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Abstract—Advancing 5G and beyond communications require
innovative solutions for symbol detection in MIMO-OFDM. Our
research leverages Spiking Neural Networks (SNNs), surpassing
the efficiency of traditional Deep Neural Networks (DNNs) and
Artificial Neural Networks (ANNs) in dynamic wireless contexts.
The SNNOT architecture features a novel triplet Spike-Timing-
Dependent Plasticity (STDP) learning circuit, utilizing 22FDX
technology from GlobalFoundries, which overcomes STDP’s
supervised learning limitations and enhances dynamic learning
by converting spikes into voltages. This innovation leads to
substantial efficiency gains, with a minimal energy requirement
of 20.92uW and a small silicon footprint of 37 x 62um?.
Performance evaluations show the triplet STDP rule in SNNOT
considerably improves image classification and symbol detection,
with over 3% error rate reduction in MNIST and CIFAR-10.
Additionally, it achieves a 0.07 symbol error rate (SER) at 5
dB Ey/N, in 4 pulse amplitude modulation (4-PAM) Gaussian
channel symbol detection, outperforming other methods. With
8-PAM, it surpasses other methods by at least 0.03 SER and
maintains lower or comparable SERs in scenarios using the WIN-
NER II channel model and 16 quadrature amplitude modulation
(16-QAM). Importantly, our method offers up to 32% faster
processing, providing a potent, efficient solution for receiver
processing in cutting-edge wireless systems.

Index Terms—MIMO-OFDM, symbol detection, triplet recon-
figurable STDP, on-chip learning

I. INTRODUCTION

Wireless communication, a cornerstone of modern telecom-
munication, involves transmitting information without physical
connectors like wires, using electromagnetic waves such as
radio frequencies, microwaves, or infrared. Key components
include a transmitter, transmission medium (typically air or
space), and a receiver. The invention of Multiple Input Mul-
tiple Output - Orthogonal Frequency Division Multiplexing
(MIMO-OFDM) symbol detection marks a significant ad-
vancement in this field [1], enhancing data transmission rates
and robustness against interference. MIMO uses multiple
antennas at both ends of the communication system to multiply
radio link capacity, while OFDM efficiently combats inter-
symbol interference and fading. This complex process, em-
ploying advanced algorithms for signal processing, is pivotal in
modern standards like LTE and Wi-Fi, improving throughput
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and reliability in challenging environments with signal scat-
tering and fading.

ANNs have shown great potential for the symbol detection
task in the MIMO-OFDM systems, but they still have practical
challenges. One significant hurdle in deploying neural network
(NN)-based approaches is the requirement of a vast amount
of labeled data and a long training time. During the online
deployment stage, the online over-the-air (OTA) labeled data in
contemporary cellular networks is limited and costly. The low-
latency requirement for the cellular system and the dynamic
channel environment only allow for a short online training
time. Attempts have been made to address this issue by
performing extensive offline training with simulated data and
conducting online adaptation [2]. Nevertheless, implementing
these solutions in real-world situations takes time and effort.
Cellular systems adopt dynamic transmission modes, such as
link and rank adaptations and scheduling, performed on a
subframe (1 millisecond) basis. This rapid alteration can create
discrepancies between offline and online models, leading to
potential model mismatches and making it challenging to
apply offline weights in an online setting.

An approach called StructNet was introduced to solve the
abovementioned issues of deploying NNs in practice [3]. By
embedding the domain knowledge of MIMO-OFDM systems
into the design, StructNet transforms the multi-class symbol
classification task into multiple binary decision processes,
which allows it to have less trainable weights. In addition,
due to the particular design of the NN structure, StructNet
augments the OTA training samples by leveraging their sym-
metric structure. Therefore, it can be learned with only OTA
training samples and a short training time.

To utilize the abovementioned mechanism in practical en-
vironments, especially in edge computing environments, a
spiking integrated circuit (IC) chip with online training capa-
bility is necessary since the shortened transmission time can
significantly improve the system performance, especially in
dynamic wireless communication systems.

Compared with real mammal brains, the traditional ANN
has some shortcomings. The brains consume much less power
than a conventional ANN computing system of the same
size. They are also more stable than conventional ANNs in
noisy environments. The difference between the mechanisms
of ANN and brains is that biological brains utilize spikes to
transfer information [4], while the ANNSs use actual numerical
signals. The nature of the spike-transmitting mechanism makes
neurons only fire spikes when needed. The neurons can stay
silent for the rest of the operating periods. In that way,
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much unnecessary energy is saved compared to the traditional
artificial neural networks. To use this valuable mechanism,
researchers started investigating methods to mimic the spike-
transmitting structure, and the coming-up neural networks are
called the spiking neural networks (SNNs) [5]. In the past
decades, many works of SNN have been reported to have
way better power efficiency than traditional von Neumann
structures and ANNs. For instance, the Intel Loihi2 chip [6]
managed to integrate 128 cores in a 31mm? area and can be
utilized for robot arm control, modeling diffusion processes for
scientific computing applications, and more. While standard
CPUs and GPUs consume hundreds of watts of power for
those applications, Loihi2 chip only consumes less than 1 watt.

Moreover, the SpiNNaker chip [7] also takes less than 1W
of power while mimicking over one thousand spike neurons.
The TrueNorth chip [8], designed by IBM, only consumes
656mW of power when managed to simulate over one million
neurons and 256 million synapses. SNN chips can also be area-
efficient due to their highly parallel computational structure.
For example, the Morphic chip [9] emulated 2048 neurons and
two million synapses while only taking 2.86mm2 of silicon
area. The ODIN chip [10] even only takes 0.086mm? of
silicon area for 256 neurons and 64000 synapses.

Due to the non-differentiable nature of spikes, the spiking
neural networks can not be trained with regular training
algorithms. For example, normal backpropagation is unsuitable
for SNNs since the spike can not be differentiated to get
a gradient. Thus, researchers have come up with various
training algorithms for SNN, such as spike timing dependence
plasticity (STDP) [11], Hebbian learning [12], surrogate gra-
dients [13] and NormAD [14]. Among them, the most widely
commonly used is the STDP learning rule. The learning mech-
anism inspires it in biological neural systems. With the STDP
algorithm, the synaptic weight between neurons is updated
with the relative time difference of pre and postsynaptic spikes.
There are many STDP rules, which means the weight can be
updated in several ways. The most basic rule is the asymmetric
STDP rule. The synaptic weight increases when the post-
neuron spike arrives after the pre-neuron spike since it shows
the relativity of two neurons.

On the contrary, the weight is decreased when the post-
neuron spike arrives before the pre-neuron spike because the
two neurons are not very relative. Another more advanced
STDP rule is the triplet STDP [15]. It takes account of a series
of spikes to tune the weight instead of only taking account of
a pair of spikes. Thus, it can mimic complex biological neural
mechanisms. Moreover, even for the pair-based STDP rules,
there are more rules besides the asymmetric rule. Research
has verified that these different rules have advantages in
different engineering tasks, and researchers have proposed
a circuit design that can replicate various STDP learning
algorithms [16]. To combine the advantages of the triplet-
based STDP rule and the reconfigurable STDP circuits, this
work has implemented a triplet-based reconfigurable STDP
circuit design. This circuit can apply the triplet-based STDP
algorithm to various applications to improve performance.

With the STDP learning rule, SNNs can be trained for
tasks such as image classification [17], motor control [18],

and speech recognition [19]. However, achieving a balance
between classification accuracy, on-chip learning capability,
and power/silicon area efficiency remains challenging in hard-
ware research. To broaden the application of SNNs, especially
in dynamic environments, neuromorphic chips better support
online training. With the limitations of hardware resources, the
on-chip learning mechanism should achieve low energy and
silicon area consumption and maintain relatively high classifi-
cation accuracy. However, many hardware implementations of
SNNs with limited resources cannot support online learning
[20], and those that do often cannot achieve high training
accuracy. The challenge is even more pronounced for those
who use baseline STDP as the training algorithm. The baseline
STDP does not support supervised learning. It can only divide
data points into different groups in an unsupervised way. To
address this limitation of the STDP training rule, reinforcement
learning STDP should be incorporated into the final layer of
neurons in the SNN [21]. In this proposed work, the last layer
of neurons is connected to the penultimate layer through the
reward-based STDP learning synapse. Major contributions of
our work are summarized as follows:

o A spiking neural network with an online training mech-
anism is implemented in the GlobalFoundries 22FDX
technology node.

o To the best of our knowledge, it is the first IC design of
SNN with the triplet-based reconfigurable STDP learning
algorithm and the on-chip training capability.

o Simulation results show that the performance of the
triplet-based STDP algorithm of MNIST and CIFAR-
10 achieves 3.28% and 3.63% lower error rates when
compared to the pair-based STDP algorithm.

o The introduced training network layout design consumes
20.92uW of power and 37 x 62um? of silicon area.
An opamp-free judgmental circuit is designed to achieve
reward-based STDP learning while maintaining high
power and area efficiency.

o Hardware/software hybrid test result has shown that the
trained neural network can achieve similar or better
performance than purely software-based methods while
having higher energy efficiency.

For the rest part of this article, the background about the
MIMO-OFDM system and StructNet is illustrated in Section
II. The STDP training algorithms and the circuit design of the
reconfigurable triplet STDP training block are demonstrated
in Section III. What’s more, Section IV has discussed the
circuit post-layout simulation results as well as the training
results for the MNIST and CIFAR-10 datasets of two different
training algorithms. The testbench setup for the MIMO symbol
detection application and the test results for it are shown in
Section V while Section VI concludes this article.

There exist several works talking about IC design for other
STDP training algorithms. In [22], the author has demonstrated
an analog IC design of the asymmetric STDP rule. However,
this design requires the use of transconductance amplifiers
in both the upper part and lower part, which will increase
the power consumption and silicon area. [23] has shown
an analog circuit that can realize the reverse asymmetric
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STDP rule. Compared to [22], this work is more efficient
in circuitry as well as power consumption. However, it still
suffers from the incapability of taking into account multiple
spikes. What’s more, it is also not capable of switching to
other STDP algorithms. In [24], the researchers have illustrated
an analog IC design of the most basic STDP learning rule,
the asymmetric STDP algorithm. Similarly, it is also unable
to account for various spikes and switch to other algorithms,
which may limit its practical applications.

Moreover, there are also preceding studies on the circuit
implementation of triplet-based STDP rule. In [25], the authors
have introduced a circuit implementation of the triplet STDP
training algorithm. The circuit implementation delays input
signals with one clock cycle for the triplet spike weight
adjustment. However, in this work, the mathematical formula
shows that the STDP algorithm it uses to account for the
three spikes is the basic asymmetric STDP learning rule.
The inability to switch between different STDP learning rules
will lead to inefficiency in specific applications. [26] has
demonstrated a digital circuit design of the TSTDP learning
rule. The research utilized a Field Programmable Gate Array
(FPGA) board to implement the triplet STDP learning circuit.
Compared with analog circuits, the FPGA implementation of
the triplet STDP rule requires more power, so its efficiency
will not be as good as that of analog TSTDP circuits. In
[27], researchers proposed an analog training circuit with the
triplet STDP rule. The circuitry is novel and power efficient.
However, it requires the use of memristor. As a special device,
the memristor will limit the application of the proposed circuit
since memristors are not as available as standard CMOS
devices for potential users. Furthermore, in our prior research
[28], we introduced a design of the reconfigurable STDP
training circuit. That design, however, has four time window
generator blocks that takes a lot of power and silicon area
as well as brings implementation complexity. In this study,
we present a new, simplified design for the STDP training
circuit that only requires two time window generator blocks
so that the power and silicon area efficiency can be increased
by almost 100%, along with a neural network architecture
that incorporates this circuit for training for classification
applications.

II. BACKGROUND
A. Symbol detection in the MIMO-OFDM system

MIMO-OFDM is a pivotal technology in the field of
wireless communications, particularly integral to the archi-
tecture of modern broadband systems like 4G, 5G, and Wi-
Fi networks [1]. In the MIMO-OFDM system, transmitted
information symbols are modulated in the frequency domain
and then converted to the time domain through an inverse fast
Fourier transform (IFFT). A cyclic prefix (CP) is inserted at
the beginning of each OFDM symbol to avoid inter-symbol
interference (ISI). At the receiver, the time-domain received
signal is transformed to the frequency domain through the
CP removal process and the fast Fourier transform (FFT).
Consider a MIMO system with N, transmit antennas and
N, receive antennas. The relationship between the transmitted

symbols and received signals in the frequency domain at each
subcarrier k can be written as

Y (k) = H)X (k) + N(k), 0

where Y (k) € CN»*N- js the received signal in the frequency
domain at subcarrier k; X (k) € ANt*Ns is the transmitted
symbols at subcarrier k£ sampling from the modulation con-
stellation alphabet set A; H (k) € CN-*Nt is the frequency-
domain channel at subcarrier k; N, is the number of OFDM
symbols; and N (k) is the additive white Gaussian noise.

The symbol detection task in the MIMO-OFDM system
involves accurately identifying and decoding the data sym-
bols transmitted over multiple antennas and through multiple
frequency subcarriers [29]. This process is essential for effec-
tively deciphering the transmitted information in environments
where signals can be distorted due to multipath fading, inter-
ference, and noise.

The landscape of symbol detection in MIMO-OFDM sys-
tems is rich and diverse, encompassing both conventional
model-based and emerging learning-based approaches. Tra-
ditional model-based methods like Linear Minimum Mean
Square Error (LMMSE) [30] and Sphere Decoding (SD) [31]
algorithms are foundational in this domain. These approaches
rely on explicit system modeling and precise Channel State
Information (CSI) estimation. However, their performance can
be significantly impacted when non-linear components, such as
power amplifiers, are present in the system or when there are
inaccuracies in CSI estimation. This limitation of conventional
methods under non-ideal conditions has driven the exploration
of alternative strategies, particularly those leveraging the ca-
pabilities of neural networks.

Learning-based approaches, especially those utilizing neural
networks, have gained traction as a means to address the short-
comings of traditional model-based methods. These methods
capitalize on the pattern recognition strengths of NN, offer-
ing potential improvements in environments with non-linear
distortions or imperfect CSI. However, the implementation
of these approaches in wireless communication presents its
challenges. The requirement for extensive training data and
prolonged training durations is a significant hurdle. Existing
works, such as MMNet [32], have explored training large
neural network models offline, which raises issues when these
models are deployed in real-world scenarios. The discrepancy
between the offline training data and the real-time online
data distribution can lead to performance degradation. An
emerging area of interest is integrating offline learning with
online adaptation approaches, which aim to mitigate this issue
by continuously updating the model with over-the-air training
data on a subframe basis. This approach represents a promising
direction for learning-based symbol detection, offering a more
adaptive and robust solution for the dynamic environments
encountered in wireless communications. Additionally, the
development of reservoir computing (RC)-based approaches,
including RC-Struct [33] and RC-AttStructNet-DF [3], further
illustrates the ongoing evolution and refinement of learning-
based strategies in symbol detection for MIMO-OFDM sys-
tems.
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Recent literature on symbol detection in MIMO-OFDM sys-
tems underscores the diversity of approaches and challenges
in this field. Zhou Zhou introduced a reservoir computing
structure that can significantly improve the symbol detection
performance and effectively mitigate model mismatch effects
using very limited training symbols [34]. Aswathy K Nair has
proposed channel sparsity to design a pilot-based compressed
sensing method for channel estimation and integrated a BiL-
STM approach for symbol detection for improved performance
[35]. Seung-Jin Choi presented a novel MIMO detection
algorithm with low complexity and good error performance
[36]. Moreover, this method is also expected to decrease the
computational complexity of the massive MIMO systems.

B. StructNet

StructNet [3] is a frequency domain classification neural
network for the MIMO-OFDM symbol detection task, which
incorporates the symmetric structure of the modulation con-
stellation to improve the training efficiency. The design of
StructNet originates from the atomic decision neuron network
(ADNN) [37]. The ADNN in [37] assumes the perfect channel
knowledge and utilizes one learned binary classifier to perform
multi-class detection by leveraging the symmetric modulation
constellation pattern. For ease of discussion, we refer to this
approach as ADNN-GT. In practice, perfect channel knowl-
edge is not directly accessible. Therefore, later on, the ADNN
with linear minimum mean square error (LMMSE) estimated
channel (ADNN-LMMSE) is introduced for the frequency-
domain classification and combined with the time-domain
neural network to perform online subframe-based symbol
detection [33]. One drawback of ADNN-LMMSE is that the
LMMSE estimated channel can not accommodate changing
channel environments. To address this issue, StructNet is
designed by adopting a linear layer to estimate the channel
and dynamically track the channel changes. It is noteworthy
that such an NN-based channel estimation process does not
require ground truth channels for training.

StructNet consists of two main components: the linear layer
for channel estimation and a multilayer perception (MLP)
network that works as a binary classifier. The LMMSE es-
timated channel first initializes the parameters of the linear
layer and is then updated along with the binary classification
task. As the multi-class classification problem is transformed
into multiple binary decision processes with the same binary
classifier, StructNet can have more efficient training processes
with a limited amount of training data and shorter training
time. Moreover, utilizing the channel estimation layer allows
it to dynamically track channel variations without assuming
knowledge of the ground truth channel.

ITI. ON-CHIP LEARNING SPIKING NEURAL NETWORK
DESIGN.

A. Baseline STDP

In the realm of SNNs, several algorithms are employed
to facilitate their training. Among these algorithms, STDP
has emerged as a promising approach. This algorithm adjusts
synaptic weights according to the temporal dynamics of spikes.

AwA
LTP

LTD

Fig. 1. Diagram of the relation between the time difference of pre-and post-
spikes and weight voltage adjustment in the conventional asymmetric STDP
learning rule.

One of the most widely implemented examples is the asym-
metric STDP rule [11].

As demonstrated in Fig.1, in the asymmetric STDP rule,
the synaptic weights are increased when spike timing aligns
with the direction of spike propagation, a process known as
Long-Term Potentiation (LTP). Conversely, when the post-
neuron spike is initiated before the pre-neuron spike—a sce-
nario indicative of a weaker correlation between the two
neurons—their synaptic weight undergoes a decrement, a
phenomenon referred to as Long-Term Depression (LTD).

The following equation defines the relationship between
weight modification and the time difference:

+ o (tpost—tpre
Ate (tpost—tp )/T,
— (tpost —tp
_A e( post p)"e)/T7

tpost - tpre > 0
tpost - tp'r‘e < 0.

AW = )

In the equation, ?,,. and t,,s denote the pre- and post-
neurons’ firing times, respectively. AT and A~ signify the
maximum values of potentiation and depression. Both A and
A~ have the same magnitude but opposite signs. 7 represents
the time constant, dictating the rate at which the potentiation
and depression diminish over time.

Notably, the potentiation and depression values exhibit an
exponential relationship with the temporal differences between
spikes. This relationship ensures that the algorithm signif-
icantly impacts the weight when the spikes are temporally
proximate. However, when the spikes are temporally distant,
the rule’s impact on the weight is minimal. This feature allows
the STDP rule to adaptively modify synaptic weights based on
the precise timing of pre- and post-neuronal activities, making
it a powerful tool for training SNNG.

The asymmetric STDP rule, therefore, has a crucial role
in shaping the learning dynamics of SNNs. Its ability to
tune synaptic weights based on the relative timing of spikes
allows for the precise encoding of temporal information. This
ensures that the SNNs can adapt and learn from the changing
patterns of spikes. It is the foundation for the temporal
processing capabilities of SNNs, which sets them apart from
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traditional artificial neural networks and brings them closer to
the biological realism of the human brain.

B. Triplet STDP

As outlined in Section III.A, the Pair-based Spike-Timing-
Dependent Plasticity (PSTDP) rule uses two spikes to adjust
the synaptic weight according to their temporal differences.
On the contrary, the Triplet-based Spike-Timing-Dependent
Plasticity (TSTDP) rule takes into account three spikes [38].
The combination of these spikes can either be pre-post-pre
or post-pre-post. These spike combination models illustrate
how the temporal differences between spikes are employed
to adjust synaptic weights. Compared to the PSTDP rule, the
TSTDP can mimic and realize higher-order spiking patterns
in the process of training.

The mathematical model for the baseline TSTDP learning
rule [15] is expressed as follows:

— Aty —Ato —Atq
A1+e< 5 >+A§e< = >e( =)

e (Rl (24 3)
—Ajen —Aje ™ e

AW =

In this equation, A; and A, are the potentiation and depression
parameters, while At¢; denotes the time difference between
pre- and post-neuron spikes. Aty equates to tpost (1) tpost(n—
1), indicating the temporal gap between two consecutive
post-neuron spikes. Here, n signifies a specific time step,
and n — 1 represents the immediately preceding post spike.
Similarly, Atz denotes the time gap between two pre-neuron
spikes. When comparing the TSTDP mathematical model to
the PSTDP formula, it is clear that the TSTDP incorporates
a higher-order term in both the depression and potentiation
equations. Thus, the time difference between two pre- or post-
spikes is also taken into account.

Physiological experiments have illustrated that the TSTDP
more accurately emulates biological mechanisms. Initially,
researchers identified that the PSTDP rule could not entirely
account for the results observed in biological synaptic weight-
changing experiments [15]. Moreover, the TSTDP has been
shown to accurately reproduce the frequency-dependent effects
observed in experimental settings, where the amplitude of
potentiation increases with the spike firing rate.

Beyond these advantages, the most significant attribute
of TSTDP is its ability to reproduce the behavior of the
Bienenstock—Cooper—Munro (BCM) model [39]. With this ca-
pability, neurons demonstrate input selectivity when receiving
multiple inputs. This behavior closely mirrors the adaptability
of biological neurons, bringing SNNs a step closer to achieving
the complexity and versatility of the human brain.

The TSTDP rule, thus, represents an essential advancement
in the field of SNNGs. Its ability to capture higher-order spiking
patterns and accurately reflect various biologically observed
phenomena makes it a powerful tool in developing and training
more sophisticated and biologically realistic neural networks.

C. Reconfigurable STDP

As mentioned in Section III.B, STDP is a biological process
that adjusts the strength of synaptic connections between

neurons based on the relative timing of their spikes. The STDP
rule has become popular in engineering applications because it
provides a way to train SNNs to learn from their environment
in a biologically plausible way.

The basic asymmetric STDP rule is widely used for unsu-
pervised learning applications in SNNs, where it adjusts the
weights of synaptic connections based on the relative timing
of pre- and post-synaptic spikes. Typically, when the post-
synaptic spike occurs after the pre-synaptic spike, the synaptic
weight is increased (potentiation). When the post-synaptic
spike occurs before the pre-synaptic spike, the synaptic weight
is decreased (depression).

However, the basic asymmetric STDP rule has some limi-
tations, and its application in various engineering applications
is only sometimes suitable. Thus, researchers have proposed
several other STDP algorithms with different shapes and
modified synaptic weights differently based on the relative
timing of pre- and post-synaptic spikes.

One such STDP algorithm is the anti-STDP learning rule,
which increments the synaptic weight when the post-synaptic
spike arrives before the pre-synaptic spike and vice versa.
As the name suggests, the anti-STDP learning rule is the
opposite of the basic asymmetric STDP rule and is used in
some supervised learning applications [40].

Other STDP rules have been developed, such as DPD

(Depression-Potentiation-Depression), PP (Potentiation-
Potentiation), DD  (Depression-Depression), and PD
(Potentiation-Depression), where D denotes depression

and P denotes potentiation. These STDP rules modify
synaptic weights differently based on the relative timing
of pre- and post-synaptic spikes and have advantages for
different applications. For example, the symmetric STDP
rule (DPD) is effective for associative learning [41]. In
contrast, the potentiating rule (PP) and depressive rule (DD)
are effective in liquid state machine (LSM) [42] and some
classification projects.

In conclusion, the selection of the STDP rule depends on
the specific application requirements. It is essential to consider
both the advantages and limitations of various STDP rules to
select the most appropriate one for the specific task. Thus,
to broaden the application of a spiking neural network, the
capability of switching between different STDP training rules
is important. The reconfigurability of the STDP rules of the
training circuit can be achieved by employing digital control
signals so that the circuit can adapt to various tasks.

D. Reward-based STDP training algorithms

A well-known disadvantage of the conventional STDP train-
ing algorithm is that it does not support supervised learning.
Rather than classifying data points into known categories, a
traditional STDP training circuit can only group data points
into clusters, a process referred to as unsupervised learning
[43]. However, in real-world applications, supervised learning
could be very crucial. With the help of labeled data, supervised
learning can achieve much higher accuracy than unsupervised
learning. Supervised learning is also more suitable for clas-
sification and regression applications such as spam detection,
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image classification, and weather forecasting, which are more
widely used. Moreover, supervised learning models often have
less complexity since the outputs are already known, which
makes the training procedure more straightforward. To realize
the supervised learning of SNN with the STDP circuit, a
reward-based STDP training rule is utilized in the proposed
neural network.

The reward-based STDP algorithm uses the reinforcement
learning concept to implement supervised learning for the
STDP circuit. As discussed earlier, the weights adjust based
on the temporal relationship between pre- and post-spikes. In
the reward-based STDP algorithm, the adjustment of synaptic
weights will be reversed if the classification result is incorrect
[44]. However, if the prediction result for a given cycle is
correct, the traditional STDP weight adjustment mechanism
will be maintained to reinforce the learning. In this manner,
the reward and punishment mechanisms from reinforcement
learning are integrated into the originally unsupervised STDP
rule, effectively transforming it into a supervised learning rule.

E. Circuit design of the triplet reconfigurable STDP circuit

In MIMO-OFDM systems, the need for on-chip training in
symbol detection arises from several key aspects. Firstly, the
wireless signal environment in MIMO-OFDM systems often
changes, requiring receivers to adapt in real time. On-chip
training enables these receivers to learn and adjust to variations
in signal characteristics internally, thus enhancing detection ac-
curacy and efficiency. Additionally, on-chip training enhances
computational efficiency by reducing reliance on external
processing resources and minimizing data transmission needs
and delays. This is particularly crucial for applications that
demand quick response, such as real-time communication or
mobile telecommunications.

Secondly, energy efficiency is a paramount concern in
mobile and edge computing devices, which often have strict
energy consumption limits. On-chip training optimizes the
energy efficiency of algorithms by reducing the need for data
transmission outside the chip, thereby lowering overall energy
consumption. Furthermore, on-chip training allows for cus-
tomization and flexibility, as different MIMO-OFDM systems
may require optimization for their specific signal characteris-
tics and operational environments. This self-optimization fea-
ture improves the adaptability and performance of the system.
Lastly, conducting data processing and training on the chip
enhances data security, as it reduces the risk of data leakage
by avoiding external data transmission. In summary, on-chip
training in MIMO-OFDM symbol detection is crucial for
improving the system’s adaptability, efficiency, and security,
especially in scenarios with limited resources and high real-
time requirements.

To utilize the advantages of the triplet STDP learning rules
on various tasks, especially their most suitable tasks, the triplet
reconfigurable STDP circuit is in high demand. As discussed
in Section III.C, in addition to the baseline asymmetric STDP
learning rule, there are numerous other STDP learning rules,
such as PD, DPD, and PDP. Research has demonstrated that
each rule has unique applications. To increase the versatility of
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Fig. 2. STDP learning rule shapes with various control signals.

the proposed circuit, the circuit needs to acquire the feasibility
of switching between shapes. Thus, the circuit is controlled by
six digital controlling signals. The first three signals control the
shape when At > 0, and another three control it when At < 0.
For instance, as demonstrated in Fig.2(a), DP, the conventional
asymmetric STDP learning rule’s control signals are 011001.
011 controls the right half of the waveform and 001 controls
the left half where At < 0. When the first three signals and
the second three signals are the same, as shown in Fig.2(b),
the shape of the learning rule will be symmetric. What’s more,
the STDP learning rule shape can be more complicated than
Fig.2(a) and (b). As illustrated in Fig.2(c), when the control
signals are 010, the time and weight changing relation will
look like a sine wave. Similarly, when the first and second
three signals are both 010, the shape becomes symmetric, as
depicted in Fig. 2(d).

The circuit can be divided into three main blocks: the
Central OTA Core, the Time Window Generator for LTD,
and the Time Window Generator for LTP. The Time Window
Generator is shown in Fig. 3. It compares the time difference
between the pre-and post-neuron spikes and generates voltage
differences. The generator for LTP creates voltage differences
that result in an increased weight voltage, while the generator
for LTD causes the weight voltage to decrease. The generator
for LTP will have pre-spikes for the Spikel input and post-
spikes for the Spike2 input. For example, when the control
signals are set to 011001, which means the Vctrl = 0, Vctr2
=1, Vctr3 = 1 and VectrlB = 0, Vctr2B = 0, and Vctr3B
= 1, the training circuit represents the DP learning rule. As
discussed in the last paragraph, Vctrl, Vctr2, and Vctr3 control
the right side of the STDP learning rule shape, where pre-spike
arrives before post-spike. As for VctrlB, Vctr2B, and Vctr3B,
they control the left side of STDP shape, where post-spike
arrives before pre-spike. Since Vctrl = 0, the comparator in
the LTP generator outputs ground signal, and Vcont equals
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Fig. 4. Schematic of the central OTA core circuit.

supply voltage vdd. With that, the voltage across C2 will be
increased to vdd when the pre-spike fires and slowly decrease
after the pre-spike at a rate controlled by Vdecay?2. Similarly, if
Vctrl = 1, the voltage across C1 will work just like C2 voltage
and then be compared with Vc. The comparison result will be
output to Vcont in this situation. When the post-spike fires,
Vedcp_a will equal the C2 voltage; otherwise, it will equal
Vref, which is controlled by Vctr3 of whether it equals Vrefl
or Vref2. In this case, since Vctr3 = 1, Vref equals Vref2.
After that, Vctr2 will switch the voltages OTAN and OTAP
between Vedcp_a and Vref. From that, we can notice that the
only difference between the OTAN and OTAP will be the C2
voltage during post-neuron spikes. By comparing these two
voltages, we can realize the first-order relation of formula 2.

Moreover, Vedcp_a will also be stored in the capacitor C3.
When the next pre-spike occurs, the voltage will be stored
in C4 and will cause a switch in Vedcp_b between Vref and
the voltage across C4. Thus, the pre-spike is postponed to the
next pre-spike and compared with the reference voltage. Also,
with the same switch mechanism of Vctr2 between OTATP
and OTATN, the second-order relationship between the pre-
post-pre spike train is realized.

Similarly, the LTD generator follows the relationship be-
tween the post-pre-neuron spike train. The pre-spike and post-
spike are switched in this block. In this situation, Vctr2B =
0. Thus, OTAPB equals VrefB, and OTANB equals voltage
Vedcp_c that switches between C6 voltage and VrefB. For the
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second-order relationship between the post-pre-post spike train
in Formula 2, the LTD generator follows a similar mechanism
as the LTP generator. The only difference is that the post- and
pre-spikes are switched.

Looking into the Central OTA Core, as demonstrated in
Fig. 4, it is noticeable that the outputs of each generator are
all compared in pairs. For instance, the OTAP and OTAN
are compared, and OTATN and OTATP are also compared.
With each compared pair, the difference will be transferred
to current signals through M23 and M24. It will either inject
current into or draw current from the weight capacitor at the
firings of pre-and post-spikes, triggering the increasing and
decreasing of the weight voltage.

There are several difficulties when designing this IC imple-
mentation of the triplet-based reconfigurable STDP learning
rule. The first one is realizing the functionality of switching
between different STDP shapes. To solve that issue, the time
window generator is designed. The time windows can be
divided into four situations, the post-spike arrives after the
pre-spike, the post-spike arrives before the pre-spike, the
pre-post-pre spike train when accounting for three spikes
and the post-pre-post spike train when accounting for three
spikes. Thus, four time window generators are needed for the
circuit implementation. To simplify the circuit implementation,
signals from the two-spike time window generators are used as
the inputs of the three-spike generators, as discussed in Section
III.E. What’s more, another difficulty is to store the last spike
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Fig. 5. Schematic of the spiking synapse circuit.

until the next spike so that a three-spike train can be used
for the weight adjustment. We used two small capacitors as
well as two spike-triggered switches to realize this function, as
demonstrated in Section III.LE. Another issue we faced in the
designing process was how to utilize the output differences
from time window generators and convert them to weight
voltage changes. An operational transconductance amplifier
with 4 differential pairs is designed for that purpose. With
one differential pair, the charge on the weight capacitor will
be accordingly increased or leak away, as illustrated in the last
paragraph.

FE. Circuit design of the spiking synapse

Since the synapses need to trigger spiking neurons in this
neural network, spiking synapses that can supply firing current
according to weight voltages should be specifically designed.
The synapse should output a current spike signal in response
to a firing pre-neuron spike. The larger the weight voltage,
the larger the output current should be. This mechanism will
increase the charges stored on the post-neuron membrane
capacitor. As several input currents from different synapses
accumulate, the membrane voltage will reach the post-neuron’s
threshold voltage. In that way, the post-neuron will be firing
a spike, which will be most relevant to the pre-neuron.

As shown in Fig. 5, the synapse works like a current mirror.
When pre-neuron spikes, the tail current starts to flow, and
with higher weight voltage comes the larger tail current. Vt is
used to tune the current on this side. Large Vt will lead to a
large current flow in M3 and will cause the current through
M4 to decrease. Conversely, V7 is a parameter that adjusts
the time constant of the current mirror. A larger V' voltage
results in a larger parasitic resistance of M5 and an increased
time constant. As a result, the voltage across the capacitor
and the output current will increase, with the current slowly
decreasing back to zero.
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Fig. 6. Schematic of the judgmental and reward-based circuit.

G. Circuit design of the judgmental circuit

The judgmental circuit is utilized to judge whether the
classification result of the output neuron is correct and give
reward or punishment feedback according to it. Firstly, the
network needs to define the classification result. In this case,
the circuit must recognize which output neuron fires the first
spike in one sampling window. To realize that, we can have
a voltage that resets every sampling window and decreases
exponentially. Then, we can capture the voltage at different
spike timings. Thus, an earlier spike results in a larger captured
voltage. Subsequently, the captured voltages are compared
after each clock cycle, with the highest voltage indicating the
winner. The winner will then be compared with the desired
result. If it matches, reward feedback is sent to all synapses
connected to this neuron, enhancing their relevance. If not,
punishment feedback will be sent to the synapses.

The clock signal will be connected to M1 to provide initial
voltage to C1, as depicted in Fig. 6. With the leak transistor
M2 and Cl1, the voltage will decrease exponentially at a
rate controlled by Vleak. When the spike fires, M3 will be
open and push the C1 voltage to the peak detector formed
by the diode-connected transistor M4 and capacitor C2. This
peak detector will capture and hold the voltage until the next
sampling window is reset by M5. Afterward, a comparator is
implemented to compare the captured voltages from neurons.
The desired result can change with different classes. It can
be realized by simply switching the inputs of the comparator.
When the comparator outputs a high digital voltage, the pre-
and post-spike pairs for all the STDP training circuits remain
the same to enhance the training weight. If the comparator
outputs a low voltage, the pairs of pre- and post-neuron spikes
are internally switched to reduce their relevance.

IV. RESULT ANALYSIS OF THE ON-CHIP LEARNING
SPIKING NEURAL NETWORK

A. Result analysis of the triplet reconfigurable STDP circuit

As mentioned in Section II, the proposed STDP circuit can
take into account spike trains and adjust weights according
to their temporal relationship. Moreover, the reconfigurable
feature enables the circuit to switch between different ways of
adjusting weights. For instance, when a pre-spike fires before a
post-spike, the weight will be increased in the conventional DP
STDP learning rule, while the weight can also be decreased in
the PD STDP rule. Different rules have their specific suitable
tasks, as discussed in Section II.C.
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Fig. 7. Post-layout simulation result of the triplet reconfigurable STDP circuit
when Vctr = 011001.
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Fig. 8. Simulation Results of different triplet STDP algorithms controlled by
various Vctrs.

The post-layout simulation result of the proposed STDP cir-
cuit when the control signal is equal to 011001 is demonstrated
in Fig. 7. It is noticeable that the weight voltage always tends
to increase when post-spike fires and decrease when pre-spike
fires. The closer the pre- and post-spikes are to each other,
the larger the change in weight voltage will be, whether it is
an increase or a decrease. From that, the relationship between
the spike train’s time intervals and the weight voltage almost
matches the relationship shown in Fig. 1. However, the high-
order relationship of the triplet spike train may not be that
obvious in this figure. This phenomenon occurs because the
amplitude constant, A, in the high-order relationship term of
formula 2, is much smaller than the constant A;. This indicates
that the effect of the high-order term is much smaller than the
first-order term’s effect.

To verify the reconfigurable feature of the circuit, we
switched the control signal and tested the relationship between
the time difference and the weight voltage. Fig. 8 depicts
6 of the different shapes. Although not all the shapes that
can be realized in the reconfigurable STDP circuit, it still
demonstrates that the circuit can adjust weight voltage in
different ways controlled by digital signals.

B. Result analysis of the synapse and judgmental circuits

The task of the spike synapse circuit is to accept a pre-
neuron spike and weight voltage and then provide current
signals to prompt the post-neuron to fire spikes. With a larger
weight voltage, the synapse should be capable of outputting
a correspondingly larger current signal. Fig. 9 illustrates the
post-layout simulation results of the weight voltage and current
value relationship with different Vts and V7 = 0.7V as well
as Vit = 0.6V and different V7s. With the same V7 or
V't, relations between the output current and V¢t or V1 are
revealed. With larger V¢, the output current becomes smaller.
On the contrary, larger V7 leads to larger current output. It is
noticeable that although the current value follows the weight
voltage, it has a threshold voltage of around 0.3V and also
reaches saturation status after 0.6V. This situation is because
of the property of the NMOS transistor M2.

As for the judgmental circuit, it converts the spikes back
into voltages and compares these voltages. Spikes closer to
the CLK signals should result in larger voltages. As depicted
in Fig. 10, Spikel is transferred to Outputl, and Spike2
is transferred to Output2. Since Spikel fires earlier in the
sampling windows, Outputl is larger than Output2 in such
situations. This simulation result demonstrates that the pro-
posed judgmental circuit can compare the outputs of neurons
and determine the winner.

C. Result analysis of the spike training network

Consisting of all the aforementioned blocks, the spike on-
chip learning network is designed and implemented in the
GlobalFoundries 22FDX process. It occupies a silicon area
of 37 x 62um?, as demonstrated in Fig. 11. Starting from
the Input Layer, it also has the Synapse and STDP training
Circuit, the Output Layer, and the Judgmental Circuit. In the
post-layout simulation, the network consumes 20.92uW of
power. The input signals go into the input neurons, and the
spike will be transmitted to the synapses and STDP circuit.
With the current inputs from the synapses, the output neuron
fires spikes, and the spikes will be compared to the desired
outputs and then utilized to train the weights.

Moreover, testbenches for spiking neural networks using
both the pair-based and triplet-based STDP learning rules
are implemented in PyTorch. Compared with symbol detec-
tion tasks, the MNIST [45] and CIFAR-10 [46] datasets are
also classification applications. Thus, performance verification
based on these two datasets can indirectly show the function-
ality of the proposed neural network for symbol detection.
What’s more, as commonly used testbenches for machine
learning classification tasks, MNIST and CIFAR-10 can help
with widening the introduced training neural network’s poten-
tial applications. The two neural networks that use PSTDP and
TSTDP learning rules are both trained for MNIST and CIFAR-
10 datasets. Fig. 12 depicts the error rates of the two networks
for both the MNIST and CIFAR-10 datasets. The figure has
shown that the triplet STDP learning rule can achieve lower
error rates than the pair-based STDP training algorithm. The
actual value of the error rate differences after 20 epochs for
MNIST and CIFAR-10 are 3.28% and 3.63%, respectively.
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TABLE I
COMPARISON OF THE TRIPLET RECONFIGURABLE STDP CIRCUIT IN THIS
WORK WITH OTHER STATE-OF-THE-ART WORKS

[47] [48] [16] This work
# of STDP Shapes 1 2 8 8
Technology Node 10nm 180nm 65nm 22nm
vdd (V) 0525 1.8 1.2 0.8
Area (mm?) 0.003 0.006 N/A 0.0009
Energy/SOP (fJ) 3.8 x 103 1.2 x 107 400 178
Static Power (uW) 9420.8 N/A N/A 19.2

What’s more, it is noticeable that the error rates have almost
reached saturation after 20 epochs. Although the error rates
still improve with epochs, the improving rates are not as high
as those before 20 epochs. This figure has also proved that the
triplet STDP rule achieves higher accuracy than the pair-based
STDP rule.

We also compared the triplet reconfigurable STDP circuit
from the proposed work with those from other state-of-the-
art works. We have compared the number of STDP shapes
the works can switch between, their silicon area, and their
dynamic energy consumption based on their technology node,
as illustrated in Table I. The dynamic energy consumption
is represented by energy per spike operation, which means
the energy consumed with one spike operation by the works.
With the help of the advanced technology node and care-
fully selected component size, this work’s dynamic energy
consumption is significantly lower than others. Moreover, the
static power of our work is significantly smaller than the first
work. The results of this comparison demonstrate that the
STDP circuit in our work achieves superior reconfigurability, a
significantly smaller silicon area, and higher energy efficiency.

Moreover, in Table. II, we have also summarized the energy
efficiency ratio between SNN and ANN. According to [49],
the power consumptions of SNN and ANN are compared
for different neural network topologies, including AlexNet,
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(a) Simulation results of current output and weight voltage
relationship of the synapse with VT = 0.7V and different Vt.

10

TABLE II
COMPARISON OF SNN ENERGY EFFICIENCY RELATIVE TO ANN
(= EannN/FEsNN) WITH DIFFERENT NEURAL NETWORK TOPOLOGIES
AND NUMBERS OF TIMESTEPS

# of Timesteps AlexNet VGGl16 MobileNet
400 2.0 1.7 1.4
600 1.7 1.4 1.2
800 1.5 1.2 1.0
1000 1.4 1.1 0.9

VGG16 and MobileNet. The SNN energy efficiency is also
compared across various numbers of timesteps. From the
result, we can notice that although the SNN energy efficiency
relative to ANN decreases with the increase of timesteps across
all the neural network topologies, the energy consumption
ratios are larger than 1.0 in most of the scenarios. It shows
that SNN is more power efficient for almost all applications
and situations.

To verify the impact of Process-Voltage-Temperature (PVT)
variations on the proposed circuit, three PVT simulations are
carried out. The first is for the process variations and five
corner situations are set up for this simulation. They are FF,
FS, NN, SF and SS, in which the first character means NMOS
operation speed and the second means PMOS operation speed.
F means fast, S means slow and N means normal. The second
simulation is for the supply voltage variation and three corners
are set up for it. They are 0.78V, 0.8V and 0.82V. Last but
not least, for the temperature variation simulation, 0°C, 27°C
and 80°C are set as the corners. After the PVT simulation,
the result shows that the triplet reconfigurable STDP training
functionality is not affected by the PVT variations. The weight
adjusting is stable among all the corners and have the same
results as the normal situation.
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(b) Simulation results of current output and weight voltage
relationship of the synapse with different VT and Vt = 0.6V.

Fig. 9. Simulation results of current output and weight voltage relationship of the synapse.
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Fig. 10. Simulation result of the judgmental circuit when comparing two
neuron’s output spikes.

Fig. 11. Layout of the spike on-chip training network.

V. EXPERIMENTAL SETUP AND RESULT ANALYSIS FOR THE
MIMO-OFDM SYMBOL DETECTION

To demonstrate the application of our designed neural
network training strategies in the MIMO-OFDM symbol de-
tection, we have implemented a hardware/software hybrid
testbench for this task. In the following sections, the detailed
setup of the testbench, the mechanism of this setup, and the
test result of our introduced method will be discussed and will
be compared with purely software-based methods.

A. Testbench setup for the application of MIMO symbol de-
tection

As discussed in Section ILE, StructNet is composed of two
main parts: the linear layer for the channel estimation and an
MLP network for the binary classification. To train StructNet
for the symbol detection task in the testbench, the designed
testbench also has two main parts: the software part for the
linear layer training and symbol error rate (SER) calculation
and the hardware part for the MLP neural network with spiking
signal transmission which works as a binary classifier.

As shown in Fig. 13, the testbench consists of a laptop,
a chip over print circuit board (PCB) for the neurons and
synapses, demonstrated in Fig. 14, another PCB board with the
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Fig. 12. Error rates of the pair-based STDP and triplet STDP learning rule
for the MNIST and CIFAR-10 datasets.

Chip for Neurons & Synapses

Fig. 13. Hardware/software hybrid experiment setup for the StructNet MIMO-
OFDM symbol detection task.

reconfigurable triplet STDP training circuits and judgmental
circuits, pictured in Fig. 15, a power supply, and a signal
generator for the clock signal. Firstly, the symbol detection
dataset is put through the pre-processing, which includes the
linear layer. Afterward, the transformed data is input into
the microcontroller on the board and will be transferred to
the voltage signal and then current signals into the neurons.
With the leaky integrate and fire (LIF) neurons and spiking
synapses, the current signals will be transmitted in the neural
network as spiking signals. On the other hand, the triplet
reconfigurable STDP will take into account the output spikes
of both the pre-neurons and post-neurons and adjust the weight
according to their time correlations.

The weights stored in the form of voltages with the training
circuit will be transferred back to the synapses on the chip
for the output current tuning. The judgmental circuit on the
board will compare the spikes from the output layer and
decide whether the result is correct. Accordingly, a reward
or punishment will be given to the training circuit. When the
classification result is correct, a reward will be delivered to
the circuit so that the training circuit will adjust the weight
as usual. On the other hand, when the training result does
not match the label, a punishment will be delivered to the
STDP circuit so that the pre-neuron and post-neuron spikes
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Fig. 15. PCB for STDP training and judgmental circuit.

will be switched. The weight voltage adjustment will be
correspondingly opposite to the regular changes. What’s more,
the classification results are also transmitted back to the PC
through the microcontroller. The linear layer in the software
parts will be trained with the result. The SER is calculated
simultaneously with the training process.

B. Result analysis of training neural network for the MIMO
symbol detection

After each time step, the classification result will be sent
back to the PC, and the SER will be calculated, as mentioned
in the last section. The experimental setting follows the work
in [3]. Specifically, we consider the MIMO systems with 2
transmit antennas and 2 receive antennas. We first compare the
performance of different approaches in the Gaussian channel
under both 4-pulse amplitude modulation (4-PAM) and 8-PAM
modulation. Then we evaluate different approaches in a more
practical setting, where the WINNER II channel model [50]
and 16 quadrature amplitude modulation (16-QAM) are con-
sidered. The transmitter and receiver employ uniform linear
arrays with half-wavelength antenna spacing. Additionally, the

channel scenario is set as urban macrocell non-line-of-sight
(NLOS) outdoor to indoor environments. More simulation
results for higher modulation orders, 3GPP-3D channel model,
and larger antenna numbers have been provided in [3]. The
dataset consists of 4992 samples. Among them, 1992 samples
were used for the training process, while 3000 samples were
adopted for testing purposes [3]. For each sample, the input
dimension equals to the number of receive antennas. Following
the design of StructNet in [3], the neural network is trained
for each transmit antenna. The output dimension is 1, which
is the class of each transmitted symbol.

We have compared the performance of training neural
networks with the pair-based STDP algorithm and the triplet-
based STDP algorithm. Moreover, these two training strategies
are compared with purely software-based neural networks,
including ADNN-GT, ADNN-LMMSE, and StructNet. It is
worth noting that, unlike the method we introduced in this
paper, StructNet, in this comparison, is purely software-based.

As depicted in Fig. 16, the SER is plotted as a function of
the bit energy to noise ratio (E} /N, ). We have compared those
works at different Fj, /N, regimes, including 0 dB, 5 dB, 10
dB, and 15 dB. The 20 dB of E}/N, regime is also included
in the last experiment. As demonstrated in Fig. 16(a), in the
Gaussian channel model with 4-PAM modulation, compared
with the PSTDP, the TSTDP training algorithm achieves lower
SER in different E},/N, regimes. Moreover, it also has a lower
SER than the ADNN-LMMSE model. Python-based StructNet
and the TSTDP training network-based StructNet have very
similar SER in almost every E;/N, regime. However, when
the E,/N, is 5dB, TSTDP performs slightly better than the
other two models. In Fig. 16(b), the TSTDP performs better
than all the other methods in all E,/N, regimes except 0 dB
for the Gaussian channel model under 8-PAM modulation. In
this system, the software-based StructNet performs similarly to
ADNN-GT and the PSTDP learning rule has higher SERs than
ADNN-GT and the software-based StructNet but lower SERs
than ADNN-LMMSE. Moreover, as illustrated in Fig. 16(c),
the SERs of different methods are very close to each other
in the WINNER II channel model with 16-QAM modulation.
However, it is still noticeable TSTDP training method achieves
the lowest SERs in 0 dB, 5dB, and 10 dB. Besides that, the
purely software-based StructNet performs similarly to ADNN
methods. Compared with PSTDP, the ADNN methods have
lower SER except at 0 dB of E,/N, regime.

The processing time of the introduced training neural net-
work implementation and other Python-based symbol detec-
tion methods are compared in Table III. The running time of
the introduced implementation includes the CPU running time
for pre-and post-processing and hardware running time for the
on-chip learning, while the training time for other methods
only has CPU running time. As a result, we have noticed that
ADNN methods require a shorter processing time. However,
ADNN-GT has assumed perfect channel knowledge, while
the ADNN-LMMSE has a higher SER than other methods in
almost every Fy/N, regime. On the other hand, the SNNOT
with PSTDP algorithm has achieved a faster training speed
than RC-Struct and RC-AttStructNet-DF, while the SNNOT
with TSTDP has a training speed between RC-Struct and RC-
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Fig. 16. Experiment results for the MIMO symbol detection.

TABLE III
RUNNING TIME COMPARISON OF THE SNNOT AND OTHER
PYTHON-BASED SYMBOL DETECTION METHODS

Method Running time(S)
ADNN-GT 1.68
ADNN-LMMSE 3.58
RC-Struct [33] 18.27
RC-AttStructNet-DF [3] 29.57
SNNOT with PSTDP 16.35
SNNOT with TSTDP 20.26

AttStructNet-DF. The main reason the SNNOT with PSTDP
runs faster than the SNNOT with TSTDP is that PSTDP
only considers two spikes when adjusting the weight. On
the other hand, the TSTDP learning rule takes into account
three spikes when it changes the weight. As a result, the
circuit implementation of TSTDP will be more complex than
PSTDP and thus will take more time to process the input
signals. However, this tradeoff between the complexity and
test performance is worthwhile after comparing the results.

These results have indicated that the ASIC implementa-
tion of the MIMO-OFDM symbol detection networks can
achieve similar or even better performance than von Neu-
mann structure-based methods, which provides the potential
of utilizing AI chips for the edge computing tasks of wireless
communication. Moreover, due to the use of the spiking signal
transmission, the power efficiency of this work is much better
than that of Python-based symbol detection methods.

VI. CONCLUSION

This paper has introduced an SNN with on-chip STDP
learning capabilities, designed using the GlobalFoundries
22FDX technology node. The STDP learning rule can take
into account three spikes to capture higher-order spiking
patterns and accurately reflect various biologically observed
phenomena. Moreover, the STDP circuit in the training net-
work can switch between different shapes of STDP learning
algorithms so that the training network can adapt to various
applications. We also designed a spiking synapse capable of
adjusting current output in response to weight voltages, as
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well as a judgmental circuit that compares spikes, defines the
winner, and provides either reward or punishment feedback
to the STDP training circuit. Testbenches implemented in Py-
Torch for both the pair-based and triplet-based STDP learning
networks have demonstrated that the triplet STDP learning
rule can achieve error rates 3.28% and 3.63% lower for the
MNIST and CIFAR-10 datasets, respectively. Moreover, the
post-layout simulation shows that the training network takes
37 x 62m? of silicon area and consumes 20.92WW of power.
A comparison with other state-of-the-art works demonstrates
that our approach offers superior reconfigurability, signifi-
cantly smaller silicon area, and dynamic energy consumption.
Moreover, this introduced work has shown comparable or
better performance with lower power consumption than other
Python-based methods for symbol detection applications in
various experiment settings, revealing a promising potential of
the training network as well as the reconfigurable triplet STDP
training algorithm for wireless communication applications.
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