2024 IEEE International Conference on Mobility, Operations, Services and Technologies (MOST) | 979-8-3503-0773-3/24/$31.00 ©2024 IEEE | DOIL: 10.1109/MOST60774.2024.00011

2024 IEEE International Conference on Mobility, Operations, Services and Technologies (MOST)

Enhancing Driving Behavior Analysis in
Autonomous Systems: A Reservoir Computing and
Temporal-Aware Machine Learning Approach

Fabiha Nowshin', Sanchit Sethi', Zheng Dong?, Yang Yi'
'Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg VA, USA
2Computer Science Department, Wayne State University, Detroit MI, USA

Abstract—In the rapidly evolving domain of autonomous ve-
hicles, ensuring safety and reliability through advanced anomaly
detection is paramount. Reservoir Computing, a novel approach
for processing time-series data in dynamic systems, stands out
for its ability to capture complex temporal patterns efficiently.
This paper introduces an innovative method that integrates
Reservoir Computing with temporal-aware data analysis to
enhance driver behavior assessment. Our approach employs a
unique combination of autoencoder-based feature extraction and
Reservoir Computing to analyze driving metrics from vehicle
sensors. The autoencoder compresses and encodes these temporal
features, which are then processed by a reservoir computing
model, adept at processing intricate temporal dependencies in
the data. To evaluate the effectiveness of our model we simulate
with a GPS dataset of 10,000 taxis to identify various driving
dynamics of speed, acceleration, and state changes providing a
comprehensive view of driver behavior. We further categorize
drivers into different sets based on their driving performance
using a support vector machine (SVM) algorithm. Our algorithm
marks a significant step forward in anomaly detection for
autonomous vehicles, offering a route to safer driving experiences
and advancing vehicle safety technologies.

Index Terms—machine learning, autonomous driving, reservoir
computing, autoencoder, support vector machine

I. INTRODUCTION

Autonomous driving (AD) and Intelligent Vehicles (IV)
have gained substantial attention in academia, industries,
government bodies, and the general populace largely due to
the transformative impact they promise in the transportation
sector, propelled by breakthroughs in artificial intelligence
algorithms [1]. This aligns with the recent advancements
in vehicular sensor technologies that have expanded their
range of functionalities, including activity recognition, object
detection, localization, and tracking, all of which improve
the sensing and computational capabilities essential for the
operation of autonomous driving systems [2]-[4]. Further-
more, the implementation of IVs is anticipated to significantly
reduce road accidents and ease traffic congestion, contributing

This work was supported in part by the U.S. National Science Founda-
tion (NSF) under Grant CCF-1750450, Grant ECCS-1731928, Grant ECCS-
2128594, Grant ECCS- 2314813, Grant CCF-1937487, Grant CNS-2103604
and Grant CNS-2231523.

to enhanced mobility, especially in densely populated urban
regions [5].

The advancement of IV technology is a pivotal development
in modern transportation, promising enhanced road safety and
a transformation in the driving experience. As IVs progress
towards higher levels of autonomy, ensuring their reliability
and safety becomes increasingly crucial. This evolution is
further emphasized by complex sensor technologies and ma-
chine learning algorithms that are essential for navigating and
interpreting diverse driving environments [6]. For instance, the
integration of principle sensor technologies of artificial vision,
radar and LiDAR allows exteroceptive perception in the field
of AD [7]. These systems, capable of processing vast amounts
of environmental data, allow IVs to make informed decisions
in complex driving scenarios.

However, despite these advancements, ensuring the fail-
safe operation remains a significant challenge [8], [9]. Real-
world driving conditions, characterized by unpredictable traffic
behavior and diverse environmental factors, pose complex
scenarios that can stretch the capabilities of even the most
advanced systems. This challenge is particularly pronounced
in interpreting unexpected or ambiguous situations, a task at
which human drivers excel due to their intuitive understanding
and experience [9]. Examining driving behavior as shown in
Fig. 1 is pivotal for evaluating driver performance, bolstering
traffic safety, and fostering the growth of intelligent and robust
transportation infrastructures. This analysis supports a range of
vital applications, including surveillance of drivers, vehicles,
and road conditions, delivering preemptive alerts and driving
assistance, as well as improving overall driving comfort and
promoting energy efficiency [10].

In response to these challenges, there is a growing emphasis
on employing machine learning, especially deep learning
techniques, to develop more adaptive and nuanced driving
algorithms. The inherent unpredictability of traffic behavior
and environmental factors makes it imperative to develop
systems capable of dealing with ambiguity and unexpected
scenarios as highlighted in several recent surveys on trajec-
tory prediction methods [11]-[13]. While there are different
types of trajectory prediction methods including physics-based

979-8-3503-0773-3/24/$31.00 ©2024 IEEE 24
DOI 10.1109/MOST60774.2024.0001 1
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:14:15 UTC from IEEE Xplore. Restrictions apply.



Behavioral
Forecasting

Planning and Control

Fig. 1: Trajectory Prediction for Intelligent Vehicles.

methods like Kalman Filtering and Monte Carlo and classical
machine learning models like Gaussian Process and Support
Vector Machines (SVM), they are mostly geared towards
simple prediction situations and short termed tasks [14]-[18].

Deep learning-based approaches for trajectory prediction
have recently gained traction due to their comprehensive
analysis capabilities. These methods excel not just in ac-
counting for physics and road-related factors, but also in
integrating interaction-related factors which allows them to
effectively handle complex scenarios in trajectory forecasting
[11]. Underdeep learning, there have been several implementa-
tions of Convolutional Neural Networks (CNN) for trajectory
prediction and driving behavior analysis, taking the historical
trajectory as the input to the system while achieving the
temporal aspect by stacking the convolutional layers [19], [20].
Despite having a faster runtime, CNNs and traditional machine
learning models can only process spatial information. In order
to handle the temporal information which is specially crucial to
trajectory predictions and driving behavior analysis, Recurrent
Neural Networks (RNN)s are much more suited.

RNNSs, are designed to process temporal data, store infor-
mation from previous time steps, and use these along with
current inputs to determine outputs [21]. While there have
been previous implementations of trajectory prediction and
driving behavior analysis using subsets of RNNs including
Gated Recurrent Units (GRUs) and Long Short-Term Memory
(LSTM)s, these approaches suffer from increased training
complexity and high latency issues [22], [23]. To address these
issues Reservoir Computing stands to be a more suited model
which simplifies the training complexity by only training the
output layer of the network. Reservoir computing’s ability to
handle spatiotemporal information has enabled its application
in diverse tasks such as time-series prediction, classification,
segmentation, noise reduction, as well as channel equalization
and control [24].

In this work, we address the issues of slow runtimes and
high computational demands associated with traditional RNNs
by developing the first reservoir computing model specifically
tailored for trajectory prediction and driving behavior analysis.
This novel approach incorporates an autoencoder preprocess-
ing layer, which effectively compresses and encodes the input
data, reducing the dimensionality before feeding it into the

25

reservoir. This integration not only enhances the efficiency of
the model but also improves its accuracy in capturing the in-
tricate dynamics of driving behavior. The model’s architecture
is further augmented by the inclusion of a Support Vector
Machine (SVM) classifier in the final stage. This classifier is
adept at handling the high-dimensional feature space created
by the reservoir, making it a powerful tool for classifying
driving behaviors into predefined categories such as safe, risky,
or anomalous. By leveraging the strengths of both autoencoder
and reservoir computing, along with the robust classification
capabilities of the SVM, our model achieves a delicate balance
between computational efficiency and predictive performance.
The main contributions of our work are summarized below:

« We present the first-ever reservoir computing model
specifically designed for trajectory detection and driving
behavior analysis. This model represents a significant
breakthrough in the field of autonomous vehicle technol-
ogy, as it effectively captures the complex dynamics and
temporal patterns inherent in driving data.

« An innovative preprocessing layer using an autoencoder
is integrated into our model. This layer efficiently com-
presses and encodes the input data, effectively reducing
its dimensionality. This step not only streamlines the data
processing pipeline but also enhances the model’s ability
to discern and learn from the subtle nuances in driving
behaviors.

« A unique scoring system is developed to evaluate driving
behaviors. This system amalgamates various key metrics
such as speed consistency, acceleration patterns, and
state changes in driving, to compute an average score
for drivers. This scoring method is applied to a robust
GPS dataset, enabling a nuanced and detailed analysis of
driving performance.

« By incorporating a Support Vector Machine (SVM) clas-
sifier in the final stage of our model, we have achieved an
exceptional accuracy rate of 99%. This classifier excels
in managing the high-dimensional feature space outputted
by the reservoir and is crucial in accurately classifying
driving behaviors into categories like safe, risky, or
anomalous. This high level of accuracy underscores the
effectiveness of our model in real-world applications,
setting a new benchmark in the realm of autonomous
vehicle technology.

II. BACKGROUND AND RELATED WORKS
A. Dimensionality Reduction Techniques

In the complex realm of transportation systems, dimen-
sionality reduction techniques are essential for extracting
meaningful insights. Principal Component Analysis (PCA)
and Autoencoders stand as prominent methodologies, each
offering distinctive advantages. This section undertakes a
comprehensive comparative analysis, shedding light on their
unique contributions to transportation research.

Principle Component Analysis (PCA) has proven to be an
invaluable tool for researchers navigating the intricate data

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:14:15 UTC from IEEE Xplore. Restrictions apply.



landscape of transportation systems. Its capability to distill
high-dimensional data into meaningful patterns unlocks oppor-
tunities for improving safety, efficiency, and user experience.
Driving amidst a multitude of data points, PCA organizes
chaos by identifying underlying dimensions, simplifying anal-
ysis, and revealing hidden relationships. Notable applications
include pre-processing physiological data for effective drowsi-
ness detection [25].

Beyond driver monitoring, PCA empowers intelligent sys-
tems. Its application in eco-driving assistance systems models
driver behavior, predicting delays and promoting fuel effi-
ciency [26]. PCA also contributes to secure transportation
infrastructure by identifying anomalies in network traffic data
[27]. PCA’s versatility extends to personalizing user experi-
ences in advanced driving technologies. Leveraging PCA in an
inverse reinforcement learning approach customizes automated
lane change systems based on individual driving styles [28].

While PCA excels at identifying key dimensions, Autoen-
coders provide another potent technique for understanding
complex data in transportation. Autoencoders, such as the
Echo State Network (ESN) autoencoder, prove valuable in in-
dustrial IoT systems for anomaly detection, enabling proactive
maintenance and enhancing operational safety [29].

Autoencoders transcend traditional machine learning lim-
itations by learning directly from data, adapting to diverse
data types in transportation, from traffic patterns to vehicle
sensor readings [30]. The ability of autoencoders to recon-
struct original data unveils valuable insights. This property
is leveraged for anomaly detection in time-series signals from
traffic or environmental sensors, enabling real-time monitoring
and response [31].

Recent advancements in autoencoder architecture, exem-
plified by the B-Detection framework, combine LSTM au-
toencoders with boosting algorithms for runtime reliability
anomaly detection in mobile edge computing services, leading
to more reliable and efficient service delivery in transportation
systems [32].

In the context of our project on scoring driver behavior, the
integration of PCA and Autoencoders presents a promising
avenue. PCA’s ability to unravel hidden patterns and optimize
algorithms complements Autoencoders’ prowess in anomaly
detection and handling complex signals. By combining these
techniques, our model gains the ability to not only assess
driving patterns but also identify anomalies and deviations
from expected behaviors. This comprehensive approach en-
sures a nuanced and accurate scoring system, fostering the
development of safer, smarter, and more reliable transporta-
tion systems for the future. The synergy between PCA and
Autoencoders enhances the depth and precision of our driver
behavior analysis, providing valuable insights for proactive
decision-making and system optimization.

B. Reservoir Computing

Deep neural networks (DNNs) are primarily categorized into
feedforward neural networks (FNNs), which process static in-
put data, and recurrent neural networks (RNNs) which handle

26

both temporal and spatial data. Unlike FNNs, RNNs exhibit
dynamic characteristics due to their recurrent connections
within the hidden layer, enabling the retention of informa-
tion over time [33]. Despite their biological nervous system
resemblance, RNNs are known for their complex and intensive
training procedures. To address these challenges, reservoir
computing has been introduced as a simplified alternative,
focusing primarily on training the output layer [34]. This
approach requires less computational effort due to its reliance
on smaller datasets and linear optimization.

In reservoir computing, the neural network comprises
three interconnected layers: the input layer, the reservoir,
and the output layer. The neuron activations in these lay-
ers at any given time step ¢ can be described as wu(t) =
(ur(t),...,un(t)), v(t) (v1(t),...,un(t)) and z(t) =
(21(t),...,2n(t)), respectively. The activations among these
units are defined by the following equations, where o =

(01,...,00) represents the activation function within the
Ireservoir:

vt +1) =W {ult+ 1)+ Wo(t) + W*z(¢t)} (1)

2t +1) =AW {u(t +1),0(t + 1), 2()} @

Here, W"" is the weight matrix connecting the input to the
internal units, while W represents the weights within the
reservoir. The weight matrix connecting the output to the
internal reservoir is W?*Y, and the weight matrix from the
reservoir to the output is denoted as W"* in Equation (2).
The training process is made more efficient by randomly
initializing connections between the input and the reservoir,
and training connections in the output layer using a regularized
linear least-squares optimization method, effectively mitigat-
ing the vanishing gradient problem [35], [36].

Echo State Networks (ESNs) and Liquid State Machines
(LSMs) represent two variations of reservoir computing. Both
ESNs and LSMs maintain fixed and random connections from
the input to the reservoir and within the reservoir. Despite
similar training procedures for the output layer, ESNs and
LSMs differ in their core structures: ESNs are rate-based
approximations, whereas LSMs are modeled after biologically
inspired spiking neural networks (SNNs) [37]. One of the
compelling reasons for the preference of ESNs over Liquid
State Machines (LSMs) in certain applications, including
ours, stems from their computational efficiency and ease of
implementation. Unlike LSMs, which are based on biologi-
cally inspired spiking neural networks and require intricate
mechanisms to handle spike timings and interactions, ESNs
operate on continuous values, making them more straight-
forward to implement and integrate with standard machine
learning workflows [38]. Moreover, ESNs are often favored for
their robustness in dealing with noisy and non-stationary data,
an attribute essential for analyzing complex driving behaviors
where data can vary significantly over time.

In the context of our work, ESNs are particularly advanta-
geous due to their ability to model complex temporal dynamics
with relatively simple architectures. This simplicity allows for

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:14:15 UTC from IEEE Xplore. Restrictions apply.



faster computations and more efficient training, crucial for
real-time applications like autonomous driving where quick
decision-making based on accurate trajectory predictions and
behavior analysis is paramount. Furthermore, the architec-
ture of ESNs facilitates capturing long-term dependencies in
data, a critical requirement for understanding and predicting
driving patterns and behaviors over extended periods [39].
Therefore, while LSMs offer biologically realistic modeling,
ESNs provide a more practical and computationally efficient
approach for our application, aligning with the need for real-
time processing and analysis in autonomous vehicle systems.

C. Navigating Complexity in Classification

Accurately classifying data serves as a cornerstone of ma-
chine learning, with various algorithms tailored to diverse
problem settings. Random Forest Classifiers leverage their
ensemble-based approach for robustness and versatility, while
Linear Classifiers offer interpretability and efficiency for lin-
early separable data. However, both approaches encounter
limitations when faced with complex, non-linear data or the
presence of outliers.

For such challenging classification tasks, characterized by
intricate patterns and outlier data, Support Vector Machines
(SVMs) emerge as a compelling alternative. Their defining
characteristic lies in maximizing the margin between classes,
creating a clear decision boundary that effectively separates
even complex data. This wider “margin of safety” translates to
enhanced classification accuracy and reduced misclassification
rates [40].

Several key advantages elevate SVMs to a premier choice
for these scenarios. Their inherent resilience to outliers makes
them robust to data noise and anomalies, as demonstrated
in [41] work on personal driving style-based ADAS cus-
tomization using SVMs. Additionally, their ability to handle
non-linear data through kernel functions makes them versa-
tile across diverse problem domains, including autonomous
driving applications where fault tolerance is crucial [40].
Furthermore, SVMs offer a degree of interpretability through
kernel analysis, enabling insights into their decision-making
process.

While classifiers are context-dependent, for complex, non-
linear scenarios, SVMs demonstrably offer significant ad-
vantages, making them a powerful tool in the classification
landscape. Their resilience, versatility, and interpretability
position them as valuable contenders for a range of challenging
tasks, particularly in fields like autonomous driving and driver
behavior analysis.

III. GPS DATASET FROM VEHICLES

Localization, a crucial component of autonomous driving
systems, heavily relies on technologies like GPS, IMU, and
GNSS. GNSS, encompassing various global navigation satel-
lite systems such as Europe’s Galileo and the U.S’s GPS, offers
variable accuracy, ranging from centimeters to meters based on
different observational data and processing methods [42]. GPS,
known for its affordability and consistency over time, does

27

not accumulate errors. This section discusses the utilization of
GPS data in autonomous vehicles, outlining the nature of the
dataset, the process of constructing a relevant data frame, and
scoring drivers’ performance based on this data [43], [44].

A. Nature of Dataset

The GPS dataset utilized in this paper is denoted as D =
{an, tn,lin, l2, }, where:
e a, represents the vehicle identifier,
o 1, signifies the timestamp of data collection,
o [y, and lg, are the latitude and longitude coordinates,
respectively.

This study leverages the T-Drive trajectory dataset, encom-
passing extensive GPS data gathered from a fleet of taxis. This
dataset is pivotal for analyzing urban driving patterns, offering
granular insights into vehicular movements and behaviors. It
allows for a comprehensive examination of mobility patterns
and driver behavior in urban settings, aiding in the understand-
ing of complex traffic dynamics.

B. Building the Dataframe

To construct a comprehensive data frame from GPS data, we
analyze and preprocess the data to extract key features related
to vehicle trajectories and driving behaviors. This process
involves calculating distances, bearings, and identifying state
changes in driving.

1) Distance and Bearing Calculation: Distance between
GPS points is computed using the Haversine formula:

a = sin? (%) + cos(laty ) - cos(laty) - sin® (Al;n) 3)
c=2-atan2 (vVa, V1 —a) “4)
d=R-c %)

where R is the Earth’s radius (6371 km), Alat = lat, — laty,
and Alon = lony — lon;.

The bearing between points, denoted as 6, is calculated to
determine the direction of travel:

6 = atan2 (sin(Alon) - cos(laty),
cos(laty ) - sin(laty) — sin(laty) - cos(laty) - cos(Alon))
(6)

2) Speed Calculation: Speed at each timestamp is calcu-
lated to understand the vehicle’s motion dynamics. The speed
v(t) at time ¢ is calculated using the distance d between
consecutive GPS points and the time difference At between
these points:

d

The distance d is obtained using the Haversine formula, and
At is the time interval between successive GPS readings. This
speed calculation is crucial for identifying variations in driving
patterns and subsequent state changes.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:14:15 UTC from IEEE Xplore. Restrictions apply.



State Changes

Construct ® GPSProcessing

DataFrame

© GPSDataset
D: {an, tn, I11n, I12n}
Import(): void

&=

@

©DataFrame
Construct(): void CalculateSpeed(): void
IdentifyStateChanges(): void

Calculate Calculate
Distance, Bearing, Speed _, CalculateDistanceAndBearing(): void  Transition Probabilities

Calculate Calculate
Transition Duration Overall Score, Weight Scores

@ DriverScoring

* CalculateOverallScore(): void
WeightScores(): void

@ TransitionAnalysis
Score Drivers

" CalculateTransitionProbabilities(): void
CalculateTransitionDuration(): void

Fig. 2: Overview of GPS Dataset Processing.

3) Identifying State Changes: State changes in driving are
determined by analyzing speed and bearing variations over
time, allowing for categorization into different driving states.
We denote speed at time ¢ as v(¢) and bearing as 6(t¢). The
driving state is categorized based on the changes in v(t) and

0(t) as follows:
o Acceleration (Av(t) > 0): An increase in speed over
time.
o Deceleration (Av(t) < 0): A decrease in speed over
time.

o Constant Speed (Av(t) ~ 0): Negligible or no change
in speed over time.

Directional changes are identified by analyzing Af(t), the
change in bearing:

o Turning Right (A6(t) > 0): A positive change in bearing

angle.

o Turning Left (Af(t) < 0): A negative change in bearing

angle.

o Moving Straight (A6(t) ~ 0): Negligible or no change

in bearing angle.

These states provide insights into driving behaviors, con-
tributing to a comprehensive understanding of vehicle move-
ment patterns and potential anomalies in driving.

4) Transition Probability Calculation: After identifying the
state changes, we calculate the transition probabilities. For
each taxi, the probability P;; of transitioning from state 7 to
state j is determined by:

p Number of transitions from ¢ to j
=

— - 8
Total transitions from ¢ ®

5) Transition Duration Calculation: The duration of each
transition is also vital for behavior analysis. For each transition
from state ¢ to state j, the duration AT;; is computed as the
difference between timestamps:

ATz‘j = Tend - Tstart (9)

where Tehg and Ty, are the timestamps at the end and the
start of the transition.

C. Scoring Drivers Based on Performance

To evaluate driving performance, we introduce a scoring
system that considers various aspects of driving behavior.
The overall score S for each driver is calculated using speed
consistency, state change, and acceleration scores:

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:14:15 UTC from IEEE Xplore. Restrictions apply.

28

N
1
S = ﬁ zzzl (wl . Sspeed,i + wo - Sslate,i + ws - Saccel,i) (]0)

Here, Sgpeed,is Sstate,i» and Syccer,; represent the speed con-
sistency, state change, and acceleration scores for the i-th
transition. The weights wi, ws, and w3 are used to balance
the importance of each aspect in the overall score.

e Speed Consistency Score (Speed): This score reflects
the consistency of the driver’s speed, calculated as the
normalized inverse of the standard deviation of speed.

o State Change Score (Ssue): This score is derived from
the frequency and nature of state changes, indicating the
driver’s adaptability and responsiveness.

o Acceleration Score (S,cce): Represents the driver’s con-
trol over the vehicle’s acceleration and deceleration, cal-
culated based on the frequency of acceleration-related
state changes.

A higher overall score S indicates a safer and more consis-
tent driving pattern, whereas a lower score points to potential
areas of improvement in driving behavior. Additionally, these
calculated scores S serve as ground truths for our model.
They provide a basis for assessing and validating the predictive
capabilities of the autonomous driving system. By comparing
the predicted driving behaviors against these ground truth
scores, we can gauge the accuracy and reliability of the model
in real-world scenarios, contributing to the overall safety and
efficiency of autonomous vehicles.

IV. THE RESERVOIR COMPUTING MODEL

The developed reservoir model is depicted in Fig. 3 where
the extracted features are used as input to the system and
is passed through the autoencoder, reservoir layer and the
classifier. This section discusses each layer in depth and our
complete model is detailed in Algorithm 1.

A. The Autoencoder Input Layer

Given the extracted features from GPS data, such as ’Tran-
sition Duration’, *Transition Probability’, *Speed Consistency
Score’, ’State Change Score’, and ’Acceleration Score’, we
utilize an autoencoder for effective dimensionality reduction
and feature transformation. The encoder compresses the high-
dimensional feature vector into a lower-dimensional latent
representation. Mathematically, this is expressed as:

Z =ReLU(W. x X + b.) (11)



""""""" Extracted RO L L L L L L L e
: o i Features #F

H ata : H

i fromT (4 :

: rom axl siced #

i * Duratlon »

a : State Change :

: : i

B nzme P probabilty

.
............................................

K

Support
Vector
Machine

\l
\
| @/ e

Fig. 3: Overview of the Reservoir Computing Model.

Algorithm 1 Analysis of Taxi Driving Patterns

Initialize:
Initialize:
Initialize:
Initialize:
Initialize:

Text files list inputFiles
Output file path outputFlile
Headers list headers
DataFrame dataFrame
Feature vectors featureVectors
Initialize: Time-aware vectors timeV ectors
Initialize: Transitions transitions
Merge files into CSV with output File, headers
Data Preprocessing: Read and process data from input Files
for each row in dataFrame do
Calculate distance and bearing for each point
end for
Create featureVectors from dataFrame
Haversine Formula:
for each pair (latl,lonl,lat2,lon2) do
d < R - arccos(cos(latl) cos(lat2) cos(lon2 — lonl) +
sin(latl) sin(lat2))
end for
Autoencoder Training:
Initialize Weoe, benes Waees bdec
for each feature in X;, 4, do
encoded <— 0(Wepe - feature + bep.)
decoded + 0 (Wyec - encoded + bgec)
end for
Reservoir Computing:
Initialize reservoir weights W;,, W,..s, state z
for each encoded feature u(t) in encodedFeatures do
x(t) < tanh(Wyy, - u(t) + Wies - 2(t — 1))
end for
Train output weights Wo,;
Classifier Predictions:
Initialize classifiers RF, SVM, LR
for each sample s in X do
RFscore < RFEpredict(s)
SV Mgcore < SVM.predict(s)
LRscore < LR.predict(s)
end for

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:14:15 UTC from IEEE Xplore. Restrictions apply.

29

where W, and b. denote the weights and biases of the encoder,
respectively, and X represents the input feature vector.

The decoder phase aims to reconstruct the input data from
its compressed form. This process is defined by the equation:

Xyee = 0(Wy x Z + by) (12)

Here, W, and b, are the weights and biases of the decoder,
and o represents the sigmoid activation function.

The training objective of the autoencoder is to minimize
the reconstruction error, which ensures the preservation of
essential characteristics of the driving behavior in the com-
pressed feature space. The output from the autoencoder is then
utilized as input for the reservoir computing layer for advanced
analysis and modeling.

B. The Echo State Network

The Echo State Network (ESN) layer serves as a crucial
component for processing GPS data transformed by the au-
toencoder. This layer is pivotal for capturing temporal de-
pendencies inherent in GPS-based vehicle trajectories. The
reservoir within the ESN is initialized with random weights to
introduce variability in the system:

13)

where size is the predefined reservoir size. This random
initialization plays a vital role in determining the unique
dynamic characteristics of the reservoir.

To enhance the input’s diversity and effectively manage the
complexities of GPS data, a masking layer is employed:

M = Wmask OX (14)

Here, W,,,4s5 1S @ matrix with randomly generated values, and
© denotes the element-wise multiplication, ensuring varied
input propagation through the network. The state of the
reservoir R is updated by integrating both the current state
and the masked input:

R(t+1) = tanh(Wyes - R(t) + M (1)) (15)

The non-linear activation function tanh introduces necessary
non-linearity into the system, facilitating the capture of com-
plex temporal patterns. This ESN setup, with its dynamic
reservoir, is exceptionally suited for analyzing GPS data,
capturing nuanced vehicle movement patterns and intricate
behavioral dynamics over time.

Wies = randn(size, size) — 0.5



C. Support Vector Machine Classifier

The final layer in our model architecture utilizes a Support
Vector Machine (SVM) classifier. This layer is responsible
for classifying the processed GPS data into distinct driving
behavior categories. The SVM classifier operates on the high-
dimensional features output by the Echo State Network. It’s
designed to find the optimal hyperplane that separates the
different classes of driving behavior in the feature space. The
SVM formulation is given by:

minimize 1||w||2 +CY & (16)
2

n
i=1

subject to  y;(w-x;+0) >1-¢;, & >0 17)

where w and b are the parameters of the hyperplane, C' is
the regularization parameter, and &; are the slack variables
allowing for misclassification.

The SVM classifier is instrumental in classifying driving
behaviors, leveraging the temporal features distilled by the
ESN. Its robustness to high-dimensional data and effectiveness
in handling non-linear separations make it an ideal choice
for classifying complex driving behaviors extracted from GPS
data.

V. EVALUATION OF THE MODEL
A. Loss Function Evaluation

In the realm of reservoir computing (RC) models, the choice
of an apt loss function plays a pivotal role in optimizing
performance. Different functions prioritize specific aspects
of prediction errors, influencing the model’s behavior. For
instance, Mean Squared Error (MSE) accentuates penalization
of larger errors, while Mean Absolute Error (MAE) exhibits
resilience to outliers. In a tailored approach, researchers have
successfully employed a combination of MSE and Kullback-
Leibler divergence to enhance spectrum sensing accuracy in
quantized RC systems [45].

In our RC model, a meticulous evaluation identified Median
Absolute Error (MAE) as the most effective loss function. Its
reduced sensitivity to outliers proved beneficial for handling
noisy data, while its ability to provide a robust measure of
central tendency surpassed Mean Squared Error. The bar plot
in Fig. 4 reveals median absolute error as the superior loss
function, followed by root mean squared error and mean
absolute error. Mean squared error yielded the highest er-
ror, suggesting its relative unsuitability for this model. The
simplicity of MAE facilitated swift training, critical for real-
time processing and resource-constrained applications [46].
This strategic choice contributed to superior performance,
underscoring the significance of tailored loss functions in
advancing the efficacy of RC models.

B. Comparison with State-of-the-Art Models

RNNs are adept at processing sequences by storing infor-
mation from previous time steps and integrating it with current
hidden states. This capability is essential for tasks that involve

30

Loss function evaluation

0.36458

0.13252

0.05636

0.02443 Do

0.05
: = =y
Mean Root Mean Mean Median R-Squared
Squared Error Squared Error Absolute Absolute Error
(MSE) (RMSE) Error (MAE) Error (MAE)

Fig. 4: Loss function evaluation of RC model

Training Loss Comparison

[

—— LSTM Training Loss
9 GRU Training Loss
| —— CNN Training Loss.
~— Reservoir Training Loss

125 150

Epochs

(a)

Validation Loss Comparison

—— LSTM validation Loss
GRU Validation Loss

—— CNN Validation Loss

~— Reservoir Validation Loss

100
Epochs

(b)

Fig. 5: Comparison of training and validation loss

temporal dependencies. However, RNNs are notoriously chal-
lenged by the vanishing gradient problem, where the gradients
used in training diminish across layers or time steps, hindering
the learning of long-range dependencies.

To overcome these limitations, GRUs and LSTMs have
been developed. These architectures, being advanced variants
of RNNSs, incorporate gating mechanisms to better regulate
the flow of information. This design enables them to retain
long-term dependencies within sequences more effectively
than standard RNNs. However, the added complexity of these
gating mechanisms leads to increased computational demands,
resulting in longer training durations.

Conversely, CNNs, though traditionally associated with
spatial data processing, can also be adapted for temporal
data. By leveraging their capability to capture spatio-temporal

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:14:15 UTC from IEEE Xplore. Restrictions apply.



TABLE I: Comparison of the State-of-the-art Models

[47] [48] [49] [50] [51] [52] This Work
Network LSTM+GRU CRNN R-CNN GRU Conditional Variance GSAN + AutoEncoder
Autoencoder RNN/LSTM RC + SVM
Data Type Radar Signal LiDar Data Images Images, GPS LiDar Data Image + LiDar GPS +
Sequences Data Timestamp
Accuracy (%) 96 81 96 N/A 69.2 92.71 99
Loss N/A MAE 0.06 MAE 0.45 RMSE MAE
=0.05173 =0.03 =043 =0.02
Prediction Lane Change | Dynamic Occupancy Traffic Signal Trajectory Trajectory Lane Change Trajectory
Focus Interference Grid Mapping Image Recognition Prediction Prediction Classification Prediction
L C. Determining Accuracy of Model
Training Time (s) o ) o ) o
The categorization of combined driving scores into distinct
—_— states such as ’dangerous’, ’okay’, ’safe’, and 'very good’ is a
eservolir . . . . . ..
crucial step in our analysis. This process involves normalizing
the scores and then categorizing them based on predefined
o . ranges. This categorization transforms the continuous score
data into discrete classes that represent various levels of
e driving proficiency. The categorized variables thus obtained
serve as the basis for making predictions about driver safety.
s [l We employ a Support Vector Machine (SVM) classifier
for this predictive task. SVM is renowned for its robustness,
0 200 400 600 800 1000 1200 1400 1600 1800

Fig. 6: Comparison of training times with different models

continuities, CNNs can effectively predict trajectories and
sequences. They benefit from parallel processing, which often
makes them faster and more computationally efficient than
their RNN counterparts. However, CNNs might not always
capture long-term temporal dependencies as effectively as
GRUs or LSTMs.

In contrast to these models, Reservoir Computing offers
a unique approach. Our reservoir model maintains a large,
dynamically rich, yet fixed recurrent layer, training only the
output weights. This setup enables efficient temporal data pro-
cessing with significantly reduced training complexity. Since
the reservoir only trains the output layer, it also significantly
reduces the training time and complexity.

Comparative analyses, as depicted in Fig. 5(a) and (b), illus-
trate this point. Here, we evaluate the training and validation
losses of our reservoir model against GRUs, LSTMs, and
CNNS . The results indicate that our reservoir computing model
achieves substantially lower losses than the other models,
demonstrating its efficacy in learning from temporal data.

Furthermore, as shown in Fig. 6, the training time of our
reservoir model is markedly less, clocking in at only 2 seconds.
This is in stark contrast to the training times of LSTM (83s),
GRU (104s), and CNN (1700s). Such a significant reduction
in training duration without compromising on performance
underscores the potential of reservoir computing as a highly
efficient alternative for processing temporal sequences. The
comparison with the state-of-the-art models from Table I
shows that our work has a significantly low loss and an
extremely high accuracy of 99%.

31

especially in scenarios where the distinction between classes
is not immediately clear-cut. Its ability to find the optimal
hyperplane that separates different classes makes it particularly
effective for our purpose. In our analysis, the SVM classifier
demonstrates high accuracy, achieving a remarkable 99.3% in
identifying the categories of drivers. This level of accuracy
underscores the SVM’s capability to handle complex classifi-
cation tasks with a high degree of precision.

The features fed into the classifier are derived from the
reservoir computing model. Reservoir computing, known for
its efficiency in processing temporal data, extracts meaningful
patterns from the input features. These patterns, which encap-
sulate crucial information about driving behavior over time,
are then used as inputs to the SVM classifier. The classifier,
in turn, utilizes these inputs to differentiate between good and
bad drivers.

By leveraging the strengths of both reservoir computing
and SVM, our approach provides a nuanced understanding
of driver behavior. The reservoir helps in capturing the tem-
poral dynamics of driving data, while the SVM effectively
categorizes these dynamics into distinct classes of driving
quality. This synergistic use of reservoir computing for feature
extraction and SVM for classification forms the backbone of
our system, enabling us to reliably identify various categories
of drivers based on their driving scores.

VI. CONCLUSION

In this work, we presented a novel approach for trajectory
prediction by employing a combination of autoencoder and
reservoir computing techniques. The autoencoder, serving as
the initial stage of our model, effectively compresses and
reconstructs the input features, achieving a minimal Mean Ab-
solute Error (MAE) loss of 0.02. This performance surpasses
that of more conventional models such as LSTM, GRU, and

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:14:15 UTC from IEEE Xplore. Restrictions apply.



CNN, highlighting the efficacy of our method in capturing the
essential characteristics of trajectory data. Furthermore, the
integration of reservoir computing substantially enhances the
model’s capability to process temporal dynamics, a critical
aspect of trajectory prediction. This combination not only
improves prediction accuracy but also significantly reduces
computational overhead, as evidenced by the remarkably low
training time of just 2 seconds. Such efficiency is particularly
advantageous in real-time or resource-constrained environ-
ments. The application of the SVM classifier in our model
further reinforces its robustness, achieving an impressive ac-
curacy of 99.3%. This high accuracy rate indicates the model’s
strong discriminative power in classifying different trajectory
patterns, making it highly reliable for practical applications
in trajectory prediction. Overall, our approach demonstrates
a significant advancement in trajectory prediction, offering a
balance of high accuracy, low computational cost, and rapid
processing. This makes it an excellent choice for various appli-
cations, ranging from autonomous vehicle navigation to traffic
management systems, where accurate and efficient trajectory
prediction is paramount.

REFERENCES
[1] L. Chen, Y. Li, C. Huang, Y. Xing, D. Tian, L. Li, Z. Hu, S. Teng,
C. Lv, J. Wang, D. Cao, N. Zheng, and F.-Y. Wang, “Milestones in
autonomous driving and intelligent vehicles—part i: Control, computing
system design, communication, hd map, testing, and human behaviors,”
1EEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 53,
no. 9, pp. 5831-5847, 2023.
F. Xu, F. Xu, J. Xie, C.-M. Pun, H. Lu, and H. Gao, “Action recognition
framework in traffic scene for autonomous driving system,” [EEE
Transactions on Intelligent Transportation Systems, vol. 23, no. 11, pp.
22301-22311, 2021.
Y. Li, H. Wang, L. M. Dang, T. N. Nguyen, D. Han, A. Lee, 1. Jang,
and H. Moon, “A deep learning-based hybrid framework for object
detection and recognition in autonomous driving,” IEEE Access, vol. 8,
pp. 194 228-194 239, 2020.
Y. Ma, Z. Wang, H. Yang, and L. Yang, “Artificial intelligence applica-
tions in the development of autonomous vehicles: A survey,” I[EEE/CAA
Journal of Automatica Sinica, vol. 7, no. 2, pp. 315-329, 2020.
W. Wang, L. Wang, C. Zhang, C. Liu, L. Sun e? al., “Social interactions
for autonomous driving: A review and perspectives,” Foundations and
Trends® in Robotics, vol. 10, no. 3-4, pp. 198-376, 2022.
M. R. Bachute and J. M. Subhedar, “Autonomous driving architectures:
insights of machine learning and deep learning algorithms,” Machine
Learning with Applications, vol. 6, p. 100164, 2021.
E. Marti, M. A. De Miguel, F. Garcia, and J. Perez, “A review of sensor
technologies for perception in automated driving,” IEEE Intelligent
Transportation Systems Magazine, vol. 11, no. 4, pp. 94-108, 2019.
N. Kalra and S. M. Paddock, “Driving to safety: How many miles of
driving would it take to demonstrate autonomous vehicle reliability?”
Transportation Research Part A: Policy and Practice, vol. 94, pp. 182—
193, 2016.
S. S. Banerjee, S. Jha, J. Cyriac, Z. T. Kalbarczyk, and R. K. Iyer,
“Hands off the wheel in autonomous vehicles?: A systems perspective
on over a million miles of field data,” in 2018 48th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN).
IEEE, 2018, pp. 586-597.
D. Cao, X. Wang, L. Li, C. Lv, X. Na, Y. Xing, X. Li, Y. Li, Y. Chen,
and F.-Y. Wang, “Future directions of intelligent vehicles: Potentials,
possibilities, and perspectives,” IEEE Transactions on Intelligent Vehi-
cles, vol. 7, no. 1, pp. 7-10, 2022.
Y. Huang, J. Du, Z. Yang, Z. Zhou, L. Zhang, and H. Chen, “A
survey on trajectory-prediction methods for autonomous driving,” IEEE
Transactions on Intelligent Vehicles, vol. 7, no. 3, pp. 652-674, 2022.

(2]

[7

(8]

[91

[10]

[11]

32

[16]

[17]

21

[22]

[23

[24]

[28]

[29]

[30]

F. Leon and M. Gavrilescu, “A review of tracking and trajectory
prediction methods for autonomous driving,” Mathematics, vol. 9, no. 6,
p. 660, 2021.

J. Liu, X. Mao, Y. Fang, D. Zhu, and M. Q.-H. Meng, “A survey on
deep-learning approaches for vehicle trajectory prediction in autonomous
driving,” in 2021 IEEE International Conference on Robotics and
Biomimetics (ROBIO). 1EEE, 2021, pp. 978-985.

V. Lefkopoulos, M. Menner, A. Domahidi, and M. N. Zeilinger,
“Interaction-aware motion prediction for autonomous driving: A mul-
tiple model kalman filtering scheme,” IEEE Robotics and Automation
Letters, vol. 6, no. 1, pp. 80-87, 2020.

R. Zhang, L. Cao, S. Bao, and J. Tan, “A method for connected
vehicle trajectory prediction and collision warning algorithm based on
v2v communication,” International Journal of Crashworthiness, vol. 22,
no. 1, pp. 15-25, 2017.

K. Okamoto, K. Berntorp, and S. Di Cairano, “Driver intention-
based vehicle threat assessment using random forests and particle
filtering,” IFAC-PapersOnLine, vol. 50, mno. 1, pp. 13860-
13865, 2017, 20th IFAC World Congress. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2405896317329063
Y. Guo, V. V. Kalidindi, M. Arief, W. Wang, J. Zhu, H. Peng, and
D. Zhao, “Modeling multi-vehicle interaction scenarios using gaussian
random field,” in 2019 IEEE Intelligent Transportation Systems Confer-
ence (ITSC). 1EEE, 2019, pp. 3974-3980.

P. Kumar, M. Perrollaz, S. Lefevre, and C. Laugier, “Learning-based
approach for online lane change intention prediction,” in 20/3 IEEE
Intelligent Vehicles Symposium (IV). 1EEE, 2013, pp. 797-802.

H. Cui, T. Nguyen, E-C. Chou, T.-H. Lin, J. Schneider, D. Bradley,
and N. Djuric, “Deep kinematic models for kinematically feasible
vehicle trajectory predictions,” in 2020 IEEE International Conference
on Robotics and Automation (ICRA). 1EEE, 2020, pp. 10563-10569.
E-C. Chou, T.-H. Lin, H. Cui, V. Radosavljevic, T. Nguyen, T.-K.
Huang, M. Niedoba, J. Schneider, and N. Djuric, “Predicting motion of
vulnerable road users using high-definition maps and efficient convnets,”
in 2020 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2020, pp.
1655-1662.

A. Graves, “Generating sequences with recurrent neural networks,” arXiv
preprint arXiv:1308.0850, 2013.

A. Zyner, S. Worrall, and E. Nebot, “A recurrent neural network
solution for predicting driver intention at unsignalized intersections,”
IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1759-1764,
2018.

F. Altché and A. de La Fortelle, “An Istm network for highway trajectory
prediction,” in 2017 IEEE 20th international conference on intelligent
transportation systems (ITSC). 1EEE, 2017, pp. 353-359.

A. Canziani, A. Paszke, and E. Culurciello, “An analysis of deep
neural network models for practical applications,” arXiv preprint
arXiv:1605.07678, 2016.

Y. Huang and Y. Deng, “A hybrid model utilizing principal component
analysis and artificial neural networks for driving drowsiness detection,”
Applied Sciences, vol. 12, no. 12, p. 6007, 2022.

S. K. Chada, D. Gérges, A. Ebert, R. Teutsch, and C. G. Min, “Learning-
based driver behavior modeling and delay compensation to improve
the efficiency of an eco-driving assistance system,” in 2022 [EEE
International Conference on Systems, Man, and Cybernetics (SMC),
2022, pp. 415-422.

A. Parizad and C. J. Hatziadoniu, “Cyber-attack detection using principal
component analysis and noisy clustering algorithms: A collaborative
machine learning-based framework,” IEEE Transactions on Smart Grid,
vol. 13, no. 6, pp. 4848-4861, 2022.

J. Liu, L. N. Boyle, and A. G. Banerjee, “An inverse reinforcement
learning approach for customizing automated lane change systems,”
IEEE Transactions on Vehicular Technology, vol. 71, no. 9, pp. 9261—
9271, 2022.

F. De Vita, G. Nocera, D. Bruneo, and S. K. Das, “A novel echo state
network autoencoder for anomaly detection in industrial iot systems,”
IEEE Transactions on Industrial Informatics, 2022.

H. Zhang and D. V. Vargas, “A survey on reservoir computing and
its interdisciplinary applications beyond traditional machine learning,”
IEEE Access, 2023.

J. Kato, G. Tanaka, R. Nakane, and A. Hirose, “Proposal of recon-
structive reservoir computing to detect anomaly in time-series signals,”
in 2022 International Joint Conference on Neural Networks (IJCNN).
IEEE, 2022, pp. 1-6.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:14:15 UTC from IEEE Xplore. Restrictions apply.



[32] L. Wang, S. Chen, F. Chen, Q. He, and J. Liu, “B-detection: Runtime
reliability anomaly detection for mec services with boosting Istm au-
toencoder,” IEEE Transactions on Mobile Computing, 2023.

[33] R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio, “How to construct
deep recurrent neural networks,” arXiv preprint arXiv:1312.6026, 2013.

[34] K. Nakajima and 1. Fischer, Reservoir computing. ~ Springer, 2021.

[35] Y. Bengio, N. Boulanger-Lewandowski, and R. Pascanu, “Advances in
optimizing recurrent networks,” in 2013 IEEE international conference
on acoustics, speech and signal processing. 1EEE, 2013, pp. 8624—
8628.

[36] C. R. Vogel, Computational methods for inverse problems.  SIAM,
2002.

[37] N. Soures and D. Kudithipudi, “Deep liquid state machines with neural
plasticity for video activity recognition,” Frontiers in neuroscience,
vol. 13, p. 686, 2019.

[38] M. LukoSevicius and H. Jaeger, “Reservoir computing approaches to

recurrent neural network training,” Computer science review, vol. 3,

no. 3, pp. 127-149, 2009.

C. Gallicchio, A. Micheli, and L. Pedrelli, “Deep reservoir computing:

A critical experimental analysis,” Neurocomputing, vol. 268, pp. 87-99,

2017.

[40] N. D. Irimia, M. Luchian, F. I. Lazar, and A. Ipatiov, “Performant fault
tolerant control by using space vector modulation (svm) technique of a
five phases bldc motor for autonomous driving applications,” in 2022
10th International Conference on Systems and Control (ICSC), 2022,
pp. 317-322.

[41] G. Hwang, D. Jung, Y. Goh, and J.-M. Chung, “Personal driving style-
based adas customization in diverse traffic environments using svm
for public driving safety,” in 2022 13th International Conference on
Information and Communication Technology Convergence (ICTC), 2022,
pp. 1938-1940.

[42] E. Ali, “Global positioning system (gps): Definition, principles, errors,
applications & dgps,” no. April, 2020.

[43] J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, and Y. Huang, “T-
drive: driving directions based on taxi trajectories,” in Proceedings of the
18th SIGSPATIAL International conference on advances in geographic
information systems, 2010, pp. 99-108.

[44] J. Yuan, Y. Zheng, X. Xie, and G. Sun, “Driving with knowledge
from the physical world,” in Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data mining,
2011, pp. 316-324.

[45] S. Liu, L. Liu, and Y. Yi, “Quantized reservoir computing for spectrum
sensing with knowledge distillation,” IEEE Transactions on Cognitive
and Developmental Systems, vol. 15, no. 1, pp. 88-99, 2023.

[46] L. Li, L. Liu, Z. Zhou, and Y. Yi, “Reservoir computing meets extreme
learning machine in real-time mimo-ofdm receive processing,” IEEE
Transactions on Communications, vol. 70, no. 5, pp. 3126-3140, 2022.

[47] L. Li, W. Zhao, C. Xu, C. Wang, Q. Chen, and S. Dai, “Lane-change
intention inference based on rnn for autonomous driving on highways,”
IEEE Transactions on Vehicular Technology, vol. 70, no. 6, pp. 5499—
5510, 2021.

[48] M. Schreiber, V. Belagiannis, C. Gliser, and K. Dietmayer, “Dynamic
occupancy grid mapping with recurrent neural networks,” in 2021 IEEE
International Conference on Robotics and Automation (ICRA), 2021, pp.
6717-6724.

[49] G.-Z. Tiron and M.-S. Poboroniuc, “Neural network based traffic sign
recognition for autonomous driving,” in 2019 International Conference
on Electromechanical and Energy Systems (SIELMEN), 2019, pp. 1-5.

[50] P-Y. Hsu, M.-L. Huang, W.-Y. Wang, and H.-H. Chiang, “Traffic agent
trajectory prediction using a time sequence deep learning model with
trajectory mapping for autonomous driving,” in 2021 IEEE International
Conference on Consumer Electronics-Taiwan (ICCE-TW), 2021, pp. 1-
2.

[51] Z. Zhong, Y. Luo, and W. Liang, “Stgm: Vehicle trajectory prediction
based on generative model for spatial-temporal features,” IEEE Transac-
tions on Intelligent Transportation Systems, vol. 23, no. 10, pp. 18 785—
18793, 2022.

[52] L. Ye, Z. Wang, X. Chen, J. Wang, K. Wu, and K. Lu, “Gsan: Graph self-
attention network for learning spatial-temporal interaction representation
in autonomous driving,” IEEE Internet of Things Journal, vol. 9, no. 12,
pp. 9190-9204, 2021.

[39

—

33

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:14:15 UTC from IEEE Xplore. Restrictions apply.



