state resistance variation. Our memristor device therefore incorporates an additional 
heat dissipation layer to allow for rapid heat removal which reduces the resistance variation by 
∼30%. 
The device follows the typical ReRAM structure; it has an oxide layer sandwiched between two 

electrodes. For our benchmark device, we use the memristor con�guration of Cu/TaOx/Pt. The 
memristor has been fabricated in a thermally oxidized silicon wafer. Due to its medium activation 
energy and rapid ionization characteristic, we use Copper as the active anode. Several inert elec- 
trode con�gurations have been fabricated on a thermally oxidized silicon wafer, including Pt/Ti, 
Pt/Cr, Rh/Cr, Rh/Ti, Ir/Ti and Ir/Cr, and they were then compared with our benchmark device to 
�nd the most e�ective material for heat dissipation. These layers have been deposited by e-beam 

PVD in a Kurt Lesker PVD-250 chamber. The TaOx layer was deposited by evaporating the Ta 2 O 5 

pellets in the evaporation chamber but without the injection of oxygen. The inert electrodes of 
Pt, Ir and Rh have poor adhesion properties with the SiO 2 which is why a Ti glue layer needs to 
be used. The measurements revealed a positive correlation between the cycle-to-cycle resistance 
variation (R on ) and the thermal conductivity of the heat dissipation layer as shown in Table 1 . 
However, Cr has a higher heat conductivity than Ti and is also a good adhesion layer, making it 
more suited to be used in our memristor device. 

Besides being compatible with CMOS technology, the Rh-Cu combination leads to an insignif- 
icant amount of solid solubility between Rhodium and Copper and therefore we incorporate the 
use of Rhodium for the inert cathode. In comparison with other inert electrodes, Rhodium holds 
a higher heat conductivity to allow for faster heat removal. Furthermore, replacing the Platinum 

layer with Rhodium results in a cost reduction by 45 times for our memristor. We perform an en- 
durance test, and based on our results, the con�guration of Rh/Cr produces the largest number of 
switching cycles compared to its counterparts. Therefore, our fabricated memristor has the con- 
�guration of Cu/TaOx/Rh/Cr. A layer of TaO x is incorporated before the top layer is added above 
the bottom layer. This is carried out by evaporating Ta 2 O 5 pellets onto e-beam evaporation system 

with oxygen injection into the chamber. The stoichiometry of the TaO x layer is improved through 
the oxygen injection. This oxide layer is less defective and ensures there is electrical insulation 
between the top and bottom layers. Figure 4 demonstrates our memristor measurement setup and 
our fabricated two-layer crossbar. From Figure 4 (c), the left and bottom pads are used to access 
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Fig. 4. (a) Memristor wafer with a�ached probes. (b) Fabricated memristor wafer. (c) Zoomed-in view of our 

two-layer 5x5 memristor crossbar. 

the top layer while the right and top pads are used to access the bottom layer. Compared to the 
one-layer, the resistance and capacitances are signi�cantly reduced in the two-layer structure lead- 
ing to improvements in latency and power consumption. 

The I-V switching curve for the memristor is demonstrated in Figure 5 . A positive voltage is 
swept at 0.2(V/s) from the top electrode of the memristor and once the set voltage is exceeded, the 
conductive �lament is formed, producing the I-V characteristic curve. These measurements were 
performed several times to analyze the switching capability of our memristor. The deviation from 

the mean value allows us to calculate a cycle-to-cycle variation of only 4% with our memristor 
con�guration, a ∼30% increase compared to the Pt/Ti con�guration which produces the highest 
variation of ∼43%. This reduced variation gives a much higher accuracy demonstrated in our re- 
sults section. 
The high on/o� ratio, 1M Ω to ∼940M Ω , comes from the compliance current setting of the device. 

The relationship between R on and the compliance current can be given by the following equation: 

R on = 
K 

I n cc 
, (4) 

where I cc is the compliance current and n and K are the �tting parameters for the I-V characteristic 
curve. There is a negative correlation between R on and I cc . For our architecture design we use a 
smaller compliance current of 1 μA which also increases the endurance of our memristor to 1,000 
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Fig. 5. I-V characteristic curve of our fabricated two-layer memristor with the Cu/TaOx/Rh/Cr configuration. 

switching cycles compared to 150 switching cycles at 10 μA. This signi�cantly high on and o� ratio 
of our fabricated memristor crossbar can avoid the sneak path current issue. 

3.3 CIM-based Vector-Matrix Operations 

The weights can be mapped into the memristor crossbar by applying write pulses of the same 
amplitude (1V, 10ns). Memristors can only hold positive conductance values and therefore, we de- 
velop a method to allow for both positive and negative weight implementations via our memristor 
crossbars. Traditionally, there has been a lack of su�cient implementation of positive and negative 
weight mapping within crossbars, which is a crucial feature for performing vector-matrix multi- 
plications. In [ 47 ] additional circuitry is employed to execute positive and negative weights in the 
crossbar. Unfortunately, this approach su�ers from two drawbacks, increased area and power con- 
sumption due to the additional components involved. To overcome these limitations and avoid the 
need for extra circuitry, we adopt a weight mapping mechanism similar to [ 48 ], which involves 
applying a voltage with a similar amplitude but opposite polarity to two neighboring rows. This 
approach allows for the representation of both positive and negative weight values. However, it 
does not address the issue of how to supply a voltage of di�erent polarity to the adjacent rows, 
considering that the wordlines are interconnected in a crossbar con�guration. 
As demonstrated in Figure 6 , we use our stacked crossbar fabricated with the monolithic 3D 

technology discussed in the preceding section, with a voltage of the same amplitude but positive 
polarity applied to one and negative polarity applied to another. The left and bottom pads are used 
to access the top layer and the right and top pads are used to access the bottom layer. The total 
outgoing current from each memristor pair can be given by the following equation: 

I t ot al = 

i ∑ 

0 

[ ( V i ) · { G +i j −G −i j } ] (5) 

I sum = I t ot al + α , (6) 

where the conductance term inside the parenthesis { G +i j −G −i j } represents an individual weight 
value. The positive part of our weight value, G +i j is mapped onto one crossbar and the magnitude of 
the negative part of the weight value, G −i j is mapped onto another. To achieve the negative weights, 
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Fig. 6. CIM-based vector matrix operation with positive and negative weight implementation. 

a voltage of opposite polarity is applied to the negative crossbar and hence we can e�ectively 
realize negative weight values within the overall weight matrix. 
Our designed architecture is scalable and therefore makes way for several hidden layers to be 

added. The positive and negative currents are combined in one node and applied to each hidden 
unit. Our hidden units follow the similar circuit design approach from Figure 3 , where the two 
currents are ampli�ed and split into two values to allow for spike conversion. However, to adjust 
for the negative valued currents that arise from our negative weight implementation technique, 
we incorporate a constant current of α , depicted in Equation ( 8 ) and Figure 6 . This allows for all 
the negative valued currents to be transferred to the positive domain which is necessary for the LIF 
neurons in the hidden stage to function. In our neural network setup, the memristor crossbars are 
followed by a series of LIF neurons, where each column is connected to each neuron. It is necessary 
to take all currents into account in order for the subsequent stage of LIF neurons to function 
correctly. By introducing the α factor, we ensure that all currents, regardless of their polarity, are 
scaled into the positive range. This scaling operation is crucial for the proper functioning of the LIF 
neurons, as these neurons rely on positive polarity currents for their activation and subsequent 
processing. The inclusion of α allows us to avoid complications that could arise from negative 
current handling within the network. 

As plotted in Figure 7 , a linear response of our output current can be obtained from our ap- 
plied positive and negative voltages. In the hidden units these current outputs are then converted 
to the ISI encoded pulse signals following the same mechanism as Figure 3 . Our approach intro- 
duces scalability to the network and ensures rapid and power-e�cient transmission of signals by 
converting them to spikes between the CIM stages. 
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Fig. 7. Measured characteristics of positive and negative weight implementation technique. 

Fig. 8. One output processing unit. 

3.4 Output Layer 

As discussed in the preceding section, we use a TTFS classi�cation scheme in our output layer to 
separate the di�erent classes. Since only one spike is generated per clock cycle, it is deemed as 
the most power and energy-e�cient encoding scheme, and we therefore deploy this method for 
classi�cation [ 24 ]. Our TTFS decoder design is demonstrated in Figure 8 . The output current from 

the columns of our memristor crossbar is applied to the precision current-to-current converter 
stage, where due to its high input impedance it allows for the current to be transmitted to the 
current mirror stage and replicated with the desired ampli�cation. The ampli�ed value from the 
current mirror can also be used as an additional weight tuning mechanism for the architecture. 
Once this current is applied to a single LIF neuron, the capacitor sensing technique allows for a 
spike to be generated. This neuron is controlled by an external clock that is the same as the clock 
of our entire architecture. Using one output processing unit for each class, we therefore develop 
our �nal output stage. 

4 PERFORMANCE ANALYSIS 

Our performance analysis is divided into four parts in this design. (1) We use the circuit-level 
macro model, NeuroSim, to estimate the performance of our memristor and compare it with the 
benchmark devices [ 49 ]. (2) The neural network model shown in Figure 9 is used to carry out image 
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Fig. 9. Hardware simulation setup for our architecture. 

Table 2. Comparison of the Memristor with Benchmark Devices a 

Properties [ 50 ] [ 51 ] [ 52 ] This memristor 6-bit SRAM 

R ON 5M Ω 23M Ω 16.9k Ω 1M Ω —
ON/OFF Ratio 2 6.84 4.43 ∼1000 —
Cycle-to-cycle variation < 1% < 1% 5% 4% —
Online learning accuracy ∼10% ∼10% ∼41% ∼80% 94% 

a The benchmark devices in this table are from the NeuroSim Simulator [ 49 ]. 

classi�cation to demonstrate the accuracy on hardware using our developed architecture. (3) We 
use circuit analysis in Cadence Virtuoso to determine the area and power consumption of our 
architecture. (4) We further develop the large-scale model of our neural network on software for 
the purpose of comparing our ISI encoding scheme with various encoding schemes in the MNIST 

dataset. 

4.1 Comparison of the Memristor with Benchmark Devices 

The comparison between the memristor model and the benchmark devices is shown in Table 2 . 
We use the NeuroSim Simulator which has the two-layer multilayer perceptron (MLP) neu- 
ral network with the properties of the analog eNVM devices included in the weights to evaluate 
the online learning accuracy with the MNIST dataset [ 49 ]. We compare our memristor with the 
state-of-the-art devices used in the NeuroSim simulator [ 49 ]. The MLP in NeuroSim can evaluate 
learning accuracy and circuit-level performance speci�cally for the synaptic array during learn- 
ing. When used in online learning, the MLP simulator imitates the hardware parameters in order 
to train the network with images picked randomly from the training dataset. The input images are 
converted to black and white 1 bit data to reduce complexity for hardware training and testing. 
The MLP simulator operates hierarchically, encompassing algorithm-level to device-level consid- 
erations. It takes into account detailed properties of synaptic arrays and realistic device behavior. 
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When benchmarking the devices using the NeuroSim simulator, we observed relatively low 

accuracies ranging from approximately 10% to 41%. One of the major factors contributing to these 
low accuracies is the limited on and o� ratio of the fabricated memristor [ 49 ]. From Table 2 it 
can be observed that due to the high on and o� ratio of our memristor model as well as its heat 
dissipation capability, it can achieve a very high accuracy of 80% compared to the benchmark 
devices. The high on and o� ratio allows for a better di�erentiating capability between the signal 
states and further reduces the likelihood of errors between the di�erent data states. Furthermore, 
it helps to minimize the noise interference during the readout process, allowing us to make a clear 
distinction between the noise and signal levels. It also allows us to achieve more precise control 
over synaptic weights, especially in SNNs. With enhanced weight precision, more accurate neural 
network behavior can be achieved. It also has a relatively competitive cycle-to-cycle variation that 
was measured using our setup from Figure 4 . 

4.2 Training and Classification of 5 × 4 Images 

For our hardware simulations and evaluation of the accuracy of our architecture, we develop a 
three-layer neural network demonstrated in Figure 9 . On Cadence Virtuoso, we combine the SPICE 

model of our memristor, and our circuit modules to create our architecture to evaluate it using 
handwritten images of digits from 0 to 9. Our output layer consists of a 4 × 4 memristor crossbar 
and therefore we use o�ine training to determine the weights to classify 4 digits, from 0 to 3, one 
for each class. For every input image, an entire row of pixel is processed at a time for one clock 
cycle. Our demonstration shows the results from applying the pixels from the image of the digit 0 
in Figure 9 . 

The pixels of the input image 0 are applied to the input processing units where the signal passes 
on to the precision current to current converter where it is split into two values. After that it is 
passed on to the two LIF neurons to generate two di�erent spikes at di�erent times and they are 
then combined to produce a pulse signal. The pulse signal for the image 0 that is produced from 

the ISI encoding unit is shown in Figure 9 as the ISI encoded input. These pulse signals are then ap- 
plied to the memristor crossbar containing the trained weights stored as conductance values. After 
carrying out the vector-matrix multiplication computations, the output column currents from the 
crossbar are applied to the intermediate stage where signal is postprocessed and ISI encoded into 
pulse signals to be applied to a 4 × 4 output crossbar stage. In the �nal stage, the output column 
currents are applied to the TTFS decoder where the currents are postprocessed before being ap- 
plied to a single LIF neuron to generate an output spike signal. The output spike results from the 
image 0 is shown in Figure 9 as the TTFS output signal, where the weights are trained such that 
the �rst neuron spikes �rst. 

Our design uses a clock frequency of 0.5MHz and a supply voltage of 1.8V. To demonstrate its 
spatiotemporal information processing capability each image is processed in 2 μs. The images from 

0 to 9 were used as inputs to the designed SNN structure to generate a TTFS-based classi�cation 
output to classify them. The results from this data are summarized in Table 3 which shows the 
spike time and the neuron that spikes. From Table 3 we can observe that for the number 1 the 
neuron from column 2 spikes �rst at 1.50 μs, for the number 2 the neuron from column 3 spikes 
�rst at 1.25 μs and for the number 3 the neuron from column 4 spikes �rst at 993ns. Although our 4 
× 4 output crossbar is only able to classify 4 digits, our results from Table 3 show that the spiking 
pattern from each output neuron is di�erent and thus can successfully classify the images. 

4.3 Power and Area Analysis 

We design our circuits and architecture in Cadence Virtuoso to evaluate the area and power of 
the major components in our design. Figure 10 depicts the power and area breakdown of the 
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Table 3. TTFS Output from Each Column 

Number Column 1 Column 2 Column 3 Column 4 
0 805ns 0 825ns 0 
1 0 1.50 μs 1.51 μs 0 
2 1.39 μs 1.25 μs 1.24 μs 1.4 μs 
3 1.02 μs 1.47 μs 1.10 μs 993ns 
4 1.02 μs 925ns 1.02 μs 985ns 
5 1.1 μs 0 0 0 
6 1.19 μs 0 1.2 μs 0 
7 0 0 1.12 μs 0 
8 1.17 μs 0 1.2 μs 0 
9 1.4 μs 1.3 μs 1.4 μs 1.36 μs 

Fig. 10. Area and power breakdown. 

components. The power distribution, as shown in Figure 10 , demonstrates that for each processing 
unit the LIF neuron only consumes 4.37 μW of power. The current mirror stage consumes the 
maximum amount of power of 115 μW, arising from the use of the opamp. The least amount of 
power is consumed by the extractor stage which is almost insigni�cant. The combined power 
consumption of all modules in the input processing unit is 123 μW. Our complete CIM-based SNN 

architecture consumes only 2.9mW when classifying handwritten digits. The area breakdown from 

Figure 10 shows that due to the opamp, the major portion of the area is consumed by the current 
mirror stage of 55%. Each LIF neuron consumes 26% of the area while the extractor unit consumes 
19% of the area. 

In Table 4 we summarize the comparison of our designed architecture with the state-of-the- 
art memristor-based neural network designs. For our classi�cation application, the use of binary 
weights proved to be su�cient in capturing the necessary information and performing the re- 
quired computations. We found that the precision provided by 1-bit weights yielded satisfactory 
accuracy for our speci�c task. Furthermore, employing 1-bit weights brings notable advantages 
in terms of hardware implementation and power consumption. The simpli�ed representation of 
weights, using only 1 bit, reduces the complexity of the circuits, making them easier to design and 
fabricate. We compare our work with [ 16 ] and [ 53 ] that are memristor-based SNN architectures de- 
veloped in the SPICE simulator. Our work is also evaluated against memristor-based Restricted 

Boltzmann Machine (RBM) [ 54 ] and MLP [ 55 ]. Compared to the other designs, our architec- 
ture has an extremely competitive power consumption and low latency of only 2.9mW and 334ns. 
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Table 4. Performance Comparison with the State-of-the-art Memristor-based Neural 

Network Designs 

[ 16 ] [ 53 ] [ 54 ] [ 55 ] This work 
Technology — — 130nm 130nm 180nm 

Algorithm SNN SNN RBM MLP SNN 

Memory Cell ReRAM ReRAM ReRAM ReRAM ReRAM 

Memory Mode CIM CIM CIM CIM CIM 

Weight Precision — — 1-bit signed 3-bit signed 1-bit 
Neuron Type LIF LIF IF — LIF 
Supply Voltage — — 1.8V 5V 1.8V 

Latency 5 μs ∼5 μs — 51.1ns 334ns 
Power Consumption 16.71mW — 2.2mW — 2.9mW 

Fig. 11. Architecture of the CIM-based SNN for MNIST classification. 

Furthermore, our design only consumes 2.51pJ of energy per synaptic connection, making it suit- 
able to be used in AI accelerators. 

4.4 Performance Comparison with Various Encoding Schemes 

We developed a three-layer neural network to test our large-scale network. Our design incorpo- 
rates the ISI encoding scheme as well as the memristor crossbar structure. Using this model, we 
compare the accuracy of our network against the MNIST dataset in terms of the di�erent encoding 
schemes of rate, TTFS and ISI encoding. The detailed structure of the model is shown in Figure 11 . 

Modi�ed from the neural network in [ 56 ], we develop our large-scale three-layer SNN model 
where we incorporate the encoding stage to initially code the inputs into ISI, TTFS or rate. To 
perform the CIM-based vector-matrix multiplication operations, we then apply the inputs to the 
memristor crossbar layer. In this stage, minibatches of 128 × 784 images are multiplied with the 
crossbar matrix of 784 × 100. We utilize the ADAM optimizer to train the memristor weights. 
By applying a clipping mechanism, where weight values above a certain threshold are set to a 
maximum value, the weights can be constrained within a speci�c range. This clipping helps pre- 
vent the weight values from growing too large and potentially causing instability during training. 
Additionally, scaling the weight values by an appropriate factor helps bring them closer to the 
magnitude of the gradients, making the two more compatible. 
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Table 5. Performance Comparison with Di�erent Encoding 

Schemes for MNIST Classification 

Encoding Scheme Accuracy Epochs 
Rate 83% [ 56 ] 10 
TTFS 85% 10 
ISI 93% 10 

To imitate the current mirror stage and decrease the number of training of epochs, we integrate a 
Batch Normalization layer in the next step [ 57 ]. Here, the output column currents are ampli�ed and 
transformed into voltages and clamped between two pre-determined values. Clamping involves 
limiting the output values from the memristor crossbar within predetermined upper and lower 
bounds. By constraining the output values within a desirable range, extreme values that could 
disrupt training are avoided. Our �nal layer consists of a set of LIF neurons for the transmission 
of spikes and to allow the control of the dynamics from the �rst layer. 
During the training process, careful hyperparameter tuning is performed to determine suitable 

upper and lower bounds for weight values, as well as an appropriate scaling factor. This tuning 
ensures that the weight values and gradients are in a reasonable range for e�ective learning. 
By �nding the right balance, stability during training is maintained, and the updates to the 
gradients have a substantial impact relative to the weight values. Moreover, the learning rate, 
which determines the step size of weight updates, is adjusted to strike a balance between training 
accuracy and stability. 
Following this layer, the second layer is placed similar to the former one, where the inputs are 

applied to the crossbar stage containing a weight matrix of 100 × 10, after which the resulting 
output current is converted to voltage using the Batch Normalization layer and clamped. The �rst 
and the second layer contain 100 and 10 LIF neurons, respectively. Since the MNIST image contains 
10 di�erent classes of images from 0–9, the output layer contains 10 LIF neurons. The accuracy 
results from each type of encoding scheme are summarized in Table 5 . From our results, it was 
concluded that our design with the ISI encoding scheme is able to achieve the highest accuracy of 
93%, compared to 83% in rate encoding and 85% in the TTFS encoding scheme. 

5 CONCLUSION 

SNNs are energy and power e�cient biologically realistic models of neural networks due to their 
spatiotemporal information processing capability. In this paper we investigated and designed a 
novel ISI neural coding scheme to convert the incoming data into spikes. Our chosen scheme 
has a higher information density by encoding information in the times between the spikes and 
thus outperforms its TTFS and rate counterparts by ∼10%. A memristor crossbar is used for in- 
memory computation operations to carry out the vector-matrix multiplication process for feature 
extraction. Our memristor device that was used integrates a novel heat dissipation capability that 
signi�cantly reduces the resistance variation, a key challenge in memristors. The incorporation 
of an additional heat dissipation layer in our memristor device contributes to its robustness by 
facilitating rapid heat removal and reducing resistance variation and enhances the device’s sta- 
bility, reliability, and performance. Our CIM-based SNN architecture discusses the detailed circuit 
design of each stage, including the input layer, hidden layers, and output layer, as well as the mem- 
ristor crossbar stage. We further integrate a positive and negative weight mapping mechanism for 
the vector-matrix multiplication operations. The entire network also has a very low power con- 
sumption of only 2.9mW and our simulation results verify that our design can attain a better 
performance compared to other works of similar architecture. 
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