o.)

Check for
updates

Towards Energy-Efficient Spiking Neural Networks:
A Robust Hybrid CMOS-Memristive Accelerator

FABIHA NOWSHIN, Virginia Tech, USA
HONGYU AN, Michigan Tech, USA
YANG YI, Virginia Tech, USA

Spiking Neural Networks (SNNs) are energy-efficient artificial neural network models that can carry out
data-intensive applications. Energy consumption, latency, and memory bottleneck are some of the major
issues that arise in machine learning applications due to their data-demanding nature. Memristor-enabled
Computing-In-Memory (CIM) architectures have been able to tackle the memory wall issue, eliminating the
energy and time-consuming movement of data. In this work we develop a scalable CIM-based SNN architec-
ture with our fabricated two-layer memristor crossbar array. In addition to having an enhanced heat dissi-
pation capability, our memristor exhibits substantial enhancement of 10% to 66% in design area, power and
latency compared to state-of-the-art memristors. This design incorporates an inter-spike interval (ISI) encod-
ing scheme due to its high information density to convert the incoming input signals into spikes. Furthermore,
we include a time-to-first-spike (TTFS) based output processing stage for its energy-efficiency to carry out
the final classification. With the combination of ISI, CIM and TTES, this network has a competitive inference
speed of 2p1s/image and can successfully classify handwritten digits with 2.9mW of power and 2.51p]J energy
per spike. The proposed architecture with the ISI encoding scheme can achieve ~10% higher accuracy than
those of other encoding schemes in the MNIST dataset.
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1 INTRODUCTION

In recent years, machine learning has shown successful results in artificial intelligence applications
such as computer vision, natural language processing, pattern classification and speech recogni-
tion [1]. The rapid expansion of data volume and neural network training durations over the past
decade has posed significant challenges for CPUs and GPUs in terms of energy efficiency [2]. In
response, specialized artificial intelligence (AI) accelerators such as Eyeriss and Google TPUs
have been devised to address these concerns [3]. However, the constant shuttling of data back and
forth from the accelerator and memory is often limited by the memory bandwidth and contributes
to significant power and energy consumption.

Computing-in-memory (CIM) emerged as a promising paradigm for Al accelerators where
the computations are done inside the memory [4]. The conventional CMOS memory technolo-
gies encompass dynamic random access memory (DRAM), static random access memory
(SRAM) and flash that rely on the charge storage phenomenon. However, compared to these tra-
ditional technologies, the emerging non-volatile memory technologies (eNVMs) are more
suited to CIM operations in the field of neuromorphic hardware because of their capability in
closely imitating the neurons and synapses in biological systems [5]. The memristor, a specific
eNVM, has several advantageous properties of low power consumption, scalability, compatibility
with CMOS technology, and analog conductance modulation making it a viable replacement for
traditional CMOS memory technologies [5]. These characteristics of the memristor allows it to
be used in building CIM architectures, supplanting the usage of analog-to-digital and digital-to-
analog converters, resulting in substantial reductions in area and power consumption. Previously
there have been several memristor-based Al accelerators built on Convolutional Neural Net-
works (CNNs), including PRIME, ISAAC, PipeLayer and AtomLayer that have achieved signifi-
cant improvements in energy and power compared to CMOS-based accelerators [6-9].

The integration of Spiking Neural Networks (SNNs) in memristor-based machine learning
can be further beneficial in improving the efficiency of these neural networks. SNNs have the abil-
ity to emulate biological neurons more closely via the transmission of spiking signals. The infor-
mation in SNNs is encoded in both the timing and the ordering of the spikes, allowing them to have
a spatiotemporal information processing capability [10]. While the spatial aspect arises from the
neurons localized to each other, the temporal aspect stems from the timing characteristics of SNNs
[11]. Once a threshold is exceeded, a spike is fired, capturing the information in a binary format,
which further aids in the energy and power efficiency of these neural networks in hardware imple-
mentations. This makes SNNs superior to ANNs and is therefore depicted as the third generation
of neural networks [12]. In memristor-based neural networks, the integration of SNNs also ensures
improvements in noise margins and increased tolerance in the variation of the devices [13]. There
have been several implementations of memristor-based SNNs over the past years. An energy-
efficient and reconfigurable architecture built with Memristor Crossbar on deep SNNs, RESPARC,
was developed that uses a hierarchical reconfigurable design to add data-flow patterns on SNNs
[14]. Zhao et al. [15] fabricated a memristor-based SNN made with Leaky-integrate and fire (LIF)
neurons capable of performing spike timing dependent plasticity (STDP) learning. However,
there is no evaluation of the network against any image or pattern recognition tasks. In 2021, a
multilayer memristor-based SNN was developed with a temporal order information encoding and
STDP for weight updating [16]. Although this work can achieve a relatively high accuracy with
the MNIST dataset, the LIF neurons used in [16] incorporate multiple operational amplifiers, con-
suming significant area and power. A fully hardware implementation of memristor-based SNN was
also developed in [17] that realizes the LIF neuron functions with threshold switching. However,
the utilization of digital circuitry in this work leads to a notable increase in the hardware overhead.
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In our work, we aim to build a low power, area and energy-efficient CIM-based SNN architec-
ture. To achieve our goal, we combine the SNN with our fabricated robust two-layer memristor
crossbar array that has an enhanced heat dissipation capability [18]. Two major problems with
memristor devices are resistance variation and leakage currents [19]. With the added heat dissipa-
tion layer, our device is able to reduce the resistance variation and increase the inference accuracy
by ~30% [20]. The issue of the leakage current is minimized by the high on and off ratio of our
device, making it reach stable high and low states [20]. One concern with the one-layer cross-
bar is that the entire structure suffers from high latency, large area, and a substantial amount of
power consumption [21]. By combining the monolithic three-dimensional integration technology,
two crossbars are stacked on top of each other that can reduce the area, power consumption and
latency by 2x, 1.48x and 1.58X%, respectively [18]. In addition to the improvements mentioned,
the enhanced heat dissipation capability of our memristor crossbar array improves the robust-
ness of the architecture. By effectively dissipating heat, the impact of temperature fluctuations is
minimized, ensuring the reliability and stability of the device during prolonged operation. This
robustness is crucial in maintaining the accuracy and performance of SNN.

To convert our data into spikes, we investigate and implement a type of temporal encoding
scheme known as the inter-spike interval (ISI) encoding scheme. Rate and temporal encoding
schemes stand out as the two prominent neural coding schemes in literature. While data is encoded
in the frequency of the spikes in rate encoding, temporal encoding utilizes the timing aspect of
the signal and encodes information at precise times of the spikes [22, 23]. Due to the fewer spike
generation in temporal encoding, it is superior to its rate encoding counterpart in terms of power
and energy efficiency, especially in hardware implementations [23]. Among the temporal encoding
schemes, the widely known ones are phase, burst and time-to-first-spike (T TFS) encoding [24—
26]. But the major advantage of our developed ISI encoding scheme lies in its high information
density property which stems from the fact that information is encoded in both the distance and
the timing of the spikes, influenced by the strength of the incoming signal.

We propose an energy-efficient SNN by combining the merits of our ISI encoding scheme and
the two layer memristor. The input and output processing units of the memristor crossbar are
discussed in detail in our work as well as the construction of the hidden units demonstrating the
scalability of the network. A small-scale hardware model is proposed using a three-layer SNN
architecture and the accuracy is shown using pixelated handwritten images of digits as inputs. To
demonstrate the potential of our design, a large-scale three-layer CIM-based SNN model is then
developed in PyTorch to test this network with the MNIST dataset which has shown to have a very
high accuracy compared to its TTFS and rate counterpart.

The key contributions of our work are listed below:

(1) We design and optimize our SNN with an ISI encoding scheme for high information den-
sity and spatiotemporal information capability, memristor crossbars for CIM operations
and TTFS-based classification scheme in the output layer for energy efficiency.

(2) Both positive and negative weight matrices are implemented using our two-layer mem-
ristor crossbar for improvements in latency, area and power consumption.

(3) We successfully fabricated our robust memristor crossbar array with an enhanced heat
dissipation capability and high on/off ratio to be used for CIM-based vector-matrix mul-
tiplication operations.

(4) We demonstrate the classification of handwritten digits using a TTFS classification scheme
on hardware with pixelated images of digits 0-9 while consuming merely 2.9mW of power
with an inference speed of 2ps/image.
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Fig. 1. Overview of different encoding schemes.

(5) We evaluate our large-scale CIM-based SNN through the MNIST dataset on PyTorch and
our results provide a ~10% increase in accuracy with the ISI encoding scheme, compared
to the rate and TTFS encoding schemes.

2 BACKGROUND AND RELATED WORK
2.1 Encoding Schemes

SNNs operate using spikes which are discrete events at certain times rather than continuous values.
SNNs emulate biological neurons more closely where the input spikes are applied to the neurons,
and once they exceed a threshold, a spike is fired [27]. Some commonly used spiking neuron mod-
els are Izhikevich [28], Hodgkin-Huxley [29] and LIF [30]. The LIF neuron demonstrates a closer
resemblance to biological neurons by emitting a spike when a certain threshold is surpassed and
subsequently resetting [30]. This neuron remains active only during the spike emission and recep-
tion process, leading to a significant reduction in energy and power consumption within SNNs.
To apply the data to the SNNs, the information needs to be encoded into a spike train. The per-
formance of the neural network greatly depends on the type of encoding scheme which justifies
the attention neural encoding receives in literature. Figure 1 shows the overview of the encoding
schemes.

The two more popular encoding schemes are rate and temporal encoding schemes [31-33]. In
rate encoding the information is encoded in the frequency of the spikes over a time window T
[34]. From Figure 1, the firing rate of the neuron is given by Equation (1)

n= — (1)

where Nis the number of spikes. Latency issues as well as significant energy consumption arising
from the large number of spike generation from rate encoding overrides its robustness and sim-
ple implementation characteristics [35, 36]. In contrast, temporal encoding schemes have shown
superior characteristics over rate encoding schemes by not only solving the energy consumption
issue by reducing the number of generated spikes but also capturing the temporal nature of the
information [32, 33]. Furthermore, temporal encoding schemes like burst and phase encoding have
shown much higher efficiency than Deep Neural Networks (DNNs) when used in deep SNNs
[25, 26]. However, despite their greater performance, the temporal encoding schemes in [25, 26,
32] and [33] still suffer from the problem of a large amount of spike generation.

The TTES encoding scheme is a good fit to address this issue of spike generation. As portrayed
in Figure 1, the TTFS encoding scheme is the most power and energy-efficient scheme since it
generates only one spike for the entire time period [24]. However, this scheme is less robust since
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it is heavily reliant on the onset of the sampling window, resulting in the need for an external
reference. Therefore, to encode our input information into spikes, we adopt a type of temporal
encoding scheme, the ISI encoding scheme, in our design, depicted in Figure 1. Information is
encoded in both the timing of the spikes as well as the time between the spikes, giving it the
characteristic of two-dimensional information storage [22, 37, 38]. From the ISI encoding scheme
developed in [22], our design is a unique version that reduces the number of spikes significantly by
generating only two spikes per sample. Our ISI module is modified to include input preprocessing
as well as capturing the distance between the spikes in form of pulses to be applied to the memristor
crossbar. In the output layer, we integrate the TTFS encoding scheme for classification purposes,
leveraging its power and energy efficient characteristics.

2.2 In-Memory Computing

The implementations in neuromorphic hardware require the use of a device or circuit that is ca-
pable of imitating the synaptic behavior. The property of the memristor device enables it to be
implemented in neuromorphic computing. A key operation in deep learning applications is vector-
matrix multiplication, which requires frequent storage and retrieval of weights to and from mem-
ory. Due to the large amount of data shuttling, it is challenging for machine learning applications
to run on Von Neumann computing architectures [39]. Moreover, the performance of the system
degrades due to this constant transfer of data. As technology scales down further, the performance
will also be affected by higher energy consumption stemming from the interconnect parasitics [40].

This issue can be resolved by using memristor crossbars to build a CIM structure that has the
capability of computing large amounts of vector-matrix multiplications inside the memory while
reducing the power and area significantly [39]. A memristor or a “memory resistor” is a two-
terminal eNVM technology that has been immensely studied in recent years and has shown to
have the capability to emulate neurons and synapses to build neuromorphic hardware [19]. The
traditional memory technologies include SRAM, DRAM and Flash that rely on the charge storage
phenomenon [41]. However, as technology scales further, these stored charges tend to be lost,
exacerbating the performance and introducing noise and reliability issues. On the other hand,
memristors have a metal-insulator-metal structure, and one of the ways they can change their
resistance state is through the formation and rupture of a conductive filament between the two
metal electrodes [19]. They typically have two states, a high resistance state (HRS) and a low
resistance state (LRS). The switch from HRS to LRS is known as the set process and the switch
from LRS to HRS is the reset process. Memristors can be used to build large crossbar structures
where each device is located at the crosspoint of the two nanowires [42]. In the memristor crossbar,
the horizontal rows are the wordlines while the vertical columns are the bitlines. If an input voltage
vector of Vis applied to the ith row of a crossbar, the accumulated current from jth column of the
crossbar can be calculated as:

I = ZGijVi, (2
=0

where G is the conductance stored in the memristor located at the ith row and jth column. Due
to their nanoscale structures, memristor crossbars can be used to employ neural networks in a
large-scale, consuming significantly less power while operating under a low voltage [42].

3 CIM-BASED SNN ARCHITECTURE

We design the SNN architecture by combining the advantages of the spatiotemporal nature of
SNNs and the energy-efficiency of CIMs. As demonstrated in Figure 2, the designed architecture
is assembled with four key modules, an ISI encoded input layer, our fabricated memristor crossbar
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Fig. 2. Architecture of the designed CIM-based SNN.
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Fig. 3. Input processing unit.

array for the CIM operations, a hidden layer for efficient signal transmission and as a post-
processing stage from the crossbar, and a TTFS-based output decoder for the final classification
layer. The ISI encoded input layer realizes the spatiotemporal aspect of SNNs by efficiently
converting the input signals into spikes while maintaining a high input information density
through the generation of only two spikes. The crossbar layer on the other hand can effectively
implement positive and negative weight storage mechanism to carry out the vector-matrix
multiplication operations and its added heat dissipation layer contributes to reduced resistance
variation and robustness. The final TTFS decoder further contributes to energy and power
efficiency by generating only one spike per clock cycle since it is only used for classification. The
detailed circuit design of each module is discussed in detail in this section.

3.1 Input Layer

Although the ISI encoding scheme has a higher information density, it suffers from the major issues
of temporal encoding scheme, latency, and increased spike generation [43]. To overcome these two
issues, we develop a novel ISI encoding scheme where only two spikes are generated in the same
time frame and the time between them is captured to be applied to the next stage. The circuit
design of one input processing unit to produce the ISI output is depicted in Figure 3. The three
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key stages used to design the input unit are the input processing stage, LIF neuron stage and the
extractor stage. A conventional transconductance amplifier is used to develop our precise current-
to-current conversion method in the input preprocessing stage. When an analog input current I;;,
is applied to this unit, the high input impedance of the amplifier routes the signal to the drain
of the transistor M;. With the help of the matched transistors M, and Ms, the reference current
Igpr is generated, effectively matching the input current. The variation of I;;, linearly produces the
two scaled current outputs using the corresponding current mirror stage. We exploit the use of a
diode-connected pMOS load using the transistors (Ms, My, and My) in our current mirror stage to
counteract the effects of channel length modulation which would otherwise cause the variation of
load voltage to affect the load current. This would prevent the linear generation of scaled current
values.

Once the current values are scaled, I,,,;1 and I,,,;, are applied to the subsequent stage consisting
of two LIF neurons. At this stage we develop the spatiotemporal nature of our design by utilizing
the LIF neuron to generate the spikes [38, 44]. Vj. . represents the leakage voltage, emulating the
behavior of biological neurons. This particular LIF neuron uses a capacitor-sensing methodology
to monitor the incoming current signal. When the capacitor acquires sufficient charge to surpass
the threshold voltage set by the CTRL signal, the cascaded inverters (Mjs, 14 and Mg 19) and (Mas, 24
and Mg ,9) are used to fire the two output spikes. In the meantime, the frequency of the spikes
generated is regulated by an external clock signal to our system, CLK. Following the generation
of the spikes, the positive feedback loop from the transistors (Mg, 17 and My, 27) resets the switch
and allows the capacitor to discharge.

With the generation of two spikes per clock cycle, the values are applied to the extractor unit
in the following stage. The spike associated with I,,;; from the LIF neuron is generated first,
enabling the capacitor to charge up to its maximum potential when the signal is applied to it.
Upon the arrival of the second spike, the capacitor is reset and the cascaded inverters (M3, 3; and
M3, 33) generate a pulse signal, capturing the time between the spikes effectively. The equation for
the time difference between the spikes can be expressed as:

1 1
Tl—rzzfc-dV[ - 3)
m - Iin = Ijeak n-Iin — lleak

where C and V are the membrane capacitance and voltage and Ij. . is the leakage current arising
from the leakage voltage while m and n are scaling factors for the current. The pulse signal can
then be applied to the CIM stage built with the memristor crossbars. Using our ISI approach, only
two spikes are generated per clock cycle, which is able to address the issue of latency and energy
consumption through significantly reduced spike generations, suffered by other temporal encod-
ing schemes [45]. Our ISI encoding schemes captures information in higher dimensions based on
the duration of the pulse and the timing of the spikes, where a shorter pulse corresponds to a
higher intensity input. Although the relationship between (r; — 73) and the input current is in-
versely proportional, in the preceding layers of our network of the memristor crossbars, we adjust
the weight values to achieve high accuracy and reflect the higher intensity of the training data.
This ensures that the network learns and adapts effectively to input signal intensity variations,
resulting in improved performance and accuracy in classification tasks.

3.2 Memristor Crossbar Layer

We use our fabricated memristor device and crossbar array to carry out the vector-matrix
multiplications for the CIM operations. Memristors suffer from low reliability and accuracy which
stems from the resistance variations inside the devices. During the switching of memristors, the
completion of conductive filaments is facilitated by the electromigration of active metal ions.
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Table 1. Variation Comparison of Memristors with Different Materials

Memristive Device Ron Thermal conductivity
Cu/TaOx/Rh/Cr 500 + 5 Q Rh: 150; Cr: 94
Cu/TaOx/Rh/Ti 225 - 750 Q Rh: 150; Ti: 22
Cu/TaOx/Pt/Cr 331 - 1000 Q Pt: 72; Cr: 94
Cu/TaOx/Pt/Ti 230 — 1000 Q Pt: 72: Ti: 22

However, due to the stochastic nature of ion migration and atom diffusion, the on-resistance
variation (R,y) is relatively high, particularly at high temperatures. As the switching process
progresses, the temperature gradually increases as a result of the movement of oxygen atoms and
ions within the metal oxide, leading to heat accumulation within the memristor. This elevated
temperature further amplifies the metal diffusion effect. From a thorough analysis in [18] and [46]
it has been concluded that the heat dispersed during the formation and rupture of the conductive
filament is an essential factor in influencing the resistance variation of memristors. A significant
amount of current flows during the set and reset process of the memristors which results in a
substantial amount of heat dissipation. The higher the thermal conductivity of the electrodes
and the oxide, the faster is the heat removal process from the conductive filament and the lesser
the on-state resistance variation. Our memristor device therefore incorporates an additional
heat dissipation layer to allow for rapid heat removal which reduces the resistance variation by
~30%.

The device follows the typical ReRAM structure; it has an oxide layer sandwiched between two
electrodes. For our benchmark device, we use the memristor configuration of Cu/TaOx/Pt. The
memristor has been fabricated in a thermally oxidized silicon wafer. Due to its medium activation
energy and rapid ionization characteristic, we use Copper as the active anode. Several inert elec-
trode configurations have been fabricated on a thermally oxidized silicon wafer, including Pt/Ti,
Pt/Cr, Rh/Cr, Rh/Ti, Ir/Ti and Ir/Cr, and they were then compared with our benchmark device to
find the most effective material for heat dissipation. These layers have been deposited by e-beam
PVD in a Kurt Lesker PVD-250 chamber. The TaOx layer was deposited by evaporating the Ta;Os
pellets in the evaporation chamber but without the injection of oxygen. The inert electrodes of
Pt, Ir and Rh have poor adhesion properties with the SiO, which is why a Ti glue layer needs to
be used. The measurements revealed a positive correlation between the cycle-to-cycle resistance
variation (Ron) and the thermal conductivity of the heat dissipation layer as shown in Table 1.
However, Cr has a higher heat conductivity than Ti and is also a good adhesion layer, making it
more suited to be used in our memristor device.

Besides being compatible with CMOS technology, the Rh-Cu combination leads to an insignif-
icant amount of solid solubility between Rhodium and Copper and therefore we incorporate the
use of Rhodium for the inert cathode. In comparison with other inert electrodes, Rhodium holds
a higher heat conductivity to allow for faster heat removal. Furthermore, replacing the Platinum
layer with Rhodium results in a cost reduction by 45 times for our memristor. We perform an en-
durance test, and based on our results, the configuration of Rh/Cr produces the largest number of
switching cycles compared to its counterparts. Therefore, our fabricated memristor has the con-
figuration of Cu/TaOx/Rh/Cr. A layer of TaOy is incorporated before the top layer is added above
the bottom layer. This is carried out by evaporating Ta,Os pellets onto e-beam evaporation system
with oxygen injection into the chamber. The stoichiometry of the TaOy layer is improved through
the oxygen injection. This oxide layer is less defective and ensures there is electrical insulation
between the top and bottom layers. Figure 4 demonstrates our memristor measurement setup and
our fabricated two-layer crossbar. From Figure 4(c), the left and bottom pads are used to access
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(b) (©)

Fig. 4. (a) Memristor wafer with attached probes. (b) Fabricated memristor wafer. (c) Zoomed-in view of our
two-layer 5x5 memristor crossbar.

the top layer while the right and top pads are used to access the bottom layer. Compared to the
one-layer, the resistance and capacitances are significantly reduced in the two-layer structure lead-
ing to improvements in latency and power consumption.

The I-V switching curve for the memristor is demonstrated in Figure 5. A positive voltage is
swept at 0.2(V/s) from the top electrode of the memristor and once the set voltage is exceeded, the
conductive filament is formed, producing the I-V characteristic curve. These measurements were
performed several times to analyze the switching capability of our memristor. The deviation from
the mean value allows us to calculate a cycle-to-cycle variation of only 4% with our memristor
configuration, a ~30% increase compared to the Pt/Ti configuration which produces the highest
variation of ~43%. This reduced variation gives a much higher accuracy demonstrated in our re-
sults section.

The high on/off ratio, IMQ to ~940MQ2, comes from the compliance current setting of the device.
The relationship between Ry, and the compliance current can be given by the following equation:

K
Ron = et (4)
ICC
where I is the compliance current and n and K are the fitting parameters for the I-V characteristic

curve. There is a negative correlation between R,, and I... For our architecture design we use a
smaller compliance current of 1A which also increases the endurance of our memristor to 1,000
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Fig. 5. 1-V characteristic curve of our fabricated two-layer memristor with the Cu/TaOx/Rh/Cr configuration.

switching cycles compared to 150 switching cycles at 10uA. This significantly high on and off ratio
of our fabricated memristor crossbar can avoid the sneak path current issue.

3.3 CIM-based Vector-Matrix Operations

The weights can be mapped into the memristor crossbar by applying write pulses of the same
amplitude (1V, 10ns). Memristors can only hold positive conductance values and therefore, we de-
velop a method to allow for both positive and negative weight implementations via our memristor
crossbars. Traditionally, there has been a lack of sufficient implementation of positive and negative
weight mapping within crossbars, which is a crucial feature for performing vector-matrix multi-
plications. In [47] additional circuitry is employed to execute positive and negative weights in the
crossbar. Unfortunately, this approach suffers from two drawbacks, increased area and power con-
sumption due to the additional components involved. To overcome these limitations and avoid the
need for extra circuitry, we adopt a weight mapping mechanism similar to [48], which involves
applying a voltage with a similar amplitude but opposite polarity to two neighboring rows. This
approach allows for the representation of both positive and negative weight values. However, it
does not address the issue of how to supply a voltage of different polarity to the adjacent rows,
considering that the wordlines are interconnected in a crossbar configuration.

As demonstrated in Figure 6, we use our stacked crossbar fabricated with the monolithic 3D
technology discussed in the preceding section, with a voltage of the same amplitude but positive
polarity applied to one and negative polarity applied to another. The left and bottom pads are used
to access the top layer and the right and top pads are used to access the bottom layer. The total
outgoing current from each memristor pair can be given by the following equation:

1
Liotar = ) [(Vi) - {Giij = G-}] 5)

0

Lium = Lioral + @, (6)
where the conductance term inside the parenthesis {G,;; — G_;;} represents an individual weight
value. The positive part of our weight value, G, ;; is mapped onto one crossbar and the magnitude of
the negative part of the weight value, G_;; is mapped onto another. To achieve the negative weights,
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Fig. 6. CIM-based vector matrix operation with positive and negative weight implementation.

a voltage of opposite polarity is applied to the negative crossbar and hence we can effectively
realize negative weight values within the overall weight matrix.

Our designed architecture is scalable and therefore makes way for several hidden layers to be
added. The positive and negative currents are combined in one node and applied to each hidden
unit. Our hidden units follow the similar circuit design approach from Figure 3, where the two
currents are amplified and split into two values to allow for spike conversion. However, to adjust
for the negative valued currents that arise from our negative weight implementation technique,
we incorporate a constant current of «, depicted in Equation (8) and Figure 6. This allows for all
the negative valued currents to be transferred to the positive domain which is necessary for the LIF
neurons in the hidden stage to function. In our neural network setup, the memristor crossbars are
followed by a series of LIF neurons, where each column is connected to each neuron. It is necessary
to take all currents into account in order for the subsequent stage of LIF neurons to function
correctly. By introducing the « factor, we ensure that all currents, regardless of their polarity, are
scaled into the positive range. This scaling operation is crucial for the proper functioning of the LIF
neurons, as these neurons rely on positive polarity currents for their activation and subsequent
processing. The inclusion of & allows us to avoid complications that could arise from negative
current handling within the network.

As plotted in Figure 7, a linear response of our output current can be obtained from our ap-
plied positive and negative voltages. In the hidden units these current outputs are then converted
to the ISI encoded pulse signals following the same mechanism as Figure 3. Our approach intro-
duces scalability to the network and ensures rapid and power-efficient transmission of signals by
converting them to spikes between the CIM stages.
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3.4 Output Layer

As discussed in the preceding section, we use a TTFS classification scheme in our output layer to
separate the different classes. Since only one spike is generated per clock cycle, it is deemed as
the most power and energy-efficient encoding scheme, and we therefore deploy this method for
classification [24]. Our TTFS decoder design is demonstrated in Figure 8. The output current from
the columns of our memristor crossbar is applied to the precision current-to-current converter
stage, where due to its high input impedance it allows for the current to be transmitted to the
current mirror stage and replicated with the desired amplification. The amplified value from the
current mirror can also be used as an additional weight tuning mechanism for the architecture.
Once this current is applied to a single LIF neuron, the capacitor sensing technique allows for a
spike to be generated. This neuron is controlled by an external clock that is the same as the clock
of our entire architecture. Using one output processing unit for each class, we therefore develop
our final output stage.

4 PERFORMANCE ANALYSIS

Our performance analysis is divided into four parts in this design. (1) We use the circuit-level
macro model, NeuroSim, to estimate the performance of our memristor and compare it with the
benchmark devices [49]. (2) The neural network model shown in Figure 9 is used to carry out image
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Fig. 9. Hardware simulation setup for our architecture.

Table 2. Comparison of the Memristor with Benchmark Devices®

Properties [50] [51] [52] This memristor | 6-bit SRAM
Ron 5MQ | 23MQ | 16.9kQ 1IMQ —
ON/OFF Ratio 2 6.84 4.43 ~1000 —
Cycle-to-cycle variation <1% <1% 5% 4% —
Online learning accuracy | ~10% | ~10% | ~41% ~80% 94%

2The benchmark devices in this table are from the NeuroSim Simulator [49].

classification to demonstrate the accuracy on hardware using our developed architecture. (3) We
use circuit analysis in Cadence Virtuoso to determine the area and power consumption of our
architecture. (4) We further develop the large-scale model of our neural network on software for

the purpose of comparing our ISI encoding scheme with various encoding schemes in the MNIST
dataset.

4.1 Comparison of the Memristor with Benchmark Devices

The comparison between the memristor model and the benchmark devices is shown in Table 2.
We use the NeuroSim Simulator which has the two-layer multilayer perceptron (MLP) neu-
ral network with the properties of the analog eNVM devices included in the weights to evaluate
the online learning accuracy with the MNIST dataset [49]. We compare our memristor with the
state-of-the-art devices used in the NeuroSim simulator [49]. The MLP in NeuroSim can evaluate
learning accuracy and circuit-level performance specifically for the synaptic array during learn-
ing. When used in online learning, the MLP simulator imitates the hardware parameters in order
to train the network with images picked randomly from the training dataset. The input images are
converted to black and white 1 bit data to reduce complexity for hardware training and testing.
The MLP simulator operates hierarchically, encompassing algorithm-level to device-level consid-
erations. It takes into account detailed properties of synaptic arrays and realistic device behavior.
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When benchmarking the devices using the NeuroSim simulator, we observed relatively low
accuracies ranging from approximately 10% to 41%. One of the major factors contributing to these
low accuracies is the limited on and off ratio of the fabricated memristor [49]. From Table 2 it
can be observed that due to the high on and off ratio of our memristor model as well as its heat
dissipation capability, it can achieve a very high accuracy of 80% compared to the benchmark
devices. The high on and off ratio allows for a better differentiating capability between the signal
states and further reduces the likelihood of errors between the different data states. Furthermore,
it helps to minimize the noise interference during the readout process, allowing us to make a clear
distinction between the noise and signal levels. It also allows us to achieve more precise control
over synaptic weights, especially in SNNs. With enhanced weight precision, more accurate neural
network behavior can be achieved. It also has a relatively competitive cycle-to-cycle variation that
was measured using our setup from Figure 4.

4.2 Training and Classification of 5 X 4 Images

For our hardware simulations and evaluation of the accuracy of our architecture, we develop a
three-layer neural network demonstrated in Figure 9. On Cadence Virtuoso, we combine the SPICE
model of our memristor, and our circuit modules to create our architecture to evaluate it using
handwritten images of digits from 0 to 9. Our output layer consists of a 4 X 4 memristor crossbar
and therefore we use offline training to determine the weights to classify 4 digits, from 0 to 3, one
for each class. For every input image, an entire row of pixel is processed at a time for one clock
cycle. Our demonstration shows the results from applying the pixels from the image of the digit 0
in Figure 9.

The pixels of the input image 0 are applied to the input processing units where the signal passes
on to the precision current to current converter where it is split into two values. After that it is
passed on to the two LIF neurons to generate two different spikes at different times and they are
then combined to produce a pulse signal. The pulse signal for the image 0 that is produced from
the ISI encoding unit is shown in Figure 9 as the ISI encoded input. These pulse signals are then ap-
plied to the memristor crossbar containing the trained weights stored as conductance values. After
carrying out the vector-matrix multiplication computations, the output column currents from the
crossbar are applied to the intermediate stage where signal is postprocessed and ISI encoded into
pulse signals to be applied to a 4 X 4 output crossbar stage. In the final stage, the output column
currents are applied to the TTFS decoder where the currents are postprocessed before being ap-
plied to a single LIF neuron to generate an output spike signal. The output spike results from the
image 0 is shown in Figure 9 as the TTFS output signal, where the weights are trained such that
the first neuron spikes first.

Our design uses a clock frequency of 0.5MHz and a supply voltage of 1.8V. To demonstrate its
spatiotemporal information processing capability each image is processed in 2ps. The images from
0 to 9 were used as inputs to the designed SNN structure to generate a TTFS-based classification
output to classify them. The results from this data are summarized in Table 3 which shows the
spike time and the neuron that spikes. From Table 3 we can observe that for the number 1 the
neuron from column 2 spikes first at 1.50us, for the number 2 the neuron from column 3 spikes
first at 1.25us and for the number 3 the neuron from column 4 spikes first at 993ns. Although our 4
X 4 output crossbar is only able to classify 4 digits, our results from Table 3 show that the spiking
pattern from each output neuron is different and thus can successfully classify the images.

4.3 Power and Area Analysis

We design our circuits and architecture in Cadence Virtuoso to evaluate the area and power of
the major components in our design. Figure 10 depicts the power and area breakdown of the
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Table 3. TTFS Output from Each Column

Number | Column 1 | Column 2 | Column 3 | Column 4
0 805ns 0 825ns 0
1 0 1.50pus 1.51pus 0
2 1.39us 1.25pus 1.24us 1.4us
3 1.02us 1.47us 1.10pus 993ns
4 1.02us 925ns 1.02us 985ns
5 1.1pus 0 0 0
6 1.19us 0 1.2ps 0
7 0 0 1.12pus 0
8 1.17pus 0 1.2us 0
9 1.4ps 1.3us 1.4ps 1.36ps

LIF Neuron, 4.37,

3%
LIF Neuron, 4.37,
Extractor, 0.0039, 4%

0%

Area

ss% Breakdown Power

Breakdown

Current Mirror,
115, 93%

M LIF Neuron M Extractor Current Mirror mLIFNeuron mLIFNeuron Current Mirror W Extractor

Fig. 10. Area and power breakdown.

components. The power distribution, as shown in Figure 10, demonstrates that for each processing
unit the LIF neuron only consumes 4.37uW of power. The current mirror stage consumes the
maximum amount of power of 115uW, arising from the use of the opamp. The least amount of
power is consumed by the extractor stage which is almost insignificant. The combined power
consumption of all modules in the input processing unit is 123W. Our complete CIM-based SNN
architecture consumes only 2.9mW when classifying handwritten digits. The area breakdown from
Figure 10 shows that due to the opamp, the major portion of the area is consumed by the current
mirror stage of 55%. Each LIF neuron consumes 26% of the area while the extractor unit consumes
19% of the area.

In Table 4 we summarize the comparison of our designed architecture with the state-of-the-
art memristor-based neural network designs. For our classification application, the use of binary
weights proved to be sufficient in capturing the necessary information and performing the re-
quired computations. We found that the precision provided by 1-bit weights yielded satisfactory
accuracy for our specific task. Furthermore, employing 1-bit weights brings notable advantages
in terms of hardware implementation and power consumption. The simplified representation of
weights, using only 1 bit, reduces the complexity of the circuits, making them easier to design and
fabricate. We compare our work with [16] and [53] that are memristor-based SNN architectures de-
veloped in the SPICE simulator. Our work is also evaluated against memristor-based Restricted
Boltzmann Machine (RBM) [54] and MLP [55]. Compared to the other designs, our architec-
ture has an extremely competitive power consumption and low latency of only 2.9mW and 334ns.
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Table 4. Performance Comparison with the State-of-the-art Memristor-based Neural
Network Designs

[16] [53] [54] [55] This work

Technology — — 130nm 130nm 180nm
Algorithm SNN SNN RBM MLP SNN
Memory Cell ReRAM | ReRAM ReRAM ReRAM ReRAM
Memory Mode CIM CIM CIM CIM CIM
Weight Precision — — 1-bit signed | 3-bit signed 1-bit
Neuron Type LIF LIF IF — LIF
Supply Voltage — — 1.8V 5V 1.8V
Latency 5us ~5/s — 51.1ns 334ns
Power Consumption | 16.71mW — 2.2mW — 2.9mW

10 LIF
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Fig. 11. Architecture of the CIM-based SNN for MNIST classification.

Furthermore, our design only consumes 2.51p] of energy per synaptic connection, making it suit-
able to be used in Al accelerators.

4.4 Performance Comparison with Various Encoding Schemes

We developed a three-layer neural network to test our large-scale network. Our design incorpo-
rates the ISI encoding scheme as well as the memristor crossbar structure. Using this model, we
compare the accuracy of our network against the MNIST dataset in terms of the different encoding
schemes of rate, TTFS and ISI encoding. The detailed structure of the model is shown in Figure 11.

Modified from the neural network in [56], we develop our large-scale three-layer SNN model
where we incorporate the encoding stage to initially code the inputs into ISI, TTES or rate. To
perform the CIM-based vector-matrix multiplication operations, we then apply the inputs to the
memristor crossbar layer. In this stage, minibatches of 128 X 784 images are multiplied with the
crossbar matrix of 784 X 100. We utilize the ADAM optimizer to train the memristor weights.
By applying a clipping mechanism, where weight values above a certain threshold are set to a
maximum value, the weights can be constrained within a specific range. This clipping helps pre-
vent the weight values from growing too large and potentially causing instability during training.
Additionally, scaling the weight values by an appropriate factor helps bring them closer to the
magnitude of the gradients, making the two more compatible.
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Table 5. Performance Comparison with Different Encoding
Schemes for MNIST Classification

Encoding Scheme Accuracy Epochs
Rate 83% [56] 10
TTES 85% 10
ISI 93% 10

To imitate the current mirror stage and decrease the number of training of epochs, we integrate a
Batch Normalization layer in the next step [57]. Here, the output column currents are amplified and
transformed into voltages and clamped between two pre-determined values. Clamping involves
limiting the output values from the memristor crossbar within predetermined upper and lower
bounds. By constraining the output values within a desirable range, extreme values that could
disrupt training are avoided. Our final layer consists of a set of LIF neurons for the transmission
of spikes and to allow the control of the dynamics from the first layer.

During the training process, careful hyperparameter tuning is performed to determine suitable
upper and lower bounds for weight values, as well as an appropriate scaling factor. This tuning
ensures that the weight values and gradients are in a reasonable range for effective learning.
By finding the right balance, stability during training is maintained, and the updates to the
gradients have a substantial impact relative to the weight values. Moreover, the learning rate,
which determines the step size of weight updates, is adjusted to strike a balance between training
accuracy and stability.

Following this layer, the second layer is placed similar to the former one, where the inputs are
applied to the crossbar stage containing a weight matrix of 100 X 10, after which the resulting
output current is converted to voltage using the Batch Normalization layer and clamped. The first
and the second layer contain 100 and 10 LIF neurons, respectively. Since the MNIST image contains
10 different classes of images from 0-9, the output layer contains 10 LIF neurons. The accuracy
results from each type of encoding scheme are summarized in Table 5. From our results, it was
concluded that our design with the ISI encoding scheme is able to achieve the highest accuracy of
93%, compared to 83% in rate encoding and 85% in the TTFS encoding scheme.

5 CONCLUSION

SNNss are energy and power efficient biologically realistic models of neural networks due to their
spatiotemporal information processing capability. In this paper we investigated and designed a
novel ISI neural coding scheme to convert the incoming data into spikes. Our chosen scheme
has a higher information density by encoding information in the times between the spikes and
thus outperforms its TTFS and rate counterparts by ~10%. A memristor crossbar is used for in-
memory computation operations to carry out the vector-matrix multiplication process for feature
extraction. Our memristor device that was used integrates a novel heat dissipation capability that
significantly reduces the resistance variation, a key challenge in memristors. The incorporation
of an additional heat dissipation layer in our memristor device contributes to its robustness by
facilitating rapid heat removal and reducing resistance variation and enhances the device’s sta-
bility, reliability, and performance. Our CIM-based SNN architecture discusses the detailed circuit
design of each stage, including the input layer, hidden layers, and output layer, as well as the mem-
ristor crossbar stage. We further integrate a positive and negative weight mapping mechanism for
the vector-matrix multiplication operations. The entire network also has a very low power con-
sumption of only 2.9mW and our simulation results verify that our design can attain a better
performance compared to other works of similar architecture.
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