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Abstract—Advancing 5G and beyond communications require
innovative solutions for symbol detection in MIMO-OFDM. Our
research leverages Spiking Neural Networks (SNNs), surpassing
the efficiency of traditional Deep Neural Networks (DNNs) and
Artificial Neural Networks (ANNs) in dynamic wireless contexts.
The SNNOT architecture features a novel triplet Spike-Timing-
Dependent Plasticity (STDP) learning circuit, utilizing 22FDX
technology from GlobalFoundries, which overcomes STDP’s
supervised learning limitations and enhances dynamic learning
by converting spikes into voltages. This innovation leads to
substantial efficiency gains, with a minimal energy requirement
of 20.92µW and a small silicon footprint of 37 × 62µm2.
Performance evaluations show the triplet STDP rule in SNNOT
considerably improves image classification and symbol detection,
with over 3% error rate reduction in MNIST and CIFAR-10.
Additionally, it achieves a 0.07 symbol error rate (SER) at 5
dB Eb/No in 4 pulse amplitude modulation (4-PAM) Gaussian
channel symbol detection, outperforming other methods. With
8-PAM, it surpasses other methods by at least 0.03 SER and
maintains lower or comparable SERs in scenarios using the WIN-
NER II channel model and 16 quadrature amplitude modulation
(16-QAM). Importantly, our method offers up to 32% faster
processing, providing a potent, efficient solution for receiver
processing in cutting-edge wireless systems.

Index Terms—MIMO-OFDM, symbol detection, triplet recon-
figurable STDP, on-chip learning

I. INTRODUCTION

Wireless communication, a cornerstone of modern telecom-

munication, involves transmitting information without physical

connectors like wires, using electromagnetic waves such as

radio frequencies, microwaves, or infrared. Key components

include a transmitter, transmission medium (typically air or

space), and a receiver. The invention of Multiple Input Mul-

tiple Output - Orthogonal Frequency Division Multiplexing

(MIMO-OFDM) symbol detection marks a significant ad-

vancement in this field [1], enhancing data transmission rates

and robustness against interference. MIMO uses multiple

antennas at both ends of the communication system to multiply

radio link capacity, while OFDM efficiently combats inter-

symbol interference and fading. This complex process, em-

ploying advanced algorithms for signal processing, is pivotal in

modern standards like LTE and Wi-Fi, improving throughput
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and reliability in challenging environments with signal scat-

tering and fading.

ANNs have shown great potential for the symbol detection

task in the MIMO-OFDM systems, but they still have practical

challenges. One significant hurdle in deploying neural network

(NN)-based approaches is the requirement of a vast amount

of labeled data and a long training time. During the online

deployment stage, the online over-the-air (OTA) labeled data in

contemporary cellular networks is limited and costly. The low-

latency requirement for the cellular system and the dynamic

channel environment only allow for a short online training

time. Attempts have been made to address this issue by

performing extensive offline training with simulated data and

conducting online adaptation [2]. Nevertheless, implementing

these solutions in real-world situations takes time and effort.

Cellular systems adopt dynamic transmission modes, such as

link and rank adaptations and scheduling, performed on a

subframe (1 millisecond) basis. This rapid alteration can create

discrepancies between offline and online models, leading to

potential model mismatches and making it challenging to

apply offline weights in an online setting.

An approach called StructNet was introduced to solve the

abovementioned issues of deploying NNs in practice [3]. By

embedding the domain knowledge of MIMO-OFDM systems

into the design, StructNet transforms the multi-class symbol

classification task into multiple binary decision processes,

which allows it to have less trainable weights. In addition,

due to the particular design of the NN structure, StructNet

augments the OTA training samples by leveraging their sym-

metric structure. Therefore, it can be learned with only OTA

training samples and a short training time.

To utilize the abovementioned mechanism in practical en-

vironments, especially in edge computing environments, a

spiking integrated circuit (IC) chip with online training capa-

bility is necessary since the shortened transmission time can

significantly improve the system performance, especially in

dynamic wireless communication systems.

Compared with real mammal brains, the traditional ANN

has some shortcomings. The brains consume much less power

than a conventional ANN computing system of the same

size. They are also more stable than conventional ANNs in

noisy environments. The difference between the mechanisms

of ANN and brains is that biological brains utilize spikes to

transfer information [4], while the ANNs use actual numerical

signals. The nature of the spike-transmitting mechanism makes

neurons only fire spikes when needed. The neurons can stay

silent for the rest of the operating periods. In that way,
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much unnecessary energy is saved compared to the traditional

artificial neural networks. To use this valuable mechanism,

researchers started investigating methods to mimic the spike-

transmitting structure, and the coming-up neural networks are

called the spiking neural networks (SNNs) [5]. In the past

decades, many works of SNN have been reported to have

way better power efficiency than traditional von Neumann

structures and ANNs. For instance, the Intel Loihi2 chip [6]

managed to integrate 128 cores in a 31mm2 area and can be

utilized for robot arm control, modeling diffusion processes for

scientific computing applications, and more. While standard

CPUs and GPUs consume hundreds of watts of power for

those applications, Loihi2 chip only consumes less than 1 watt.

Moreover, the SpiNNaker chip [7] also takes less than 1W

of power while mimicking over one thousand spike neurons.

The TrueNorth chip [8], designed by IBM, only consumes

65mW of power when managed to simulate over one million

neurons and 256 million synapses. SNN chips can also be area-

efficient due to their highly parallel computational structure.

For example, the Morphic chip [9] emulated 2048 neurons and

two million synapses while only taking 2.86mm2 of silicon

area. The ODIN chip [10] even only takes 0.086mm2 of

silicon area for 256 neurons and 64000 synapses.

Due to the non-differentiable nature of spikes, the spiking

neural networks can not be trained with regular training

algorithms. For example, normal backpropagation is unsuitable

for SNNs since the spike can not be differentiated to get

a gradient. Thus, researchers have come up with various

training algorithms for SNN, such as spike timing dependence

plasticity (STDP) [11], Hebbian learning [12], surrogate gra-

dients [13] and NormAD [14]. Among them, the most widely

commonly used is the STDP learning rule. The learning mech-

anism inspires it in biological neural systems. With the STDP

algorithm, the synaptic weight between neurons is updated

with the relative time difference of pre and postsynaptic spikes.

There are many STDP rules, which means the weight can be

updated in several ways. The most basic rule is the asymmetric

STDP rule. The synaptic weight increases when the post-

neuron spike arrives after the pre-neuron spike since it shows

the relativity of two neurons.

On the contrary, the weight is decreased when the post-

neuron spike arrives before the pre-neuron spike because the

two neurons are not very relative. Another more advanced

STDP rule is the triplet STDP [15]. It takes account of a series

of spikes to tune the weight instead of only taking account of

a pair of spikes. Thus, it can mimic complex biological neural

mechanisms. Moreover, even for the pair-based STDP rules,

there are more rules besides the asymmetric rule. Research

has verified that these different rules have advantages in

different engineering tasks, and researchers have proposed

a circuit design that can replicate various STDP learning

algorithms [16]. To combine the advantages of the triplet-

based STDP rule and the reconfigurable STDP circuits, this

work has implemented a triplet-based reconfigurable STDP

circuit design. This circuit can apply the triplet-based STDP

algorithm to various applications to improve performance.

With the STDP learning rule, SNNs can be trained for

tasks such as image classification [17], motor control [18],

and speech recognition [19]. However, achieving a balance

between classification accuracy, on-chip learning capability,

and power/silicon area efficiency remains challenging in hard-

ware research. To broaden the application of SNNs, especially

in dynamic environments, neuromorphic chips better support

online training. With the limitations of hardware resources, the

on-chip learning mechanism should achieve low energy and

silicon area consumption and maintain relatively high classifi-

cation accuracy. However, many hardware implementations of

SNNs with limited resources cannot support online learning

[20], and those that do often cannot achieve high training

accuracy. The challenge is even more pronounced for those

who use baseline STDP as the training algorithm. The baseline

STDP does not support supervised learning. It can only divide

data points into different groups in an unsupervised way. To

address this limitation of the STDP training rule, reinforcement

learning STDP should be incorporated into the final layer of

neurons in the SNN [21]. In this proposed work, the last layer

of neurons is connected to the penultimate layer through the

reward-based STDP learning synapse. Major contributions of

our work are summarized as follows:

• A spiking neural network with an online training mech-

anism is implemented in the GlobalFoundries 22FDX

technology node.

• To the best of our knowledge, it is the first IC design of

SNN with the triplet-based reconfigurable STDP learning

algorithm and the on-chip training capability.

• Simulation results show that the performance of the

triplet-based STDP algorithm of MNIST and CIFAR-

10 achieves 3.28% and 3.63% lower error rates when

compared to the pair-based STDP algorithm.

• The introduced training network layout design consumes

20.92µW of power and 37 × 62µm2 of silicon area.

An opamp-free judgmental circuit is designed to achieve

reward-based STDP learning while maintaining high

power and area efficiency.

• Hardware/software hybrid test result has shown that the

trained neural network can achieve similar or better

performance than purely software-based methods while

having higher energy efficiency.

For the rest part of this article, the background about the

MIMO-OFDM system and StructNet is illustrated in Section

II. The STDP training algorithms and the circuit design of the

reconfigurable triplet STDP training block are demonstrated

in Section III. What’s more, Section IV has discussed the

circuit post-layout simulation results as well as the training

results for the MNIST and CIFAR-10 datasets of two different

training algorithms. The testbench setup for the MIMO symbol

detection application and the test results for it are shown in

Section V while Section VI concludes this article.

There exist several works talking about IC design for other

STDP training algorithms. In [22], the author has demonstrated

an analog IC design of the asymmetric STDP rule. However,

this design requires the use of transconductance amplifiers

in both the upper part and lower part, which will increase

the power consumption and silicon area. [23] has shown

an analog circuit that can realize the reverse asymmetric
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STDP rule. Compared to [22], this work is more efficient

in circuitry as well as power consumption. However, it still

suffers from the incapability of taking into account multiple

spikes. What’s more, it is also not capable of switching to

other STDP algorithms. In [24], the researchers have illustrated

an analog IC design of the most basic STDP learning rule,

the asymmetric STDP algorithm. Similarly, it is also unable

to account for various spikes and switch to other algorithms,

which may limit its practical applications.

Moreover, there are also preceding studies on the circuit

implementation of triplet-based STDP rule. In [25], the authors

have introduced a circuit implementation of the triplet STDP

training algorithm. The circuit implementation delays input

signals with one clock cycle for the triplet spike weight

adjustment. However, in this work, the mathematical formula

shows that the STDP algorithm it uses to account for the

three spikes is the basic asymmetric STDP learning rule.

The inability to switch between different STDP learning rules

will lead to inefficiency in specific applications. [26] has

demonstrated a digital circuit design of the TSTDP learning

rule. The research utilized a Field Programmable Gate Array

(FPGA) board to implement the triplet STDP learning circuit.

Compared with analog circuits, the FPGA implementation of

the triplet STDP rule requires more power, so its efficiency

will not be as good as that of analog TSTDP circuits. In

[27], researchers proposed an analog training circuit with the

triplet STDP rule. The circuitry is novel and power efficient.

However, it requires the use of memristor. As a special device,

the memristor will limit the application of the proposed circuit

since memristors are not as available as standard CMOS

devices for potential users. Furthermore, in our prior research

[28], we introduced a design of the reconfigurable STDP

training circuit. That design, however, has four time window

generator blocks that takes a lot of power and silicon area

as well as brings implementation complexity. In this study,

we present a new, simplified design for the STDP training

circuit that only requires two time window generator blocks

so that the power and silicon area efficiency can be increased

by almost 100%, along with a neural network architecture

that incorporates this circuit for training for classification

applications.

II. BACKGROUND

A. Symbol detection in the MIMO-OFDM system

MIMO-OFDM is a pivotal technology in the field of

wireless communications, particularly integral to the archi-

tecture of modern broadband systems like 4G, 5G, and Wi-

Fi networks [1]. In the MIMO-OFDM system, transmitted

information symbols are modulated in the frequency domain

and then converted to the time domain through an inverse fast

Fourier transform (IFFT). A cyclic prefix (CP) is inserted at

the beginning of each OFDM symbol to avoid inter-symbol

interference (ISI). At the receiver, the time-domain received

signal is transformed to the frequency domain through the

CP removal process and the fast Fourier transform (FFT).

Consider a MIMO system with Nt transmit antennas and

Nr receive antennas. The relationship between the transmitted

symbols and received signals in the frequency domain at each

subcarrier k can be written as

Y (k) = H(k)X(k) +N(k), (1)

where Y (k) ∈ C
Nr×Ns is the received signal in the frequency

domain at subcarrier k; X(k) ∈ ANt×Ns is the transmitted

symbols at subcarrier k sampling from the modulation con-

stellation alphabet set A; H(k) ∈ C
Nr×Nt is the frequency-

domain channel at subcarrier k; Ns is the number of OFDM

symbols; and N(k) is the additive white Gaussian noise.

The symbol detection task in the MIMO-OFDM system

involves accurately identifying and decoding the data sym-

bols transmitted over multiple antennas and through multiple

frequency subcarriers [29]. This process is essential for effec-

tively deciphering the transmitted information in environments

where signals can be distorted due to multipath fading, inter-

ference, and noise.

The landscape of symbol detection in MIMO-OFDM sys-

tems is rich and diverse, encompassing both conventional

model-based and emerging learning-based approaches. Tra-

ditional model-based methods like Linear Minimum Mean

Square Error (LMMSE) [30] and Sphere Decoding (SD) [31]

algorithms are foundational in this domain. These approaches

rely on explicit system modeling and precise Channel State

Information (CSI) estimation. However, their performance can

be significantly impacted when non-linear components, such as

power amplifiers, are present in the system or when there are

inaccuracies in CSI estimation. This limitation of conventional

methods under non-ideal conditions has driven the exploration

of alternative strategies, particularly those leveraging the ca-

pabilities of neural networks.

Learning-based approaches, especially those utilizing neural

networks, have gained traction as a means to address the short-

comings of traditional model-based methods. These methods

capitalize on the pattern recognition strengths of NNs, offer-

ing potential improvements in environments with non-linear

distortions or imperfect CSI. However, the implementation

of these approaches in wireless communication presents its

challenges. The requirement for extensive training data and

prolonged training durations is a significant hurdle. Existing

works, such as MMNet [32], have explored training large

neural network models offline, which raises issues when these

models are deployed in real-world scenarios. The discrepancy

between the offline training data and the real-time online

data distribution can lead to performance degradation. An

emerging area of interest is integrating offline learning with

online adaptation approaches, which aim to mitigate this issue

by continuously updating the model with over-the-air training

data on a subframe basis. This approach represents a promising

direction for learning-based symbol detection, offering a more

adaptive and robust solution for the dynamic environments

encountered in wireless communications. Additionally, the

development of reservoir computing (RC)-based approaches,

including RC-Struct [33] and RC-AttStructNet-DF [3], further

illustrates the ongoing evolution and refinement of learning-

based strategies in symbol detection for MIMO-OFDM sys-

tems.
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Recent literature on symbol detection in MIMO-OFDM sys-

tems underscores the diversity of approaches and challenges

in this field. Zhou Zhou introduced a reservoir computing

structure that can significantly improve the symbol detection

performance and effectively mitigate model mismatch effects

using very limited training symbols [34]. Aswathy K Nair has

proposed channel sparsity to design a pilot-based compressed

sensing method for channel estimation and integrated a BiL-

STM approach for symbol detection for improved performance

[35]. Seung-Jin Choi presented a novel MIMO detection

algorithm with low complexity and good error performance

[36]. Moreover, this method is also expected to decrease the

computational complexity of the massive MIMO systems.

B. StructNet

StructNet [3] is a frequency domain classification neural

network for the MIMO-OFDM symbol detection task, which

incorporates the symmetric structure of the modulation con-

stellation to improve the training efficiency. The design of

StructNet originates from the atomic decision neuron network

(ADNN) [37]. The ADNN in [37] assumes the perfect channel

knowledge and utilizes one learned binary classifier to perform

multi-class detection by leveraging the symmetric modulation

constellation pattern. For ease of discussion, we refer to this

approach as ADNN-GT. In practice, perfect channel knowl-

edge is not directly accessible. Therefore, later on, the ADNN

with linear minimum mean square error (LMMSE) estimated

channel (ADNN-LMMSE) is introduced for the frequency-

domain classification and combined with the time-domain

neural network to perform online subframe-based symbol

detection [33]. One drawback of ADNN-LMMSE is that the

LMMSE estimated channel can not accommodate changing

channel environments. To address this issue, StructNet is

designed by adopting a linear layer to estimate the channel

and dynamically track the channel changes. It is noteworthy

that such an NN-based channel estimation process does not

require ground truth channels for training.

StructNet consists of two main components: the linear layer

for channel estimation and a multilayer perception (MLP)

network that works as a binary classifier. The LMMSE es-

timated channel first initializes the parameters of the linear

layer and is then updated along with the binary classification

task. As the multi-class classification problem is transformed

into multiple binary decision processes with the same binary

classifier, StructNet can have more efficient training processes

with a limited amount of training data and shorter training

time. Moreover, utilizing the channel estimation layer allows

it to dynamically track channel variations without assuming

knowledge of the ground truth channel.

III. ON-CHIP LEARNING SPIKING NEURAL NETWORK

DESIGN.

A. Baseline STDP

In the realm of SNNs, several algorithms are employed

to facilitate their training. Among these algorithms, STDP

has emerged as a promising approach. This algorithm adjusts

synaptic weights according to the temporal dynamics of spikes.

Δ

Δ

Fig. 1. Diagram of the relation between the time difference of pre-and post-
spikes and weight voltage adjustment in the conventional asymmetric STDP
learning rule.

One of the most widely implemented examples is the asym-

metric STDP rule [11].

As demonstrated in Fig.1, in the asymmetric STDP rule,

the synaptic weights are increased when spike timing aligns

with the direction of spike propagation, a process known as

Long-Term Potentiation (LTP). Conversely, when the post-

neuron spike is initiated before the pre-neuron spike—a sce-

nario indicative of a weaker correlation between the two

neurons—their synaptic weight undergoes a decrement, a

phenomenon referred to as Long-Term Depression (LTD).

The following equation defines the relationship between

weight modification and the time difference:

∆W =

{

A+e−(tpost−tpre)/τ , tpost − tpre > 0

−A−e(tpost−tpre)/τ , tpost − tpre < 0.
(2)

In the equation, tpre and tpost denote the pre- and post-

neurons’ firing times, respectively. A+ and A− signify the

maximum values of potentiation and depression. Both A+ and

A− have the same magnitude but opposite signs. τ represents

the time constant, dictating the rate at which the potentiation

and depression diminish over time.

Notably, the potentiation and depression values exhibit an

exponential relationship with the temporal differences between

spikes. This relationship ensures that the algorithm signif-

icantly impacts the weight when the spikes are temporally

proximate. However, when the spikes are temporally distant,

the rule’s impact on the weight is minimal. This feature allows

the STDP rule to adaptively modify synaptic weights based on

the precise timing of pre- and post-neuronal activities, making

it a powerful tool for training SNNs.

The asymmetric STDP rule, therefore, has a crucial role

in shaping the learning dynamics of SNNs. Its ability to

tune synaptic weights based on the relative timing of spikes

allows for the precise encoding of temporal information. This

ensures that the SNNs can adapt and learn from the changing

patterns of spikes. It is the foundation for the temporal

processing capabilities of SNNs, which sets them apart from
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traditional artificial neural networks and brings them closer to

the biological realism of the human brain.

B. Triplet STDP

As outlined in Section III.A, the Pair-based Spike-Timing-

Dependent Plasticity (PSTDP) rule uses two spikes to adjust

the synaptic weight according to their temporal differences.

On the contrary, the Triplet-based Spike-Timing-Dependent

Plasticity (TSTDP) rule takes into account three spikes [38].

The combination of these spikes can either be pre-post-pre

or post-pre-post. These spike combination models illustrate

how the temporal differences between spikes are employed

to adjust synaptic weights. Compared to the PSTDP rule, the

TSTDP can mimic and realize higher-order spiking patterns

in the process of training.

The mathematical model for the baseline TSTDP learning

rule [15] is expressed as follows:

∆W =







A+
1 e

(
−∆t1

τ
+
1

)
+A+

2 e
(
−∆t2

τ
+
2

)
e
(
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τ
+
1

)

−A−
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(
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1

)
−A−
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(
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2

)
e
(
∆t1

τ
−

1

)
.

(3)

In this equation, A1 and A2 are the potentiation and depression

parameters, while ∆t1 denotes the time difference between

pre- and post-neuron spikes. ∆t2 equates to tpost(n)–tpost(n−
1), indicating the temporal gap between two consecutive

post-neuron spikes. Here, n signifies a specific time step,

and n − 1 represents the immediately preceding post spike.

Similarly, ∆t3 denotes the time gap between two pre-neuron

spikes. When comparing the TSTDP mathematical model to

the PSTDP formula, it is clear that the TSTDP incorporates

a higher-order term in both the depression and potentiation

equations. Thus, the time difference between two pre- or post-

spikes is also taken into account.

Physiological experiments have illustrated that the TSTDP

more accurately emulates biological mechanisms. Initially,

researchers identified that the PSTDP rule could not entirely

account for the results observed in biological synaptic weight-

changing experiments [15]. Moreover, the TSTDP has been

shown to accurately reproduce the frequency-dependent effects

observed in experimental settings, where the amplitude of

potentiation increases with the spike firing rate.

Beyond these advantages, the most significant attribute

of TSTDP is its ability to reproduce the behavior of the

Bienenstock–Cooper–Munro (BCM) model [39]. With this ca-

pability, neurons demonstrate input selectivity when receiving

multiple inputs. This behavior closely mirrors the adaptability

of biological neurons, bringing SNNs a step closer to achieving

the complexity and versatility of the human brain.

The TSTDP rule, thus, represents an essential advancement

in the field of SNNs. Its ability to capture higher-order spiking

patterns and accurately reflect various biologically observed

phenomena makes it a powerful tool in developing and training

more sophisticated and biologically realistic neural networks.

C. Reconfigurable STDP

As mentioned in Section III.B, STDP is a biological process

that adjusts the strength of synaptic connections between

neurons based on the relative timing of their spikes. The STDP

rule has become popular in engineering applications because it

provides a way to train SNNs to learn from their environment

in a biologically plausible way.

The basic asymmetric STDP rule is widely used for unsu-

pervised learning applications in SNNs, where it adjusts the

weights of synaptic connections based on the relative timing

of pre- and post-synaptic spikes. Typically, when the post-

synaptic spike occurs after the pre-synaptic spike, the synaptic

weight is increased (potentiation). When the post-synaptic

spike occurs before the pre-synaptic spike, the synaptic weight

is decreased (depression).

However, the basic asymmetric STDP rule has some limi-

tations, and its application in various engineering applications

is only sometimes suitable. Thus, researchers have proposed

several other STDP algorithms with different shapes and

modified synaptic weights differently based on the relative

timing of pre- and post-synaptic spikes.

One such STDP algorithm is the anti-STDP learning rule,

which increments the synaptic weight when the post-synaptic

spike arrives before the pre-synaptic spike and vice versa.

As the name suggests, the anti-STDP learning rule is the

opposite of the basic asymmetric STDP rule and is used in

some supervised learning applications [40].

Other STDP rules have been developed, such as DPD

(Depression-Potentiation-Depression), PP (Potentiation-

Potentiation), DD (Depression-Depression), and PD

(Potentiation-Depression), where D denotes depression

and P denotes potentiation. These STDP rules modify

synaptic weights differently based on the relative timing

of pre- and post-synaptic spikes and have advantages for

different applications. For example, the symmetric STDP

rule (DPD) is effective for associative learning [41]. In

contrast, the potentiating rule (PP) and depressive rule (DD)

are effective in liquid state machine (LSM) [42] and some

classification projects.

In conclusion, the selection of the STDP rule depends on

the specific application requirements. It is essential to consider

both the advantages and limitations of various STDP rules to

select the most appropriate one for the specific task. Thus,

to broaden the application of a spiking neural network, the

capability of switching between different STDP training rules

is important. The reconfigurability of the STDP rules of the

training circuit can be achieved by employing digital control

signals so that the circuit can adapt to various tasks.

D. Reward-based STDP training algorithms

A well-known disadvantage of the conventional STDP train-

ing algorithm is that it does not support supervised learning.

Rather than classifying data points into known categories, a

traditional STDP training circuit can only group data points

into clusters, a process referred to as unsupervised learning

[43]. However, in real-world applications, supervised learning

could be very crucial. With the help of labeled data, supervised

learning can achieve much higher accuracy than unsupervised

learning. Supervised learning is also more suitable for clas-

sification and regression applications such as spam detection,
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image classification, and weather forecasting, which are more

widely used. Moreover, supervised learning models often have

less complexity since the outputs are already known, which

makes the training procedure more straightforward. To realize

the supervised learning of SNN with the STDP circuit, a

reward-based STDP training rule is utilized in the proposed

neural network.

The reward-based STDP algorithm uses the reinforcement

learning concept to implement supervised learning for the

STDP circuit. As discussed earlier, the weights adjust based

on the temporal relationship between pre- and post-spikes. In

the reward-based STDP algorithm, the adjustment of synaptic

weights will be reversed if the classification result is incorrect

[44]. However, if the prediction result for a given cycle is

correct, the traditional STDP weight adjustment mechanism

will be maintained to reinforce the learning. In this manner,

the reward and punishment mechanisms from reinforcement

learning are integrated into the originally unsupervised STDP

rule, effectively transforming it into a supervised learning rule.

E. Circuit design of the triplet reconfigurable STDP circuit

In MIMO-OFDM systems, the need for on-chip training in

symbol detection arises from several key aspects. Firstly, the

wireless signal environment in MIMO-OFDM systems often

changes, requiring receivers to adapt in real time. On-chip

training enables these receivers to learn and adjust to variations

in signal characteristics internally, thus enhancing detection ac-

curacy and efficiency. Additionally, on-chip training enhances

computational efficiency by reducing reliance on external

processing resources and minimizing data transmission needs

and delays. This is particularly crucial for applications that

demand quick response, such as real-time communication or

mobile telecommunications.

Secondly, energy efficiency is a paramount concern in

mobile and edge computing devices, which often have strict

energy consumption limits. On-chip training optimizes the

energy efficiency of algorithms by reducing the need for data

transmission outside the chip, thereby lowering overall energy

consumption. Furthermore, on-chip training allows for cus-

tomization and flexibility, as different MIMO-OFDM systems

may require optimization for their specific signal characteris-

tics and operational environments. This self-optimization fea-

ture improves the adaptability and performance of the system.

Lastly, conducting data processing and training on the chip

enhances data security, as it reduces the risk of data leakage

by avoiding external data transmission. In summary, on-chip

training in MIMO-OFDM symbol detection is crucial for

improving the system’s adaptability, efficiency, and security,

especially in scenarios with limited resources and high real-

time requirements.

To utilize the advantages of the triplet STDP learning rules

on various tasks, especially their most suitable tasks, the triplet

reconfigurable STDP circuit is in high demand. As discussed

in Section III.C, in addition to the baseline asymmetric STDP

learning rule, there are numerous other STDP learning rules,

such as PD, DPD, and PDP. Research has demonstrated that

each rule has unique applications. To increase the versatility of

Fig. 2. STDP learning rule shapes with various control signals.

the proposed circuit, the circuit needs to acquire the feasibility

of switching between shapes. Thus, the circuit is controlled by

six digital controlling signals. The first three signals control the

shape when ∆t > 0, and another three control it when ∆t < 0.

For instance, as demonstrated in Fig.2(a), DP, the conventional

asymmetric STDP learning rule’s control signals are 011001.

011 controls the right half of the waveform and 001 controls

the left half where ∆t < 0. When the first three signals and

the second three signals are the same, as shown in Fig.2(b),

the shape of the learning rule will be symmetric. What’s more,

the STDP learning rule shape can be more complicated than

Fig.2(a) and (b). As illustrated in Fig.2(c), when the control

signals are 010, the time and weight changing relation will

look like a sine wave. Similarly, when the first and second

three signals are both 010, the shape becomes symmetric, as

depicted in Fig. 2(d).

The circuit can be divided into three main blocks: the

Central OTA Core, the Time Window Generator for LTD,

and the Time Window Generator for LTP. The Time Window

Generator is shown in Fig. 3. It compares the time difference

between the pre-and post-neuron spikes and generates voltage

differences. The generator for LTP creates voltage differences

that result in an increased weight voltage, while the generator

for LTD causes the weight voltage to decrease. The generator

for LTP will have pre-spikes for the Spike1 input and post-

spikes for the Spike2 input. For example, when the control

signals are set to 011001, which means the Vctr1 = 0, Vctr2

= 1, Vctr3 = 1 and Vctr1B = 0, Vctr2B = 0, and Vctr3B

= 1, the training circuit represents the DP learning rule. As

discussed in the last paragraph, Vctr1, Vctr2, and Vctr3 control

the right side of the STDP learning rule shape, where pre-spike

arrives before post-spike. As for Vctr1B, Vctr2B, and Vctr3B,

they control the left side of STDP shape, where post-spike

arrives before pre-spike. Since Vctr1 = 0, the comparator in

the LTP generator outputs ground signal, and Vcont equals

This article has been accepted for publication in IEEE Transactions on Green Communications and Networking. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGCN.2024.3393854

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:14:27 UTC from IEEE Xplore.  Restrictions apply. 



7

Fig. 3. Schematic of the time window generator circuit.

Fig. 4. Schematic of the central OTA core circuit.

supply voltage vdd. With that, the voltage across C2 will be

increased to vdd when the pre-spike fires and slowly decrease

after the pre-spike at a rate controlled by Vdecay2. Similarly, if

Vctr1 = 1, the voltage across C1 will work just like C2 voltage

and then be compared with Vc. The comparison result will be

output to Vcont in this situation. When the post-spike fires,

Vedcp a will equal the C2 voltage; otherwise, it will equal

Vref, which is controlled by Vctr3 of whether it equals Vref1

or Vref2. In this case, since Vctr3 = 1, Vref equals Vref2.

After that, Vctr2 will switch the voltages OTAN and OTAP

between Vedcp a and Vref. From that, we can notice that the

only difference between the OTAN and OTAP will be the C2

voltage during post-neuron spikes. By comparing these two

voltages, we can realize the first-order relation of formula 2.

Moreover, Vedcp a will also be stored in the capacitor C3.

When the next pre-spike occurs, the voltage will be stored

in C4 and will cause a switch in Vedcp b between Vref and

the voltage across C4. Thus, the pre-spike is postponed to the

next pre-spike and compared with the reference voltage. Also,

with the same switch mechanism of Vctr2 between OTATP

and OTATN, the second-order relationship between the pre-

post-pre spike train is realized.

Similarly, the LTD generator follows the relationship be-

tween the post-pre-neuron spike train. The pre-spike and post-

spike are switched in this block. In this situation, Vctr2B =

0. Thus, OTAPB equals VrefB, and OTANB equals voltage

Vedcp c that switches between C6 voltage and VrefB. For the

second-order relationship between the post-pre-post spike train

in Formula 2, the LTD generator follows a similar mechanism

as the LTP generator. The only difference is that the post- and

pre-spikes are switched.

Looking into the Central OTA Core, as demonstrated in

Fig. 4, it is noticeable that the outputs of each generator are

all compared in pairs. For instance, the OTAP and OTAN

are compared, and OTATN and OTATP are also compared.

With each compared pair, the difference will be transferred

to current signals through M23 and M24. It will either inject

current into or draw current from the weight capacitor at the

firings of pre-and post-spikes, triggering the increasing and

decreasing of the weight voltage.

There are several difficulties when designing this IC imple-

mentation of the triplet-based reconfigurable STDP learning

rule. The first one is realizing the functionality of switching

between different STDP shapes. To solve that issue, the time

window generator is designed. The time windows can be

divided into four situations, the post-spike arrives after the

pre-spike, the post-spike arrives before the pre-spike, the

pre-post-pre spike train when accounting for three spikes

and the post-pre-post spike train when accounting for three

spikes. Thus, four time window generators are needed for the

circuit implementation. To simplify the circuit implementation,

signals from the two-spike time window generators are used as

the inputs of the three-spike generators, as discussed in Section

III.E. What’s more, another difficulty is to store the last spike
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τ

Fig. 5. Schematic of the spiking synapse circuit.

until the next spike so that a three-spike train can be used

for the weight adjustment. We used two small capacitors as

well as two spike-triggered switches to realize this function, as

demonstrated in Section III.E. Another issue we faced in the

designing process was how to utilize the output differences

from time window generators and convert them to weight

voltage changes. An operational transconductance amplifier

with 4 differential pairs is designed for that purpose. With

one differential pair, the charge on the weight capacitor will

be accordingly increased or leak away, as illustrated in the last

paragraph.

F. Circuit design of the spiking synapse

Since the synapses need to trigger spiking neurons in this

neural network, spiking synapses that can supply firing current

according to weight voltages should be specifically designed.

The synapse should output a current spike signal in response

to a firing pre-neuron spike. The larger the weight voltage,

the larger the output current should be. This mechanism will

increase the charges stored on the post-neuron membrane

capacitor. As several input currents from different synapses

accumulate, the membrane voltage will reach the post-neuron’s

threshold voltage. In that way, the post-neuron will be firing

a spike, which will be most relevant to the pre-neuron.

As shown in Fig. 5, the synapse works like a current mirror.

When pre-neuron spikes, the tail current starts to flow, and

with higher weight voltage comes the larger tail current. Vt is

used to tune the current on this side. Large Vt will lead to a

large current flow in M3 and will cause the current through

M4 to decrease. Conversely, V τ is a parameter that adjusts

the time constant of the current mirror. A larger V τ voltage

results in a larger parasitic resistance of M5 and an increased

time constant. As a result, the voltage across the capacitor

and the output current will increase, with the current slowly

decreasing back to zero.

Fig. 6. Schematic of the judgmental and reward-based circuit.

G. Circuit design of the judgmental circuit

The judgmental circuit is utilized to judge whether the

classification result of the output neuron is correct and give

reward or punishment feedback according to it. Firstly, the

network needs to define the classification result. In this case,

the circuit must recognize which output neuron fires the first

spike in one sampling window. To realize that, we can have

a voltage that resets every sampling window and decreases

exponentially. Then, we can capture the voltage at different

spike timings. Thus, an earlier spike results in a larger captured

voltage. Subsequently, the captured voltages are compared

after each clock cycle, with the highest voltage indicating the

winner. The winner will then be compared with the desired

result. If it matches, reward feedback is sent to all synapses

connected to this neuron, enhancing their relevance. If not,

punishment feedback will be sent to the synapses.

The clock signal will be connected to M1 to provide initial

voltage to C1, as depicted in Fig. 6. With the leak transistor

M2 and C1, the voltage will decrease exponentially at a

rate controlled by Vleak. When the spike fires, M3 will be

open and push the C1 voltage to the peak detector formed

by the diode-connected transistor M4 and capacitor C2. This

peak detector will capture and hold the voltage until the next

sampling window is reset by M5. Afterward, a comparator is

implemented to compare the captured voltages from neurons.

The desired result can change with different classes. It can

be realized by simply switching the inputs of the comparator.

When the comparator outputs a high digital voltage, the pre-

and post-spike pairs for all the STDP training circuits remain

the same to enhance the training weight. If the comparator

outputs a low voltage, the pairs of pre- and post-neuron spikes

are internally switched to reduce their relevance.

IV. RESULT ANALYSIS OF THE ON-CHIP LEARNING

SPIKING NEURAL NETWORK

A. Result analysis of the triplet reconfigurable STDP circuit

As mentioned in Section II, the proposed STDP circuit can

take into account spike trains and adjust weights according

to their temporal relationship. Moreover, the reconfigurable

feature enables the circuit to switch between different ways of

adjusting weights. For instance, when a pre-spike fires before a

post-spike, the weight will be increased in the conventional DP

STDP learning rule, while the weight can also be decreased in

the PD STDP rule. Different rules have their specific suitable

tasks, as discussed in Section II.C.
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Fig. 7. Post-layout simulation result of the triplet reconfigurable STDP circuit
when Vctr = 011001.

’ ’

Fig. 8. Simulation Results of different triplet STDP algorithms controlled by
various Vctrs.

The post-layout simulation result of the proposed STDP cir-

cuit when the control signal is equal to 011001 is demonstrated

in Fig. 7. It is noticeable that the weight voltage always tends

to increase when post-spike fires and decrease when pre-spike

fires. The closer the pre- and post-spikes are to each other,

the larger the change in weight voltage will be, whether it is

an increase or a decrease. From that, the relationship between

the spike train’s time intervals and the weight voltage almost

matches the relationship shown in Fig. 1. However, the high-

order relationship of the triplet spike train may not be that

obvious in this figure. This phenomenon occurs because the

amplitude constant, A2, in the high-order relationship term of

formula 2, is much smaller than the constant A1. This indicates

that the effect of the high-order term is much smaller than the

first-order term’s effect.

To verify the reconfigurable feature of the circuit, we

switched the control signal and tested the relationship between

the time difference and the weight voltage. Fig. 8 depicts

6 of the different shapes. Although not all the shapes that

can be realized in the reconfigurable STDP circuit, it still

demonstrates that the circuit can adjust weight voltage in

different ways controlled by digital signals.

B. Result analysis of the synapse and judgmental circuits

The task of the spike synapse circuit is to accept a pre-

neuron spike and weight voltage and then provide current

signals to prompt the post-neuron to fire spikes. With a larger

weight voltage, the synapse should be capable of outputting

a correspondingly larger current signal. Fig. 9 illustrates the

post-layout simulation results of the weight voltage and current

value relationship with different V ts and V τ = 0.7V as well

as V t = 0.6V and different V τs. With the same V τ or

V t, relations between the output current and V t or V τ are

revealed. With larger V t, the output current becomes smaller.

On the contrary, larger V τ leads to larger current output. It is

noticeable that although the current value follows the weight

voltage, it has a threshold voltage of around 0.3V and also

reaches saturation status after 0.6V. This situation is because

of the property of the NMOS transistor M2.

As for the judgmental circuit, it converts the spikes back

into voltages and compares these voltages. Spikes closer to

the CLK signals should result in larger voltages. As depicted

in Fig. 10, Spike1 is transferred to Output1, and Spike2

is transferred to Output2. Since Spike1 fires earlier in the

sampling windows, Output1 is larger than Output2 in such

situations. This simulation result demonstrates that the pro-

posed judgmental circuit can compare the outputs of neurons

and determine the winner.

C. Result analysis of the spike training network

Consisting of all the aforementioned blocks, the spike on-

chip learning network is designed and implemented in the

GlobalFoundries 22FDX process. It occupies a silicon area

of 37 × 62µm2, as demonstrated in Fig. 11. Starting from

the Input Layer, it also has the Synapse and STDP training

Circuit, the Output Layer, and the Judgmental Circuit. In the

post-layout simulation, the network consumes 20.92µW of

power. The input signals go into the input neurons, and the

spike will be transmitted to the synapses and STDP circuit.

With the current inputs from the synapses, the output neuron

fires spikes, and the spikes will be compared to the desired

outputs and then utilized to train the weights.

Moreover, testbenches for spiking neural networks using

both the pair-based and triplet-based STDP learning rules

are implemented in PyTorch. Compared with symbol detec-

tion tasks, the MNIST [45] and CIFAR-10 [46] datasets are

also classification applications. Thus, performance verification

based on these two datasets can indirectly show the function-

ality of the proposed neural network for symbol detection.

What’s more, as commonly used testbenches for machine

learning classification tasks, MNIST and CIFAR-10 can help

with widening the introduced training neural network’s poten-

tial applications. The two neural networks that use PSTDP and

TSTDP learning rules are both trained for MNIST and CIFAR-

10 datasets. Fig. 12 depicts the error rates of the two networks

for both the MNIST and CIFAR-10 datasets. The figure has

shown that the triplet STDP learning rule can achieve lower

error rates than the pair-based STDP training algorithm. The

actual value of the error rate differences after 20 epochs for

MNIST and CIFAR-10 are 3.28% and 3.63%, respectively.

This article has been accepted for publication in IEEE Transactions on Green Communications and Networking. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGCN.2024.3393854

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:14:27 UTC from IEEE Xplore.  Restrictions apply. 



10

TABLE I
COMPARISON OF THE TRIPLET RECONFIGURABLE STDP CIRCUIT IN THIS

WORK WITH OTHER STATE-OF-THE-ART WORKS

[47] [48] [16] This work

# of STDP Shapes 1 2 8 8

Technology Node 10nm 180nm 65nm 22nm

Vdd (V) 0525 1.8 1.2 0.8

Area (mm2) 0.003 0.006 N/A 0.0009

Energy/SOP (fJ) 3.8× 10
3

1.2× 10
7 400 178

Static Power (µW ) 9420.8 N/A N/A 19.2

What’s more, it is noticeable that the error rates have almost

reached saturation after 20 epochs. Although the error rates

still improve with epochs, the improving rates are not as high

as those before 20 epochs. This figure has also proved that the

triplet STDP rule achieves higher accuracy than the pair-based

STDP rule.

We also compared the triplet reconfigurable STDP circuit

from the proposed work with those from other state-of-the-

art works. We have compared the number of STDP shapes

the works can switch between, their silicon area, and their

dynamic energy consumption based on their technology node,

as illustrated in Table I. The dynamic energy consumption

is represented by energy per spike operation, which means

the energy consumed with one spike operation by the works.

With the help of the advanced technology node and care-

fully selected component size, this work’s dynamic energy

consumption is significantly lower than others. Moreover, the

static power of our work is significantly smaller than the first

work. The results of this comparison demonstrate that the

STDP circuit in our work achieves superior reconfigurability, a

significantly smaller silicon area, and higher energy efficiency.

Moreover, in Table. II, we have also summarized the energy

efficiency ratio between SNN and ANN. According to [49],

the power consumptions of SNN and ANN are compared

for different neural network topologies, including AlexNet,

TABLE II
COMPARISON OF SNN ENERGY EFFICIENCY RELATIVE TO ANN

(= EANN/ESNN ) WITH DIFFERENT NEURAL NETWORK TOPOLOGIES

AND NUMBERS OF TIMESTEPS

# of Timesteps AlexNet VGG16 MobileNet

400 2.0 1.7 1.4

600 1.7 1.4 1.2

800 1.5 1.2 1.0

1000 1.4 1.1 0.9

VGG16 and MobileNet. The SNN energy efficiency is also

compared across various numbers of timesteps. From the

result, we can notice that although the SNN energy efficiency

relative to ANN decreases with the increase of timesteps across

all the neural network topologies, the energy consumption

ratios are larger than 1.0 in most of the scenarios. It shows

that SNN is more power efficient for almost all applications

and situations.

To verify the impact of Process-Voltage-Temperature (PVT)

variations on the proposed circuit, three PVT simulations are

carried out. The first is for the process variations and five

corner situations are set up for this simulation. They are FF,

FS, NN, SF and SS, in which the first character means NMOS

operation speed and the second means PMOS operation speed.

F means fast, S means slow and N means normal. The second

simulation is for the supply voltage variation and three corners

are set up for it. They are 0.78V, 0.8V and 0.82V. Last but

not least, for the temperature variation simulation, 0◦C, 27◦C

and 80◦C are set as the corners. After the PVT simulation,

the result shows that the triplet reconfigurable STDP training

functionality is not affected by the PVT variations. The weight

adjusting is stable among all the corners and have the same

results as the normal situation.

τ τ

Fig. 9. Simulation results of current output and weight voltage relationship of the synapse.
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Fig. 10. Simulation result of the judgmental circuit when comparing two
neuron’s output spikes.

Fig. 11. Layout of the spike on-chip training network.

V. EXPERIMENTAL SETUP AND RESULT ANALYSIS FOR THE

MIMO-OFDM SYMBOL DETECTION

To demonstrate the application of our designed neural

network training strategies in the MIMO-OFDM symbol de-

tection, we have implemented a hardware/software hybrid

testbench for this task. In the following sections, the detailed

setup of the testbench, the mechanism of this setup, and the

test result of our introduced method will be discussed and will

be compared with purely software-based methods.

A. Testbench setup for the application of MIMO symbol de-

tection

As discussed in Section II.E, StructNet is composed of two

main parts: the linear layer for the channel estimation and an

MLP network for the binary classification. To train StructNet

for the symbol detection task in the testbench, the designed

testbench also has two main parts: the software part for the

linear layer training and symbol error rate (SER) calculation

and the hardware part for the MLP neural network with spiking

signal transmission which works as a binary classifier.

As shown in Fig. 13, the testbench consists of a laptop,

a chip over print circuit board (PCB) for the neurons and

synapses, demonstrated in Fig. 14, another PCB board with the

Fig. 12. Error rates of the pair-based STDP and triplet STDP learning rule
for the MNIST and CIFAR-10 datasets.

Fig. 13. Hardware/software hybrid experiment setup for the StructNet MIMO-
OFDM symbol detection task.

reconfigurable triplet STDP training circuits and judgmental

circuits, pictured in Fig. 15, a power supply, and a signal

generator for the clock signal. Firstly, the symbol detection

dataset is put through the pre-processing, which includes the

linear layer. Afterward, the transformed data is input into

the microcontroller on the board and will be transferred to

the voltage signal and then current signals into the neurons.

With the leaky integrate and fire (LIF) neurons and spiking

synapses, the current signals will be transmitted in the neural

network as spiking signals. On the other hand, the triplet

reconfigurable STDP will take into account the output spikes

of both the pre-neurons and post-neurons and adjust the weight

according to their time correlations.

The weights stored in the form of voltages with the training

circuit will be transferred back to the synapses on the chip

for the output current tuning. The judgmental circuit on the

board will compare the spikes from the output layer and

decide whether the result is correct. Accordingly, a reward

or punishment will be given to the training circuit. When the

classification result is correct, a reward will be delivered to

the circuit so that the training circuit will adjust the weight

as usual. On the other hand, when the training result does

not match the label, a punishment will be delivered to the

STDP circuit so that the pre-neuron and post-neuron spikes
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Fig. 14. Circuit chip for neurons and synapses.

Fig. 15. PCB for STDP training and judgmental circuit.

will be switched. The weight voltage adjustment will be

correspondingly opposite to the regular changes. What’s more,

the classification results are also transmitted back to the PC

through the microcontroller. The linear layer in the software

parts will be trained with the result. The SER is calculated

simultaneously with the training process.

B. Result analysis of training neural network for the MIMO

symbol detection

After each time step, the classification result will be sent

back to the PC, and the SER will be calculated, as mentioned

in the last section. The experimental setting follows the work

in [3]. Specifically, we consider the MIMO systems with 2
transmit antennas and 2 receive antennas. We first compare the

performance of different approaches in the Gaussian channel

under both 4-pulse amplitude modulation (4-PAM) and 8-PAM

modulation. Then we evaluate different approaches in a more

practical setting, where the WINNER II channel model [50]

and 16 quadrature amplitude modulation (16-QAM) are con-

sidered. The transmitter and receiver employ uniform linear

arrays with half-wavelength antenna spacing. Additionally, the

channel scenario is set as urban macrocell non-line-of-sight

(NLOS) outdoor to indoor environments. More simulation

results for higher modulation orders, 3GPP-3D channel model,

and larger antenna numbers have been provided in [3]. The

dataset consists of 4992 samples. Among them, 1992 samples

were used for the training process, while 3000 samples were

adopted for testing purposes [3]. For each sample, the input

dimension equals to the number of receive antennas. Following

the design of StructNet in [3], the neural network is trained

for each transmit antenna. The output dimension is 1, which

is the class of each transmitted symbol.

We have compared the performance of training neural

networks with the pair-based STDP algorithm and the triplet-

based STDP algorithm. Moreover, these two training strategies

are compared with purely software-based neural networks,

including ADNN-GT, ADNN-LMMSE, and StructNet. It is

worth noting that, unlike the method we introduced in this

paper, StructNet, in this comparison, is purely software-based.

As depicted in Fig. 16, the SER is plotted as a function of

the bit energy to noise ratio (Eb/No). We have compared those

works at different Eb/No regimes, including 0 dB, 5 dB, 10

dB, and 15 dB. The 20 dB of Eb/No regime is also included

in the last experiment. As demonstrated in Fig. 16(a), in the

Gaussian channel model with 4-PAM modulation, compared

with the PSTDP, the TSTDP training algorithm achieves lower

SER in different Eb/No regimes. Moreover, it also has a lower

SER than the ADNN-LMMSE model. Python-based StructNet

and the TSTDP training network-based StructNet have very

similar SER in almost every Eb/No regime. However, when

the Eb/No is 5dB, TSTDP performs slightly better than the

other two models. In Fig. 16(b), the TSTDP performs better

than all the other methods in all Eb/No regimes except 0 dB

for the Gaussian channel model under 8-PAM modulation. In

this system, the software-based StructNet performs similarly to

ADNN-GT and the PSTDP learning rule has higher SERs than

ADNN-GT and the software-based StructNet but lower SERs

than ADNN-LMMSE. Moreover, as illustrated in Fig. 16(c),

the SERs of different methods are very close to each other

in the WINNER II channel model with 16-QAM modulation.

However, it is still noticeable TSTDP training method achieves

the lowest SERs in 0 dB, 5dB, and 10 dB. Besides that, the

purely software-based StructNet performs similarly to ADNN

methods. Compared with PSTDP, the ADNN methods have

lower SER except at 0 dB of Eb/No regime.

The processing time of the introduced training neural net-

work implementation and other Python-based symbol detec-

tion methods are compared in Table III. The running time of

the introduced implementation includes the CPU running time

for pre-and post-processing and hardware running time for the

on-chip learning, while the training time for other methods

only has CPU running time. As a result, we have noticed that

ADNN methods require a shorter processing time. However,

ADNN-GT has assumed perfect channel knowledge, while

the ADNN-LMMSE has a higher SER than other methods in

almost every Eb/No regime. On the other hand, the SNNOT

with PSTDP algorithm has achieved a faster training speed

than RC-Struct and RC-AttStructNet-DF, while the SNNOT

with TSTDP has a training speed between RC-Struct and RC-

This article has been accepted for publication in IEEE Transactions on Green Communications and Networking. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGCN.2024.3393854

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:14:27 UTC from IEEE Xplore.  Restrictions apply. 



13

Fig. 16. Experiment results for the MIMO symbol detection.

TABLE III
RUNNING TIME COMPARISON OF THE SNNOT AND OTHER

PYTHON-BASED SYMBOL DETECTION METHODS

Method Running time(S)

ADNN-GT 1.68

ADNN-LMMSE 3.58

RC-Struct [33] 18.27

RC-AttStructNet-DF [3] 29.57

SNNOT with PSTDP 16.35

SNNOT with TSTDP 20.26

AttStructNet-DF. The main reason the SNNOT with PSTDP

runs faster than the SNNOT with TSTDP is that PSTDP

only considers two spikes when adjusting the weight. On

the other hand, the TSTDP learning rule takes into account

three spikes when it changes the weight. As a result, the

circuit implementation of TSTDP will be more complex than

PSTDP and thus will take more time to process the input

signals. However, this tradeoff between the complexity and

test performance is worthwhile after comparing the results.

These results have indicated that the ASIC implementa-

tion of the MIMO-OFDM symbol detection networks can

achieve similar or even better performance than von Neu-

mann structure-based methods, which provides the potential

of utilizing AI chips for the edge computing tasks of wireless

communication. Moreover, due to the use of the spiking signal

transmission, the power efficiency of this work is much better

than that of Python-based symbol detection methods.

VI. CONCLUSION

This paper has introduced an SNN with on-chip STDP

learning capabilities, designed using the GlobalFoundries

22FDX technology node. The STDP learning rule can take

into account three spikes to capture higher-order spiking

patterns and accurately reflect various biologically observed

phenomena. Moreover, the STDP circuit in the training net-

work can switch between different shapes of STDP learning

algorithms so that the training network can adapt to various

applications. We also designed a spiking synapse capable of

adjusting current output in response to weight voltages, as

well as a judgmental circuit that compares spikes, defines the

winner, and provides either reward or punishment feedback

to the STDP training circuit. Testbenches implemented in Py-

Torch for both the pair-based and triplet-based STDP learning

networks have demonstrated that the triplet STDP learning

rule can achieve error rates 3.28% and 3.63% lower for the

MNIST and CIFAR-10 datasets, respectively. Moreover, the

post-layout simulation shows that the training network takes

37×62µm2 of silicon area and consumes 20.92µW of power.

A comparison with other state-of-the-art works demonstrates

that our approach offers superior reconfigurability, signifi-

cantly smaller silicon area, and dynamic energy consumption.

Moreover, this introduced work has shown comparable or

better performance with lower power consumption than other

Python-based methods for symbol detection applications in

various experiment settings, revealing a promising potential of

the training network as well as the reconfigurable triplet STDP

training algorithm for wireless communication applications.
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