
Enhancing Driving Behavior Analysis in

Autonomous Systems: A Reservoir Computing and

Temporal-Aware Machine Learning Approach

Fabiha Nowshin1, Sanchit Sethi1, Zheng Dong2, Yang Yi1

1Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg VA, USA
2Computer Science Department, Wayne State University, Detroit MI, USA

Abstract—In the rapidly evolving domain of autonomous ve-
hicles, ensuring safety and reliability through advanced anomaly
detection is paramount. Reservoir Computing, a novel approach
for processing time-series data in dynamic systems, stands out
for its ability to capture complex temporal patterns efficiently.
This paper introduces an innovative method that integrates
Reservoir Computing with temporal-aware data analysis to
enhance driver behavior assessment. Our approach employs a
unique combination of autoencoder-based feature extraction and
Reservoir Computing to analyze driving metrics from vehicle
sensors. The autoencoder compresses and encodes these temporal
features, which are then processed by a reservoir computing
model, adept at processing intricate temporal dependencies in
the data. To evaluate the effectiveness of our model we simulate
with a GPS dataset of 10,000 taxis to identify various driving
dynamics of speed, acceleration, and state changes providing a
comprehensive view of driver behavior. We further categorize
drivers into different sets based on their driving performance
using a support vector machine (SVM) algorithm. Our algorithm
marks a significant step forward in anomaly detection for
autonomous vehicles, offering a route to safer driving experiences
and advancing vehicle safety technologies.

Index Terms—machine learning, autonomous driving, reservoir
computing, autoencoder, support vector machine

I. INTRODUCTION

Autonomous driving (AD) and Intelligent Vehicles (IV)

have gained substantial attention in academia, industries,

government bodies, and the general populace largely due to

the transformative impact they promise in the transportation

sector, propelled by breakthroughs in artificial intelligence

algorithms [1]. This aligns with the recent advancements

in vehicular sensor technologies that have expanded their

range of functionalities, including activity recognition, object

detection, localization, and tracking, all of which improve

the sensing and computational capabilities essential for the

operation of autonomous driving systems [2]–[4]. Further-

more, the implementation of IVs is anticipated to significantly

reduce road accidents and ease traffic congestion, contributing

This work was supported in part by the U.S. National Science Founda-
tion (NSF) under Grant CCF-1750450, Grant ECCS-1731928, Grant ECCS-
2128594, Grant ECCS- 2314813, Grant CCF-1937487, Grant CNS-2103604
and Grant CNS-2231523.

to enhanced mobility, especially in densely populated urban

regions [5].

The advancement of IV technology is a pivotal development

in modern transportation, promising enhanced road safety and

a transformation in the driving experience. As IVs progress

towards higher levels of autonomy, ensuring their reliability

and safety becomes increasingly crucial. This evolution is

further emphasized by complex sensor technologies and ma-

chine learning algorithms that are essential for navigating and

interpreting diverse driving environments [6]. For instance, the

integration of principle sensor technologies of artificial vision,

radar and LiDAR allows exteroceptive perception in the field

of AD [7]. These systems, capable of processing vast amounts

of environmental data, allow IVs to make informed decisions

in complex driving scenarios.

However, despite these advancements, ensuring the fail-

safe operation remains a significant challenge [8], [9]. Real-

world driving conditions, characterized by unpredictable traffic

behavior and diverse environmental factors, pose complex

scenarios that can stretch the capabilities of even the most

advanced systems. This challenge is particularly pronounced

in interpreting unexpected or ambiguous situations, a task at

which human drivers excel due to their intuitive understanding

and experience [9]. Examining driving behavior as shown in

Fig. 1 is pivotal for evaluating driver performance, bolstering

traffic safety, and fostering the growth of intelligent and robust

transportation infrastructures. This analysis supports a range of

vital applications, including surveillance of drivers, vehicles,

and road conditions, delivering preemptive alerts and driving

assistance, as well as improving overall driving comfort and

promoting energy efficiency [10].

In response to these challenges, there is a growing emphasis

on employing machine learning, especially deep learning

techniques, to develop more adaptive and nuanced driving

algorithms. The inherent unpredictability of traffic behavior

and environmental factors makes it imperative to develop

systems capable of dealing with ambiguity and unexpected

scenarios as highlighted in several recent surveys on trajec-

tory prediction methods [11]–[13]. While there are different

types of trajectory prediction methods including physics-based

24

2024 IEEE International Conference on Mobility, Operations, Services and Technologies (MOST)

979-8-3503-0773-3/24/$31.00 ©2024 IEEE
DOI 10.1109/MOST60774.2024.00011

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:14:15 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Trajectory Prediction for Intelligent Vehicles.

methods like Kalman Filtering and Monte Carlo and classical

machine learning models like Gaussian Process and Support

Vector Machines (SVM), they are mostly geared towards

simple prediction situations and short termed tasks [14]–[18].

Deep learning-based approaches for trajectory prediction

have recently gained traction due to their comprehensive

analysis capabilities. These methods excel not just in ac-

counting for physics and road-related factors, but also in

integrating interaction-related factors which allows them to

effectively handle complex scenarios in trajectory forecasting

[11]. Underdeep learning, there have been several implementa-

tions of Convolutional Neural Networks (CNN) for trajectory

prediction and driving behavior analysis, taking the historical

trajectory as the input to the system while achieving the

temporal aspect by stacking the convolutional layers [19], [20].

Despite having a faster runtime, CNNs and traditional machine

learning models can only process spatial information. In order

to handle the temporal information which is specially crucial to

trajectory predictions and driving behavior analysis, Recurrent

Neural Networks (RNN)s are much more suited.

RNNs, are designed to process temporal data, store infor-

mation from previous time steps, and use these along with

current inputs to determine outputs [21]. While there have

been previous implementations of trajectory prediction and

driving behavior analysis using subsets of RNNs including

Gated Recurrent Units (GRUs) and Long Short-Term Memory

(LSTM)s, these approaches suffer from increased training

complexity and high latency issues [22], [23]. To address these

issues Reservoir Computing stands to be a more suited model

which simplifies the training complexity by only training the

output layer of the network. Reservoir computing’s ability to

handle spatiotemporal information has enabled its application

in diverse tasks such as time-series prediction, classification,

segmentation, noise reduction, as well as channel equalization

and control [24].

In this work, we address the issues of slow runtimes and

high computational demands associated with traditional RNNs

by developing the first reservoir computing model specifically

tailored for trajectory prediction and driving behavior analysis.

This novel approach incorporates an autoencoder preprocess-

ing layer, which effectively compresses and encodes the input

data, reducing the dimensionality before feeding it into the

reservoir. This integration not only enhances the efficiency of

the model but also improves its accuracy in capturing the in-

tricate dynamics of driving behavior. The model’s architecture

is further augmented by the inclusion of a Support Vector

Machine (SVM) classifier in the final stage. This classifier is

adept at handling the high-dimensional feature space created

by the reservoir, making it a powerful tool for classifying

driving behaviors into predefined categories such as safe, risky,

or anomalous. By leveraging the strengths of both autoencoder

and reservoir computing, along with the robust classification

capabilities of the SVM, our model achieves a delicate balance

between computational efficiency and predictive performance.

The main contributions of our work are summarized below:

• We present the first-ever reservoir computing model

specifically designed for trajectory detection and driving

behavior analysis. This model represents a significant

breakthrough in the field of autonomous vehicle technol-

ogy, as it effectively captures the complex dynamics and

temporal patterns inherent in driving data.

• An innovative preprocessing layer using an autoencoder

is integrated into our model. This layer efficiently com-

presses and encodes the input data, effectively reducing

its dimensionality. This step not only streamlines the data

processing pipeline but also enhances the model’s ability

to discern and learn from the subtle nuances in driving

behaviors.

• A unique scoring system is developed to evaluate driving

behaviors. This system amalgamates various key metrics

such as speed consistency, acceleration patterns, and

state changes in driving, to compute an average score

for drivers. This scoring method is applied to a robust

GPS dataset, enabling a nuanced and detailed analysis of

driving performance.

• By incorporating a Support Vector Machine (SVM) clas-

sifier in the final stage of our model, we have achieved an

exceptional accuracy rate of 99%. This classifier excels

in managing the high-dimensional feature space outputted

by the reservoir and is crucial in accurately classifying

driving behaviors into categories like safe, risky, or

anomalous. This high level of accuracy underscores the

effectiveness of our model in real-world applications,

setting a new benchmark in the realm of autonomous

vehicle technology.

II. BACKGROUND AND RELATED WORKS

A. Dimensionality Reduction Techniques

In the complex realm of transportation systems, dimen-

sionality reduction techniques are essential for extracting

meaningful insights. Principal Component Analysis (PCA)

and Autoencoders stand as prominent methodologies, each

offering distinctive advantages. This section undertakes a

comprehensive comparative analysis, shedding light on their

unique contributions to transportation research.

Principle Component Analysis (PCA) has proven to be an

invaluable tool for researchers navigating the intricate data

25

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:14:15 UTC from IEEE Xplore. Restrictions apply.

landscape of transportation systems. Its capability to distill

high-dimensional data into meaningful patterns unlocks oppor-

tunities for improving safety, efficiency, and user experience.

Driving amidst a multitude of data points, PCA organizes

chaos by identifying underlying dimensions, simplifying anal-

ysis, and revealing hidden relationships. Notable applications

include pre-processing physiological data for effective drowsi-

ness detection [25].

Beyond driver monitoring, PCA empowers intelligent sys-

tems. Its application in eco-driving assistance systems models

driver behavior, predicting delays and promoting fuel effi-

ciency [26]. PCA also contributes to secure transportation

infrastructure by identifying anomalies in network traffic data

[27]. PCA’s versatility extends to personalizing user experi-

ences in advanced driving technologies. Leveraging PCA in an

inverse reinforcement learning approach customizes automated

lane change systems based on individual driving styles [28].

While PCA excels at identifying key dimensions, Autoen-

coders provide another potent technique for understanding

complex data in transportation. Autoencoders, such as the

Echo State Network (ESN) autoencoder, prove valuable in in-

dustrial IoT systems for anomaly detection, enabling proactive

maintenance and enhancing operational safety [29].

Autoencoders transcend traditional machine learning lim-

itations by learning directly from data, adapting to diverse

data types in transportation, from traffic patterns to vehicle

sensor readings [30]. The ability of autoencoders to recon-

struct original data unveils valuable insights. This property

is leveraged for anomaly detection in time-series signals from

traffic or environmental sensors, enabling real-time monitoring

and response [31].

Recent advancements in autoencoder architecture, exem-

plified by the B-Detection framework, combine LSTM au-

toencoders with boosting algorithms for runtime reliability

anomaly detection in mobile edge computing services, leading

to more reliable and efficient service delivery in transportation

systems [32].

In the context of our project on scoring driver behavior, the

integration of PCA and Autoencoders presents a promising

avenue. PCA’s ability to unravel hidden patterns and optimize

algorithms complements Autoencoders’ prowess in anomaly

detection and handling complex signals. By combining these

techniques, our model gains the ability to not only assess

driving patterns but also identify anomalies and deviations

from expected behaviors. This comprehensive approach en-

sures a nuanced and accurate scoring system, fostering the

development of safer, smarter, and more reliable transporta-

tion systems for the future. The synergy between PCA and

Autoencoders enhances the depth and precision of our driver

behavior analysis, providing valuable insights for proactive

decision-making and system optimization.

B. Reservoir Computing

Deep neural networks (DNNs) are primarily categorized into

feedforward neural networks (FNNs), which process static in-

put data, and recurrent neural networks (RNNs) which handle

both temporal and spatial data. Unlike FNNs, RNNs exhibit

dynamic characteristics due to their recurrent connections

within the hidden layer, enabling the retention of informa-

tion over time [33]. Despite their biological nervous system

resemblance, RNNs are known for their complex and intensive

training procedures. To address these challenges, reservoir

computing has been introduced as a simplified alternative,

focusing primarily on training the output layer [34]. This

approach requires less computational effort due to its reliance

on smaller datasets and linear optimization.

In reservoir computing, the neural network comprises

three interconnected layers: the input layer, the reservoir,

and the output layer. The neuron activations in these lay-

ers at any given time step t can be described as u(t) =

(u1(t), . . . , uN (t)), v(t) = (v1(t), . . . , vN (t)) and z(t) =

(z1(t), . . . , zN (t)), respectively. The activations among these

units are defined by the following equations, where σ =
(σ1, . . . , σM) represents the activation function within the

reservoir:

v(t+ 1) = σWuv{u(t+ 1) +Wv(t) +W zvz(t)} (1)

z(t+ 1) = γW vz{u(t+ 1), v(t+ 1), z(t)} (2)

Here, Wuv is the weight matrix connecting the input to the

internal units, while W represents the weights within the

reservoir. The weight matrix connecting the output to the

internal reservoir is W zv , and the weight matrix from the

reservoir to the output is denoted as W vz in Equation (2).

The training process is made more efficient by randomly

initializing connections between the input and the reservoir,

and training connections in the output layer using a regularized

linear least-squares optimization method, effectively mitigat-

ing the vanishing gradient problem [35], [36].

Echo State Networks (ESNs) and Liquid State Machines

(LSMs) represent two variations of reservoir computing. Both

ESNs and LSMs maintain fixed and random connections from

the input to the reservoir and within the reservoir. Despite

similar training procedures for the output layer, ESNs and

LSMs differ in their core structures: ESNs are rate-based

approximations, whereas LSMs are modeled after biologically

inspired spiking neural networks (SNNs) [37]. One of the

compelling reasons for the preference of ESNs over Liquid

State Machines (LSMs) in certain applications, including

ours, stems from their computational efficiency and ease of

implementation. Unlike LSMs, which are based on biologi-

cally inspired spiking neural networks and require intricate

mechanisms to handle spike timings and interactions, ESNs

operate on continuous values, making them more straight-

forward to implement and integrate with standard machine

learning workflows [38]. Moreover, ESNs are often favored for

their robustness in dealing with noisy and non-stationary data,

an attribute essential for analyzing complex driving behaviors

where data can vary significantly over time.

In the context of our work, ESNs are particularly advanta-

geous due to their ability to model complex temporal dynamics

with relatively simple architectures. This simplicity allows for

26

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:14:15 UTC from IEEE Xplore. Restrictions apply.

faster computations and more efficient training, crucial for

real-time applications like autonomous driving where quick

decision-making based on accurate trajectory predictions and

behavior analysis is paramount. Furthermore, the architec-

ture of ESNs facilitates capturing long-term dependencies in

data, a critical requirement for understanding and predicting

driving patterns and behaviors over extended periods [39].

Therefore, while LSMs offer biologically realistic modeling,

ESNs provide a more practical and computationally efficient

approach for our application, aligning with the need for real-

time processing and analysis in autonomous vehicle systems.

C. Navigating Complexity in Classification

Accurately classifying data serves as a cornerstone of ma-

chine learning, with various algorithms tailored to diverse

problem settings. Random Forest Classifiers leverage their

ensemble-based approach for robustness and versatility, while

Linear Classifiers offer interpretability and efficiency for lin-

early separable data. However, both approaches encounter

limitations when faced with complex, non-linear data or the

presence of outliers.

For such challenging classification tasks, characterized by

intricate patterns and outlier data, Support Vector Machines

(SVMs) emerge as a compelling alternative. Their defining

characteristic lies in maximizing the margin between classes,

creating a clear decision boundary that effectively separates

even complex data. This wider ”margin of safety” translates to

enhanced classification accuracy and reduced misclassification

rates [40].

Several key advantages elevate SVMs to a premier choice

for these scenarios. Their inherent resilience to outliers makes

them robust to data noise and anomalies, as demonstrated

in [41] work on personal driving style-based ADAS cus-

tomization using SVMs. Additionally, their ability to handle

non-linear data through kernel functions makes them versa-

tile across diverse problem domains, including autonomous

driving applications where fault tolerance is crucial [40].

Furthermore, SVMs offer a degree of interpretability through

kernel analysis, enabling insights into their decision-making

process.

While classifiers are context-dependent, for complex, non-

linear scenarios, SVMs demonstrably offer significant ad-

vantages, making them a powerful tool in the classification

landscape. Their resilience, versatility, and interpretability

position them as valuable contenders for a range of challenging

tasks, particularly in fields like autonomous driving and driver

behavior analysis.

III. GPS DATASET FROM VEHICLES

Localization, a crucial component of autonomous driving

systems, heavily relies on technologies like GPS, IMU, and

GNSS. GNSS, encompassing various global navigation satel-

lite systems such as Europe’s Galileo and the U.S’s GPS, offers

variable accuracy, ranging from centimeters to meters based on

different observational data and processing methods [42]. GPS,

known for its affordability and consistency over time, does

not accumulate errors. This section discusses the utilization of

GPS data in autonomous vehicles, outlining the nature of the

dataset, the process of constructing a relevant data frame, and

scoring drivers’ performance based on this data [43], [44].

A. Nature of Dataset

The GPS dataset utilized in this paper is denoted as D =
{an, tn, l1n, l2n}, where:

• an represents the vehicle identifier,

• tn signifies the timestamp of data collection,

• l1n and l2n are the latitude and longitude coordinates,

respectively.

This study leverages the T-Drive trajectory dataset, encom-

passing extensive GPS data gathered from a fleet of taxis. This

dataset is pivotal for analyzing urban driving patterns, offering

granular insights into vehicular movements and behaviors. It

allows for a comprehensive examination of mobility patterns

and driver behavior in urban settings, aiding in the understand-

ing of complex traffic dynamics.

B. Building the Dataframe

To construct a comprehensive data frame from GPS data, we

analyze and preprocess the data to extract key features related

to vehicle trajectories and driving behaviors. This process

involves calculating distances, bearings, and identifying state

changes in driving.

1) Distance and Bearing Calculation: Distance between

GPS points is computed using the Haversine formula:

a = sin2
(

Δlat

2

)

+ cos(lat1) · cos(lat2) · sin2
(

Δlon

2

)

(3)

c = 2 · atan2
(√

a,
√
1− a

)

(4)

d = R · c (5)

where R is the Earth’s radius (6371 km), Δlat = lat2 − lat1,

and Δlon = lon2 − lon1.

The bearing between points, denoted as θ, is calculated to

determine the direction of travel:

θ = atan2 (sin(Δlon) · cos(lat2),

cos(lat1) · sin(lat2)− sin(lat1) · cos(lat2) · cos(Δlon))
(6)

2) Speed Calculation: Speed at each timestamp is calcu-

lated to understand the vehicle’s motion dynamics. The speed

v(t) at time t is calculated using the distance d between

consecutive GPS points and the time difference Δt between

these points:

v(t) =
d

Δt
(7)

The distance d is obtained using the Haversine formula, and

Δt is the time interval between successive GPS readings. This

speed calculation is crucial for identifying variations in driving

patterns and subsequent state changes.

27

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:14:15 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Overview of GPS Dataset Processing.

3) Identifying State Changes: State changes in driving are

determined by analyzing speed and bearing variations over

time, allowing for categorization into different driving states.

We denote speed at time t as v(t) and bearing as θ(t). The

driving state is categorized based on the changes in v(t) and

θ(t) as follows:

• Acceleration (Δv(t) > 0): An increase in speed over

time.

• Deceleration (Δv(t) < 0): A decrease in speed over

time.

• Constant Speed (Δv(t) ≈ 0): Negligible or no change

in speed over time.

Directional changes are identified by analyzing Δθ(t), the

change in bearing:

• Turning Right (Δθ(t) > 0): A positive change in bearing

angle.

• Turning Left (Δθ(t) < 0): A negative change in bearing

angle.

• Moving Straight (Δθ(t) ≈ 0): Negligible or no change

in bearing angle.

These states provide insights into driving behaviors, con-

tributing to a comprehensive understanding of vehicle move-

ment patterns and potential anomalies in driving.

4) Transition Probability Calculation: After identifying the

state changes, we calculate the transition probabilities. For

each taxi, the probability Pij of transitioning from state i to

state j is determined by:

Pij =
Number of transitions from i to j

Total transitions from i
(8)

5) Transition Duration Calculation: The duration of each

transition is also vital for behavior analysis. For each transition

from state i to state j, the duration ΔTij is computed as the

difference between timestamps:

ΔTij = Tend − Tstart (9)

where Tend and Tstart are the timestamps at the end and the

start of the transition.

C. Scoring Drivers Based on Performance

To evaluate driving performance, we introduce a scoring

system that considers various aspects of driving behavior.

The overall score S for each driver is calculated using speed

consistency, state change, and acceleration scores:

S =
1

N

N
∑

i=1

(w1 · Sspeed,i + w2 · Sstate,i + w3 · Saccel,i) (10)

Here, Sspeed,i, Sstate,i, and Saccel,i represent the speed con-

sistency, state change, and acceleration scores for the i-th

transition. The weights w1, w2, and w3 are used to balance

the importance of each aspect in the overall score.

• Speed Consistency Score (Sspeed): This score reflects

the consistency of the driver’s speed, calculated as the

normalized inverse of the standard deviation of speed.

• State Change Score (Sstate): This score is derived from

the frequency and nature of state changes, indicating the

driver’s adaptability and responsiveness.

• Acceleration Score (Saccel): Represents the driver’s con-

trol over the vehicle’s acceleration and deceleration, cal-

culated based on the frequency of acceleration-related

state changes.

A higher overall score S indicates a safer and more consis-

tent driving pattern, whereas a lower score points to potential

areas of improvement in driving behavior. Additionally, these

calculated scores S serve as ground truths for our model.

They provide a basis for assessing and validating the predictive

capabilities of the autonomous driving system. By comparing

the predicted driving behaviors against these ground truth

scores, we can gauge the accuracy and reliability of the model

in real-world scenarios, contributing to the overall safety and

efficiency of autonomous vehicles.

IV. THE RESERVOIR COMPUTING MODEL

The developed reservoir model is depicted in Fig. 3 where

the extracted features are used as input to the system and

is passed through the autoencoder, reservoir layer and the

classifier. This section discusses each layer in depth and our

complete model is detailed in Algorithm 1.

A. The Autoencoder Input Layer

Given the extracted features from GPS data, such as ’Tran-

sition Duration’, ’Transition Probability’, ’Speed Consistency

Score’, ’State Change Score’, and ’Acceleration Score’, we

utilize an autoencoder for effective dimensionality reduction

and feature transformation. The encoder compresses the high-

dimensional feature vector into a lower-dimensional latent

representation. Mathematically, this is expressed as:

Z = ReLU(We ×X + be) (11)

28

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:14:15 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Overview of the Reservoir Computing Model.

Algorithm 1 Analysis of Taxi Driving Patterns

Initialize: Text files list inputF iles

Initialize: Output file path outputF ile

Initialize: Headers list headers

Initialize: DataFrame dataFrame

Initialize: Feature vectors featureV ectors

Initialize: Time-aware vectors timeV ectors

Initialize: Transitions transitions

Merge files into CSV with outputF ile, headers

Data Preprocessing: Read and process data from inputF iles

for each row in dataFrame do

Calculate distance and bearing for each point

end for

Create featureV ectors from dataFrame

Haversine Formula:

for each pair (lat1, lon1, lat2, lon2) do

d ← R · arccos(cos(lat1) cos(lat2) cos(lon2 − lon1) +
sin(lat1) sin(lat2))
end for

Autoencoder Training:

Initialize Wenc, benc, Wdec, bdec
for each feature in Xtrain do

encoded ← σ(Wenc · feature+ benc)
decoded ← σ(Wdec · encoded+ bdec)

end for

Reservoir Computing:

Initialize reservoir weights Win, Wres, state x

for each encoded feature u(t) in encodedFeatures do

x(t) ← tanh(Win · u(t) +Wres · x(t− 1))
end for

Train output weights Wout

Classifier Predictions:

Initialize classifiers RF, SVM, LR

for each sample s in X do

RFscore ← RF.predict(s)
SVMscore ← SVM.predict(s)
LRscore ← LR.predict(s)

end for

where We and be denote the weights and biases of the encoder,

respectively, and X represents the input feature vector.

The decoder phase aims to reconstruct the input data from

its compressed form. This process is defined by the equation:

Xrec = σ(Wd × Z + bd) (12)

Here, Wd and bd are the weights and biases of the decoder,

and σ represents the sigmoid activation function.

The training objective of the autoencoder is to minimize

the reconstruction error, which ensures the preservation of

essential characteristics of the driving behavior in the com-

pressed feature space. The output from the autoencoder is then

utilized as input for the reservoir computing layer for advanced

analysis and modeling.

B. The Echo State Network

The Echo State Network (ESN) layer serves as a crucial

component for processing GPS data transformed by the au-

toencoder. This layer is pivotal for capturing temporal de-

pendencies inherent in GPS-based vehicle trajectories. The

reservoir within the ESN is initialized with random weights to

introduce variability in the system:

Wres = randn(size, size)− 0.5 (13)

where size is the predefined reservoir size. This random

initialization plays a vital role in determining the unique

dynamic characteristics of the reservoir.

To enhance the input’s diversity and effectively manage the

complexities of GPS data, a masking layer is employed:

M = Wmask �X (14)

Here, Wmask is a matrix with randomly generated values, and

� denotes the element-wise multiplication, ensuring varied

input propagation through the network. The state of the

reservoir R is updated by integrating both the current state

and the masked input:

R(t+ 1) = tanh(Wres ·R(t) +M(t)) (15)

The non-linear activation function tanh introduces necessary

non-linearity into the system, facilitating the capture of com-

plex temporal patterns. This ESN setup, with its dynamic

reservoir, is exceptionally suited for analyzing GPS data,

capturing nuanced vehicle movement patterns and intricate

behavioral dynamics over time.

29

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:14:15 UTC from IEEE Xplore. Restrictions apply.

C. Support Vector Machine Classifier

The final layer in our model architecture utilizes a Support

Vector Machine (SVM) classifier. This layer is responsible

for classifying the processed GPS data into distinct driving

behavior categories. The SVM classifier operates on the high-

dimensional features output by the Echo State Network. It’s

designed to find the optimal hyperplane that separates the

different classes of driving behavior in the feature space. The

SVM formulation is given by:

minimize
1

2
||w||2 + C

n
∑

i=1

ξi (16)

subject to yi(w · xi + b) ≥ 1− ξi, ξi ≥ 0 (17)

where w and b are the parameters of the hyperplane, C is

the regularization parameter, and ξi are the slack variables

allowing for misclassification.

The SVM classifier is instrumental in classifying driving

behaviors, leveraging the temporal features distilled by the

ESN. Its robustness to high-dimensional data and effectiveness

in handling non-linear separations make it an ideal choice

for classifying complex driving behaviors extracted from GPS

data.

V. EVALUATION OF THE MODEL

A. Loss Function Evaluation

In the realm of reservoir computing (RC) models, the choice

of an apt loss function plays a pivotal role in optimizing

performance. Different functions prioritize specific aspects

of prediction errors, influencing the model’s behavior. For

instance, Mean Squared Error (MSE) accentuates penalization

of larger errors, while Mean Absolute Error (MAE) exhibits

resilience to outliers. In a tailored approach, researchers have

successfully employed a combination of MSE and Kullback-

Leibler divergence to enhance spectrum sensing accuracy in

quantized RC systems [45].

In our RC model, a meticulous evaluation identified Median

Absolute Error (MAE) as the most effective loss function. Its

reduced sensitivity to outliers proved beneficial for handling

noisy data, while its ability to provide a robust measure of

central tendency surpassed Mean Squared Error. The bar plot

in Fig. 4 reveals median absolute error as the superior loss

function, followed by root mean squared error and mean

absolute error. Mean squared error yielded the highest er-

ror, suggesting its relative unsuitability for this model. The

simplicity of MAE facilitated swift training, critical for real-

time processing and resource-constrained applications [46].

This strategic choice contributed to superior performance,

underscoring the significance of tailored loss functions in

advancing the efficacy of RC models.

B. Comparison with State-of-the-Art Models

RNNs are adept at processing sequences by storing infor-

mation from previous time steps and integrating it with current

hidden states. This capability is essential for tasks that involve

Fig. 4: Loss function evaluation of RC model

(a)

(b)

Fig. 5: Comparison of training and validation loss

temporal dependencies. However, RNNs are notoriously chal-

lenged by the vanishing gradient problem, where the gradients

used in training diminish across layers or time steps, hindering

the learning of long-range dependencies.

To overcome these limitations, GRUs and LSTMs have

been developed. These architectures, being advanced variants

of RNNs, incorporate gating mechanisms to better regulate

the flow of information. This design enables them to retain

long-term dependencies within sequences more effectively

than standard RNNs. However, the added complexity of these

gating mechanisms leads to increased computational demands,

resulting in longer training durations.

Conversely, CNNs, though traditionally associated with

spatial data processing, can also be adapted for temporal

data. By leveraging their capability to capture spatio-temporal

30

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:14:15 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Comparison of the State-of-the-art Models

[47] [48] [49] [50] [51] [52] This Work

Network LSTM+GRU CRNN R-CNN GRU Conditional Variance GSAN + AutoEncoder
Autoencoder RNN/LSTM RC + SVM

Data Type Radar Signal LiDar Data Images Images, GPS LiDar Data Image + LiDar GPS +
Sequences Data Timestamp

Accuracy (%) 96 81 96 N/A 69.2 92.71 99

Loss N/A MAE 0.06 MAE 0.45 RMSE MAE
= 0.05173 = 0.03 = 0.43 = 0.02

Prediction Lane Change Dynamic Occupancy Traffic Signal Trajectory Trajectory Lane Change Trajectory
Focus Interference Grid Mapping Image Recognition Prediction Prediction Classification Prediction

Fig. 6: Comparison of training times with different models

continuities, CNNs can effectively predict trajectories and

sequences. They benefit from parallel processing, which often

makes them faster and more computationally efficient than

their RNN counterparts. However, CNNs might not always

capture long-term temporal dependencies as effectively as

GRUs or LSTMs.

In contrast to these models, Reservoir Computing offers

a unique approach. Our reservoir model maintains a large,

dynamically rich, yet fixed recurrent layer, training only the

output weights. This setup enables efficient temporal data pro-

cessing with significantly reduced training complexity. Since

the reservoir only trains the output layer, it also significantly

reduces the training time and complexity.

Comparative analyses, as depicted in Fig. 5(a) and (b), illus-

trate this point. Here, we evaluate the training and validation

losses of our reservoir model against GRUs, LSTMs, and

CNNs. The results indicate that our reservoir computing model

achieves substantially lower losses than the other models,

demonstrating its efficacy in learning from temporal data.

Furthermore, as shown in Fig. 6, the training time of our

reservoir model is markedly less, clocking in at only 2 seconds.

This is in stark contrast to the training times of LSTM (83s),

GRU (104s), and CNN (1700s). Such a significant reduction

in training duration without compromising on performance

underscores the potential of reservoir computing as a highly

efficient alternative for processing temporal sequences. The

comparison with the state-of-the-art models from Table I

shows that our work has a significantly low loss and an

extremely high accuracy of 99%.

C. Determining Accuracy of Model

The categorization of combined driving scores into distinct

states such as ’dangerous’, ’okay’, ’safe’, and ’very good’ is a

crucial step in our analysis. This process involves normalizing

the scores and then categorizing them based on predefined

ranges. This categorization transforms the continuous score

data into discrete classes that represent various levels of

driving proficiency. The categorized variables thus obtained

serve as the basis for making predictions about driver safety.

We employ a Support Vector Machine (SVM) classifier

for this predictive task. SVM is renowned for its robustness,

especially in scenarios where the distinction between classes

is not immediately clear-cut. Its ability to find the optimal

hyperplane that separates different classes makes it particularly

effective for our purpose. In our analysis, the SVM classifier

demonstrates high accuracy, achieving a remarkable 99.3% in

identifying the categories of drivers. This level of accuracy

underscores the SVM’s capability to handle complex classifi-

cation tasks with a high degree of precision.

The features fed into the classifier are derived from the

reservoir computing model. Reservoir computing, known for

its efficiency in processing temporal data, extracts meaningful

patterns from the input features. These patterns, which encap-

sulate crucial information about driving behavior over time,

are then used as inputs to the SVM classifier. The classifier,

in turn, utilizes these inputs to differentiate between good and

bad drivers.

By leveraging the strengths of both reservoir computing

and SVM, our approach provides a nuanced understanding

of driver behavior. The reservoir helps in capturing the tem-

poral dynamics of driving data, while the SVM effectively

categorizes these dynamics into distinct classes of driving

quality. This synergistic use of reservoir computing for feature

extraction and SVM for classification forms the backbone of

our system, enabling us to reliably identify various categories

of drivers based on their driving scores.

VI. CONCLUSION

In this work, we presented a novel approach for trajectory

prediction by employing a combination of autoencoder and

reservoir computing techniques. The autoencoder, serving as

the initial stage of our model, effectively compresses and

reconstructs the input features, achieving a minimal Mean Ab-

solute Error (MAE) loss of 0.02. This performance surpasses

that of more conventional models such as LSTM, GRU, and

31

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:14:15 UTC from IEEE Xplore. Restrictions apply.

CNN, highlighting the efficacy of our method in capturing the

essential characteristics of trajectory data. Furthermore, the

integration of reservoir computing substantially enhances the

model’s capability to process temporal dynamics, a critical

aspect of trajectory prediction. This combination not only

improves prediction accuracy but also significantly reduces

computational overhead, as evidenced by the remarkably low

training time of just 2 seconds. Such efficiency is particularly

advantageous in real-time or resource-constrained environ-

ments. The application of the SVM classifier in our model

further reinforces its robustness, achieving an impressive ac-

curacy of 99.3%. This high accuracy rate indicates the model’s

strong discriminative power in classifying different trajectory

patterns, making it highly reliable for practical applications

in trajectory prediction. Overall, our approach demonstrates

a significant advancement in trajectory prediction, offering a

balance of high accuracy, low computational cost, and rapid

processing. This makes it an excellent choice for various appli-

cations, ranging from autonomous vehicle navigation to traffic

management systems, where accurate and efficient trajectory

prediction is paramount.

REFERENCES

[1] L. Chen, Y. Li, C. Huang, Y. Xing, D. Tian, L. Li, Z. Hu, S. Teng,
C. Lv, J. Wang, D. Cao, N. Zheng, and F.-Y. Wang, “Milestones in
autonomous driving and intelligent vehicles—part i: Control, computing
system design, communication, hd map, testing, and human behaviors,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 53,
no. 9, pp. 5831–5847, 2023.

[2] F. Xu, F. Xu, J. Xie, C.-M. Pun, H. Lu, and H. Gao, “Action recognition
framework in traffic scene for autonomous driving system,” IEEE

Transactions on Intelligent Transportation Systems, vol. 23, no. 11, pp.
22 301–22 311, 2021.

[3] Y. Li, H. Wang, L. M. Dang, T. N. Nguyen, D. Han, A. Lee, I. Jang,
and H. Moon, “A deep learning-based hybrid framework for object
detection and recognition in autonomous driving,” IEEE Access, vol. 8,
pp. 194 228–194 239, 2020.

[4] Y. Ma, Z. Wang, H. Yang, and L. Yang, “Artificial intelligence applica-
tions in the development of autonomous vehicles: A survey,” IEEE/CAA

Journal of Automatica Sinica, vol. 7, no. 2, pp. 315–329, 2020.

[5] W. Wang, L. Wang, C. Zhang, C. Liu, L. Sun et al., “Social interactions
for autonomous driving: A review and perspectives,” Foundations and

Trends® in Robotics, vol. 10, no. 3-4, pp. 198–376, 2022.

[6] M. R. Bachute and J. M. Subhedar, “Autonomous driving architectures:
insights of machine learning and deep learning algorithms,” Machine

Learning with Applications, vol. 6, p. 100164, 2021.

[7] E. Marti, M. A. De Miguel, F. Garcia, and J. Perez, “A review of sensor
technologies for perception in automated driving,” IEEE Intelligent

Transportation Systems Magazine, vol. 11, no. 4, pp. 94–108, 2019.

[8] N. Kalra and S. M. Paddock, “Driving to safety: How many miles of
driving would it take to demonstrate autonomous vehicle reliability?”
Transportation Research Part A: Policy and Practice, vol. 94, pp. 182–
193, 2016.

[9] S. S. Banerjee, S. Jha, J. Cyriac, Z. T. Kalbarczyk, and R. K. Iyer,
“Hands off the wheel in autonomous vehicles?: A systems perspective
on over a million miles of field data,” in 2018 48th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks (DSN).
IEEE, 2018, pp. 586–597.

[10] D. Cao, X. Wang, L. Li, C. Lv, X. Na, Y. Xing, X. Li, Y. Li, Y. Chen,
and F.-Y. Wang, “Future directions of intelligent vehicles: Potentials,
possibilities, and perspectives,” IEEE Transactions on Intelligent Vehi-

cles, vol. 7, no. 1, pp. 7–10, 2022.

[11] Y. Huang, J. Du, Z. Yang, Z. Zhou, L. Zhang, and H. Chen, “A
survey on trajectory-prediction methods for autonomous driving,” IEEE

Transactions on Intelligent Vehicles, vol. 7, no. 3, pp. 652–674, 2022.

[12] F. Leon and M. Gavrilescu, “A review of tracking and trajectory
prediction methods for autonomous driving,” Mathematics, vol. 9, no. 6,
p. 660, 2021.

[13] J. Liu, X. Mao, Y. Fang, D. Zhu, and M. Q.-H. Meng, “A survey on
deep-learning approaches for vehicle trajectory prediction in autonomous
driving,” in 2021 IEEE International Conference on Robotics and

Biomimetics (ROBIO). IEEE, 2021, pp. 978–985.

[14] V. Lefkopoulos, M. Menner, A. Domahidi, and M. N. Zeilinger,
“Interaction-aware motion prediction for autonomous driving: A mul-
tiple model kalman filtering scheme,” IEEE Robotics and Automation

Letters, vol. 6, no. 1, pp. 80–87, 2020.

[15] R. Zhang, L. Cao, S. Bao, and J. Tan, “A method for connected
vehicle trajectory prediction and collision warning algorithm based on
v2v communication,” International Journal of Crashworthiness, vol. 22,
no. 1, pp. 15–25, 2017.

[16] K. Okamoto, K. Berntorp, and S. Di Cairano, “Driver intention-
based vehicle threat assessment using random forests and particle
filtering,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 13 860–
13 865, 2017, 20th IFAC World Congress. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2405896317329063

[17] Y. Guo, V. V. Kalidindi, M. Arief, W. Wang, J. Zhu, H. Peng, and
D. Zhao, “Modeling multi-vehicle interaction scenarios using gaussian
random field,” in 2019 IEEE Intelligent Transportation Systems Confer-

ence (ITSC). IEEE, 2019, pp. 3974–3980.

[18] P. Kumar, M. Perrollaz, S. Lefevre, and C. Laugier, “Learning-based
approach for online lane change intention prediction,” in 2013 IEEE

Intelligent Vehicles Symposium (IV). IEEE, 2013, pp. 797–802.

[19] H. Cui, T. Nguyen, F.-C. Chou, T.-H. Lin, J. Schneider, D. Bradley,
and N. Djuric, “Deep kinematic models for kinematically feasible
vehicle trajectory predictions,” in 2020 IEEE International Conference

on Robotics and Automation (ICRA). IEEE, 2020, pp. 10 563–10 569.

[20] F.-C. Chou, T.-H. Lin, H. Cui, V. Radosavljevic, T. Nguyen, T.-K.
Huang, M. Niedoba, J. Schneider, and N. Djuric, “Predicting motion of
vulnerable road users using high-definition maps and efficient convnets,”
in 2020 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2020, pp.
1655–1662.

[21] A. Graves, “Generating sequences with recurrent neural networks,” arXiv

preprint arXiv:1308.0850, 2013.

[22] A. Zyner, S. Worrall, and E. Nebot, “A recurrent neural network
solution for predicting driver intention at unsignalized intersections,”
IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1759–1764,
2018.

[23] F. Altché and A. de La Fortelle, “An lstm network for highway trajectory
prediction,” in 2017 IEEE 20th international conference on intelligent

transportation systems (ITSC). IEEE, 2017, pp. 353–359.

[24] A. Canziani, A. Paszke, and E. Culurciello, “An analysis of deep
neural network models for practical applications,” arXiv preprint

arXiv:1605.07678, 2016.

[25] Y. Huang and Y. Deng, “A hybrid model utilizing principal component
analysis and artificial neural networks for driving drowsiness detection,”
Applied Sciences, vol. 12, no. 12, p. 6007, 2022.

[26] S. K. Chada, D. Görges, A. Ebert, R. Teutsch, and C. G. Min, “Learning-
based driver behavior modeling and delay compensation to improve
the efficiency of an eco-driving assistance system,” in 2022 IEEE

International Conference on Systems, Man, and Cybernetics (SMC),
2022, pp. 415–422.

[27] A. Parizad and C. J. Hatziadoniu, “Cyber-attack detection using principal
component analysis and noisy clustering algorithms: A collaborative
machine learning-based framework,” IEEE Transactions on Smart Grid,
vol. 13, no. 6, pp. 4848–4861, 2022.

[28] J. Liu, L. N. Boyle, and A. G. Banerjee, “An inverse reinforcement
learning approach for customizing automated lane change systems,”
IEEE Transactions on Vehicular Technology, vol. 71, no. 9, pp. 9261–
9271, 2022.

[29] F. De Vita, G. Nocera, D. Bruneo, and S. K. Das, “A novel echo state
network autoencoder for anomaly detection in industrial iot systems,”
IEEE Transactions on Industrial Informatics, 2022.

[30] H. Zhang and D. V. Vargas, “A survey on reservoir computing and
its interdisciplinary applications beyond traditional machine learning,”
IEEE Access, 2023.

[31] J. Kato, G. Tanaka, R. Nakane, and A. Hirose, “Proposal of recon-
structive reservoir computing to detect anomaly in time-series signals,”
in 2022 International Joint Conference on Neural Networks (IJCNN).
IEEE, 2022, pp. 1–6.

32

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:14:15 UTC from IEEE Xplore. Restrictions apply.

[32] L. Wang, S. Chen, F. Chen, Q. He, and J. Liu, “B-detection: Runtime
reliability anomaly detection for mec services with boosting lstm au-
toencoder,” IEEE Transactions on Mobile Computing, 2023.

[33] R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio, “How to construct
deep recurrent neural networks,” arXiv preprint arXiv:1312.6026, 2013.

[34] K. Nakajima and I. Fischer, Reservoir computing. Springer, 2021.
[35] Y. Bengio, N. Boulanger-Lewandowski, and R. Pascanu, “Advances in

optimizing recurrent networks,” in 2013 IEEE international conference

on acoustics, speech and signal processing. IEEE, 2013, pp. 8624–
8628.

[36] C. R. Vogel, Computational methods for inverse problems. SIAM,
2002.

[37] N. Soures and D. Kudithipudi, “Deep liquid state machines with neural
plasticity for video activity recognition,” Frontiers in neuroscience,
vol. 13, p. 686, 2019.

[38] M. Lukoševičius and H. Jaeger, “Reservoir computing approaches to
recurrent neural network training,” Computer science review, vol. 3,
no. 3, pp. 127–149, 2009.

[39] C. Gallicchio, A. Micheli, and L. Pedrelli, “Deep reservoir computing:
A critical experimental analysis,” Neurocomputing, vol. 268, pp. 87–99,
2017.

[40] N. D. Irimia, M. Luchian, F. I. Lazar, and A. Ipatiov, “Performant fault
tolerant control by using space vector modulation (svm) technique of a
five phases bldc motor for autonomous driving applications,” in 2022

10th International Conference on Systems and Control (ICSC), 2022,
pp. 317–322.

[41] G. Hwang, D. Jung, Y. Goh, and J.-M. Chung, “Personal driving style-
based adas customization in diverse traffic environments using svm
for public driving safety,” in 2022 13th International Conference on

Information and Communication Technology Convergence (ICTC), 2022,
pp. 1938–1940.

[42] E. Ali, “Global positioning system (gps): Definition, principles, errors,
applications & dgps,” no. April, 2020.

[43] J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, and Y. Huang, “T-
drive: driving directions based on taxi trajectories,” in Proceedings of the

18th SIGSPATIAL International conference on advances in geographic

information systems, 2010, pp. 99–108.
[44] J. Yuan, Y. Zheng, X. Xie, and G. Sun, “Driving with knowledge

from the physical world,” in Proceedings of the 17th ACM SIGKDD

international conference on Knowledge discovery and data mining,
2011, pp. 316–324.

[45] S. Liu, L. Liu, and Y. Yi, “Quantized reservoir computing for spectrum
sensing with knowledge distillation,” IEEE Transactions on Cognitive

and Developmental Systems, vol. 15, no. 1, pp. 88–99, 2023.
[46] L. Li, L. Liu, Z. Zhou, and Y. Yi, “Reservoir computing meets extreme

learning machine in real-time mimo-ofdm receive processing,” IEEE

Transactions on Communications, vol. 70, no. 5, pp. 3126–3140, 2022.
[47] L. Li, W. Zhao, C. Xu, C. Wang, Q. Chen, and S. Dai, “Lane-change

intention inference based on rnn for autonomous driving on highways,”
IEEE Transactions on Vehicular Technology, vol. 70, no. 6, pp. 5499–
5510, 2021.

[48] M. Schreiber, V. Belagiannis, C. Gläser, and K. Dietmayer, “Dynamic
occupancy grid mapping with recurrent neural networks,” in 2021 IEEE

International Conference on Robotics and Automation (ICRA), 2021, pp.
6717–6724.

[49] G.-Z. Tiron and M.-S. Poboroniuc, “Neural network based traffic sign
recognition for autonomous driving,” in 2019 International Conference

on Electromechanical and Energy Systems (SIELMEN), 2019, pp. 1–5.
[50] P.-Y. Hsu, M.-L. Huang, W.-Y. Wang, and H.-H. Chiang, “Traffic agent

trajectory prediction using a time sequence deep learning model with
trajectory mapping for autonomous driving,” in 2021 IEEE International

Conference on Consumer Electronics-Taiwan (ICCE-TW), 2021, pp. 1–
2.

[51] Z. Zhong, Y. Luo, and W. Liang, “Stgm: Vehicle trajectory prediction
based on generative model for spatial-temporal features,” IEEE Transac-

tions on Intelligent Transportation Systems, vol. 23, no. 10, pp. 18 785–
18 793, 2022.

[52] L. Ye, Z. Wang, X. Chen, J. Wang, K. Wu, and K. Lu, “Gsan: Graph self-
attention network for learning spatial–temporal interaction representation
in autonomous driving,” IEEE Internet of Things Journal, vol. 9, no. 12,
pp. 9190–9204, 2021.

33

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:14:15 UTC from IEEE Xplore. Restrictions apply.

